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Analyzing quantum jumps of one and two atoms
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We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled
to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify
experimental parameters to deduce the atomic spin state nondestructively from the stream of photons trans-
mitted through the cavity, achieving a compromise between a good signal-to-noise ratio and minimal
measurement-induced perturbations. In order to extract optimum information about the spin dynamics from
the photon count signal, a Bayesian update formalism is employed, which yields time-dependent probabilities
for the atoms to be in one of the two hyperfine states. This analysis is extended to short time bins where a
simple threshold analysis would not yield reasonable results. We discuss the effect of super-Poissonian photon
number distributions caused by atomic motion. © 2010 Optical Society of America
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. INTRODUCTION
ystems comprised of neutral atoms coupled to a single
ode of a high-finesse resonator belong to the key model-

ystems in quantum optics [1]. In the so called strong cou-
ling limit an atom periodically exchanges its excitation
nergy with the resonator light field. In this case the dy-
amic evolution is governed by a priori entangled light-
atter quantum states, namely, the combined dressed

tates of the atom-cavity system. Due to the symmetric
nteraction, described by the Janyes–Cummings Hamil-
onian [2], information about the state of the system can
e obtained from two complementary partial measure-
ents: In the optical domain, experiments rely on the de-

ection of photons emitted from the cavity [3–9], whereas
n the microwave regime the quantum state of atoms
ransiting the cavity field is detected [10].

Optical cavity quantum electrodynamics (cavity QED)
ystems are attractive for applications in quantum infor-
ation science, e.g., for quantum networks. The success-

ul demonstration of, for instance, the mapping of the co-
erent state of a traveling qubit (a photon) to the atomic
tate memory qubit [11] as well as single-photon genera-
ion [12–14] are recent examples of significant progress in
ontrolling the interaction of a single atom with the cavity
eld. For the creation of two-particle entangled states,
romising proposals rely on either applying deterministic
rotocols [15] or measurement-induced (probabilistic) pro-
ection [16,17].

More generally for the investigation of strongly inter-
cting atom-cavity systems it is vital to understand the
0740-3224/10/06A152-12/$15.00 © 2
pin dynamics of one and especially more than one atom
imultaneously coupled to the resonator field. In the work
resented here we concentrate on the case of one and two
toms and investigate how maximum information about
heir hyperfine ground states can be retrieved from the
tream of photons arriving at the detector. We outline and
etail the identification of optimal experimental settings
uch as atom-cavity detuning.

Random telegraph signals are obtained by continuously
bserving quantum jumps between the spin states of a
ingle atom. Here previous work presented in [9] is ex-
ended by applying a Bayesian update formalism for the
nalysis of the cavity transmission. In complementary ex-
eriments [18,19], the photon number state (Fock state)
f a microwave cavity field is interrogated by a stream of
ircular Rydberg-atoms acting as quantum probes. There
ayesian analysis has proven to be a useful method of
nalysis, too. Random telegraph fluctuations are a univer-
al phenomenon observed in many different fields, includ-
ng a large variety of solid-state systems [20].

In order to study two-atom dynamics, we identified ex-
erimental parameters for which the intracavity intensity
epends on the number of atoms in a specific spin state.
he virtue of the Bayesian method is evident in analyzing

he corresponding telegraph signals, for which the atomic
tate cannot be unambiguously deduced from the mea-
ured transmission signal because of technical limitations
n the signal-to-noise ratio.

In our measurements we observe fluctuations in the
ransmission exceeding shot noise, which we attribute to
010 Optical Society of America



t
e
a

2
A
A
t
a
o
a
a
o
c
g
F

p
b
t
c
(
w
c
a
i
t

i
i
p
a
c
c
b
1
t
p
d
g
t
t

→
a
t
a

n
m
i
p
S

i
i
t
d
p
a
s
i
C
g
t

B
I
�
c
i
w
t
t
t
(

t
i
c
p
l
c
b
t
w
p
t
�
c
f
w

3
I
s

F
i
t
[

(

F
�
a
t
c

Reick et al. Vol. 27, No. 6 /June 2010/J. Opt. Soc. Am. B A153
hermal motion of the atom. We discuss the impact of this
xternal dynamics on the performance of the Bayesian
nalysis.

. EXPERIMENTAL TECHNIQUES
. Setup to Trap and Transport Single Atoms
t the beginning of every experimental sequence, a con-

rolled number of cesium (Cs) atoms are transferred from
magneto-optical trap (MOT) into a standing wave far-

ff-resonant dipole trap (FORT) with �FORT=1030 nm
nd a trap depth of UFORT�kB�1 mK. This trap acts as
n “optical conveyor belt” [21] to transport atoms into the
ptical resonator. The fundamental TEM00 mode of the
avity has a waist diameter of 2w0=46 �m and a length
iven by the mirror distance of 158 �m. The finesse is
=1.2�106.
A conceptual drawing of the main components is de-

icted in Fig. 1; for details of the cavity-setup and the sta-
ilization scheme see [8]. To study the atom-cavity sys-
em, the transmission of a weak probe laser through the
avity is detected with a single-photon counting module
SPCM). Using a custom-built time-to-digital converter,
e record—for each photon click—the time since the last

lick, where for our typical count rate dead time effects
re negligible. This list of click-intervals is then converted
nto a binned transmission signal by counting the detec-
or clicks in each bin time interval �tb.

The total detection efficiency for the probe laser light—
ncluding absorption and scattering by the mirror coat-
ngs, losses at various optical elements along the optical
ath, and the quantum efficiency of the detector—
mounts to �=4.4%, which is a threefold improvement
ompared to our earlier work presented in [9]. The main
hallenge was to optimize the separation of probe and sta-
ilization lasers, with typical powers of a few 10−15 and
0−6 W, respectively. In a first step, they are separated by
heir carefully adjusted orthogonal polarizations. Im-
roved spectral filtering was achieved by replacing a stan-
ard ruled diffraction grating with a volume holographic
rating, allowing us to omit an additional interference fil-
er used before, while still achieving a total suppression of
he stabilization laser to better than 10−8.

The probe laser frequency is set close to the �F=4�
�F�=5� transition of the Cs D2 line, where F is the total

ngular momentum quantum number. For this transi-
ion, the important parameters of the atom-cavity system
re �g ,� ,��=2�� �13.1,0.4,2.6� MHz, where g is the

ig. 1. (Color online) Schematic setup of MOT, FORT, and cav-
ty mirrors (not to scale). Details of the experimental setup and
he stabilization of the cavity resonance frequency are given in
8].
ominal coupling strength for an atom at the position of
aximum coupling, � is the cavity field decay rate, and �

s the atomic dipole decay rate. For typical probe laser
owers for which 30 photons/ms are detected by the
PCM, the empty cavity photon number is n0�0.3.
Since in our setup the birefringent splitting of the cav-

ty resonances is larger than the cavity linewidth, the cav-
ty field is always linearly polarized, causing a distribu-
ion of the atomic population over all Zeeman sublevels
ue to photon scattering by the probe laser. Thus the cou-
ling strength g given above is obtained from a weighted
verage over all couplings g�mF�, based on the steady
tate mF distribution for linearly polarized optical pump-
ng [22,23]. With the single-atom cooperativity parameter

1=g2 / �2���	1, our system is in the strong coupling re-
ime, where already a single atom significantly influences
he cavity spectrum.

. Nondestructive State Detection
n our system the two long-lived hyperfine ground states
F=3� and �F=4� serve as qubit states [24]. For the
oupled atom-cavity system we measure this state by tun-
ng the cavity close to the �F=4�→ �F�=5� transition,
here only an atom in the �F=4� state leads to a drop in

he transmission, while an atom in �F=3� is so far de-
uned (around 9.2 GHz) that it effectively decouples from
he system and does not influence the cavity transmission
see Fig. 2).

The probe laser with an angular frequency 
p is ini-
ially tuned to the resonance frequency of the empty cav-
ty 
c=
p, so when an atom in �F=4� is inserted into the
avity the transmission is reduced to a level which de-
ends on the detuning �ca=
c−
a, where 
a is the angu-
ar frequency of the atomic �F=4�→ �F�=5� transition, in-
luding the alternating-current (AC)-Stark shift induced
y the FORT potential. To experimentally distinguish be-
ween an atom in �F=3� and an atom lost from the trap,
hich both result in the same transmission signal, a re-
umping laser resonant with the �F=3�→ �F�=4� transi-
ion can be applied from the side which brings the atom in
F=3� back to the �F=4�→ �F�=5� cycle. Thus for an empty
avity the transmission would remain unchanged, while
or an atom still present in the cavity the transmission
ould drop again.

. SINGLE-ATOM SPIN DYNAMICS
f the state detection technique described above gave the
ame result for an unlimited series of state measure-

F = 4

F = 3

F’ = 4

F’ = 5

9 GHz

probe laser,
cavity

{

{251 MHz

F = 4

F = 3

F’ = 4

F’ = 5
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cavity
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a) (b)

�ca

ig. 2. (Color online) Simplified Cs level scheme. (a) An atom in
F=3� is so far detuned from the cavity resonance that it does not
lter its transmission. (b) If the atom is in �F=4�, it changes the
ransmission, depending on the cavity-atom detuning �ca and the
oupling strength g.
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ents, it would be a perfect projective quantum nondemo-
ition (QND) measurement [25–27], assuming the system
s otherwise unperturbed. However, in our situation the
ame laser that we use to detect the atomic state (the
robe laser) can change it via inelastic hyperfine-state-
hanging Raman scattering. An atom in the �F=4� ground
tate can thus be transferred to �F=3� via the �F�=3� and
F�=4� excited states, thereby undergoing a quantum
ump [28–32].

. Quantum Jump Rate and Transmission Level as a
unction of Detuning
o experimentally determine the rate R43 of probe-laser-
nduced transitions from �F=4� to �F=3� and to identify
ptimum experimental conditions, we performed the
ollowing measurement: An atom, optically pumped into
F=4�, is transported into the cavity center, causing a
rop of the cavity transmission [see Fig. 3(a)]. Since no re-
umper is applied, probe laser scattering causes a spon-
aneous transition to �F=3� after a certain dwell time in
F=4�, visible as an instantaneous rise in transmission
ack to the empty cavity level. To check whether the rise
n transmission is really due to a quantum jump and not
aused by atom loss, the repumper is switched on at the
nd of the sequence as discussed above.

For each experimental realization, the quantum jump
ccurs at a random point in time; see Fig. 3(a) for two ex-
mple traces. Since the rate of state transitions is time in-
ependent, the ensemble average plotted in Fig. 3(b) re-
eals the expected exponential curve with the time
onstant being the average dwell time R43

−1.
This average dwell time was measured for a wide range

f detunings �ca / �2��=38–410 MHz. For the same set-
ings, but with the repumper constantly applied, we mea-
ured the transmission level T1, defined as the photon
ount rate with one atom in �F=4� coupled to the cavity,
ormalized to the empty cavity signal. The results of both
easurements are presented in Fig. 4.
In order to describe our measurements with a simpli-

ed analytical model, we consider a two-level atom at rest
ith the probe laser being resonant with the empty cavity

ig. 3. (Color online) (a) Black and gray curves show two single
races of quantum jump measurements. The arrows indicate in-
ertion and removal of an atom. At the end of the sequence, the
epumper is switched on again to check that the atom was not
ost. (b) Ensemble average over 31 single traces. The average
well time R43

−1 is obtained from the exponential fit. The averaged
ransmission level at the end of the sequence, when the re-
umper is switched on, is higher than the initial drop, indicating
lower average coupling strength. This could be caused by in-

reased thermal motion, a redistribution over different mF levels,
r a combination of both effects.

p=
c�. In the weak excitation regime, the one-atom-
ransmission level can be expressed analytically as [33]

T1��ca,geff� =
�2��ca

2 + �2�

��� + geff
2 �2 + ��ca��2

. �1�

he distribution over Zeeman sublevels, thermal motion
f the atom, and other conceivable perturbations are all
ccounted for by an effective coupling strength geff. It is
efined by Eq. (1) in such a way that a stationary two-
evel atom with a coupling strength of geff would yield the
xperimentally measured transmission level. Thermal
ariations of the AC-Stark shift amount only to a few
egahertz and are smaller than experimental uncertain-

ies on the detuning �ca. The solid lines in Fig. 4(a) are
alculated according to Eq. (1) with geff / �2��=8, 9, and 10
Hz, and this range of effective couplings describes the

ata reasonably well. We attribute the difference between
he nominal coupling strengths of g / �2��=13.1 MHz and
eff mainly to thermal motion of the atom.
To describe the measured average dwell times theoreti-

ally [see Fig. 4(b)], R43 is calculated as a function of de-
uning using the Kramers–Heisenberg-formula [34]. For
his calculation, one has to treat the distribution over all
eeman sublevels and thermal motion separately since
his situation cannot be modeled as a two-level system
ith an effective coupling. The measured data agree sat-

sfactorily with the theoretical model, confirming that the
est approximation to a projective QND measurement
ith longest dwell times is close to resonance. A practical

imitation is that stable coupling was never observed for
etunings �ca�2��30 MHz, probably due to cavity cool-
ng becoming less effective [35,36].

. Statistical Analysis of Single-Atom Random
elegraph Signals
n the experiments discussed so far, the repumping laser
as either switched off or its intensity was adjusted such

hat an atom off-resonantly transferred to �F=3� was
umped back to �F=4� immediately, compared to all rel-
vant time scales in our experiment. In contrast, for the
easurements presented in the following, we deliberately

ttenuated the continuously applied repumping laser to a

ig. 4. (Color online) (a) Normalized one-atom-transmission as
function of the cavity-atom detuning �ca. The solid lines are

alculated for an atom at rest with effective coupling strengths of
eff / �2��=8, 9, and 10 MHz for the upper, middle, and lower
urves, respectively. (b) Average dwell time R43

−1 as a function of
etuning. The shaded area is the result of a theoretical model
aking motion of the atom into account, and the range of values
epresents our limited knowledge about the exact distribution
ver the Zeeman sublevels.
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evel at which the transfer rate R34 from �F=3� to �F=4�
as comparable to R43. Therefore, the resulting quantum

umps occur in both directions on a similar time scale of
everal milliseconds and are thus detectable as a random
elegraph signal; see Fig. 5(a) for an example trace.

We quantify our knowledge about the atom’s hyperfine
pin by probabilities assigned to the different atomic
tates. For the following discussion we introduce the pa-
ameter � to denote the number of atoms in �F=4�. In this
ection � attains only the values of 0 and 1, whereas the
ase of two atoms (see Section 4) also permits the value of
=2. Internal state changes of a single atom are transi-

ions between the two states �=0,1, and they occur with
he rates R10 and R01, which are identical to R43 and R34,
espectively. Although we imagine the transitions to occur
andomly and at discrete instances of time, the probabili-
ies for the atom to occupy the different states change in a
ontinuous manner governed by the following rate equa-
ions:

dp0�t�

dt
= − R01p0�t� + R10p1�t�, �2�

dp1�t�

dt
= − R10p1�t� + R01p0�t� = −

dp0�t�

dt
. �3�

he average steady state probabilities p̄0 and p̄1 are ob-
ained by setting dp0�t� /dt=dp1�t� /dt=0 and using p̄0
p̄1=1. The solutions are thus given by the ratios be-

ween the transition rates,

p̄0 =
R10

R10 + R01
, �4�

p̄1 =
R01

R10 + R01
. �5�

he average probabilities and thus the ratio of the rates
10 and R01 can therefore be obtained from photon count
istograms by the following procedure: Along with the
elegraph signals, transmission traces for an empty cavity
�=0�, and for one continuously coupled atom ��=1�, were
easured for otherwise identical settings. From these

hree sets of data, normalized photon count histograms
�n�, P�n �0�, and P�n �1� are computed, with n being the

ig. 5. (a) Random telegraph signal for one atom coupled to the
avity. (b) Bayes analysis yielding p0�t�, i.e., the probability to be
n �F=3�. The cavity-atom detuning is �ca=2��30 MHz; the bin
ize is 1 ms.
umber of photons detected per binning time �tb=1 ms.
ere and for the remaining discussion, P always refers to
hoton count probabilities, while p��t� indicates spin-
tate probabilities.

Since the telegraph signal is expected to represent the
tomic system jumping between the different states, the
ssociated accumulated histogram of photon counts
hould be a weighted fit,

P�n� = p̄0P�n�0� + �1 − p̄0�P�n�1�, �6�

f the independently measured histograms P�n ��� for the
wo atomic states. Treating p̄0 as a fitting parameter
ields p̄0=0.64 and p̄1=0.36.

In order to extract the transition rates, we note that
he jumping of the atom between two different states with
ifferent transmission properties causes characteristic
uctuations in the number of detection events obtained in
ifferent time bins, n�t� and n�t+�, which become visible
n the second-order correlation function g�2���. Assuming
oissonian count distributions, an analysis of the rate
quations yields [30]

g�2��� =
�n�t�n�t + ��

�n�t���n�t + ��
� exp�− �R10 + R01�� for  � 0.

�7�

he histogram of the telegraph signal and the g�2�

unction are plotted in Figs. 6(a) and 6(b), respectively.
rom an exponential fit of the correlation function, we get
10+R01=50 s−1; therefore we obtain R10=40 s−1 and
01=18 s−1 using p̄0, p̄1, and Eqs. (4) and (5).
In the discussion above, we assumed that the state of

he atom can be described by the two states �=0 and �
1 alone, each leading to a Poissonian distribution P�n ���
f the photon count rate. For �=0 this is verified by the
easurement: The right peak of the measured histogram

n Fig. 6(a) agrees with a Poissonian distribution of the
ame average count rate. Thus the state detection for �
0, with the transmission being equal to the empty cavity
ase, is essentially shot-noise limited and the residual fre-
uency or intensity fluctuations of the probe laser can be
eglected.
However, comparing the photon count histogram

�n �1� with the Poissonian distribution [left peak of the
istogram in Fig. 6(a)] indicates super-Poissonian fluc-
uations. We attribute these mainly to thermal motion of
he atom: The coupling constant g follows the cavity mode
unction, i.e., g�r�=g0��r�, which in turn leads to a trans-

ission level T1�r�, depending on the atomic position, ac-
ording to Eq. (1). In [37], super-Poissonian correlations
n the field transmitted from a cavity with a single
rapped atom on a similar time scale were observed and
ttributed to atomic motion, while very short time corre-
ations observed under off-resonant excitation of the cav-
ty were attributed to emission from higher excited
ressed states of the coupled atom-cavity system.
In later sections of this paper we shall discuss candi-

ates for a more complete theoretical analysis of this dy-
amics. At this point, we pursue a pragmatic approach
nd still extract the atomic transition rates from the cor-
elation function as stated by Eq. (7), because this rela-
ion does not rely strongly on the Poissonian character of
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he signal. Furthermore, the exact values of the rates are
ot the main result of this work and do not convey funda-
ental physical insight, since they are determined by the

ntensities of the probe and repumping laser. They rather
onstitute parameters in the following statistical analy-
is.

To quantify the knowledge about the atomic state that
e obtain from the measured telegraph signals, we use a
ayesian approach in analyzing the data. The philosophy
ehind this approach is that we assign probabilities to the
ossible states �=0,1 of the atom and acknowledge that
hese probabilities merely reflect our incomplete knowl-
dge about the system, unless one of the probabilities is
nity. Due to the atomic transitions which occur without
ur direct notice, the probabilities of the unobserved sys-
em obey the rate equations (2) and (3), but since the cav-
ty transmission depends on the atomic state, we learn
bout the atomic state from the observed photon count
ecord.

The probabilities p� are thus calculated step-wise from
he incremental information obtained in every time bin of
he measured telegraph signal. Let n�ti� be the number of
hotons detected during the interval �ti−�tb /2 , ti+�tb /2�,
here the binning time �tb is fixed to 1 ms for the follow-

ng analysis. With p��ti� we refer to the probability for an
tom to be in the state � in the midpoint of the aforemen-
ioned interval. Assuming that the atomic state probabili-
ies in the previous time bin p��ti−1� are known, the prob-
bilities p��ti� are estimated by first evolving their values
ccording to the rate equations (2) and (3). In a linear ap-
roximation for Rx�tb�1, where Rx=max�R10,R01�, this
eads to

p̃0�ti� = p0�ti−1� + �R10p1�ti−1� − R01p0�ti−1���tb, �8�

p̃1�ti� = p1�ti−1� + �R01p0�ti−1� − R10p1�ti−1���tb, �9�

here p̃ indicates the unconditional probability.
Note that the probabilistic description does not imply

hat the atom occupies two different states, but only that
e do not know which one is actually occupied. This also

mplies that our prediction for the distribution of photon
umbers n�t � detected in the ith time bin has to be

ig. 6. (a) Normalized histogram extracted from 13 telegraph
30 MHz and binned with �tb=1 ms. The solid line is the sum

s the corresponding histogram peak. (b) Averaged second-order
ashed line is an exponential fit yielding the time constant �R10+
i

alculated as a weighted average P�n�= p̃0P�n �0�+ �1
p̃0�P�n �1�. The actually measured photon counts n�ti�
rovide new information, and the state probabilities are
pdated using Bayes’ rule of conditional probabilities,

p��ti� 	 p���n�ti�� =
P�n�ti����p̃��ti�



�

p̃��ti�P�n�ti����
for � = 0,1.

�10�

he conditional probabilities P�n�ti� ��� are extracted from
he separately measured photon count histograms for �
0 and 1. Setting the initial probabilities to p0�0�=0,
1�0�=1, because the atom is prepared in �F=4� before be-

ng transported into the cavity, p��ti� is then updated
tep-wise for each time bin. In this way, the time-
ependent atomic state probabilities are computed suc-
essively for the whole transmission trace.

Figure 5(a) shows an example trace of a telegraph sig-
al to which the Bayesian algorithm was applied. Most of
he time, the probability p0�t�, plotted in Fig. 5(b), is close
o either 0 or 1, while narrow spikes indicate short peri-
ds of time with less complete knowledge about p�. The
ayes analysis provides more definite probabilities than a
atching of the currently transmitted signal to the state

ependent transmission rate, because it updates previ-
usly estimated results and thus accumulates statistical
ignificance over time. The optical probing of the system
oes not, however, prevent atomic transitions from taking
lace, and during such transitions, the Bayes algorithm
aithfully reproduces our inability to determine the state
f the atom with certainty until a significant amount of
ata have been accumulated which is in agreement with
he new state of the atom. In this context, the narrow
pikes in Fig. 5 illustrate the “willingness” of the Baye-
ian update to interpret a few unexpected photon counts
s the emerging signal of a change of state, while they
ay be only statistical fluctuations. For photon count his-

ograms with a negligible overlap, the Bayesian algo-
ithm would yield the same result as a simple threshold
nalysis. Its main advantage is that one can still extract
nformation about the spin dynamics even for a signal

s of 1000 ms duration each, recorded for a detuning of �ca=2�
Poissonian distributions each with the same average count rate
tion function g�2� for the same set of telegraph signals. The blue
=20 ms.
signal
of two
correla
R �−1
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here the signal-to-noise ratio prohibits a threshold
nalysis, as will become apparent in the next section.

. SPIN DYNAMICS OF TWO ATOMS
o far we have presented experiments revealing the inter-
al spin dynamics of one atom coupled to the cavity mode.
lacing two atoms into the resonator leads to an effective

nteraction between them, mediated by the cavity field
15], and detecting the number of atoms being in a par-
icular state could be used for entanglement generation in
avity-QED systems [16].

. Counting the Number of Atoms in �F=4‹
n the previous section the atomic state was determined
rom the probe laser transmission. Without changing the
xperimental settings, this is not directly possible for two
toms coupled to the resonator. Both atoms in �F=3�, i.e.,
=0, will lead to a transmission level T0=1 equal to the
mpty cavity case. One atom in �F=4� and one in �F=3�
�=1� will cause the transmission T1 to drop almost to
ero, which implies that �=2 is indistinguishable from �
1. To deduce �=0,1,2 from the corresponding transmis-
ion levels T0 ,T1 ,T2, the experimental settings have to be
dapted.
In the weak excitation limit, two atoms at rest coupled

ith the same strength g to the cavity can be theoretically
escribed as a single atom experiencing a coupling
trength g2=�2g. In the dispersive limit ��ca	��, Eq. (1)
hus yields

T1 =
1

1 +  g2

��ca
�2 , T2 =

1

1 +  2g2

��ca
�2 , �11�

or the transmission levels. The level difference �T12
T1−T2 reaches its maximum value of 33% for g2 / ���ca�
1/�2, where T0, T1, and T2 are equally spaced. In order

o examine this theoretical prediction experimentally, the
ransmission level T2 was measured alongside the one-
tom transmission. Figure 7 shows that for two atoms the
ransmission is lower, but instead of the theoretically ex-

ig. 7. (Color online) Normalized transmission T1 (black dots)
nd T2 (blue diamonds) for one and two atoms, respectively. The
olid lines are calculated according to the effective two-level
odel (1) for one atom at rest with different values for geff, and

he dashed line shows the theoretically expected two-atom trans-
ission for geff / �2��=�2�9=12.7 MHz. The one-atom data are

he same as in Fig. 4(a).
ected value of �2�9 MHz�13 MHz, it is compatible
ith an effective coupling of g2,eff�2��11 MHz. As a

onsequence, the measured level difference �T12 is at
aximum about 20% for a detuning of �ca=2�
270 MHz.
A detuning of �ca in the range of 200–300 MHz has,

owever, two disadvantages for studying the spin dynam-
cs of two coupled atoms: Firstly, the difference in the cav-
ty transmission is quite small compared to the noise and,
econdly, the average dwell time R43

−1 is close to its mini-
um value for �ca�2��150 MHz, with a very shallow

lope toward higher detunings [see Fig. 4(b)]. Closer to
esonance, this time is longer, but if two atoms are at the
avity center, the transmission levels T1 and T2 are al-
ost indistinguishable.
The level difference �T12 can, however, be controlled

or a constant detuning �ca by changing geff. This is pos-
ible by means of our optical conveyor belt, which allows
s not only to transport atoms into the cavity center, but
lso to stop the transport at a predetermined distance �y
way from it. With geff��y=0�=2��9 MHz, the coupling
trength as a function of the position along the conveyor
elt axis reads geff��y�=geff�0�exp�−�y2 /w0

2�. From Eq.
11) the required distance �y to achieve �T12=0.33 is cal-
ulated to be

��y��ca�� = w0�1

2
ln�2geff

2 �0�

�ca�
� . �12�

or �ca�2��280 MHz, �T12 is always at a maximum
or �y=0, i.e., at the cavity center. Figure 8 shows the cal-
ulated level difference �T12 and the quantum jump rate
43 as a function of the detuning �ca and distance from

he cavity center �y. By choosing a lower detuning, the
cattering rate R43 is reduced, and it is still possible to ob-
ain the optimal distinction �T12 by positioning the atoms
way from the cavity center. Empirically we found that a
etuning of �ca=2��38 MHz is a lower limit in terms of
table transmission traces. The distance of �y=21 �m, at
hich geff / �2���3.1 MHz, was adjusted for the optimum
istinction of one and two atoms.

. Two-Atom Telegraph Signal
o study two-atom spin dynamics, two atoms loaded into
he FORT were positioned at �y=21 �m. At this position
f around one cavity-waist away from the mode center,
he coupling strength depends more critically on the exact
osition; therefore those traces were selected for which
he measured atom-atom spacing was �2 �m. As for the
ne-atom case, the repumper was attenuated to a level at
hich it induced quantum jumps from �F=3� to �F=4� at a

ate comparable with the probe-laser-induced jumps.
Figure 9(a) shows an example single trace of a two-

tom telegraph signal. For t�200–300 ms, steps corre-
ponding to �=2 (low transmission), �=1 (intermediate
evel), and �=0 (empty cavity transmission) are discern-
ble, but in general the distinction between the levels is
ot as clear as for the one-atom case. The degree of the
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evel separation can be deduced from a histogram ex-
racted from several hundred telegraph signals (see Fig.
0).
This histogram does obviously not show a three-peak

tructure. To quantify the contributions of the transmis-
ion levels T0, T1, and T2, we independently measured
hoton count histograms for zero, one, and two atoms
oupled to the resonator at the same position and for the
ame detuning as for the telegraph signals, depicted as
olid lines in Fig. 10. These were obtained from signals of
ontinuously coupled atoms, i.e., a sufficiently strong re-
umper was applied. The photon count histogram of the
elegraph signal (black line) agrees well with a fit calcu-
ated as a weighted sum of the three individual histo-
rams conditioned on the atomic states.

The statistical analysis is performed analogous to the
ne-atom case, but the set of rate equations now involves
hree atomic states and reads

ig. 9. (Color online) (a) Example trace of a random telegraph
ignal for two atoms placed �y=21 �m away from the cavity
enter. The cavity-atom detuning is �ca=2��38 MHz. (b) Prob-
bilities for 0, 1, or 2 atoms to be in �F=4�, calculated using the
ayes method.

ig. 8. (Color online) (a) Effective coupling as a function of dista
uantum jump rate R43 as a function of detuning �ca and dista
ccording to Eq. (12).
dp0

dt
= − R01p0�t� + R10p1�t�, �13�

dp1

dt
= R01p0�t� − R10p1�t� − R12p1�t� + R21p2�t�, �14�

dp2

dt
= R12p1�t� − R21p2�t�. �15�

transition of an atom from �F=3� to �F=4� is only in-
uced by the repumper at a rate Rrep, which is indepen-
ent of � because the laser is applied from the side of the
avity. Thus R12=Rrep and R01=2Rrep, because for the lat-
er case two atoms both in �F=3� are present. In contrast,
21, i.e., the rate that one out of two atoms in �F=4� un-
ergoes a quantum jump to �F=3�, is not simply given by
R10, because this transition is induced by the probe la-
er, the intensity of which depends on � [9]. Theoretically,
he jump rate depends linearly on the intracavity inten-
ity; thus we expect

R21 = 2
T2

T1
R10, �16�

ut this relation is not fixed for the calculation and the
hree rates R21, R10, and Rrep are considered as indepen-
ent parameters for the calculation. A weighted fit to the
hoton count histogram has two independent fit param-
ters and yields the steady state populations, which are
elated to the ratio of the three rates. In contrast to the
ingle-atom case, here it is not possible to make a reason-
ble fit to the correlation function to obtain the sum of the
ates and thus all three parameters. Instead, we initially
uess the transition rates and employ the Bayesian up-
ate method to extract time-dependent atomic state prob-
bilities. Then we apply a fit as described below to itera-
ively extract values for the transition rates R10, R21, and
rep, which ensure the optimum agreement of the time-
veraged probabilities with the steady state solution of
he rate equations.

A good initial guess for the rate R10 can be obtained
rom the transition rate for a single atom placed at the

from the cavity center. (b) Transmission level difference �T12; (c)
. The white solid lines are points of maximum �T12 calculated
nce �y
nce �y
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ame distance �y away from the cavity center, with no re-
umper applied, similar to the measurement presented in
ig. 3(b). The transmission levels T2 and T1 are measured

ndependently, which yields then an estimate for R21 ac-
ording to Eq. (16). The rate Rrep cannot be measured in-
ependently, but since the power of the repumping laser
s adjusted such that the transition rates from �F=4� to
F=3� and vice versa are approximately equal, Rrep is set
o R10 as a starting value for the calculation.

With the initial probabilities p0�0�=0,p1�0�=0,p2�0�
1, the Bayesian algorithm is performed step-wise for
ach time bin as described for the one-atom case, yielding
robabilities p��t�. Improved values of the three transi-
ion rates are now determined by the following iterative
elf-consistent method:

An analytical solution of the rate equations for p0�t�,
1�t�, and p2�t�, with the initial conditions given above,
ields the ensemble-averaged probabilities �p���t� with
he three jump rates as parameters. Averaging over the
robabilities p��t� obtained from the analysis of many
races provides an experimental result for �p���t�, which
an be fitted with the analytical solution, in which the
ates R10, R21, and Rrep are used as fit parameters. With
he new values for the rates obtained in this way, the
ayes algorithm is applied all over again to all experi-
ental traces, yielding an updated set of time-dependent

robabilities p��t�, which is again averaged to extract the
ates, etc. The converged set of rates obtained from this
nalysis is

R10 = 104 s−1, R21 = 52 s−1, Rrep = 45 s−1, �17�

nd the final results for p��t� for the example trace are
hown in Fig. 9(b). The ratio between R10 and R21 ob-
ained from this iterative process does not confirm the as-
umption of Eq. (16), because with T1�2T2, we would ex-
ect R10�R21. The reason for this discrepancy remains
nclear at this stage.

. DISCUSSION OF STATISTICAL ANALYSIS
n this section we will address some questions arising in
onnection with the statistical analysis presented in this

.

.

.

.

ig. 10. (Color online) Normalized photon count histogram
bars) of many two-atom telegraph signals. The right (blue),

iddle (red), and left (green) lines are independently measured
istograms for zero, one, and two atoms coupled continuously to
he cavity, respectively. The black line is a weighted sum of those
hree histograms.
aper. Firstly, we will discuss the dependence of the Baye-
ian atomic state analysis on the measurement data bin-
ing time, which presents interesting questions both in
he case of Poissonian and non-Poissonian counting sta-
istics. Secondly, we will discuss the possible origin of the
on-Poissonian character of the photon count records and

ts consequences for our extraction of rate parameters and
he Bayesian analysis.

. Bin Size and Optimum Information Extraction
n the analysis of the one- and two-atom telegraph signals
iscussed so far, we used binning times of 1 ms. Let us re-
all that the raw-data of the cavity transmission consist of

list of time intervals between photon clicks; see Fig.
1(b) for an example trace. To study some of the conse-
uences which a change in the time bin size might have,
e analyzed one and the same set of data using the Bayes

ormalism, but for different bin sizes.
If long time bins are used, the signal-to-noise ratio in

ach bin is good, and the count histograms for each
tomic state become well separated. This implies that for
ong sequences of time, the atomic state probabilities will
e firmly fixed to values close to zero and unity, while the
nstances where transitions between the states occur are
ot resolved within the duration of a single time bin.
ut this is only true as long as �tb�R−1, with R
max�R01,R10�, because for even longer times transitions
ill occur within a significant fraction of the bins causing
considerable uncertainty about the actual atomic state.
Going to shorter time bins, the signal-to-noise ratio is

ecreased, and the overlap of the photon count histo-
rams becomes larger. Correspondingly, it happens more
requently that a less probable, but still possible, number
f counts in a time bin cause a narrow spike in the atomic
tate probabilities derived from the Bayes conditional up-
ate rule, where indeed no transition took place. This be-
avior is evident from the spikes in Fig. 12.
One would suspect that the additional information pro-

ided by subdividing data into counts registered in the
rst and second halves of every time bin would only serve
o yield a better estimate of the atomic state, since no
nowledge is lost by this finer binning of the data. In the

ig. 11. (a) Random telegraph signal with 1 ms binning time.
b) Enlarged section of 10 ms showing photon-click times. The
uantum jump occurs at about 24.8 ms.
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ase where no transitions occur and we aim to detect the
tate initially occupied by the atom in a QND manner, the
ayesian analysis indeed becomes independent of the
ata binning size for a Poissonian count process. To study
his issue in our system, with the state-changing rate pro-
ess occurring simultaneously with the probing, we evalu-
ted the one-atom telegraph signals for different bin sizes
sing the Bayesian algorithm (see Fig. 12). Even for �tb
10 �s, when there is no click in 80% of all bins, the cal-
ulated probability p0�t� is often close to 0 or 1, although
he state probability shows more short spikes compared
o �tb=1 ms.

To give a single quantitative measure of our uncer-
ainty about the atomic state, we calculate the entropy

S = �− 

�

p� log p�� , �18�

here the average � � is performed over the whole dura-
ion of all analyzed traces. The entropy is plotted in Fig.
3 for a range of bin times from 10 �s to 20 ms. The
harp rise of S for large bins is due to the high probability
n every time bin for an atomic transition to occur. We as-

ig. 12. Application of the Bayes algorithm for different bin tim
ms, 100�s, and 10�s, respectively. The transmission signals, g

d)–(f).
ribe the increase in S toward shorter bins to the occur-
ence of more spikes in p��t�, already visible in Figs. 12(d)
nd 12(e). According to the entropy measure, there seems
o be an optimum time bin, which is related to the mag-
itude of the quantum jump rates. We recall, however,

ig. 13. Time- and ensemble-averaged entropy S as a function
f binning time �t .

)–(c) show the histogram of the telegraph signal for bin times of
ed from the same photon-click record, and p0�t� are depicted in
es. (a
enerat
b
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hat the entropy (18) is only one of many possible mea-
ures of the information extracted from the system. If, for
xample, the measurements constitute a component in a
eedback mechanism, access to data on the shortest time
cale may yield the better performance with respect to the
esired goal of the feedback protocol.

. Origin and Modeling of Super-Poissonian Count
istributions
he existence of an optimum bin time, leading to a mini-
um in the time-averaged entropy (18), is observed both

or our experimental histogram data and in simulations
ith Poissonian counting statistics associated with each
tomic state. The case of super-Poissonian counting dis-
ributions, i.e., distributions with a variance exceeding
he mean value of the number of counts, however, pre-
ents it own separate problems and points to more elabo-
ate future methods of analysis.

We already commented on the apparent extra fluctua-
ions in the light transmission signal being possibly cor-
elated with the atomic motion between sites exhibiting
ifferent coupling strengths to the cavity mode, corre-
ponding to different transmission levels. This suggests
n extended model, where the state with no atoms
oupled to the field ��=0� is retained as a single state,
hile states with �=1,2 are split according to an extra
osition label, attaining a number of different values. If,
or example, a single atom can reside in two locations
eading to two different Poissonian transmission signals,
he long time-averaged photon count distribution will be a
eighted sum of these distributions, while the count
umber correlation function within an experimental trace
ay reveal the transition rates between the atomic loca-

ions, equivalent to our analysis of internal state transi-
ions in Subsection 3B. This is an appealing and very
ikely explanation of the broadened histograms, and it
oints to an interesting problem for our previous analysis.
If the super-Poissonian fluctuations in our counting

istograms are caused by atomic motion between states
ith different Poissonian signals, counts in close lying

ime bins, where atoms have not yet moved, should be
orrelated. This implies that the Bayesian update is no
onger a Markovian process, where the updated probabili-
ies depend only on the most recent value and the latest
easurement result, and also knowledge of previous

ounts should be applied to extract maximum information
bout the atomic state. This effect may have significant
onsequences for very short time bins, where each bin of-
ers a low signal-to-noise ratio, but where correlations be-
ween bins may be strong. We have analyzed our experi-
ental records, and we indeed find such correlations, but

ecause of limited statistics these findings could not be in-
orporated quantitatively into our analysis. This does not
mply that our previous use of the Bayes update formal-
sm produces erroneous results, but it should be noted
hat it represents the update based on a restricted access
o (or memory of) the measurement data, and hence it
rovides a non-optimal estimate of the atomic state based
n incomplete information.

. OUTLOOK
e have shown that a Bayesian analysis of experimental

ransmission signals from a cavity containing one or two
toms provides a high degree of certainty about the
tomic state. We have demonstrated how rates of the
tomic processes can be fitted to the data, and we have
iscussed possible physical explanations of noise in the
ata beyond the predictions of simple models.
A natural next step would be to use a more complete
odel, including the larger number of position states and

nternal states of the atoms. We recall that already for the
implest model with only internal state dynamics, finding
he parameters is not a trivial task, but ad hoc iterative
rocedures have allowed the identification of consistent
ets of parameters used in our present analysis in this pa-
er.
It will put stringent demands on the reproducibility of

arge data sets to make a reliable fit to more advanced
odels, but we wish to conclude this paper with a brief
entioning of a promising systematic theoretical data

nalysis that can be applied to such data in a future more
laborate treatment: The hidden Markovian model
HMM) [38]. We indicated that there is a possible physical

echanism responsible for the fluctuations and for the
emporal correlations between count signals. In this way
e point at an underlying Markovian model, where the
toms perform transitions between different internal and
osition states, and for each of these states, the coherent
ight field is transmitted with a definite transmission co-
fficient, and counting statistics are Poissonian with no
emporal correlations. This is, indeed, a physical realiza-
ion of a hidden Markovian process in statistical modeling
f time series, with applications in insurance, finance,
peech recognition, image analysis, and many other
elds, where a single series of data is mathematically
odeled as the outcome of a system undergoing transi-

ions between (hidden) states, each giving different data
haracteristics. In their most advanced forms, HMMs
nly assume the transitions between the hidden states to
e Markovian, i.e., the state populations follow a transfer
atrix of discrete or continuous population changes,
hile the signal can have any state dependent probability
istribution.
Our problem belongs to a narrower class with continu-

us rate equations (with unknown rates), and it is plau-
ible to assume Poissonian count statistics parameterized
y a single parameter for each atomic state. This case is
reated, e.g., in [39], and the problem of estimating the
ransition rates among a family of N states and the N
hoton transmission rates from the data is solved by an
terative variational application of the maximum likeli-
ood principle. In a genuine HMM, the number of states

is not known, and one merely attempts to fit the data
ith different candidate numbers of states. For an appli-

ation to our problem, we are guided by the physics, and
fter a successful fit, we would request that the states
dentified should have the properties corresponding to a
ew position states for each of the internal state �=1,2
ases. That is, they should occur in groups with similar
hoton scattering rates, and certain transition rates
hould be very small or vanish.

In addition to an extended model for the analysis, we
im at improving the experimental conditions, such that
he super-Poissonian noise is less pronounced. Since we
ttribute these fluctuations mainly to thermal motion of
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he atom, increasing the stability of the coupling strength
equires a tighter confinement of the atom. This could be
chieved by employing cavity-mediated cooling forces
35,36], Raman cooling [4], or additional trapping poten-
ials.

The rate at which information about the atom-cavity
ystem can be acquired is ultimately limited by the pho-
on flux arriving at the detector. The most important ob-
tacles for further enhancement of the detection efficiency
re losses from the cavity-mirror coatings and the limited
uantum efficiency of the SPCM. Employing homodyne or
eterodyne detection would permit the use of detectors
ith a quantum efficiency close to 100%. The former prob-

em could be solved by using a more open cavity configu-
ation, where the transmission coefficient is significantly
arger than the losses. Advancements both in terms of ex-
erimental conditions and statistical analysis could fi-
ally lead to the development and implementation of
uantum feedback techniques for the preparation, stabi-
ization, and error correction of non-classical quantum
tates [40,41].
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