IAP logo UniBonn logo
  • Increase font size
  • Default font size
  • Decrease font size

Quantum technologies

Dieter Meschede's research group

Quantum technologies with single neutral atoms


Intensive week: Introduction to topological insulators and their implementations in artificial matter setups

The intensive week consists of lectures introducing graduate students to the very active research field of topological insulators. Participants are required to have good knowledge of basic quantum mechanics and familiarity with basic concepts in condensed matter physics (Bloch theorem, energy bands, etc.). No prior knowledge of topology is assumed.

The main body of the intensive week is a course held by J. K. Asbóth, based on the lecture notes “A Short Course on Topological Insulators”, freely available at https://arxiv.org/abs/1509.02295. Through simple one- and two-dimensional model Hamiltonians, participants will acquire a good physical understanding of the core concepts of topological insulators. This is complemented by A. Alberti, presenting a selection of modern experiments demonstrating topological effects in ultracold atoms and nanophotonics setups. Additionally, guest speakers will give an introduction to “frontier” research topics in this field. The course will be accompanied by laboratory tours, exercise and interactive discussion sessions in the afternoon.


Low-entropy states: Persuading Maxwell’s Demon to order atoms

A new technique allows sorting atoms one by one to form ordered patterns in a periodic lattice with angstrom precision
Creating low-entropy states of neutral matter is one of the outstanding problems in the field of quantum optics. These states are an indispensable cornerstone of future applications in quantum information science, ranging from quantum simulations to quantum information processing. In Robens et al. Phys. Rev. Lett. 118, 065302 (2017), we demonstrate a new technique using two periodic optical potentials—the storage and shift register—to sort neutral atoms one by one into predefined patterns. Hence, our original experimental scheme acts akin to a Maxwell daemon preparing states with virtually zero entropy. Behind this scheme stands a novel idea for the fast, high-precision synthesis of polarization states of light—hence the name of polarization-synthesized optical lattices. Using the storage and shift register enables a novel sorting algorithm of logarithmic complexity, which holds promise to sort even a thousand atoms into a predefined target pattern with angstrom precision in a second. In our manuscript, we give a proof-of-concept demonstration by generating low entropy states with four atoms (see figure).
Original publication: C. Robens, J. Zopes, W. Alt, S. Brakhane, D. Meschede, and A. Alberti, "Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices", Phys. Rev. Lett. 118, 065302 (2017).

Ultra-low birefringence dodecagonal vacuum glass cell - patent pending

Modern experiments for the investigation of cold atom ensembles require an ultra-high vacuum apparatus with a very large optical access and an accurate preservation of the state of polarization of laser beams. Typical ultrahigh vacuum cells suffer from residual stress-induced birefringence, which deteriorates the polarisation's purity [1]. In addition, birefringence gradients prevent the full compensation of birefringence. This effect effectively limits the extinction ratio to typically η > 10-5. We recently developed an ultra-low birefringence ultra-high vacuum cell that exhibits a polarization extinction two orders of magnitude smaller than commercial vacuum cells at around η ≈ 10-7 [2]. Besides the ultra-low birefringence, the vacuum cell features a dodecagonal geometry with double-sided antireflection coated windows (see picture). The cell is currently utilized in one of our laboratories, where we manipulate ultracold Cs atoms in two-dimensional state-dependent optical lattices.

If you are interested in our invention for commercial applications, please see our patent abstract containing also the contact to our patent advisor, PROvendis [3].

[1]: S. Brakhane, and A. Alberti, "Technical note: Stress-Induced Birefringence in Vacuum Systems", download link (June, 2016)
[2]: S. Brakhane, W. Alt, D. Meschede, C. Robens, G. Moon, and A. Alberti, "Note: Ultra-low birefringence dodecagonal vacuum glass cell," Rev. Sci. Instrum. 86, 126108 (2015)
[3]: Patent abstract, PROvendis, Patent advisor of the University of Bonn, download link (March, 2016)



Cavity QED with single atoms


The goal of cavity quantum electrodynamics (cavity-QED) is to investigate and understand light-matter interaction at the most fundamental level by preparing a basic model system: a single atom strongly coupled to a single photon in a well-controlled environment. While individual atoms can be controlled well by laser-cooling and trapping techniques, photons have to be confined by reflecting them back and forth in cavities, which thus act as a "trap" for light.

In such a system the physics behind spontaneous and stimulated emission of light and the associated transitions of the atom between different quantum states can be investigated and illustrated in a unique way. This becomes possible due to the strong coupling between the atom and the cavity field, enabling a single atom to control the transmission of light through the cavity, and allowing a single photon to deterministically change the state of the atom. Quantum communication could be a future application of these controlled interaction between individual photons and atoms. 


Few-atom quantum systems

Fig. 1: The vacuum cell with lattice and imaging system: Individual cesium atoms can be trapped and observed.

Our team is working on quantum information processing using a small number of Cesium atoms. We load the atoms into a 1D optical lattice and use the spin of each atom as a quantum bit, with the ability to set and read out each atom individually—a quantum register. Our lattice uses a special wavelength which makes the optical potential state-depedent, giving us the ability to shift atoms in the lattice depending on their internal state. We are currently researching the phenomena exhibited by a single atom when it is coherently separated over several sites. Ultimately, our goal is the controlled interaction of two atoms, creating entanglement that can be used in a quantum computation.

Our recent results include: