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Abstract

Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a
confined space and the radiative properties of atoms in such fields. The simplest example of
such system is a single atom interacting with one mode of a high-finesse resonator. Besides
observation and exploration of fundamental quantum mechanical effects, this system bears
a high potential for applications quantum information science such as, e.g., quantum logic
gates, quantum communication and quantum teleportation.

In this thesis I present an experiment on the deterministic coupling of a single neutral
atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic
techniques for trapping and observing single cesium atoms. As a source of single atoms we
use a high-gradient magneto-optical trap, which captures the atoms from background gas
in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are
then transferred without loss into a standing-wave dipole trap, which provides a conserva-
tive potential required for experiments on atomic coherence such as quantum information
processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern
allows us to deterministically transport the atoms (Chapter 2). In combination with non-
destructive fluorescence imaging of individual trapped atoms, this enables us to control
their position with submicrometer precision over several millimeters along the dipole trap.

The cavity QED system can distinctly display quantum behaviour in the so-called
strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissi-
pation in the system. This sets the main requirements on the resonator’s properties: small
mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling,
and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic
transition. In Chapter 4 I present the transportation of single atoms into the cavity and
their coupling to the cavity mode. The strong coupling manifests itself in a strong re-
duction of the cavity transmission probed by a weak external laser. The atoms remain
trapped and coupled to the cavity mode for several seconds until we move them out of the
cavity for final analysis of their number and position.

Parts of this thesis have been published in the following journal articles:

1. Y. Miroshnychenko, D. Schrader, S. Kuhr, W. Alt, I. Dotsenko, M. Khudaverdyan,
A. Rauschenbeutel, and D. Meschede, Continued imaging of the transport of a single
neutral atom, Optics Express 11, 3498 (2003)

2. I. Dotsenko, W. Alt, M. Khudaverdyan, S. Kuhr, D. Meschede, Y. Miroshny-
chenko, D. Schrader, and A. Rauschenbeutel, Submicrometer position control of
single trapped neutral atoms, Physical Review Letters 95, 033002 (2005)
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Introduction

In 1946 Edward Purcell noticed that the rate of spontaneous emission of an atom can
be significantly enhanced by coupling it to an electrical circuit resonant with the atomic
radio-frequency transition [1]. This publication gave birth to a new field of research –
cavity quantum electrodynamics (CQED), which describes the electromagnetic field in a
confined space and the radiative properties of atoms in such field. Obviously, one of the
simplest systems in the scope of CQED is a single atom interacting with a single photon in
a cavity. The theory describing this system was first developed by Jaynes and Cummings
in 1963 [2], providing the most basic model to CQED experiments.

The main obstacles in the experimental realization of a coupled atom-cavity system are
spontaneous emission of the atom and damping of the cavity field. Thus, the most relevant
regime for observing quantum phenomena of the atom-field dynamics is reached when
the strength of the coherent atom-field coupling exceeds these dissipations. Fortunately,
the tremendous progress in controlling single atoms as well as in manufacturing high-
finesse cavities accomplished over the last 15 years has allowed experimentalists to achieve
the strong coupling with single atoms in cavities in two spectral domains. At microwave
frequencies highly excited Rydberg atoms are coupled to the field of a superconducting
cavity with a very high Q-factor while crossing the cavity mode one by one [3, 4]. Strong
coupling in the optical domain has been reached using ultra-cold ground-state atoms and
cavities with small mode volume [5, 6].

About 10 years ago a particular interest in CQED systems arouse due to their possible
applications in quantum information processing [7], where quantum concepts can lead to
dramatic speed up in solving certain classes of computational problems, such as prime
factoring [8] and database search [9]. Using individual atoms as carriers of quantum infor-
mation (qubits), two-qubit logic operations can be performed in a cavity by the coherent
exchange of cavity photon between the atoms [10]. Since a cavity emits in a well-defined
mode and a radiated photon carries information on an atom, CQED systems could also
be efficiently used for building quantum logic network [11]. Here, a photon emitted by the
cavity transfers quantum information between qubits located at spatially separated nodes
of a network.

Besides strong coupling, one of the most important requirement for using CQED sys-
tems for quantum information processing is permanent localization of single atoms in the
cavity. The required degree of confinement can be provided with ions in ion traps [12].
Single neutral atoms can be trapped inside the cavity by using intra-cavity dipole traps
[13], external dipole traps [14], or near-resonant cavity fields [15, 16]. Besides two-qubit
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2 Introduction

quantum gates, the realization of a quantum computer also requires the ability to ini-
tialize and to measure the states of the qubits [17]. We have already demonstrated that
a string of neutral atoms stored in a standing-wave dipole trap can serve as a quantum
register, where atomic qubits can be individually addressed and coherently manipulated
much faster than the relevant decoherence times [18]. Besides, we are able to transport
the atoms over several millimeters while partly retaining (single-atom) quantum coherence
[19].

Till recently the two basic approaches to deliver single ground-state atoms into a cavity
have been either to let them freely fall from a magneto-optical trap (MOT) [20], or to eject
them from below by means of an atomic fountain [21]. In order to increase the efficiency of
the atom delivery, one can use a dipole trap beam for guiding atoms between a MOT and
a cavity while confining them transversally [22, 14]. Recently, the submicron positioning
of single atoms inside a microcavity has been demonstrated using a standing-wave trap
[14]. However, this experiment does provide neither the possibility to prepare quantum
states of atoms before placing them into the cavity nor to analyze their final states.

In this thesis I present an experiment on the deterministic coupling of a single neu-
tral atom to a mode of a high-finesse optical resonator. A desired number of ultra-cold
cesium atoms (from 1 to 20) is prepared in a MOT and then transferred without loss
into a standing-wave dipole trap. This trap provides a conservative potential required
for experiments on quantum information as well as a tight confinement of atoms. Our
approach for controlling the position of individual atoms is based on the “optical conveyor
belt” technique [23, 24]. Combining it with fluorescence imaging of single trapped atoms,
I have measured and controlled their position with submicrometer precision [25, 26]. The
optical cavity I have assembled is composed of two mirrors of high reflectivity placed close
to each other and is stabilized to the atomic transition. A finesse of about a million and
a small mode volume enable us to operate the atom-cavity system in the strong-coupling
regime. I was able to couple single atoms to the cavity mode on demand. Together with
the possibility to prepare their initial states as well as to analyze their final states, this
work represents an important step towards deterministic quantum computing with neutral
atoms [27].



Chapter 1

Trapping and observing single
atoms

1.1 Introduction

To perform any experiment on single atoms we need a set of tools providing a necessary
degree of control over them. Moreover, the atoms should be well isolated from environ-
ment, which, permanently probing the atom system, would lead to its decoherence and
thus would complicate the study of any coherent process. A widely used approach over-
coming this problem is to experiment with atoms in vacuum or in dilute gases instead of in
and on solids or liquids. However, high velocities at room or even cryogenic temperatures
prevent long observation times of flying atoms.

The great breakthrough in atom studies has been made with the invention of laser
cooling [28, 29, 30] and magneto-optical trapping of atoms [31]. This allowed not only
cooling of atomic species to sub-millikelvin temperatures but also storing them for many
seconds and even minutes. The creation of Bose-Einstein condensate became the triumph
of these developments [32, 33]. However, although a magneto-optical trap (MOT) allows us
to efficiently capture, cool, and store even single atoms [34, 35, 36], it does not completely
solve the problem of the isolation of atoms from the environment and does not allow us
to store atoms in a specific quantum state since the operation of the MOT is based on
nearly-resonant scattering of the MOT lasers.

In contrast to MOTs, conservative dipole traps rely on off-resonant interaction of
polarizable particles with the laser field [37, 38] resulting in low light scattering. Also
known as optical tweezers [39], they are successfully used in different research areas ranging
from biology to nanofabrication for the precise manipulation of various dielectric particles:
from microspheres and biological cells to DNA and single atoms. Another application
of dipole traps is to form optical lattices by the interference of laser beams. They are
extensively used for studying quantum gases [40], in quantum information processing [41],
in metrology [42], etc. We have experimentally shown that a standing-wave dipole trap
preserves the atomic coherence [19] and can be used as a holder of a quantum register for
storing quantum information [18].

3



4 Chapter 1: Tools for single atom control

Spatial information on trapped atoms is essential for realizing complete control over
them. The observation of atoms in optical and magnetic traps is typically performed via
fluorescence imaging, in contrast to, e.g., atomic force and scanning tunnelling microscopy
used for imaging atoms on surfaces of solids [43]. The first image of an individual atomic
particle in a trap was obtained by recording the fluorescence from a single barium ion [44].
Nowadays we are able to non-destructively observe individual neutral atoms in the dipole
trap for more than a minute [45].

1.2 A single-atom magneto-optical trap

The considerable progress in atomic physics observed over the last two decades would have
hardly been possible without the invention of the laser cooling techniques allowing us to
slow down, cool, and even Bose condense atomic gases. Proposed about 30 years ago by
T. Hänsch and A. Shawlow [28], the three-dimensional laser cooling of atoms has been first
experimentally realized by S. Chu [30] in 1985. By adding an inhomogeneous magnetic
field, resulting in a position-dependent radiation pressure, the first magneto-optical trap-
ping of atoms has been demonstrated two years later [31]. Since then, magneto-optical
traps became a widely used tool for cooling atoms down to sub-millikelvin temperatures
and keeping them trapped for long times. We use a specially designed MOT as a source
of single cold cesium atoms for our experiments. The high-gradient magnetic field assists
us in trapping single or few atoms, whereas the MOT fluorescence allows us to infer their
exact number in real time.

1.2.1 Principle of operation

The MOT’s speciality is the simultaneous cooling and trapping of neutral atoms [46, 47].
Its operation relies on a velocity-dependent cooling force and a position-dependent restor-
ing force providing spatial confinement of the atoms. The cooling is realized by three
orthogonal pairs of counter-propagating laser beams which are slightly red-detuned from
the atomic transition frequency. An atom moving at the intersection of the beams pref-
erentially absorbs photons from the beam opposite to its direction of motion, frequency
of which is Doppler-shifted closer to the atomic resonance. Since the subsequent sponta-
neous emission is in random direction, it does not change the average momentum of the
atom and the total momentum transfer from the laser field to the atom is opposite to
the direction of the atomic motion. Therefore this configuration of the laser beams called
“optical molasses” results in an effective friction force cooling the atom.

Even at rest, the atom is continuously excited by the near-resonant laser field followed
by photon emission in a random direction causing atom heating. The equilibrium temper-
ature between the molasses cooling and the heating by the spontaneous emission is called
the Doppler temperature and is given by

TD =
~ Γ
2kB

, (1.1)
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Figure 1.1: Principle of operation of a magneto-optical trap. (a) Simplified level scheme
of an atom interacting with two counter-propagating red-detuned laser beams with op-
posite circular polarization. The linear magnetic field gradient lifts the degeneracy of the
excited state. If the atom is displaced from the trap center, it becomes resonant with
the laser beam pushing it back to the zero of the field. (b) A three-dimensional MOT
uses a pair of coils in anti-Helmholtz configuration producing a quadrupole field and a
three-dimensional optical molasses.

where Γ is the spontaneous emission rate from the excited state and kB is the Boltzmann
constant. For a cesium atom, Γ = 2π × 5.22 MHz and TD = 125µK.

Trapping of atoms at a specific position requires a position-dependent force. For this
purpose a quadrupole magnetic field is added which vanishes at the center of the optical
molasses and increases linearly in all directions. The magnetic field lifts the degeneracy of
the upper level with respect to the Zeeman sublevels resulting in a level splitting propor-
tional to the distance of the atom to the magnetic zero point, i.e. the trap center. This
is illustrated in Fig. 1.1(a) in one dimension for the case of a J = 0 ↔ J ′ = 1 transition.
If the red-detuned counter-propagating laser beams have opposite circular polarizations,
a stationary atom displaced from the zero point is shifted closer into resonance with that
laser beam which pushes it back to the center. Thus, the atom experiences a restoring
force to the trap center. This principle can be easily generalized to the three-dimensional
case shown in Fig. 1.1(b). As a result, the radiation force in the MOT simultaneously
pushes the atom to the center of the MOT and cools it there. Moreover, the multi-level
structure of the atom can allow sub-Doppler cooling mechanisms resulting in temperatures
lower than TD [48, 49], which will be not discussed here.

1.2.2 Experimental setup

The first single-atom MOT in our group was constructed in 1996 [36]. The details of the
modified MOT setup permitting more flexibility in the observation and manipulation of
the atoms have been described extensively in previous theses of the group [50, 51]. Here, I
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Figure 1.2: Side view of an optical table with the vacuum system and the optical traps.

only present the most important components which are relevant for this thesis. The basic
experimental setup is schematically shown in Figs. 1.2 and 1.4.

Vacuum system

Our vacuum system fulfills two main requirements for experimenting with trapped atoms:
It provides an ultra-high vacuum guaranteeing long storage times and permits optimal
optical access from outside for flexible observation and manipulation of atoms. All our
experiments are performed inside a compact 3 × 3 × 12.5 cm3 glass cell with 5 mm thick
walls, see Fig. 1.2. It is connected to the vacuum steel cube to which the pumps and the
cesium reservoir are attached. The constantly operating ion pump provides an ultra-high
vacuum in the glass cell with a pressure of less than 10−10 mbar. An additional titanium
sublimation pump is mainly used for reaching the initial low pressures inside the newly
closed vacuum chamber, e.g., after installation of a cavity inside the cell, see Sec. 3.3.1.

Laser system

In contrast to the simplified level structure used in Fig. 1.1(a), theD2 transition in a cesium
atom used for cooling and trapping has a rich spectrum, schematically shown in Fig. 1.3.
As the MOT cooling transition we use the cycling transition F = 4 → F ′ = 5. Since the
atom can be off-resonantly excited to the F ′ = 4 level, from where it may spontaneously
decay into the F = 3 ground state, we apply an additional repumping laser resonant with
the transition F = 3 → F ′ = 4 to pump the atom back into the cooling cycle.
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Figure 1.3: Hyperfine structure of the cesium D2 transition. Shown are the transitions
used for cooling and repumping in the MOT.

Both cooling and repumping lasers are diode lasers set up in Littrow configuration [52].
Their frequencies are actively stabilized onto atomic resonance frequencies by polarization
spectroscopy [51]. The probe laser is locked to the crossover transition F = 4 → F ′ = 3/5,
which is red-detuned by -225 MHz from the cycling transition. An acousto-optic modulator
(AOM) in double pass configuration shifts the laser frequency by 2×110 MHz towards the
atomic resonance. As a result, the cooling laser is red-detuned from the cooling transition
by approximately Γ, which is required for optimal Doppler cooling. In addition, this AOM
is also used to control the laser power and frequency for illuminating atoms in the dipole
trap, see Sec. 1.5. The repumping laser is directly stabilized to the F = 3 → F ′ = 4
transition.

Both lasers with their spectroscopies are set up on a separate optical table, and we
use optical fibers to transfer the laser light to the main table, shown in Fig. 1.2. Here, the
cooling laser is split into three beams, which are shined from three different direction into
the center of the quadrupole field and then retro-reflected. Thus, the six beams intersect
in one point in the glass cell providing a 3-D optical molasses. The beam diameter is
about 2 mm with a typical power of 100− 200µW per beam. The MOT repumping laser
is linearly polarized and is shined into the MOT along the glass cell.

Magnetic coils

The high field gradient of the MOT is produced by a pair of water cooled magnetic coils,
set in anti-Helmholtz configuration along the z axis and placed above and below the
glass cell, see Fig. 1.2. In all experiments described in this thesis we use a gradient of
∂B/∂z = 300 G/cm provided by a current of 15 A, which can be switched on and off
within about 30 ms.
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Figure 1.4: Schematic experimental setup of MOT, dipole trap, and imaging system
(top view). The MOT consists of three pairs of counter-propagating laser beams and the
coil pair (along z ) providing the quadrupole field. Both dipole trap lasers are focussed
into the MOT in the center of the glass cell. The fluorescence light from the MOT is
collected and collimated by imaging optics. One part is spatially and spectrally filtered
and focussed onto an avalanche photodiode (APD), the other part is sent to an intensified
CCD camera (ICCD) after spectral filtering. Three pairs of orthogonal coils are used for
applying guiding magnetic fields. Beams and coils along z direction are not shown.

Three orthogonal pairs of coils placed around the glass cell, see Fig. 1.4, compensate
DC-magnetic fields in three dimensions. In addition, they are used for applying guiding
magnetic fields of up to several Gauss used in Sec. 4.5.5.

1.2.3 Fluorescence detection of single atoms

To observe the trapped atoms in the MOT we use two detectors, see Fig. 1.4. An avalanche
photodiode (APD) operated in single-photon counting mode allows us to determine their
exact number and an intensified CCD camera (ICCD) provides spatial information. In
order to efficiently collect and collimate extremely low levels of fluorescence light from
single trapped atoms we use a home-built diffraction-limited objective with a numerical
aperture of NA = 0.29 [53]. The collimated light is then equally divided into two parts by
a beam-splitter: the reflected part is imaged onto the ICCD with a magnification of about
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Figure 1.5: APD signal of the MOT fluorescence. Each trapped atom contributes the
same amount of fluorescence to the signal, allowing us to determine their exact number.
When an atom enters or leaves the trap, the count rate instantaneously increases or
decreases accordingly.

14.0 (see Sec. 1.5) and the transmitted light is focused onto the APD (EG&G, model
SPCM-200). To reduce the stray light background, the collected light is spectrally filtered
by an interference filter. In addition, the light sent to the APD is filtered spatially with a
pinhole. By taking into account the numerical aperture of the objective, the transmission
of the interference filter, and the quantum efficiency of the APD, the overall detection
efficiency with the APD is η = 8× 10−3. Typically, we obtain a count rate of 3× 104 s−1

per atom.
A typical APD signal of the MOT fluorescence is shown in Fig. 1.5. The step-like

form of the count rate indicates the instantaneous capture and loss of the atoms. Since
each atom contributes the same amount of fluorescence to the APD signal, we can use the
MOT fluorescence to infer the exact number of trapped atoms within typically 20 ms.

1.3 A standing-wave optical dipole trap

Optical dipole traps rely on the electric dipole interaction of polarizable particles (e.g.,
neutral atoms) with far-detuned light. The corresponding dipole force arises from the
interaction of the induced dipole moment with the gradient of the light field [54]. Since the
optical excitation in these traps can be kept very low, they provide a nearly conservative
trapping potential favourable for experiments on quantum state manipulation. We use a
standing-wave configuration of the dipole trap providing tight axial confinement of atoms
and allowing their position control.
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1.3.1 Dipole potential

There are several different approaches to treat the dipole force [38]. Here I recall only
the classical model, which provides a simple description of the dipole interaction and
its basic properties, namely the dipole potential and the scattering rate, relevant to our
experiments. The predictions of this model are good approximations to the exact solution
given by the quantum-mechanical treatment.

In the following we consider an atom as a charged harmonic oscillator driven by a
classical electromagnetic field E(t) = E0 exp(−iωt)+c.c. Given α the atomic polarizability,
the field induces an electric dipole moment d(t) = αE(t) which evolves according to the
equation of motion

d̈(t) + Γḋ(t) + ω2
0d(t) =

e2

me
E(t). (1.2)

Here, me and e are the mass and the charge of the electron, ω0 is the atomic resonance
frequency, and Γ is the damping rate due to the radiative energy loss given by

Γ =
e2ω2

6πε0mec3
. (1.3)

Integration of equation (1.2) yields the complex polarizability depending on the driving
frequency

α(ω) =
e2

me

1
ω2

0 − ω2 − iωΓ
. (1.4)

The dipole potential is the interaction energy of the induced dipole moment and the
electric field given by

Udip(r) = −1
2
〈d ·E〉 = − 1

2ε0c
Re(α)I(r) (1.5)

where the angular brackets denote the time average over one oscillation period and the field
intensity is I(r) = 2cε0|E0|2. The dipole trap depth is thus proportional to the intensity
I(r) and to the real part of the polarizability, which describes the in-phase component of
the atomic dipole moment. The dipole force results from the gradient of the interaction
potential Fdip(r) = −∇Udip(r).

The scattering rate is determined by the amount of power absorbed from the driving
field, Pabs(r), divided by the energy per photon, ~ω:

Rsc(r) =
Pabs(r)

~ω
=
〈ḋ ·E〉

~ω
=

1
~ε0c

Im(α)I(r). (1.6)

In the regime of large detuning |ω− ω0| � Γ equations (1.5) and (1.6) can be approx-
imated by

Udip(r) =
~Γ
8

Γ
∆′

I(r)
I0

, (1.7)

Rsc(r) =
Γ
8

(
Γ
∆′

)2 I(r)
I0

(1.8)

=
Γ

~∆′ Udip(r) . (1.9)
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where
1
∆′ =

1
ω − ω0

+
1

ω + ω0
. (1.10)

and I0 is the saturation intensity given by

I0 =
πhΓc
3λ3

. (1.11)

In the case of a cesium atom, I0 = 11W/m2. If the light detuning from the atomic
resonance, ∆ = ω − ω0, is much smaller than the atomic frequency, we can apply the
rotating-wave approximation and neglect the term with the sum of optical frequencies
ω + ω0 in equation (1.10) leading to ∆′ ≈ ∆.

If the dipole trap laser is red-detuned from the atomic resonance, i.e. ∆ < 0, the dipole
potential given by equation (1.7) is negative, so that the atom is attracted to the regions
of high light intensities. For the case of a blue-detuned laser (∆ > 0), the interaction
energy is positive and thus the atoms are repelled from the light field. The relation (1.9)
shows that the scattering rate can be minimized by using large laser detunings while
compensating the decreasing trap depth by higher light intensities.

1.3.2 Multi-level cesium atom

The classical model does not take into account the atomic multi-level structure. Still, we
can independently apply the classical treatment to each individual transition and add up
the outcomes weighted with the corresponding transition’s oscillator strength [51]. As a
result, considering both contributions from the D1 and D2 transitions of a cesium atom
(see Fig. A.1), we can introduce the “effective” laser detuning

1
∆eff

=
1
3

(
1

∆D1
+

2
∆D2

)
(1.12)

and still use expressions (1.7) and (1.8) for calculating the trap depth and the scattering
rate after replacing ∆′ by ∆eff .

A full quantum mechanical treatment of a cesium atom in a far-detuned dipole trap,
which takes into account atomic fine, hyperfine, and Zeeman states (see Appendix A for
the relevant states of cesium), can be found in Ref. [55]. It provides ac Stark shifts (also
called “light shifts”) for each atomic level depending on the polarization of the laser light.

1.3.3 Standing-wave trap

A widely used geometric configuration of dipole traps is based on a single strongly focused
laser beam. To achieve a tighter trap confinement, we use a standing-wave dipole trap
formed by the interference of two counter-propagating laser beams. The beams have equal
intensities, equal optical frequencies, and parallel linear polarizations. Neglecting the
Guoy phase and the curvature of the wavefronts of the Gaussian beams, the resulting
dipole potential is

U(x, y, z) = −U0
w2

0

w2(x)
exp

[
−2(y2 + z2)

w2(x)

]
cos2

(
2π
λ
x

)
, (1.13)
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Figure 1.6: Three-dimensional view of the standing-wave dipole potential for the beam
waist of w0 = 19µm. In x -direction, the wavelength has been stretched by a factor of
400 to show the individual potential wells where atoms can be trapped.

with the beam waist w0, the beam radius w(x) = w0(1 + x2/z2
R)1/2, and the Rayleigh

range zR = πw2
0/λ. Here we consider the standing wave to be oriented along x direction.

The maximum trap depth reads

U0 =
~Γ
8
Imax

I0

Γ
|∆eff |

, (1.14)

where the peak intensity is

Imax =
4P
πw2

0

(1.15)

with P the total optical power of the beams. Figure 1.6 shows the trapping potential for
w0 = 19µm.

Being trapped in the dipole trap, an atom oscillates inside its potential wells in both
axial and radial directions. If the atomic temperature is much smaller than the trap depth,
the trapping potential can be approximated by a harmonic one resulting in the respective
oscillation frequencies

Ωax = 2π

√
2U0

mλ2
, (1.16)

Ωrad =

√
4U0

mw2
0

, (1.17)

where m denotes the atomic mass of cesium.
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1.3.4 Experimental setup

Nd:YAG laser

In all previous experiments with the standing-wave dipole trap performed in our group
[50, 51, 55] as well as in Chapter 2 of this thesis we have used a Nd:YAG laser as a dipole
trap laser. It is an industrial, high power cw laser (Quantronix, model 116EF-OCW-10)
with a wavelength of λ = 1064 nm and a maximum output power of 10 W. The output
light has linear polarization and a Gaussian TEM00 transverse mode profile. The laser
operates on 4–5 longitudinal modes with a spacing of 196 MHz. This corresponds to
a coherence length of about 30 cm ensuring a high-contrast interference pattern of the
standing-wave dipole trap inside the glass cell.

The output beam is split into two parts, which are then focused to the MOT center
from opposite sites, as shown in Fig. 1.4. Typically we get 2 W of total optical power
inside the glass cell. The beam waist of 19µm and the trap depth of U0/kB = 0.8 mK are
inferred by measuring the oscillation frequencies of the trap [55]: Ωax = 2π×(265±8) kHz
for PYAG = 1.56 W and Ωrad = 2π×(3.6±0.2) kHz for PYAG = 1.8 W. The measured U0 is
only about 40 % of that expected from equation (1.7). This discrepancy can be explained
by aberrations and diffraction in the dipole trap optics increasing the beam waist and
decreasing the beam power. The scattering rate at the trap minimum of Rsc = 9 s−1 is
directly obtained from the trap depth according to equation (1.9).

Yb:YAG laser

The old Nd:YAG laser has served us well during many years. However, our new exper-
iments set more stringent requirements on the dipole trap laser. For instance, we have
observed that the multi-mode structure of the Nd:YAG laser complicates the illumination
of atoms (see Sec. 1.5). Besides, if using beams with a larger Rayleigh range necessary for
transporting atoms over 5 mm distance into the cavity (see Sec. 3.4), the reduced beam
intensity should be compensated by the increased power of the dipole trap laser in order
to keep the trap depth reasonably large.

To get more optical power, we have replaced the Nd:YAG laser by an Yb:YAG disc laser
(ELS, model VersaDisk-1030-10-SF) with a wavelength of λ = 1030 nm and a maximum
output power of about 25 W, which was then used in all experiments in Chapters 3 and 4.
However, before using the laser, we have slightly modified it to provide continuous single-
mode operation and a higher temperature stability. The modifications have included water
cooling of the whole laser head, the utilization of a scanning Fabry-Perot interferometer for
monitoring the mode structure of the laser in real time, and the installation of a motorized
holder for the outcoupling mirror allowing us to adjust the laser resonator without opening
the laser cover each time when mode hopping is detected. As a result, the laser emits a
single longitudinal mode with a stable output power of about 20 W, resulting in up to 5 W
laser power in each DT beam before the glass cell. The modified dipole trap geometry
adapted for the cavity experiments is described in Sec. 3.4 in connection with the cavity
properties.
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Figure 1.7: Histograms of fluorescence counts from the MOT integrated over 60 ms
(bin size: 120 counts). Each peak corresponds to a specific number of trapped atoms. In
panel (a), the fluorescence was measured directly after loading the MOT with five atoms
on average. The actual number of atoms in the MOT follows Poissonian statistics to a
good approximation, leading to the observed distribution of peak areas. For events where
the software discriminator detected five atoms in the MOT, the atoms were transferred
to the DT. These atoms were counted by transferring them back to the MOT where the
fluorescence was measured a second time, leading to the final histogram in panel (b).

1.4 Loading of the DT with atoms

Transferring atoms between traps

The dipole trap is loaded with cold atoms from the MOT. For this purpose, both traps are
simultaneously operated for several tens of milliseconds before we switch off the MOT. To
transfer the atoms back into the MOT at the end of an experimental sequence, e.g., for
counting them, we use the reverse procedure. Since the presence of the dipole trap shifts
the atomic resonance, we change the parameters of the MOT cooling beams (power and
frequency) by means of the AOM in order to better cool the atoms into the DT during
their transfer. For small numbers of atoms (up to about 5) the transfer efficiency is better
than 99 %. For larger atom numbers cold collisions between atoms occasionally loaded
into the same potential well lead to their loss, thus reducing the transfer efficiency [56].

Number-triggered loading

The loading of the MOT is a statistical Poissonian process. Therefore, we cannot predict
the exact number of atoms which will be trapped in the MOT and then transferred into
the DT. However, in some applications it is necessary to have a predetermined number
of atoms in the trap. For this purpose, we have developed a computer-controlled loading
sequence that monitors the atom number via the MOT fluorescence level [56]. If the
atom number is the desired one, the atoms are transferred into the DT and the main
experimental sequence is started. If not, they are ejected from the MOT and the MOT is
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reloaded. The whole “number-triggered loading” procedure runs in a fully automated way
allowing us to perform the same experimental sequence many times with a preset initial
number of atoms.

In order to correctly determine the number of trapped atoms, we integrate the MOT
fluorescence (Fig. 1.5) over 60 ms. The corresponding histogram of fluorescence counts
is shown in Fig. 1.7(a). Here, the MOT parameters are optimized to load on average
5 atoms. Each peak corresponds to a specific number of trapped atoms. As an example,
Fig. 1.7(b) demonstrates the preparation of 5 atoms in the DT. To verify the atom number
actually prepared in the DT, we transfer the atoms back into the MOT and count them
again. The peak corresponding to five atoms comprises 88 % of all events. We define this
percentage as the preparation efficiency for five atoms. In the other events, atoms have
been lost or an additional atom has been captured.

To avoid the post-selection of experimental shots started with only one atom and to
speed up data acquisition, we perform all experiments on transporting single atoms into
the cavity, described in Sec. 4.5, with the number-triggered loading of the DT with one
atom (the preparation efficiency of 97(±1) %). More details on the presented loading
technique are described extensively in Ref. [56].

A similar feedback technique has been proposed in Ref. [57] for loading the MOT with
single chromium atoms. Here, the MOT loading is actively suppressed or enhanced de-
pending on the actual number of trapped atoms in order to have only one atom trapped.
Another approach for preparing one atom in a tightly focused dipole trap is based on
a “collisional blockade” mechanism, which locks the average number of loaded atom
to 0.5 [58, 59].

Storage time

The measured lifetime of atoms in the dipole trap is about 25 s limited by background
gas collisions. However, for the realization of the moving standing wave (see Sec. 2.4) the
both dipole trap beams are sent through acousto-optic modulators (AOMs) to mutually
detune their frequency. The phase noise of the dual-frequency generator, which drives
both AOMs, results in heating and subsequent loss of trapped atoms, limiting the storage
time to about 6 s. For an overview of various heating mechanisms in the DT see Ref. [51].

1.5 Imaging single atoms

Spatial information on the trapped atoms, such as their position and separations, is essen-
tial for many experiments with single or few atoms. It was a prerequisite for the individual
addressing of the atoms and the realization of a neutral atom quantum register [18, 60].
The first visual evidence of the transport of single atoms with our “optical conveyor belt”
(Sec. 2.4) was performed by continued imaging of the atoms while shifting the standing-
wave pattern [45]. In this thesis I use the spatial information for sub-micrometer position
control of single atoms, see Chapter 2 and Ref. [25], allowing deterministic atom-cavity
coupling, see Chapter 4.
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Figure 1.8: (a) CCD image of two atoms in the MOT with an exposure time of 1 s.
The rms radius of the MOT inferred from the image is about 5µm. (b) CCD image of
two atoms in the DT illuminated by the optical molasses. (c) Five atoms in the DT.

Intensified CCD camera

Information on the position and/or distribution of the atoms in the trap is obtained
from their fluorescence image recorded by a CCD camera (Roper Scientific, PI-MAX:1K).
Combined with the image intensifier (Roper Scientific, GEN III HQ) it has a quantum
efficiency of approximately 10 % at 852 nm. One detected photon generates on average
350 counts on the CCD chip (1024× 1024 pixel large), and one 13µm× 13µm CCD pixel
corresponds to 0.9328(±0.0004)µm in the object plane (see Sec. 2.6). The read-out noise
is about 80 counts per pixel. For more details on the ICCD camera see Ref. [61].

Illumination of atoms

Due to the low scattering rate in the far-detuned dipole trap, direct imaging of trapped
atoms in the DT is not possible. Therefore, we illuminate them with near-resonant three-
dimensional optical molasses formed by the MOT cooling lasers acting like a flash of
a conventional camera. Besides the illumination, the molasses provides cooling of the
trapped atoms counteracting heating through photon scattering, resulting in an atom
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temperature of about 70 µK. Note that this cooling also counteracts the heating of atoms
due to phase-noise of the frequency generator driving our “optical conveyor belt” for
transporting atoms, see Sec. 2.4. Intensity and detuning of the illuminating beams are
optimized to exclude losses of atoms, to prevent them from hopping between different
potential wells of the DT, and to provide high contrast of the imaged atoms [55]. As a
result, we can non-destructively observe single atoms for about half a minute limited only
by atom losses due to background gas collisions [45].

Figure 1.8(b) shows an image of two atoms in the DT with an exposure time of
1 s. The horizontal width of the fluorescence spot of 1.5µm rms is determined by the
resolution of the imaging optics. It is larger than the periodicity λ/2 ≈ 0.5µm of the
standing-wave trap and thus does not allow us to resolve atoms trapped in adjacent
potential wells. The vertical width of the fluorescence spot, i.e. perpendicular to the DT
axis, is essentially defined by the spread of the Gaussian thermal wave packet of the atom
in the radial direction of the trap due to its radial oscillation. In Sec. 2.2 I describe how
we infer the position of optically resolved atoms along the trap axis with sub-micrometer
precision by analyzing their fluorescence image.

1.6 Conclusion

In this Chapter I have presented a set of tools for preparing and controlling single caesium
atoms required for our experiments. A high-gradient magneto-optical trap cools atoms
from background gas in a vacuum glass cell and confines them to a volume of about 5µm
radius. The exact number of trapped atoms is then inferred from the MOT fluorescence
light.

To provide a conservative trap required for any experiments on atomic coherence,
including cavity QED measurements, we use a standing-wave dipole trap allowing us to
store the atoms for long times without significant photon scattering and mixing of quantum
states. Besides, its standing-wave structure provides a tight sub-micrometer confinement
of atoms along the trap axis and enables us to transport the atoms, as will be described
in Chapter 2. The atoms can be transferred between the two trap with almost unity
efficiency. Molasses cooling with the MOT beams allows us to image single atoms in the
dipole trap using an intensified CCD camera. This gives us spatial information on the
atoms necessary for deterministic atom manipulation.

To overcome the Poissonian statistics of the atom loading and to prepare a desired
number of atoms in the DT for a planned experiment, we have implemented a feedback
mechanism for the number-triggered loading of the dipole trap. It repeatedly loads the
MOT until the desired number of atoms is captured and only then transfers them into the
dipole trap. In Sec. 4.5 we use this method for the efficient preparation of one atom in
the dipole trap.
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Chapter 2

Submicrometer position control
of single atoms

2.1 Introduction

Precision position measurement and localization of atoms is of great interest for numer-
ous applications and has been achieved in and on solids using, e.g., scanning tunnelling
microscopy [43], atomic force microscopy [62], or electron energy-loss spectroscopy imag-
ing [63]. However, if the application requires long coherence times, as is the case in
quantum information processing or for frequency standards, the atoms should be well iso-
lated from their environment. This situation is realized for ions in ion traps, freely moving
neutral atoms, or neutral atoms trapped in optical dipole traps. For the case of ions,
positions [64, 65] and distances [66] have been optically measured and controlled with a
sub-optical wavelength precision. Similar precision has been reached in an all-optical posi-
tion measurement of freely moving atoms [67]. Dipole traps, operated as optical tweezers,
have been used to precisely control the position of individual neutral atoms [23, 68]. To my
knowledge, however, a nanometric position and distance measurement has so far not been
achieved in this case. Such a control of the relative and absolute position of single trapped
neutral atoms, however, is an important prerequisite for cavity quantum electrodynamics
experiments, allowing us to deterministically place an atom precisely at the point of the
maximum atom-photon coupling inside the cavity.

In this chapter I describe the methods developed for measuring and controlling the
position of single neutral atoms stored in a standing-wave optical dipole trap. The main
results presented here are published in Ref. [25]. The positions of the atoms are inferred
from their fluorescence using high resolution imaging optics in combination with an inten-
sified CCD camera. The absolute position of individual atoms along the DT is measured
with a precision of 143 nm, see Sec. 2.2. The relative position of the atoms, i.e. their
separation, is determined more accurately by averaging over many measurements, yielding
an uncertainty of 21 nm, see Sec. 2.3. Due to this high resolution, we can resolve the
discreteness of the distribution of interatomic distances in the standing-wave potential,
even though our DT is formed by a Nd:YAG laser with potential wells separated by only

19
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λ/2 = 532 nm. This resolution allows us to determine the exact number of potential
wells between simultaneously trapped atoms. Combining an initial position measurement
with a controlled transport of single atoms over macroscopic distances by means of our
“optical conveyor belt” technique [23, 24], described in Sec. 2.4, we transport individual
atoms to a predetermined position along the DT axis with an accuracy of 300 nm, thereby
demonstrating a high degree of control of the absolute position of an atom, see Sec. 2.5.

2.2 Measurement of the position of an atom

In order to obtain fluorescence images of the atoms in the DT, we illuminate them with
a near-resonant three-dimensional optical molasses, see Sec. 1.5 and Fig. 2.1(a). An
ICCD image of a single atom stored in the DT with an exposure time of 1 s is shown
in Fig. 2.1(b). This exposure time is much longer than the timescale of the thermal
position fluctuations of the atom inside the trap. Therefore, the vertical width of the
fluorescence spot, i.e. perpendicular to the DT axis, is essentially defined by the spread of
the Gaussian thermal wave packet of the atom in the radial direction of the trap, which
depends on the trap depth and the atom temperature.1 In the axial direction of the DT,
the wave packet has a much smaller 1/

√
e-halfwidth of only ∆xtherm = 35–50 nm for the

typical depth of the DT of 1–2 mK. In addition to these thermal fluctuations, the axial
position of the standing wave itself is fluctuating by σfluct(1 s) = 42(±13) nm during the
1 s exposure time due to drifts and acoustic vibrations of the optical setup (see below).
The horizontal 1/

√
e-halfwidth of the detected fluorescence peak, wax = 1.30(±0.15) µm,

is much larger and is caused by diffraction within the imaging optics and a slight blurring
in the intensification process of the ICCD [51]. Compared to the point spread function
of our imaging system, ∆xtherm and σfluct have thus a negligible effect on wax. In the
following I define the atomic positions as the center of the Gaussian thermal wave packets
of the atoms.

Line spread function

The ICCD image is characterized by its intensity distribution I(x̃, ỹ), where x̃ and ỹ
are spatial coordinates on the CCD ship. It is related to the real object O(x, y), i.e. to
the distribution of an incoherent light source in the object plane of the camera, by the
convolution with the point spread function, PSF (x̃, ỹ;x, y), of the imaging system as
follows (see e.g. [69, 70])

I(x̃, ỹ) =
∫∫

PSF (x̃, ỹ;x, y) O(x, y) dx dy +N(x̃, ỹ), (2.1)

1In the inverse problem the atom temperature can be determine by direct imaging the atom in the trap
and measuring its spatial distribution [51].
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Figure 2.1: Determination of the position of a single trapped atom. (a) An atom
stored in the standing-wave dipole trap is illuminated with an optical molasses (schematic
drawing). (b) ICCD image of one atom stored in the DT with an exposure time of 1 s. The
observed fluorescence spot corresponds to about 200 detected photons. (c) To determine
the position of the atom along the DT axis, the pixel counts are binned in the vertical
direction. In order to reduce background noise, the summation is only performed over
the narrow vertical region shown by dashed lines in (b). The thick solid line corresponds
to the line spread function of our imaging optics and reveals the absolute position xatom

of the atom. The thin lines are two Gaussians composing the fit function, see text for
details.

where N(x̃, ỹ) denotes additive noise. The trapping potentials as seen from the side, and
thus our time-averaged fluorescing atoms, have a slit-like form.2 Since we are interested
only in the horizontal position x̃atom of the fluorescence peak on the ICCD image, we bin

2 The extent of the atomic cloud along the optical axis is within the depth of focus of about ±6 µm of
the imaging system [51].
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I(x̃i, ỹj) in the vertical direction and get

I(x̃i) =
∑

j

I(x̃i, ỹj), (2.2)

with x̃i and ỹj denoting the horizontal and vertical position of pixel {i, j}, respectively.
Then, equation (2.1) can be reduced to the one-dimensional one:

I(x̃) =
∫
LSF (x̃, x) O(x) dx+N(x̃), (2.3)

where the imaging process is characterized by the line spread function (LSF) of our imaging
optics. For the slit-like object the function O(x) is a δ-function at position xatom. If the
imaging system is space invariant, the LSF depends only on the difference (x̃ − x̃atom).
Neglecting noise for the moment, this yields

I(x̃) ∝ LSF (x̃− x̃atom) . (2.4)

The object coordinate xatom and the image coordinate x̃atom are connected by the
relation

xatom =
x̃atom − Õx

M
, (2.5)

where Õx is the image coordinate of the origin and M is the magnification of our imaging
optics. In general, Õx and M have to be calibrated from independent measurements. The
precise calibration of M is described in Sec. 2.6. The choice of Õx strongly depends on the
planned experiment. For instance, in the experiments on addressing individual atoms in
a magnetic field gradient [18, 60], the origin can be defined as the point of zero magnetic
field. In the present case, however, no physical point in space is singled out as an origin,
therefore we arbitrarily set Õx ≡ 0, i.e. we assign the origin to the left-most CCD pixel.

In principle, the LSF could be determined by modelling the imaging process. However,
the modelling requires the precise knowledge of the properties of all optical elements in
the optical path as well as of their positions, which is a non-trivial task if we aim at
a satisfactory result. Therefore, we determine the form of our LSF experimentally by
analyzing about 100 images of single atoms. We have found that the LSF is position-
independent, which proves the assumption of the space-invariant imaging system. It is
well approximated by a sum of two Gaussians with a ratio of 4.4:1 in heights and 1:3.2 in
widths, with a slight horizontal offset with respect to each other, shown in Fig. 2.1(c). In
the following, I define x̃atom as the position of the maximum of this LSF. In our experiment,
it is determined by fitting a simple Gaussian to the fluorescence peak. This procedure has
been chosen because it can be carried out in a fast automated way, yielding information
about the atomic position during the running experimental sequence. The study on the
precise analysis of binned, normally distributed data performed in Ref. [71] shows that
the simple Gaussian fit gives the undistorted information on the peak position as long as
the peak covers at least three bins, which is the case here. In addition, our simulations
taking into account the experimental LSF and the finite bin size show a constant position
offset of 42 nm of the fitted center of the Gaussian with respect to the maximum of the
LSF, due to the slight asymmetry of our LSF. This offset only leads to a global shift of
Õx and is thus irrelevant for our analysis.
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Statistical error

Since our ICCD is a photon counting device, the basic noise source in determining xatom

is the Poissonian fluctuations of the number of photons detected per pixel. The statistical
error of the mean position of spatially normally distributed counts on the CCD image is
given by

∆xstat =
wax√
Nph

, (2.6)

where Nph is the number of photons detected per atom. Strictly speaking, equation (2.6)
is only valid for a spatial Gaussian distribution of detected photons with an infinitely
small bin size. In our experiments with the non-Gaussian LSF and the finite bin size we
determine the position and the width of the peak by fitting the binned counts with the
Gaussian function. To find the statistical error in this case, we have performed numerical
simulation taking into account the experimental LSF and the finite bin size. We have
simulated the arrival of Nph photons onto the CCD chip with the LSF distribution, binned
them with an arbitrary shift of the bin mask relative to the simulated peak, fitted the
binned counts with the Gaussian function, and determined the deviation of the fitted
peak center from the real one. The whole procedure was repeated many times to reduce
statistical error. The spread of the measured deviations gave us the statistical error of the
position detection, which is 1.44 times larger than that given by expression (2.6). Thus,
our method allows us to determine the fitted peak center xatom with a statistical error of

∆xstat =
1.44wax√

Nph

. (2.7)

In the experiment the value of Nph depends on the illumination parameters. Here, Nph =
200(±30) photons per second per atom, so that ∆xstat = 130(±20) nm.

Background noise

In addition to the statistical error, two further sources influence the precision of the posi-
tion detection: the background noise of our ICCD image, described in detail in Ref. [61],
and the position fluctuations of the DT. The background in Fig. 2.1 originates in about
equal proportions from stray light and from the read-out process of the ICCD, yielding a
total offset of 2300(±300) counts per bin for 1 s exposure time. The numerical analysis of
the influence of this background on the measured atom position ∆xatom reveals that the
noise of 300 counts per bin introduces an additional uncertainty of ∆xbackgr = 15 nm to
the fitted peak center.

Fluctuations of the trap

The atom position is subject to position fluctuations of the interference pattern of the
DT, σfluct. Since σfluct cannot be extracted from the ICCD image, we determine it in an
independent measurement. For this purpose, we mutually detune the two trap beams by
1.2 MHz and overlap them on a fast photodiode as shown in Fig. 2.2(a). From the phase
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Figure 2.2: Measurement of the phase variations of the standing-wave dipole trap.

of the resulting beat note we infer the phase variations φ(t) of the standing wave with
a 300 kHz bandwidth, see Fig. 2.2(b). The standard deviation of φ(t) during the time
interval τ , σφ(τ), is directly related to the position fluctuations of the DT during this
period by σfluct(τ) = λ/2 · σφ(τ)/2π. We have found that σfluct(1 s) = 42(±13) nm. The
typical time dependence of φ(t) in Fig. 2.2(b) shows both fast fluctuations and slow drifts.
However, most traces of φ(t) analyzed do not have significant drifts on the time scale of
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one second. Thus, neglecting linear drifts in the following and using the approximation
of Gaussian-distributed position fluctuations, which we have checked to be valid to better
than 1 % in our case, the position uncertainty immediately after the 1 s exposure time is
given by

∆x2
atom(1 s) = ∆x2

stat + ∆x2
backgr + σ2

fluct(1 s), (2.8)

yielding ∆xatom(1 s) = 140(±20) nm.
Finally, the read-out of the image and the data analysis take an additional 0.5 s during

which xatom is further subject to position fluctuations of the DT. This increases the error
of the position measurement by

√
2σfluct(0.5 s) = 29 nm,3 which was determined similar

to σfluct(1 s). Thus, we can determine the absolute position of the trapped atom with a
precision of

∆xatom(1.5 s) = 143(±20) nm (2.9)

within 1.5 s (1 s exposure time plus 0.5 s read-out and data analysis). Our analysis shows
that this precision cannot be significantly increased by extending the exposure time,
because the benefit of the higher photon statistics for longer times is counteracted by the
increasing influence of the DT drifts.

Summarizing, the main sources of noise influencing the precision of the position detec-
tion are listed below in Table 2.1.

Source of error Value

statistical error ∆xstat 130(±20) nm
CCD background noise ∆xbackgr 15 nm
DT position fluctuations σfluct(1.5 s) 51(±15) nm

Table 2.1: Sources of noise influencing the precision of the position detection.

2.3 Measurement of the separation between two atoms

While for some applications the absolute position of the atoms must be known to the high-
est possible precision, other experiments, like, e.g., controlled cold collisions between two
atoms [72] possibly with subsequent generation of the entangled cluster states of many
atoms [73, 74], require a precise knowledge of the separation d between atoms. In the
following I show that in our experiment this separation can be determined more precisely
than the absolute position of the individual atoms. The reason is that DT position fluc-
tuations equally affect all simultaneously trapped atoms and therefore do not change the
separation between them. Thus, this distance can be averaged over many measurements

3We have introduced a factor of
√

2, since we are interesting not in the distribution of data points
around the mean value during the considered time interval, but in the deviation of the very last point from
the very first one.
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Figure 2.3: Determination of the distance between atoms. (a) Two atoms in the
standing-wave dipole trap have a separation of nλ/2 with n integer. (b) After load-
ing the atoms into the DT, we take camera pictures of them. (c) From each picture
we determine the positions of the atoms and their separation d. Averaging over many
measurements of d for the same pair of atoms reduces the statistical error and allows us
to infer n.

providing much higher precision than for the absolute position. As a result, the obtained
precision allows us to resolve the standing-wave structure of our DT and to determine the
exact number of potential wells between two optically resolved atoms, a situation that so
far seemingly required much longer (e.g., CO2) trapping laser wavelengths [75].

Distance measurement from a single image

To study the atomic separations in our dipole trap, we first load it with two atoms from the
MOT, see Fig. 2.3(a). Normally, the atoms transferred from the MOT are distributed over
σMOT = 5µm along the DT axis, resulting in a spread of the distances of

√
2σMOT ≈ 7µm.

In order to increase the mean separation between the atoms we let them freely expand
along the dipole trap by switching off one of the DT laser beams for 0.5 ms eliminating
the standing-wave structure for that time interval. Following this expansion the atoms are
now distributed over roughly 50µm in the standing-wave trap.

Next, we take a camera picture of the atom pair, see Fig. 2.3(b). In these experiments,
we detect Nph = 270(±30) photons per second per atom. From each picture we determine
the distance d between the atoms, see Fig. 2.3(c). For this purpose, we fit the fluorescence
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Figure 2.4: Histogram of the measured distances modulo λ/2 (see equation (2.10). The
thick curve is a fit to the data with a sum of three equal Gaussians at the positions 0
and ±λ/2. The individual Gaussians are shown as thin curves. Their width of ∆d =
132(±5) nm determines the precision of the distance measurement.

peaks with the experimentally established line spread function. For the case of partially
overlapping fluorescence spots (d . 10 µm), this method yields more precise results for
the two positions than fitting simple Gaussians. For d . 4 µm the increasing overlap
reduces the precision of the position determination. We have therefore restricted our
investigations to the case where the atoms are separated by more than 4 µm. After all,
we have accumulated more than 3000 images with two atoms, each providing us with a
measured atomic separation di.

Being trapped in the standing-wave potential, the atoms are always separated by a
distance equal to an integer multiple of λ/2. Using this fact, we construct a new data set
{d′i} by applying the following rule:

d′i =

{
di modλ/2, if 0 ≤ di modλ/2 < λ/4
di modλ/2 − λ/2, if λ/4 ≤ di modλ/2 < λ/2

(2.10)

Here, in order to get the distribution symmetric around zero, I calculate the data points
di modulo λ/2 and shift them by λ/2 if di modλ/2 > λ/4. The histogram of the new
distribution {d′i} with a bin size of λ/40 is shown in Fig. 2.4. It is centered at 0 and is
confined in a range (−λ/4, λ/4).4 In the case of a perfect distance measurement, that is
with zero uncertainty, the distribution {d′i} should have a δ-function-like form with all d′i

4The precise calibration of the image scale is performed in Sec. 2.6 by centering the histogram of the
measured distances at zero.
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equal zero. On the other hand, if the precision of the distance measurement is much worse
than the λ/2 periodicity of the trap, the constructed distribution should appear flat.

In order to extract the distance uncertainty from {d′i}, we fit the histogram of Fig. 2.4
with a sum of three equal Gaussians (i.e. of the same height and width) centered at
positions −λ/2, 0, and λ/2, respectively. The individual Gaussian functions are shown
in Fig. 2.4 as the thin lines, whereas their sum is shown by the thick line. The central
Gaussian distribution corresponds to those measured separations dmeas

i , from which the
actual separations dactual

i between atoms can be found as the nearest multiple of λ/2
to dmeas

i . This means that the separation dactual
i can be determined correctly for these

measurement events. The two other Gaussians centered at ±λ/2 denote events for which
dactual

i will be determined wrong by ±λ/2, respectively. Consequently, the reliability of our
distance measurement is found by integrating the normalized central Gaussian function
from −λ/4 to λ/4 and thus equals 95.6 %. Therefore, only in 4.4 % of cases the determined
separation is wrong by one potential well.

The precision of our distance measurement is given by the width of the fitted Gaus-
sians of ∆dmeas = 132(±5) nm. Since the DT position fluctuations does not affect the
distance measurement, the uncertainty of the separation d between two atoms determined
from one picture should be ∆dexpect =

√
2 (∆x2

stat + ∆x2
backgr)

1/2 = 160(±20) nm. Here,
∆xstat is calculated from equation (2.7) for Nph = 270 photons. The observed discrep-
ancy between the measured and expected values may come from smaller DT fluctuations
during taking data as compared to previous experimental days as well as from different
illumination parameters resulting in a larger number of detected photons per atom, thus
reducing ∆xstat.

Resolving the standing-wave structure

The advantage of the distance measurement compared to the position detection is that
the atomic separations are not influenced by the fluctuations of the dipole trap. This
allows us to reduce the statistical error in the determination of d by averaging the results
from Npic images of the same atom pair. The reduced statistical error of the mean value
d̄ then reads

∆d̄ =
∆d√
Npic

. (2.11)

For instance, by averaging over only two images the reliability of the distance measurement
can be increased up to 99.6 %, which is enough for most of the feasible experiments with
single atoms.

In the next experiment we determine the atomic separation by averaging over more
than 9 images of the same atoms. In this case, the probability of a wrong determination of
n should theoretically be less than 2.0×10−10. The measurement procedure is the same as
before, but instead of one picture, we take at least Npic = 10 successive camera pictures of
the same atom pair before one of the two atoms leaves the trap. For each pair of atoms we
then calculate the mean value d̄ and the standard deviation ∆d of the measured distances.
Since d can now be measured with a precision ∆d̄� λ/2, its distribution should therefore
reveal the standing-wave structure of the DT. Indeed, the λ/2 period is strikingly apparent
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Figure 2.5: Cumulative distribution of separations between atoms in the dipole trap
measured with the scheme presented in Fig. 2.3. In order to resolve the periodic structure
of the trap, we reduce the statistical error in the measurement of the atomic separation by
averaging over more than 9 distance measurements for each atom pair. The discretization
of the distances to nλ/2 is clearly visible in the data. Our resolution is thus sufficient to
determine the exact number of potential wells between any two optically resolved atoms.

in Fig. 2.5 which shows the cumulative distribution of averaged distances d̄ between atoms
measured with about 100 atom pairs.

By analogy with single distance measurements, we can now map the measured {d̄i} to
the new data set {d̄′i} using equation (2.10). The corresponding peaked histogram with
a bin size of λ/40 is presented in Fig. 2.6. As compared to the distribution in Fig. 2.4
constructed from single distance measurements, the averaging has significantly improved
the resolution of our distance measurement, which can be directly inferred from the finite
width of the histogram, yielding ∆d̄meas = 21(±1) nm. The expected value ∆d̄ expect for
the measurement precision can be found using equation (2.11). In the current experiment
the mean value of {1/

√
Npic, i} = 0.198, where Npic, i denotes the number of pictures taken

for the i-th atom pair. Using ∆dmeas = 132(±5) nm, this results in ∆d̄ expect = 26(±1) nm,
which agrees reasonably with ∆d̄meas.

Discussion

Due to the thermal position fluctuations of the atoms inside the potential wells, the
instantaneous distance dinst between the atoms is known with a lower precision of
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Figure 2.6: Histogram of the atomic separations averaged over more than 9 measure-
ments each and calculated modulo λ/2. The data analyzed are the one from Fig. 2.5.

∆dinst = (∆d̄2 + 2∆x2
therm)1/2. In the axial direction of the DT, the Gaussian thermal

wave packet of the atom has a 1/
√
e-halfwidth of about ∆xtherm = 35–50 nm, depending

on the depth of the DT and the atomic temperature. In our case ∆d̄ <
√

2∆xtherm, so
that we have reached the fundamental limit for determining dinst. This limit is intrinsic
to our method because the back-action of the measurement does result in heating of the
atoms to a finite temperature of approximately 70 µK due to photon scattering.

Finally, since we can resolve the standing-wave structure of our DT and determine
the number n of potential wells between any optically resolved trapped atoms, we know
the separation between the centers of their thermal wave packets exactly, even despite of
finite measured width ∆d̄ of the distribution {d̄′i}. Note that it is sufficient to average the
measured atomic separation over two measurements to achieve this absolute precision.

2.4 The optical conveyor belt

Many planned experiments, and first of all those on accurate placing a single atom into the
mode of a high-finesse cavity, require a microscopic position control of the trapped atom
over macroscopic distances. For this purpose we use an optical conveyor belt technique
[23, 24], allowing us to move the atom along the trap axis over millimeter distances with a
sub-micrometer precision [25]. Since the atoms in our experiments are held at the intensity
maxima of the optical light field, created by interfering two counter-propagating laser
beams, their transportation can be achieved by moving the corresponding standing-wave
interference structure. In our experiment this motion is realized by mutually detuning the
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Figure 2.7: Time dependence of the main transportation parameters. In order to trans-
port an atom over the distance d, we expose it to constant acceleration and deceleration a.
The velocity is ramped from 0 to vmax = atd/2 and back to 0.

frequencies of the two trapping lasers.

A moving standing wave

Our “optical conveyor belt” consists of a standing-wave dipole trap made of two counter-
propagating laser beams. Motion of the interference pattern along the trap axis is achieved
by mutually detuning the laser beams. The time-dependent potential of a standing-wave
trap made of two Gaussian beams of frequencies ν1 and ν2 reads

U(x, y, z, t) = −U0
w2

0

w2(x)
exp

[
−2(y2 + z2)

w2(x)

]
cos2

(
π∆νt− 2π

λ
x

)
(2.12)

with ∆ν = ν1− ν2 the frequency difference between the two beams. If the two frequencies
are equal, ∆ν = 0, we get a stationary standing-wave dipole trap of equation (1.13).

The mutual detuning ∆ν 6= 0 causes the standing wave to move along its optical axis
at the constant velocity of

v =
λ∆ν

2
. (2.13)

To smoothly transport a trapped atom over a distance d, the interference pattern is first
uniformly accelerated along the first half of d and then uniformly decelerated along the
second half with acceleration a, see Fig. 2.7. For this purpose, the frequency difference
∆ν is linearly swept from 0 to ∆νmax and then back to 0. Thus, during the transport
duration td, the velocity changes from 0 to vmax = λ∆νmax/2 = atd/2 and back to 0.
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Figure 2.8: Experimental setup of the optical conveyor belt (schematic top view). The
standing-wave dipole trap is displaced axially by frequency-shifting its laser beams by
means of acousto-optic modulators (AOMs). Both modulators are set up in double-pass
configuration (not shown here) and are driven by a phase-synchronous dual-frequency
RF generator. By synchronously tilting mirrors M1 and M2, the dipole trap axis is
translated radially.

Experimental realization

In the experiment, the frequencies of the two laser beams constituting our dipole trap
are controlled by means of acousto-optic modulators (AOMs) installed in each beam as
depicted in Fig. 2.8. The AOMs are set up in double-pass configuration to avoid beam
walk-off during frequency shifts. The modulators operate at a center frequency of f0 ≈
100 MHz. Since the relative phase of the AOMs is directly translated to the spatial phase of
the standing wave, the frequency sweep during the transport should be phase-continuous.

To drive the AOMs, we use a custom built dual-frequency synthesizer with two phase-
synchronized RF outputs (APE Berlin, model DFD 100). For each transportation the
generator is programmed with a set of the sweep parameters such as the center frequency,
f0, the maximum frequency detuning, ∆fmax, and the sweep duration, τsweep = td/2,
using an RS232 interface. The reprogramming of the synthesizer takes about 0.5 s, and
the prepared frequency sweep is generated after externally triggering the DFD.

Transportation parameters

Due to the double-pass configuration of the AOMs, the frequency difference ∆f between
the two outputs of the DFD is translated to an optical detuning of the trapping beams of
∆ν = 2∆f . The acceleration during the ramped transport thus reads

a = ±2λ ∆fmax

td
(2.14)
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and the standing-wave structure is displaced by the distance

d =
a t2d
4

. (2.15)

The constant acceleration of the standing-wave dipole trap results in a tilted standing-
wave potential seen by trapped atoms [24], thus reducing the effective depth of the poten-
tial wells. For a typical trap depth of U0 = 1 mK, the maximum acceleration, for which
the atoms can be still trapped in the reduced potential, is limited to about 105 m/s2.
Therefore, for the position control experiments in Sec. 2.2 we keep the acceleration fixed
at a = ±1000 m/s2 and vary the sweep duration and the maximum frequency detuning
depending on the required transportation distance d:

∆fmax =

√
a d

λ
and τsweep =

√
d

a
. (2.16)

In the experiments on deterministic coupling of single atoms to the mode of a high-
finesse cavity, presented in Chapter 4, the arrival time of each atom into the cavity should
be known exactly, regardless of its initial position. Therefore, to make the time synchro-
nization of different parts of these experiments easier, they are carried out with a fixed
transport duration of td = 4 ms. For the mean transportation distance of 4.6 mm (distance
between the MOT and the cavity mode, see Sec. 3.3.1) this results in the acceleration of
a≈103 m/s2. The sweep parameters of the frequency synthesizer are then calculated as

∆fmax =
2 d
td λ

and τsweep =
td
2
. (2.17)

Radial transport of atoms

For some experiments in Chapter 4, we need to precisely control the position of the dipole
trap axis relative to the cavity mode. Technically, it is easier to displace the dipole trap
rather than to move the massive cavity holder. The displacement of the standing wave in
two radial directions, i.e. in the horizontal direction perpendicular to the trap axis and
in the vertical direction, is realized by synchronously tilting the mirrors M1 and M2, see
Fig. 2.8, mounted on piezo-electric actuators, around the corresponding axes. For tilt
angles below 0.1 mrad, the variation of the interference pattern at the location of the
MOT is small and to a good approximation a pure radial translation is realized. Using this
method, we can move atoms by a distance of about 40µm, limited by the dynamic range of
the actuators, in both radial directions within typically 50 ms, limited by their bandwidth.

2.5 Active position control

Using our scheme to precisely measure the position of an atom, we can now actively con-
trol its absolute position along the DT axis. This is realized by transporting the atom to
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Figure 2.9: Absolute position control of single trapped atoms. To transport an atom to
a predetermined target position at xtarget = 9.5µm, we first determine its initial position
and calculate the distance L to the target position (a). Then we transport the atom and
take a second camera picture (b). The histogram in (c) shows the accumulative data of
about 400 experiments carried out with one single atom at a time. Transfer of the atoms
from the MOT to the DT yields the broad distribution on the right (standard deviation
5.0 µm). The atoms are transported to the target position xtarget with a precision of
300 nm (narrow distribution on the left).
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a predetermined position xtarget by means of our optical conveyor belt. The following ex-
periment demonstrates our position control technique. Initially, we determine the position
of the atom and its distance L from xtarget from an ICCD image, see Fig. 2.9(a). Then,
the DFD is programmed with a set of sweep parameters corresponding to the desired
transportation distance L with a fixed acceleration of a = 1000 m/s2. After programming
the DFD, it is triggered to start moving the atom. To confirm the successful transport to
xtarget, we take a second image of the atom and measure its final position, see Fig. 2.9(b).
The experiment is repeated in a completely automated way many times. Finally we post-
select and analyze about 400 experimental shots with a single atom each.5

Because the atoms are randomly loaded from the MOT into the DT, the distribution
of their initial positions, see Fig. 2.9(c), has a standard deviation of 5.0(±0.3)µm, corre-
sponding to the MOT radius. After the transport, the width of the distribution of the final
positions is drastically reduced to σcontrol = 300(±15) nm. This width is limited by the
errors in determining the final and initial position of the atom, by the DT position drifts,
σdrift, during the typical time of 1.5 s between the two successive exposure intervals, and by
the transportation error, σtransp, resulting from a sort of the discretization error (round-off
error) of the DFD. From the above DT phase measurement we find σdrift = 140(±20) nm.
Assuming that

σcontrol =
√

2∆x2
stat + σ2

drift + σ2
transp , (2.18)

we calculate σtransp = 190(±25) nm, comparable to the statistical error.
In addition to statistical errors, the accuracy of the position control is subject to

systematic errors. The predominant systematic error of this measurement stemmed from
the calibration of our length scale. In the present case, a relative calibration error of
0.4 % resulted in a 120 nm shift of the final positions with respect to the target position
after a transport over L ≈ 30µm. However, this error can be reduced by improving the
accuracy of the calibration, see next section.

2.6 Calibration of the image scale

The spatial information on trapped atoms is obtained from CCD images and thus is
originally expressed in length units of CCD pixels. All experiments presented in the
current chapter are performed on atoms located in the object plane of the imaging optics.
Their analysis would be impossible without precise calibration of the image scale, that is
the precise correspondence between the measured dimension d̃[pixel] on a CCD image and
the real dimension d[µm] at the location of the atoms:

d[µm] = α

[
µm
pixel

]
d̃[pixel]. (2.19)

The calibration parameter α depends on the magnification of the imaging optics, M ,
and the linear size of a CCD pixel, apixel, as α = apixel/M . The pixel size of our ICCD

5These experiments have been performed before the implementation of the controlled loading of the
DT with only one atom, described in Sec. 1.4.



36 Chapter 2: Submicrometer position control of single atoms

camera is apixel = 13µm and the designed magnification of the system is M = 14(±1),
resulting in

αmagnif = 0.93(±0.07) µm/pixel. (2.20)

The obtained precision is not sufficient for our data analysis, since for a length of
100µm we already get a 7µm uncertainty. Therefore, we have developed several other
calibration methods offering better precision.

Using a constant transport of atoms

This calibration method is based on a transport of a single atom over a known distance
d[µm], while measuring its initial and final positions from the CCD image and determining
the corresponding transportation distance d̃[pixel]. After transporting 45 single atoms we
have determined a calibration parameter of

αtrans = 0.931(±0.004) µm/pixel. (2.21)

The main sources of error are the same as those of the position control experiment
in Sec. 2.5, namely a statistical error of two position measurements and the fluctuations
of the dipole trap between two images. Besides, this calibration method also relies on a
faultless operation of the dual-frequency synthesizer driving our conveyor belt. Its internal
data digitalization can in particular result in a systematical error, which might in general
be dependent on the transportation distance. To eliminate this problem, the calibration
should be performed for different transportation distances, making this method more
complicated.

Using the periodicity of the DT potential

Analyzing the histogram of distances

To perform a precise scale calibration, we analyze the measured atomic separations.
Due to the standing-wave structure of our dipole trap, the real atomic separations exactly
equal integer multiples of λ/2. In Sec. 2.3 we have constructed an auxiliary data set {d′i}
using equation (2.10) by calculating modulo λ/2 of atomic separations {di}. The properties
of the new set strongly depend on the calibration α, since it was used for calculating the
parent data set {di} in units of [µm] from atomic separations initially measured in pixels.

As can be seen from the histogram in Fig. 2.4, the optimal calibration parameter α0

results in the distribution {d′i} centered at zero and having the smallest width. Therefore,
we calculate a mean and a standard deviation of {d′i} for different α. The corresponding
dependencies, obtained from about 3000 atomic separations,6 are presented in Fig. 2.10.
The optimal calibration α0 is then found at a position of the mean {d′i} = 0 and of the
standard deviation σ ({d′i}) = min. The obtained results are listed in a table below.

6This data set is the same one as used in Sec. 2.3 for analyzing the periodicity of the dipole trap.
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Figure 2.10: Calibration of the image scale using atomic separations calculated modulo
λ/2. Shown are the mean value and the standard deviation of the atomic separations {d′i}
modulo λ/2 (see equation (2.10)) for different calibration parameters α. The optimal α0

corresponds to zero of the mean value and a minimum of the standard deviation.

Measure α0 [µm/pixel]

mean value 0.9331 ± 0.0002
standard deviation 0.9325 ± 0.0002

The statistical error, which is mainly due to the finite sizeN of the set {di}, is estimated
by calculating values of α0 from 20 randomly selected subsets of N/2 distances. If their
standard deviation is denoted by σN/2, the statistical error for the whole set of distances
is then given by σN = σN/2/

√
2.

We set the final value of α by averaging over two results obtained from different criteria:

αmodulo = 0.9328(±0.0002) µm/pixel . (2.22)

Fourier transformation of the atomic separations

An alternative approach to investigate the periodicity in the data set {di} is based on
a Fourier analysis of the measured atomic separations [76]. For this purpose, we consider
the periodic distribution function

f(x) =
1
N

N∑
i=1

δ(di − x), (2.23)
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Figure 2.11: Fourier transformation of the distribution of atomic separations.

built by summing over delta functions at the measured atomic separations di[pixel]. To
find its period, corresponding to the λ/2 periodicity of the atomic separations, we calculate
its Fourier transform

g(k) =
1√
2π

∫ ∞

−∞
f(x) e 2πikxdx =

1√
2πN

N∑
i=1

e 2πikdi . (2.24)

The real, Re(g), and imaginary, Im(g), parts of the Fourier transform of f(x) are
shown in Fig. 2.11. The analyzed atomic separations are the same as used in the previous
calibration method. The spatial frequency k0, which corresponds to the periodicity of
the DT, shows up as a peak in Re(g) and as a zero crossing in Im(g). The calibration
parameter α is then found as

α = k0 λ/2. (2.25)

The results of this calibration method are listed in a table below.

Measure α [µm/pixel]

real part 0.9326 ± 0.0002
imaginary part 0.9331 ± 0.0002

The statistical error of α is estimated in the same way as in the previous calibration
method using the same subsets of N/2 distances. After averaging over the two α′s, the
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final calibration parameter reads

αFourier = 0.9329(±0.0002) µm/pixel. (2.26)

The two calibration methods using the histogram analysis and the Fourier transform
are mathematically closely related. Their similarity is indicated by the fact that the
calibration error as well as the discrepancy between the two measures used for determining
α are the same for both methods.

Summarizing, we have developed several different methods for calibrating the CCD
image scale. While providing different precision, they all result in the same calibration
parameter α within their individual uncertainties. The method based on transporting
single atoms is fast, but it appears to be an order of magnitude less precise than two
other procedures utilizing the discreteness of the atomic separations. They both result in
the same high precision for determining α of about 0.02,%. However, the more involved
analysis of atomic separations require a larger data set as compared to the transport
method.

Note that for technical reasons the magnification of our imaging system was approx-
imately doubled before performing the set of experiments described in Chapter 4. This
yields the new calibration of the CCD image of αChapter 4 = 0.4967(±0.0002)µm/pixel
found by performing Fourier analysis of atomic separations and used in the rest of my
thesis. This modification by no means changes the main results of the present chapter.

2.7 Conclusion and discussion

In this chapter I have presented a detection scheme for the absolute and relative position of
individual atoms stored in our standing-wave dipole trap, yielding nanometric resolution.
This scheme allows us to resolve the 532 nm-period standing-wave structure of our dipole
trap and to measure the exact number of potential wells separating simultaneously trapped
atoms. We have furthermore used our position detection scheme to transport an atom to
a predetermined position with a sub-optical wavelength accuracy of 300 nm.

These results represent an important step towards experiments in which the relative
or absolute position of single atoms has to be controlled to a high degree. In Chapter 4,
this technique is used to transport individual atoms over several millimeter distances and
to deterministically couple them to the mode of a high-Q optical resonator.

Furthermore, knowing the exact number of potential wells separating the atoms, we can
now control this parameter by placing atoms into specific potential wells of our standing
wave using additional optical tweezers [26]. Finally, the demonstrated high degree of
control allows us to transport two individual atoms into one potential well in order to
induce cold collisions between them [77].
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Chapter 3

The high-finesse optical resonator

The heart of any cavity QED experiment is a resonator for confining and storing light. In
this chapter, I first describe the high-reflectivity mirrors, which were specially designed
and manufactured to meet the requirements for our planned cavity QED experiments
with optically trapped cesium atoms. Several techniques for their characterization and
analysis as well as the corresponding results are presented. The second part of the
chapter is dedicated to assembling, locking, and studying the high-finesse optical cavity,
the particular properties of which render it compatible with the current atom-trapping
experimental setup. This cavity is used in the experiments on coupling single atoms to a
cavity mode as described in Chapter 4.

3.1 An optical resonator for cavity QED experiments

Strong coupling in cavity QED

For exploring coherent atom-photon interaction the coupling between atom and cavity
field should be strong compared to all losses (dissipations) in the system, see Fig. 3.1. The
coupling rate, g, for a given atomic transition with the dipole moment, d, is proportional
to the electric field strength, E, for a single photon, resulting in [78]

g =
dE

~
= d

√
ω0

2~ε0V
, (3.1)

see also Sec. 4.2.1. The atom-photon coupling can be therefore increased by decreasing
the cavity mode volume, V , providing better confinement for the light field.

The main sources of energy dissipation in an atom-cavity system are the atomic dipole
decay rate, γ, and the cavity field decay rate, κ. The first occurs due to spontaneous
emission of an atom into modes of the electromagnetic field other than the cavity mode.
The other source of dissipation is based on leakage and absorption of cavity photons due
to non-perfect, lossy mirrors. This cavity loss rate can be kept small by utilizing mirrors
with the highest possible reflectivity.

41
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g

k

g

Figure 3.1: Basic elements and rates in a cavity QED system. An atom is coupled to
an electromagnetic mode of a cavity, built of i.e. two mirrors. In the strong coupling
regime, the atom-photon coupling rate, g, is larger than the atomic dipole decay rate, γ,
and the cavity field decay rate, κ.

If the condition g � (γ, κ) is satisfied, we get into the so-called strong coupling regime,
which allows us to study coherent energy evolution in the coupled atom-cavity system
and to explore cavity QED effects while neglecting all sources of energy dissipation. As
a measure of a coupling strength compared to dissipation we can use the single-atom
cooperativity parameter, defined as

C1 =
g2

2κγ
. (3.2)

In the strong coupling regime, C1 � 1.

Mode volume

I consider in the following a symmetric Fabry-Perot resonator built of two opposing concave
mirrors, as schematically depicted in Fig. 3.1. The electromagnetic mode inside such a
cavity has a Gaussian standing-wave profile described by a spatial function

ψ(~r) = exp
[
−x

2 + y2

w2
0

]
sin

(
2πz
λ

)
, (3.3)

where w0 is the mode waist. Here, the divergence of the Gaussian mode for the short
cavity (i.e. if the cavity length is smaller than the Rayleigh range of the Gaussian mode)
has been neglected. The mode volume V of the electromagnetic field is obtained by
spatially integrating |ψ(~r)|2, yielding for the fundamental TEM00 mode

V =
πw2

0

4
L , (3.4)

where L denotes the cavity length. If the cavity is made of equal concave mirrors with a
radius of curvature R, its waist equals [79]

w0 =

√
λ

π

√
L

2

(
R− L

2

)
. (3.5)
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Combining equations (3.4) and (3.5), we get

V =
λ

8

√
L3

(
2R− L

)
. (3.6)

For R� L, which is justified for our short cavities (see Sec. 3.3), equation (3.6) leads to

V ∝ R1/2 L3/2. (3.7)

Thus, the mode volume can be reduced either by shortening a cavity length or by using
mirrors with larger surface curvature 1/R.

Radius of curvature

Taking into account equations (3.1) and (3.7), the atom-cavity coupling scales as g ∝
R−1/4. Since κ is inverse proportional to the cavity finesse F , see equation (3.12), the
dependence of the cooperativity parameter on F and the mirror radius of curvature reads
C1 ∝ F/

√
R. Thus, the natural way to increase C1 is to use mirrors with smaller radius

of curvature.
However, technical difficulties in polishing mirror substrates with small radii prevent

one to achieve small scattering losses and thus a high mirror reflectivity. For instance, the
F = 105 finesse of our first high-reflectivity mirrors [80, 81] having a radius of curvature of
R = 1 cm was limited mainly by their surface quality. Thus, after discussions with mirror
manufacturers on possible trade-offs between the small R and the large F , we decided
on using mirrors with R = 5 cm, expecting to get better surface quality of the glass
substrates and finally to achieve a finesse of about one million. In this case, by changing
from a cavity with R = 1 cm and F = 105 to a cavity with R = 5 cm and F = 106, we
expect an increase of the cooperativity parameter by more than a factor of 4.

Cavity length and mirror shape

Another way to increase the coupling g is to reduce the cavity length. However, the planned
QED experiments require the laser beams forming the dipole trap to pass between the
cavity mirrors and cross the cavity mode. This sets the lower limit on the cavity clearance
(the distance between mirror edges) of about 150 µm for a waist of the trapping beams
of w0, DT = 35–40 µm, see Sec. 1.3. In this case the dipole trap beams are clipped by the
mirrors at 2w0, DT.

Since the mirrors are spherical, there is an indentation from the mirror edges to their
center. Thus, the gap between edges, as seen by the dipole trap beams, is less than the real
cavity length, L, occupied by the cavity mode. The reduction of the cavity clearance is

∆L = 2R−
√

4R2 −D2 (3.8)

with R and D denoting the radius of curvature and the mirror diameter, respectively. For
instance, for R = 5 cm and D = 3 mm, ∆L = 45 µm, thus significantly reducing the
spacing between the mirror edges for a desired cavity length of L = 150µm.
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Figure 3.2: High-reflectivity mirror for cavity QED (side view).

The clearance of the cavity can be increased by using smaller mirrors. However, small
substrates are difficult to handle. A solution is to turn relatively large substrates down to
the desired diameter at the mirror face. For a coned mirror with D = 1 mm, ∆L = 5 µm,
much smaller than L. Besides, another advantage of a coned substrate shape is the
possibility to place an assembled cavity closer to the MOT without blocking the MOT
beams, as will be discussed in Sec. 3.3.1.

Note that if a mirror substrate is not symmetrically curved relative to its rotation
axis, ∆L will be further increased. For the mirrors investigated in Sec. 3.2, the maximal
observed offset of the center of the mirror curvature with respect to the substrate axis is
100µm, resulting in additional decrease of the cavity clearance of about 1µm.

Taking into account all presented arguments and drawing on experience of other
research groups, we decided on the form of mirror substrates presented in Fig. 3.2. Here,
the 3 mm substrates are turned down to a D = 1 mm diameter at the tip. The radius
of curvature of the concave surface is 5 cm. For a cavity length of, e.g. 150 µm, the size
of the TEM00 mode at the mirror surface is w ≈ 23 µm � D, resulting in negligible
diffraction losses due to the finite mirror aperture seen by the light.1 For the cavity
finesse of one million, the expected cooperativity parameter is Cexpect

1 = 134 � 1.

3.2 High-reflectivity mirrors

3.2.1 Mirror design

A high-finesse cavity exhibits low photon losses, i.e. the mirror transmission, absorption,
and scattering are kept at very low level. Therefore, the two most important issues to
be concerned while manufacturing low-loss mirrors are a small roughness of the mirror
surface and a special dielectric coating of ultra-high reflectivity.

1Diffraction losses reach 1 ppm for a mirror radius of 2.63 w, where w is the beam radius at the mirror
surface.
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Currently, the only company able to fabricate, coat, and cone high-reflectivity optical
mirrors suitable for cavity QED experiments is the Research Electro-Optics Inc. (REO)
in Boulder, Colorado. The mirror manufacturing process consists of the following steps:
First, the substrates of BK7 glass are prepared in a cylindrical form with a diameter
of 7.75 mm and a thickness of 4 mm. One side of the substrates is flat and the other
side is superpolished to a concave surface with a radius of curvature of 5 cm. Then,
the substrates are coated. A standard anti-reflection coating is applied to their flat
back surface with measured reflectivity below 0.03 % at 852 nm and below 0.06 % at
836 nm (wavelengths of the probe and the lock laser, respectively, see Sec. 3.3.2). The
high-reflecting coating of the curved face should provide a reflectivity of 99.99997 %
(corresponding to a finesse of 106) and thus is more complex. It consists of 45 alternating
dielectric layers of Ta2O5 (nhigh = 2.041) and SiO2 (nlow = 1.455), and each layer has an
optical thickness of λ/4 at 875 nm.2 Note that the coating is not centered at 852 nm
(probe laser) in order to get a higher transmission at 836 nm (lock laser) making the
cavity stabilization easier, see Sec. 3.3.2. The total physical thickness of the coating is
about 5640 nm. In the last production stage, the coated substrates are turned down to a
diameter of 3 mm, and then coned to 1 mm at the mirror tip.

3.2.2 Portable cavity ring-down setup

Collaboration with REO

High-finesse coned concave mirrors, used in cavity QED experiments, constitute the cur-
rent technological state of the art that can be reached using special super-polishing and
super-coating techniques. Since mirrors with R = 5 cm and F ≈ 106 were never produced
and investigated before, REO could not guarantee a finesse of one million for the concave
mirrors with the specified radius of curvature. For getting the highest achievable finesse,
the mirror substrates should be tested after each intermediate manufacturing process. This
would help REO to identify sources of errors and imperfections and to find out possible
ways for optimization and improvement of different production steps. Besides, the final
finesse measurement could be used to select the best mirrors with presumably F&106.

A straight-forward way to determine the mirror reflectivity is to measure the fraction
of light reflected off the mirror. However, achieving a high precision using this method
becomes a non-trivial task due to a reduced signal-to-noise ratio if going to smaller mirror
losses. Alternatively, the task of measuring the mirror reflectivity is equivalent to mea-
suring the photon lifetime in a cavity composed of the mirrors under study. By using the
cavity ring-down method (CRD, see below), the direct measurement of the cavity decay
time for a cavity of a known length allows us to deduce the cavity losses and, therefore,
its finesse.

We reached an agreement with REO, where I had to assist them in testing the mirror
substrates by measuring the mirror reflectivity after each manufacturing step. This implied
the verification of the actual finesse level achieved utilizing our CRD test setup furnished

2For a model of multi-layer dielectric coatings see [82, 83].
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in REO’s metrology lab. The CRD measurements at the specified wavelength had to be
performed on all coated mirrors prior to the coning process as well as on the final reshaped
mirrors. Moreover, upon delivery of the mirrors and the CRD setup from REO back to
Bonn, I had to retest the mirrors and verify that the performance had not changed due
to transport-induced damage. On its part, REO was responsible to fully characterize and
analyze the mirror substrates prior to coating as well as to use the results of my finesse
measurements for optimizing the coating, coning, and cleaning processes in order to get
the best possible finesse. Besides, the manufacturer warranted that his packaging would
protect the substrates and coatings such that the finesse would not be measurably reduced
as a result of the shipment to Germany.

Cavity ring-down

The cavity finesse is defined as the ratio of the free spectral range (FSR) to the cavity full
linewidth at half maximum (FWHM),

F =
ωFSR

ωFWHM
. (3.9)

The photon lifetime is connected to the cavity linewidth as

τ =
1

ωFWHM
. (3.10)

Combining (3.9) and (3.10) and using the definition of ωFSR, we get the basic formula of
the CRD measurement:

F =
cπ

L
τ (3.11)

with the cavity length L. Since κ = ωFWHM/2, the cavity field decay rate can then be
found as

κ =
1
2τ

or κ =
cπ

2LF
. (3.12)

The photon lifetime can be directly inferred from the energy decay of the intracavity
light field for a cavity initially filled with resonant light. The exponential decay is measured
by observing the light lacking through the cavity mirror and is known as cavity ring-down.
The first experiment on measuring decay time to determine cavity losses is presented
in Ref. [84]. Measurement of ultra-low losses on mirrors, similar to those used in our
experiment, was first performed in the group of Prof. Kimble [85].

A typical experimental procedure of the CRD measurement is the following: By scan-
ning the cavity length, the cavity resonance frequency is tuned towards the laser frequency,
until the cavity transmission starts to increase. If the transmitted intensity reaches a pre-
set threshold level, an auxiliary electronics triggers an acousto-optic switch, which turns
off the incident laser. The subsequent decay of the cavity output is detected by a fast
photodetector and recorded on a digital storage oscilloscope.
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Portable cavity ring-down setup

The portable and self-contained cavity ring-down setup enabling us to measure the trans-
mission of both coned and unconed HR coated substrates at REO is based on that de-
veloped in our group by W. Rosenfeld [81] for testing the first REO mirrors (R=10 cm,
F ≤ 105), but extended to contain a diode laser and an AOM for fast switching a probe
laser. In addition, the modified setup is compatible with testing large unconed mirror
substrates and is supplemented with required electronics and power supplies.

A photo of the breadboard (size of 30 cm×60 cm), containing the optical setup, as well
as the corresponding schematic drawing is presented in Fig. 3.3. The key element of the
setup is a mirror holder, developed and described in detail in Ref. [81]. It allows us to scan
the cavity length without gluing or clamping the constituent mirrors. In the holder, the
mirrors are placed face-to-face in a V-groove providing good coaxial alignment. In order to
scan their distance, the two parts of the holder, each carrying one mirror, are connected by
a piezo-electric transducer. By applying a voltage to it, the two holder halves are pushed
apart, thus changing the cavity length. Besides small coned mirrors, the developed holder
is also suitable for testing large mirror substrates of 7.5 mm in diameter before turning
them down to 3 mm. This was necessary for comparing the mirror reflectivity before and
after the coning process.

As a laser source for probing the cavity we use a home-made temperature-stabilized
diode laser in Littrow configuration emitting at 852 nm. The short term frequency
stability (at 1 ms) is expected to be 100 kHz. An optical isolator (OI) prevents optical
feed-back to the laser diode and, thus, insures its stable operation. An acousto-optic
modulator (AOM), operated in first order, is used for fast switching the incident laser
off and on. By means of both a half-wave (λ/2) and a quarter-wave (λ/4) plate we
can choose between different polarization modes of the (in general) birefringent cavity,
see Sec. 3.2.4. The aperture (A), placed after the cavity holder, blocks stray light not
coupled to the cavity mode. Next, the cavity output light is split on a beam splitter (BS)
and send to two optical detectors: a CCD camera is used to monitor and to distinguish
between different transversal modes of the cavity and, finally, an avalanche photodiode
(APD) measures the cavity output light.

3.2.3 Reflectivity measurement

To determine the mirror quality, we perform a CRD measurement pairwise on all produced
mirrors using our CRD setup. For this purpose, two mirrors are put into the mirror holder
with a separation of 10 mm (estimated uncertainty is 5 %). The mode coupling of the
incoming laser beam is optimized for the cavity TEM00 mode. For better signal-to-noise
ratio, the cavity decay signal is averaged over about 20 single traces. A typical measure-
ment result is shown in Fig. 3.4. Here, the measured decay time of 12.4 µs corresponds
to a finesse of F = 1.17 × 106 and thus to cavity losses of (1 − R) = π/F = 2.7 ppm.
The estimated error is about 5 % resulting from the uncertainty of the cavity length. The
switching time of the incident laser as well as the rise- and fall times of the APD have



48 Chapter 3: The high-finesse optical resonator

BS

mirror
holder

APD

CCD

AOM

laser

OI

l/2

l/4A

voltage
scan

AOM
drivertrigger

storage
scope

852 nm

(a) Scheme of the setup.

(b) Photo of the setup.

Figure 3.3: Portable cavity ring-down setup. Laser: diode laser at 852 nm, OI: optical
isolator, AOM: acousto-optic modulator, λ/2 and λ/4: half- and quarter-wave plate,
respectively, A: aperture, BS: beam-splitter, APD: avalanche photodiode, CCD: CCD
camera. For better guidance, the arrangement of optical elements in (a) and (b) is
the same. The white line in (b) follows the laser beam path. The size of the optical
breadboard is 30× 60 cm2.



3.2 High-reflectivity mirrors 49

0 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
a
v
it
y 

o
u
tp

u
t 
in

te
n
s
it
y 

[V
]

Time [µs]

Figure 3.4: Cavity ring-down signal. At time 0 µs the cavity transmission exceeds a
trigger threshold and after a delay of about a 5 µs the incident laser is turned off. After
that the intracavity light field starts to leak out. The thick curve is an average over
about 20 single traces detected by the APD. The thin line is an exponential fit to the
data (starting from 5 µs), yielding a decay time of τ = 12.4 µs and, thus, a finesse of
F = 1.17× 106 for a 1 cm-long cavity.

been measured independently and are found to be in the sub-microsecond range, thus not
effecting the measured photon lifetime.

The measured cavity decay time alone does not provide information about individual
mirrors, but only about the cavity as a whole. Moreover, the measured losses characterize
not the entire mirror surface, but only the small spot probed by the cavity mode. In
case of inhomogeneous cavity losses (due to, e.g., varying roughness of the surface or
local damages of the coating) the measured finesse may strongly vary from point to point.
Thus, the finesse of a finally assembled cavity may be in general different from the one
measured before.

In order to eliminate these difficulties, we have tested the mirrors after different
coating, coning, or cleaning runs in the following way. For each mirror pair we performed
several CRD measurements with different relative orientations of the mirrors in order to
investigate the spatial inhomogeneity of the cavity losses. Each mirror was investigated
several times in different pairs enabling us to determine its individual properties.

As a result of the successful cooperation with REO, which included CRD measurements
on all mirrors after each intermediate step in their manufacturing, we got a set of about 10
high-reflectivity mirrors, any two of each can constitute a cavity with a finesse of about
106. Further investigation of the mirror properties was continued in our laboratory after
the selected mirrors had been delivered to Bonn.
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3.2.4 Mirror birefringence

Origin of the birefringence

In general, all optical elements exhibit some degree of birefringence, even if their materials
do not show inherent birefringent properties. This effect may come from slight deviation
of the optical system from a perfect circularly symmetric one, for instance, because of its
geometrical form or stress tension in a bulk material.

The high-reflecting coating might also possess some birefringence depending on the
coating process, e.g., on the orientation of a mirror substrate in a coating chamber which
might result in a slight asymmetry of the coating. Usually, the birefringent phase shift
in this case is negligibly small and cannot be directly observed or measured. But in a
high-finesse cavity the light field probes the coating many times resulting in a dramatic
enhancement of any small phase shift, making the cavity birefringence significant. If a
mirror is glued onto a holder, the induced mechanical stress in its substrate transmits to
the coated surface resulting in an additional stress-induced birefringence [82], which can
be much larger than the inherent birefringence of the coating. This effect, essential for
assembled cavities, will be investigated in Sec. 3.3.4.

The cavity birefringence can, in principle, also be caused by the mirror substrates.
However, the resonant intra-cavity light field penetrates only through a few top-most
coating layers and thus cannot effectively probe the substrate material. The light reso-
nantly transmitted by the cavity passes through both glass substrates only once and thus
does not accumulate enough phase shift to be detected.

Mode splitting

The relative phase shift δ between two orthogonal polarization modes (λa, λb), which
is acquired on each round trip in the cavity, defines a frequency splitting between these
modes, νsplit = νb − νa [86]. Thus, the birefringence appears as a splitting of the cavity
transmission line. Since the round-trip phase shift for a mode λi is given by

δi = 2π
2L
λi

, (3.13)

the mode splitting is proportional to δ and reads

νsplit =
δ

2π
c

2L
. (3.14)

Here, L denotes the cavity length.
The relevance of this mode splitting can be determined by comparing it to the cavity

linewidth. Since νFWHM = νFSR/F = c/(2LF), the ratio of the mode splitting to the
cavity linewidth reads

νsplit

νFWHM
=

δ

2π
F . (3.15)

It becomes clear, that for a high finesse of F = 106 even a tiny phase shift of δ = 10−5

can be readily observed.



3.2 High-reflectivity mirrors 51

0 5 10 15 20 25 30 35 40 45

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
a
v
it
y 

o
u
tp

u
t 
in

te
n
s
it
y 

[V
]

Time [µs]

Figure 3.5: Birefringence of high-reflectivity mirrors measured using the CRD setup.
The two polarization modes interfere while leaking out of the cavity. The oscillation
frequency is equal to the mode splitting. The thin line is a fit, corresponding to equa-
tion (3.16), with fit parameters listed in Table 3.1. The graph represents a single trace
result.

Measuring the birefringence

The most general way to measure the cavity birefringence is to directly measure the
peak splitting νsplit by scanning the length of the cavity and recording its double-peak
transmission. This method is simple if νsplit is larger than the cavity linewidth, νFWHM,
and the laser linewidth, ∆νlaser. But, if the splitting is small and the peaks are not well
resolved, the accuracy of this measurement might not be satisfactory. Several different
ways to measure the small birefringence of high-finesse cavities have been extensively
studied in the group of J. Kimble, see e.g. [86]. A general technique is based on scanning
the cavity length over the entire cavity resonance profile, injecting light with a well-defined
polarization, and detecting the polarization of the transmitted light on a rotatable linear
polarizer.

We use an alternative method to measure the birefringence by employing our current
CRD setup. Here, if both polarization modes of the cavity are filled with light, they start
to leak out of the cavity simultaneously after switching off an incident laser source. If then
these, initially orthogonal, polarization modes with different optical frequencies are mixed
on some optical elements (e.g., on a mirror, a beam splitter, or a detector active surface),
they start to interfere. The resulting beat signal can be detected on top of the overall
CRD decay. Moreover, if both modes have the same decay rate, we get the exponential
decay modulated at their beat frequency with a constant contrast. A typical signal of such
interference is shown in Fig. 3.5.



52 Chapter 3: The high-finesse optical resonator

The fit function to the oscillating decay has the following form:

T (t) = A exp(−t/τ)
(
1 + C sin(2πνt+ φ)

)
, (3.16)

where C is the contrast of the oscillations, ν and φ are the frequency and the phase of
the oscillations, respectively. The resulting fit parameters are listed in Table 3.1. The
measured oscillation frequency gives the frequency difference between two polarization
modes of the cavity.

amplitude A 0.535 ± 0.001 V
decay time τ 11.02 ± 0.01 µs
contrast C 37.5 ± 0.1 %
oscillation frequency ν 195.1 ± 0.1 kHz
phase φ 70 ± 3 mrad

Table 3.1: Fit results for the oscillating cavity ring-down signal of Fig. 3.5, according
to equation (3.16).

Analysis and experimental observations

If two mirrors composing a cavity have almost the same birefringent phase shift, the overall
phase shift can vanish for a specific relative orientation of the mirrors, thus reducing the
oscillation frequency to zero. On the other hand, if the mirrors show a very different degree
of birefringence, the overall phase shift cannot vanish and oscillations are present for any
mirror orientation. This effect of an orientation-dependent beat frequency was observed
for different pairs of mirrors by rotating one of them with respect to the other one.

The contrast of the oscillations depends both on the relative population of the modes
and on the degree of mixing of both polarizations after the cavity. The oscillation can
vanish, if the input laser polarization exactly matches one of the cavity polarization modes.
The input polarization can be set by rotating a λ/2-plate placed before the cavity holder.

We have observed that the contrast of the oscillations for each measurement stays
constant during the decay, as in Fig. 3.5. This means, that the cavity decay rate is the
same for both polarization modes and, consequently, the mirrors do not show noticeable
polarization-dependent losses, such as absorption, scattering, or transmission.

The measured birefringence varies strongly within a charge of manufactured high-
reflectivity mirrors. The maximal observed mode splitting was about 200 kHz, corre-
sponding to a phase shift of δ = 0.8× 10−4 rad. At the same time some pairs showed no
detectable splitting. Thus, the best candidates to constitute a high-finesse cavity for the
planned experiments are mirrors, which have the largest reflectivity (the longest photon
lifetime), while possessing negligible birefringence.

Limits of the method

If the birefringence is large, i.e. if the mode splitting is larger than both the cavity and laser
linewidth, the laser may be switched off after triggering on the transmission of the first
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cavity mode before the second mode becomes considerably populated. Of course, in this
case, no interference is possible and the CRD method fails to measure the birefringence.

The smallest measurable birefringence corresponds to the slowest beat signal between
the polarization modes which can be detected with the current method. We have found,
that the slowest oscillations, which still can be identified on top of the cavity decay signal,
have a period of Tosc ≈ 3.6 τ . Since νsplit = 1/Tosc and νFWHM = 1/(2πτ), the lowest limit
on measuring a mode splitting is thus νsplit ≈ 1.8 νFWHM.

If the mode splitting is even smaller, the induced oscillations cannot be observed on top
of the relative fast cavity decay. Although oscillations are not detectible in this case, they
still can lead to a small deviation of the decay curve from the ideal exponential one. This
then unavoidably results in a decay time, obtained from an exponential fit, significantly
smaller (up to 20 %) than the real cavity decay time τ .

The conventional limit for the spectral resolution of two close lines from a spectrum is
νsplit ≈ νFWHM, thus being lower than that of the presented method based on CRD effect.
However, the main advantages of our approach compared to the direct mode splitting
measurement are that it does not require a cavity scan to be linear, does not need its
frequency calibration, and does not require a laser linewidth to be smaller than that of
the cavity.

Birefringence in cavity QED experiments

In case of strong birefringence (νsplit>νFWHM) only linear polarized light can be injected
into the cavity. Thus, the birefringence makes it difficult for the cavity field to drive only
σ+ or σ− transitions in an atom coupled to it. On the other hand, if the mode splitting
is comparable to the cavity linewidth, an atom can be simultaneously coupled to both
cavity modes, which then can be treated as two different cavities. This significantly
complicates the treatment of the atom-cavity system and should be avoided.

The investigation of the birefringence in our set of high-finesse mirrors allowed us to
select several mirrors showing the best performance (that is the smallest birefringence
if tested together with other mirrors), and thus being the most applicable for cavity
construction. Later on, the birefringence of the assembled cavity after gluing and backing
the mirrors is studied by scanning through the cavity resonance and directly measuring
mode splitting, as will be presented and discussed in Sec. 3.3.4.

3.2.5 Cavity ringing

An alternative method to measure cavity finesse in based on the so-called “cavity ringing”
phenomenon, see Ref. [87] and references therein. The transmission of a scanning Fabry-
Perot interferometer is given by the well-known Airy function, and for a finesse of F&10
the transmission peak approximately has a Lorentzian profile. However, if the cavity
is swept over the laser frequency faster than the cavity decay time, the decaying cavity
output field shows an amplitude modulation with increasing frequency, known as cavity
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Figure 3.6: Cavity ringing. If the cavity scan over the laser frequency is faster than the
cavity decay time, the recorded transmission signal strongly deviates from that given by
the Airy function and shows speeding up oscillations on the tail of the transmission peak.

ringing, see Fig. 3.6. The physical insight into this behavior can be obtained by considering
the interference between the probe laser and the intracavity field, the frequency difference
of which continuously increases, since the probe laser frequency is constant, while the
frequency of the intracavity field is continuously shifted due to the cavity scan.

From a classical point of view, the cavity in this problem may be seen as a damped har-
monic oscillator with a time-dependent resonance frequency driven by an external periodic
force (i.e. by a laser field). The differential equation describing the oscillator’s dynamics
is solved in Appendix B. Figure 3.7 shows the time dependence of the cavity output in-
tensity for realistic scan parameters. This dependence reproduces well the experimentally
measured cavity ringing, shown in Fig. 3.6.

A more complicated decay signal can be observed if both the cavity ringing and the
beat of the polarization modes (see Sec. 3.2.4) come into play, as can be seen in Fig. 3.8.
From this time dependence one can in principle simultaneously get information about
both these effects. However, the analytical analysis of the curve form becomes even more
complex.

Cavity ringing and finesse measurement

Since the form of the ringing strongly depends on the relation between the sweep time
and the cavity decay time, by analyzing the cavity ringing one can determine the cavity
finesse [87]. The advantage of such a measurement is that it does not require switching an
incident laser field on and off. However, a linear and continuous cavity scan is essential.
If it is not the case, the analytical signal form of equation (B.7) is not valid anymore.
Unfortunately, our bulky cavity holder with clamped PZT, initially designed for CRD
measurements, does not support a linear cavity scan. As seen in Fig. 3.6, there are several
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Figure 3.7: Theoretical cavity ringing signal as given by equation (B.7) for realistic
experimental parameters (see Appendix B for details).
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Figure 3.8: Cavity ringing and birefringence as seen from a single shot scan over the
cavity resonance. The slow constant oscillation is the beat of the two cavity polarization
modes, see Sec. 3.2.4, while the faster oscillations with increasing frequency represent
the cavity ringing.

bends on the signal tail. Besides, the presence of several close resonance lines, e.g., of two
polarization modes in our case (see Sec. 3.2.4), badly distorts the ringing signal and also
prevents a robust finesse measurement compared to the CRD approach.

By very rapidly scanning the cavity, i.e. if the scan over the cavity resonance is much
faster than the cavity decay, the cavity output does not show significant ringing, instead
it changes into an exponentially decaying signal [88]. This effect can be used to realize
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Figure 3.9: Schematic view of the high-finesse cavity integrated into our atom-trapping
experiment. All elements and laser beams are approximately drawn to scale. Not shown
dimensions are the waist of the MOT beams (1 mm), the MOT diameter (10µm), the
waist of the dipole trap beams (35µm), and the cavity mode waist (23µm).

a cavity ring-down experiment that does not require turning a probe laser on and off.
Besides, it does not suffer from a scan non-linearity as in the case of the measuring finesse
from a ringing decay. However, because of the fast scan, the probe laser will not have
enough time to significantly excite the cavity mode resulting in a reduced signal amplitude
of such a measurement.

The cavity ringing is a promising method of measuring the finesse of low-loss resonators.
However, since our optical setup is better suitable for CRD-based measurements, we use
the ring-down approach for determining reflectivity of our mirrors.

3.3 High-finesse cavity

Our cavity consists of two spherical mirrors with a radius of curvature of 5 cm on super-
polished substrates with diameter of 3 mm coned to 1 mm at their tips. The cavity
length is 156µm, the high-reflectivity dielectric coating results in a finesse of about 106

at 852 nm. The cavity is assembled on a specially designed cavity holder, which allows us
to integrate the cavity into our main atom-trapping experimental setup in a most efficient
way and to align it onto the dipole trap, see Sec. 3.3.1. The cavity length is stabilized
by means of a “lock chain”, which is developed for transferring the stability of one of the
cesium transitions to the high-finesse cavity, see Sec. 3.3.2. Finally, the cavity is fully
characterized in a series of measurements, see Secs. 3.3.4–3.3.5.
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Figure 3.10: Cavity holder in the vacuum setup (top view).

3.3.1 Assembly

Integration into the atom-trapping experiment

We aim to use our dipole trap to transport one or few single atoms, initially cooled,
trapped, and prepared at the position of the magneto-optical trap (MOT), into the mode
of the high-finesse cavity. A schematic view of the integration of the high-finesse cavity into
the atom-trapping experiment is shown in Fig. 3.9. To provide lossless atom transport,
the cavity should be placed close to the MOT. At the same time, the relatively large
mirror substrates should not block or disturb the laser beams composing the MOT. The
distance of about 5 mm between the MOT and the cavity mode allows us both to efficiently
transport atoms and not to interfere with the laser beams. Besides, the conical substrate
shape leaves more space for the MOT laser beams in the x-y plane.

The cavity clearance should allow the high-power laser beams of the dipole trap to pass
between the two mirrors without being scattered, absorbed, or significantly diffracted on
their edges. For the waist of the dipole trap beams of w0 ≈ 35− 40µm the chosen cavity
length of 150µm should be sufficient for this purpose.

Cavity holder

The main function of our cavity holder is to hold and locate the cavity mirrors inside
our narrow glass cell about 5 mm away from the MOT, which is operating rather deep
inside the cell, see Figs. 3.10 and 3.11. Two mirrors selected for maximum reflectivity and
minimum birefringence are glued onto shear piezoelectric transducer (PZTs) attached to
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Figure 3.11: Assembled cavity integrated into the vacuum glass cell.

the aluminium holder. Details of the gluing procedure, including details on aligning the
mirrors and controlling their separation, are described in Ref. [81].

After installing the cavity inside the glass cell and pumping out the vacuum chamber
we have found that only one PZT has an electric connection to the outside of the chamber
and thus can be used. Still, by driving one of the PZTs, the cavity length can be scanned
over about one and a half of its free spectral range.

The long and rigid holder leaves enough space for the dipole trap beams and guides
the electric wires from the PZTs. The position of the dipole trap is fixed by the MOT
position and by a set of apertures for the DT beams placed outside the vacuum chamber.
Thus, the cavity holder is made adjustable to permit the alignment of the cavity mode
onto the dipole trap by moving the cavity in two dimensions perpendicular to the
trap axis. For this purpose, the holder rests inside the glass cell on a short piece of
bellows, acting both as a pivot and as a spring for crude vibration isolation of the cavity
holder, and is connected via a cardan joint to a linear XYZ-positioner, consisting of a
XY -manipulator and Z-feedthrough, as shown in Fig. 3.10. This combination allows us
to adjust the cavity position with micrometer precision relative to the trap axis. Moving
the cavity along the dipole trap, which is achieved by sliding the bellow on its support
base, sets the desired distance to the MOT.

3.3.2 Frequency stabilization

Cavity QED experiments require a precise control of the resonance frequency of the cavity
relative to the atomic transition frequency. The corresponding precision should be much
better than the cavity linewidth. However, any instability of the cavity length, caused by,
e.g., thermal drifts and mechanical (acoustical) vibrations, inevitable impairs the cavity
frequency stability, since δω/ω = −δL/L. Thus, if we would like to keep the cavity
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Figure 3.12: Frequency stabilization of the high-finesse cavity. AOM: acousto-optic
modulator, EOM: electro-optic modulator, PD: photodiode, APD: avalanche photodiode,
LO: local oscillator, PS: RF power splitter. The probe laser is stabilized to cesium
polarization spectroscopy. The three servo amplifiers are based on the PDH method. All
AOMs are set up in the double-pass configuration.

resonance stabile to within a fraction A of its linewidth, the stability of the cavity length
should be better than

δL =
Aλ

2F
. (3.17)

For a high-finesse cavity with F = 106 and a required relative stability of, e.g., A = 0.1
we need a stability of δL = 43 fm.

The cavity’s resonance frequency is locked to a reference “lock” laser using the Pound-
Drever-Hall (PDH) method [89]. This method utilizes a phase-modulated lock laser and
derives an error signal for an electronic servo loop by demodulating the laser power re-
flected off the cavity and detected by a fast photodetector. Our locking scheme for the sta-
bilization of the high-finesse cavity is similar to the one used in the group of J. Kimble [90].
The components and performance of our setup are described in detail in Ref. [80, 81] and
summarized in Ref. [51]. Here, I present a short overview of the main lock elements,
schematically depicted in Fig. 3.12.

The lock laser is a diode laser in Littrow configuration emitting at 836 nm. The
chosen laser frequency is far blue-detuned with respect to the D2 transition line of cesium,
which insures a small scattering rate of an atom in the cavity, as it is required for cavity
QED experiments (for more details on the influence of the lock laser on trapped atoms
see Sec. 4.5.1). Yet, this frequency still lies within the window of high reflectivity of the
mirror coating, providing the high finesse necessary for cavity stabilization. Because of the
absence of easily accessible atomic frequency standards at this wavelength, the lock laser
is locked to an auxiliary cavity, which transfers the frequency stability from the stable
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probe laser to the lock laser. Both servo loops for locking the transfer cavity and the lock
laser are based on PDH method.

The probe laser is derived from the cooling laser used to drive our magneto-optical
trap, see Sec. 1.2. Its frequency is locked to the crossover signal of the F = 4 → F ′ = 3
and the F =4 → F ′=5 transitions using a Doppler-free polarization spectroscopy [91, 92],
such that its frequency lies about 225 MHz below the F = 4 → F ′ = 5 transition. This
laser is used both as a reference laser for locking the transfer cavity and as a probe laser
for the cavity QED experiments. The part of the beam which is used for locking is phase-
modulated by an EOM resonantly driven at 20 MHz. The reflection off the transfer cavity
is detected with a fast photodiode. A servo amplifier extracts and amplifies an error signal,
which is then sent to a piezoelectric actuator attached to the transfer cavity, compensating
for cavity frequency drifts.

The frequency modulation of the lock laser is realized by direct modulation of the diode
current at 80 MHz. The reflection of the lock laser beam off the transfer cavity is detected
with the same photodiode used for detecting the probe laser. After being demodulated
and amplified, the PDH error signal is fed back to the grating and to the current of the
lock laser.

Since in a high-finesse cavity the incident power of a resonant laser is drastically en-
hanced by a factor on the order of F/π, we have to use the smallest possible lock laser
power for locking our QED cavity in order not to affect a trapped atom. For instance,
170 nW of lock laser power coupled into the high-finesse cavity results in a scattering rate
of 10 photons per second, see Sec. 4.5.1. For detecting a weak reflected lock beam we utilize
a home-built avalanche photodiode followed by a resonant amplifier. After demodulation,
the PDH error signal is processed by a proportional-integral servo amplifier, amplified by
a fast low-noise high-voltage amplifier [51], and finally sent to the shear PZT supporting
the cavity mirrors.

The acousto-optic modulator AOM 1 (see Fig. 3.12) is used to preset the frequency of
the probe laser. AOM 2 is used to scan the locked high-finesse cavity with respect to the
probe laser. The probe laser frequency can be tuned over the cavity resonance by means of
AOM 3. In this way, both frequencies can be varied around the atomic resonance: the lock
laser over about ±100 MHz and the probe laser over about ±200 MHz (see also Sec. 4.5.1).

Summarizing, the described stabilization scheme is sufficient to stabilize the resonance
frequency of the high-finesse cavity to an atomic resonance with about 100 nW of
coupled lock laser power. The residual frequency fluctuations are about 0.2 νFWHM rms.
The cavity remains locked during execution of different experimental sequences (see
Chapter 4), even if they use optical shutters mounted to the optical table and producing
mechanical disturbance to the cavity length. More importantly, the cavity lock can follow
rapid thermal expansion and contraction of the mirror substrates caused by switching the
strong dipole laser beams on and off within 100 ms.
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3.3.3 Detection of the cavity transmission

The main information obtained in experiments, where a coupled atom-cavity system is
probed by an external laser, is contained in the transmission of this laser through the
cavity, see Sec. 4.2. Since the probe laser field must be very weak, we must be able to
detect the transmitted probe power at the level of single photons. Below I present our
optical setup allowing us to fulfil this task.

Coupling light into and out of the cavity

The optical setup around the cavity consists basically of two parts: one for stabilizing the
cavity length and the other for detecting the transmission of the probe laser through the
cavity. In the laboratory the whole setup is distributed over two optical tables connected
by optical fibers. The first table contains the lock chain, except for the resonant APD and
the high-finesse cavity, as well as the elements of the frequency and power control of the
lock and probe lasers, see Fig. 3.12. The optical system for detecting the cavity reflection
and transmission is located on the second table containing the vacuum chamber with the
high-finesse cavity and the optical traps. Its main components are schematically shown in
Fig. 3.13. They include the optics for coupling the probe and lock lasers into the cavity
mode, detecting the reflection of the lock laser for locking the cavity, and separation and
independent detection of the transmitted lasers.

Both lock and probe lasers are guided from the first table to the second one by means
of one optical fiber. It provides perfect geometrical overlap of the beams, their high spatial
stability, and nearly Gaussian spatial mode profile before the cavity. The combination of
the two zero-order wave plates, λ/4 and λ/2, allows us to arbitrary set the polarization of
the incoming lasers, for instance, for populating only one polarization mode of the cavity,
see Sec. 3.3.4. Since the probe and the lock laser are coupled into the fiber in orthogonal
linear polarizations, they also stay orthogonal before the cavity. The lasers are coupled
into the cavity mode by using a mode matching lens system and a pair of mirrors. The
reflection off the cavity is deflected by a non-polarizing 50/50 beam splitter (BS) onto
the resonant APD, which is used for locking the cavity onto the lock laser, see Sec. 3.3.2.
Being designed to detect and amplify only a signal modulated at 80 MHz, the resonant
APD is not sensitive to the probe laser light.

After passing through the cavity and being again collimated, a part of the transmitted
light is reflected by a removable BS onto a camera CCD 1. It provides information on the
transversal mode structure of the two beams. In addition this camera allows us to observe
the scattering of the DT laser beams off the cavity mirrors, which is very useful during the
DT alignment, see Sec. 3.4. After the DT is aligned and the desired transversal mode of
the probe laser is chosen, the BS is removed to avoid additional losses of the transmitted
light.

Separating the two lasers

The lock and probe lasers with a wavelength difference of about 16 nm are spatially sepa-
rated on a diffraction grating (Thorlabs Inc., model GR25-1210) ruled with 1200 lines/mm
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Figure 3.13: Schematic optical setup for coupling the lock and probe lasers into the
cavity and detecting their transmission. BS: non-polarizing beam splitter, λ/4 and λ/2:
quater- and a half-wave plate, respectively, CCD: infrared CCD camera, IF: interference
filter, APD: avalanche photo-diode, SPCM: single photon counting module.

and a blaze wavelength of 1000 nm. The grating is set up in Littrow configuration,
i.e. the incident angle is close to the blaze angle of 370. With the designed dispersion of
0.67 nm/mrad the beams are separated by about 10 mm after a distance of 40 cm from the
grating. Having a waist of 1 mm they are then easily separated by mirrors. To increase
the reflectivity of the grating surface, it is coated with gold. The measured diffraction
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efficiency, ηgrating, i.e. the relative light power in the first diffraction order, is 76(±2) % at
836 nm and 71(±2) % at 852 nm. The efficiency is polarization independent within the
measurement uncertainty.

Additionally, the transmission of the probe laser is filtered by an interference filter
(company “Dr. Hugo Anders”). It has a transmission of ηfilter = 0.77 at 852 nm and about
10−4 for the 836 nm lock laser light.

Spacial filtering

The probe beam is spatially filtered with a 70µm pinhole, installed at the focus between
two convex lenses with 50 mm focal length. It helps to block stray light not originating
from the cavity mode as well as parasitic scattering and diffraction off the ruled grating
due to its spacing errors (“ghost” stray light).

If the cavity transmission is detected by the single photon counting module (SPCM,
see below), additional mode cleaning is performed by coupling the transmitted light into a
single-mode optical fiber directly attached to the detector via FC connector. The fiber is
shielded from ambient room light by a furcation tubing. The typically achieved collection
efficiency, ηfiber, of the fiber is about 60 % (fiber collimator from Schäfter+Kirchhoff, model
60FC-4-A18-02 with FC plug connection).

Detection of the transmission

In order to eliminate measurements when the cavity is not properly locked, we detect the
transmission of the lock laser by an analog APD during all measurements. In the case
of an unlocked cavity, the probe transmission drops to zero. Besides, the transmission is
permanently monitored by the camera CCD 2 for visual inspection of the cavity stability.

The transmitted probe laser light is detected either by an analog APD or by an SPCM,
see below. The choice of the detector is realized by a flip-mirror.

Analog APD

The first detector measuring the probe transmission is an avalanche photodiode
(PerkinElmer, Si-APD, model C30902S) with a home-built transimpedance amplifier. The
minimal measurable light power is about 1 pW, resulting in 4.9 mV of the APD output
voltage with about 20 % uncertainty. The output of the APD saturates at about 4 V,
while the APD’s dark current causes a constant background of about 2 V. The high tran-
simpedance of 100 MΩ limits the detector’s bandwidth to 9 kHz.

The analog APD detector can be used with higher laser power than common photon-
counting modules. This makes it an ideal detector for aligning purposes and in the
measurements testing the overall performance of the experimental setup where an over-
exposure of the detector is not improbable. Besides, it is used to measure the transmission
spectrum of the probe laser, its transversal mode spectrum, and the cavity polarization
modes. All measurements in this chapter on cavity characterization as well as the first
test experiments of Sec. 4.4 with transporting many atoms into the cavity have been per-
formed with this detector.
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Single photon counting module

To detect low laser intensities we use a single photon counting module (PerkinElmer,
model SPCM-AQR-12-FC). Its maximum count rate is 10 Mc/s and the dark count rate
is less than 500 c/s. The SPCM has an FC connector for attaching an optical fiber close to
its active area. The measured photon detection efficiency, ηSPCM, of the SPCM is 0.30 at
852 nm and consists of the detector’s quantum efficiency and of the coupling efficiency of
the fiber light into the detector’s active area. The total detection efficiency of the photons
transmitted through the cavity is then

ηtotal = ηoptic · ηgrating · ηfilter · ηfiber · ηSPCM ≈ 0.089 , (3.18)

where ηoptic = 0.9 denotes transmission of the light through all other optical elements on
the beam path from the cavity to the detector (if the removable beam splitter is removed,
see Fig. 3.13). The SPCM detector was used in experiments presented in Sec. 4.5 typically
detecting 10–50×103 counts/s.

Cavity control software

During cavity QED measurements, the detectors’ signals resulting from the detection of
the cavity transmission for both lock and probe lasers are read out and stored on a com-
puter for later data processing. For this purpose, the output voltages of the analog APDs
are sent to two analog inputs of a high-speed data acquisition card (National Instruments,
model PCI-6251). The output of the SPCM, which is put out as TTL pulses, are counted
by a counter/timer card (National Instruments, model PCI-6601). Both cards are in-
stalled into a standard personal computer. During a high TTL gate input, which is sent
by an experiment control software running the whole experiment [50], either the analog
card digitalizes the APD signal of the probe transmission with a preset sampling rate or
the counter card bins the photon counts detected by the SPCM with a preset bin time,
depending on the detector in use. At the same time the analog card processes the signal
from the lock laser APD. Both the sampling rate and the bin time are preset by the cavity
control software and are typically 0.1–1 ms. In addition, the same software reads out the
corresponding cards, plots traces of cavity transmission for both lasers, and saves them
for their later analysis. Moreover, this software is used to detect the thermal drifts of the
locked cavity relative to the probe laser and to compensate for them by controlling the
frequency of the lock laser, for details see Sec. 3.5.

3.3.4 Characterization of the cavity

Length measurement

One of the most important cavity parameters is its length. It defines the free spectral range,
the waist of the cavity mode, its volume, and consequently the atom-photon coupling
strength. Before gluing the mirror substrates we tried to manually set their separation
to about 150µm while observing the mirror spacing under a microscope. However, the
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gluing and baking processes can change the set separation. Therefore, the cavity length
should be precisely measured again after the cavity is assembled.

A widely used method to determine the cavity length is based on a measurement of
the transverse mode spacing, ∆νtransv. For a symmetric resonator

∆νtransv =
arccos( 1− L/R )

π

c

2L
, (3.19)

where R is the mirror’s radius of curvature (see e.g. [79]). In approximation of a short
cavity, that is for L� R, equation (3.19) can be rewritten as

L =
2c2

(2π∆νtransv)2R
. (3.20)

Despite of its conceptual simplicity, a precise measurement of ∆νtransv for finding L usually
requires a highly linear cavity scan, see e.g. [80, 86], which is difficult to realize. Indeed,
the measured length of our cavity of 135µm has a relatively large error of ±20µm, which
results from the scan nonlinearity and uncertainty of the scan calibration.

To avoid scanning the cavity for measuring its length, we tune the laser through a full
free spectral range of the cavity. The two corresponding wavelengths λ1 and λ2 satisfy the
relation L = nλ1/2 = (n− 1)λ2/2. Thus, the cavity length is given by

L =
λ1λ2

2(λ2 − λ1)
. (3.21)

In this way, we have measured the cavity length of L = 156.52(±0.04)µm. The free
spectral range is νFSR = ν1 − ν2 = 957.7(±0.3) GHz, corresponding to 2.3 nm at a
852 nm wavelength. The mode waist of the probe laser field, given by equation (3.5), is
w0 = 23.15µm, and the mode volume, given by equation (3.6), is V = 65897µm3.

Note that the measured L is an effective cavity length, Leff . It consists of the physical
distance between the mirror surfaces, Lphys, which is an integer number of λ/2, and the
penetration of the cavity electro-magnetic field into the multi-layer dielectric coating [86].
Thus, in general, n is not an integer and in our case n852 ≈ 367.4 and n836 ≈ 374.4.

Since the penetration depth depends on the wavelength, Leff for the probe and lock
lasers may differ. This issue becomes important for very short cavities, e.g., of L ≈ 10µm
used in Ref. [82]. In our case, the discrepancy between different Leff is small and does
not significantly influence the calculation of the cavity parameters important for us, e.g.,
such as a mode waist and an atom-photon coupling. However, in Sec. 3.5 we will see that
the probe laser and the lock laser fields indeed have different penetration depths into the
coating stack and, thus, see slightly different cavity lengths.

Finesse measurement

Generally speaking, the finesse of the assembled cavity differs from that measured with
non-glued mirrors in the CRD setup in Sec. 3.2.3. If one is not careful enough, the
mirror coating may be damaged and/or mirror surfaces may be polluted during the cavity
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Figure 3.14: Cavity ring-down of the high-finesse cavity. The cavity decay time is
measured for both the probe (a) and lock laser (c) wavelengths (852 nm and 836 nm,
respectively). The influence of the detector bandwidth is investigated by recording the
light intensity while switching off the both lasers without the cavity, see curves (b)
and (d). Each trace shown is an average over about 20 single shots. All traces are
normalized to 1 for better visibility.

construction, thus deteriorating their quality. In addition, the mode of an assembled cavity
probes points at the mirror surface which are in general different from those tested with
not glued mirrors.

The finesse of the assembled cavity is measured in situ, that is in the vacuum system,
after the holder with the cavity is placed inside the glass cell. The method used is the cavity
ring-down, introduced in Sec. 3.2.2. The measured cavity decay at both the probe and
lock laser wavelengths, i.e. at 852 nm and 836 nm, respectively, is shown in Fig. 3.14. The
difference in switching-off times for the two lasers comes from the difference in switching
electronics and optics (including different AOMs) used for the probe and lock lasers. Each
presented trace is an average over about 20 single measurements, normalized to 1 for easier
comparison of different curves. From the measured decay times we get the cavity finesse
at both wavelengths: F852 nm = 1.12× 106 and F835 nm = 0.55× 106 as well as the cavity
linewidth at 852 nm of ωFWHM = 2π × 0.85 MHz.

Compared to the CRD measurements with a cavity of 1 cm length, presented in
Sec. 3.2.2, the lifetime of photons inside the assembled 156µm-long cavity is much shorter.
This sets more stringent requirements on the bandwidth of the employed photodetector.
For the current measurement we have used an avalanche photodiode with 9 MHz band-
width. To investigate its influence on the form of the recorded CRD signal, we record
the signal when the probe or lock laser are switch off without passing through the cavity.
The observed drop-off times of the detected signal, see traces (b) and (d) in Fig. 3.14,
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Figure 3.15: Birefringent modes of the cavity. The length of the locked cavity is scanned
by sweeping the frequency of the lock laser. Two transmitted peaks correspond to two
polarization modes of the cavity. The thick line is a fit to the data with a sum of two
Lorentzian lines, resulting in a mode splitting of 3.86(±0.01) MHz. The peaks have a
full width at half maximum of about 1.4 MHz.

are significantly shorter than the cavity decay time, thus justifying the utilization of the
detector.

Birefringence measurement

Due to the gluing and backing processes, the stress-induced birefringence of an assem-
bled cavity can be much larger than the inherent birefringence of the mirror coating,
investigated in Sec. 3.2.4, and thus must be studied separately. In contrast to non-glued
mirrors, we measure the birefringence of the assembled cavity from the splitting of the
transmission peak by scanning the cavity. In order to eliminate drifts and fluctuation of
the cavity length during the measurement, we lock the cavity to the lock laser. By slowly
scanning the lock laser frequency using an acousto-optic modulator (in Fig. 3.12 denoted
as AOM 2), the cavity length can be tuned while keeping the cavity locked. The cavity
transmission recorded in a single shot is presented in Fig. 3.15. Here, we have scanned
the AOM frequency over 14 MHz within 200 ms. For the better signal-to-noise, the input
linear polarization of the probe light is set such that both polarization modes are approxi-
mately equally excited. This corresponds to input polarization rotated by about 45o degree
relative to the birefringence axis of the cavity. The transmission spectrum is then fitted by
a sum of two Lorentzian functions, resulting in a mode splitting of 3.86(±0.01) MHz. The
measured linewidth at half maximum of 1.4 MHz is larger than ωFWHM/2π = 0.85 MHz
expected from the CRD measurement because of the finite linewidth of the lock laser.
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The measured mode splitting is larger than that typically measured with unglued
cavities in Sec. 3.2.4. According to equation (3.14), this difference is caused first of all by
using here the shorter cavity length. From relation (3.15) we find the round-trip phase
shift between the polarization modes of δ ≈ 1.5 × 10−5. Since we have not observed the
birefringence with the unglued mirrors, which now compose our cavity, the intrinsic phase
shift between polarization modes, if any, was smaller than 10−5. The acquired birefringence
results from the mechanical stress induced in the mirror substrates after gluing them and
transmitted to the coated surface.

In general, the polarization direction of the birefringent modes depends on the
symmetry of the induced mechanical strain. Since the glued surfaces of the mirror
substrates are perpendicular to the cavity holder, the resulted strain, and thus the mode
polarizations, should be symmetrical with respect to plane containing the axes of both
the cavity and the holder. As expected, the measured polarizations of the two modes (see
Fig. 3.15) are parallel and perpendicular to the holder axis, respectively. By setting the
polarization of the incident light, we choose which cavity mode to excite. All experiments
presented in Chapter 4 were performed with the probe laser polarized parallel to the
cavity holder axis and, thus, to the dipole trap axis.

3.3.5 Mirror losses

Since high-finesse cavities strongly enhance the intra-cavity light, one should use very
low light intensities for most cavity QED experiments in combination with ultra sensitive
light detectors such as single photon counting modules. In this case any cavity losses other
than mirror transmission reduce the valuable transmitted light power and thus significantly
decrease the detection sensitivity. Below, I identify and measure the main losses of light
in our high-finesse cavity.

A mirror can be characterized by three parameters, R, T , and A, the intensity reflec-
tion, transmission, and loss coefficients, respectively. Here, A includes both absorption and
scattering losses. The coefficients are related through energy conservation by R+T+A = 1
and can be calculated by analyzing the cavity transmission and reflection of resonant laser
light [82, 83]. Since the method presented below does not allow us to distinguish between
the mirrors, in the following we suppose they are equivalent and thus have equal losses.

For a monochromatic light of a power Pin and a frequency ω incident on a Fabry-Perot
resonator, the reflected power, Pr, and the transmitted power, Pt, are given by

Pr

Pin
=

R(1−R− T )2 + 4R(T +R) sin2 φ
2

(1−R)2 + 4R sin2 φ
2

, (3.22a)

Pt

Pin
=

T 2

(1−R)2 + 4R sin2 φ
2

. (3.22b)

where φ = 2πω/ωFSR is the round-trip phase of the light field in the resonator and ωFSR

is its free spectral range. In case of resonance, φ = 0 and equations (3.22b) and (3.22a)
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are simplified to

Pr

Pin
=

(1− T −A)A2

(T +A)2
≈ A2

(T +A)2
(forR ≈ 1) , (3.23a)

Pt

Pin
=

T 2

(T +A)2
. (3.23b)

For a resonator without absorption losses (A = 0), as usually considered in general text-
books on optics, these equations result in a total transmission of resonant light. However,
if A cannot be neglected, we can calculate the mirror losses, T and A, by measuring powers
Pin, Pr, and Pt. For this purpose, we make use of an additional equation connecting the
cavity losses, which is based on a cavity finesse and reads

F =
π
√
R

1−R
≈ π

T +A
(forR ≈ 1). (3.24)

Unfortunately, in real experiments not all of the incident power Pin is coupled into a cavity
TEM00 mode. If taking into account a mode matching factor, ε, the useful, coupled input
power is reduced to εPin, whereas a power (1−ε)Pin is directly reflected off the first cavity
mirror without carrying any information on cavity properties. Consequently, the extended
equations (3.23a) and (3.23b) should now read

Pr − (1− ε)Pin

εPin
=

A2

(T +A)2
, (3.25a)

Pt

εPin
=

T 2

(T +A)2
. (3.25b)

Finally, after making rearrangements in equations (3.23a)–(3.24), we get

T =
2α

1 + α

π

F
, (3.26a)

A =
1− α

1 + α

π

F
, (3.26b)

ε =
Pt

Pin

(T +A)2

T 2
, (3.26c)

with a subsidiary parameter α = Pt/(Pin − Pr).
In our cavity setup, we measure the incident laser power Pin using a powermeter, and

the powers Pr and Pt using calibrated APDs. For this purpose we scan the cavity length
and determine the minimum cavity reflection and the maximum cavity transmission, re-
spectively. Additional power losses on intermediate optical elements, e.g., on the glass
cell, are approximately taken into account. The results of this measurement are summa-
rized in Table 3.2. The estimated uncertainty of measured losses is about 10 %. A higher
mirror absorption measured for the lock laser results from its deeper penetration into the
dielectric coating compared to the probe laser.
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Parameter 852 nm 836 nm

photon lifetime τ 187 ns 91 ns
cavity finesse F 1 120 000 548 000
mirror transmission T 1.3 ppm 3.6 ppm
mirror absorption A 1.8 ppm 2.7 ppm
mode coupling ε 36 % 41 %

Table 3.2: Measured mirror losses and mode coupling efficiency for the wavelengths of
the probe and lock laser. Photon lifetimes and finesse are those measured with the CRD
method in Sec. 3.3.4.

Because of the difference in Gaussian beam geometry for the probe and lock laser
wavelengths, the cavity mode coupling for these beams slightly differs. Note that in
experiments in Chapter 4 the mode coupling efficiency was about 55 %. Alternatively,
the efficiency of the mode coupling has been determined by comparing the height of the
fundamental TEM00 mode measured from the transmission spectrum of the cavity to the
sum of the heights of all transversal modes which can be observed. This method has
resulted in a coupling efficiency of about 80 % for the probe laser. The origin of the
discrepancy between this value and that in Table 3.2 is unclear for us.

Intra-cavity intensity

Besides their importance for general mirror characterization, the mirror losses are neces-
sary for calculating the intra-cavity light intensity affecting an atom coupled to the cavity
mode. In analogy to equations (3.25a) and (3.25b), the intra-cavity power circulating
inside a resonant Fabry-Perot resonator is given by

Pintra

εPin
=

T

(T +A)2
. (3.27)

With (3.25b) this allows us to determine Pintra by measuring the transmitted laser power
using the obvious relation

Pintra =
1
T
Pt . (3.28)

Finally, from Pintra, we calculate the intra-cavity light intensity at an antinode of the
standing wave of the cavity field as

Imax =
8Pintra

πw2
0

. (3.29)
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3.3.6 Conclusion

In the previous sections I have presented the construction and characterization of the high-
finesse optical cavity applicable for the planned cavity QED experiments with trapped
cesium atoms. The successful cooperation with a mirror fabricator during manufacturing
the high-reflectivity mirrors allowed us to achieve a cavity finesse of about 106. After
the additional investigation of their properties, we have selected the best mirrors for the
cavity.

The specially designed cavity holder provides the efficient integration of the cavity
into our atom-trapping experimental setup. Here, the cavity mode can be placed at 5 mm
distance from our magneto-optical trap and, using the adjustable holder, can be precisely
aligned onto the dipole trap. Our stabilization scheme is able to stabilize the resonance
frequency of the high-finesse cavity to an atomic resonance with about 100 nW of coupled
lock laser power. The residual frequency fluctuations are about 0.2 νFWHM rms.

Finally, the assembled high-finesse cavity was characterized in a series of measure-
ments. The basic properties of the cavity are summarized in Table 3.3.

Parameter Value Comments

Geometry
cavity length L 156.52 µm effective, measured at 839 nm
radius of curvature R 5 cm specified by manufacturer
mirror diameter D 1 mm specified by manufacturer
cavity clearance Lc ≈ 150 µm
TEM00 mode waist w0 23.15 µm for light at 852 nm
mode size at the surface w 23.17 µm
mode volume V 65 900 µm3

Spectroscopic properties
free spectral range νFSR 957.7 THz
finesse F 1 120 000 from CRD at 852 nm

F836 nm 550 000 from CRD at 836 nm
linewidth νFWHM 0.85 MHz from CRD at 852 nm
polarization mode splitting ∆νsplit 3.86 MHz birefr. axis along the holder

Cavity QED parameters
atom-photon coupling rate g/2π 18.0 MHz for F =4 → F ′=5

with σ+-polarized cavity mode
cavity field decay rate κ/2π 0.43 MHz from CRD at 852 nm
atomic dipole decay rate γ/2π 2.61 MHz decay rate for cesium atom
cooperativity parameter C1 146.7

Table 3.3: Properties of the high-finesse optical cavity. For mirror losses see Table 3.2.
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3.4 Interplay of the atom trap setup and the cavity

Being a massive object in the glass cell, the cavity with its holder can in principle influence
our atom trap setup, even though it is placed far from the MOT center and the mirror
spacing is larger than the size of the DT beams. Of course the atom traps can also affect
the cavity performance. In the following I investigate the possible cross-influence of the
atom trap setup and the cavity.

The MOT

The presence of the cavity does not noticeably prevent the normal operation of our single
atom MOT: The cavity mirrors are located far enough from the MOT beams and thus
do not noticeably block them, and the non-magnetic cavity holder does not influence the
magnetic field of the MOT. However, the small scattering of the MOT lasers off the cavity
mirrors increases the stray light seen by the APD detecting the MOT fluorescence rate
(Sec. 1.2). In the absence of the cavity, the typical stray light-induced background count
rate of the MOT APD is 2 × 104 counts/s. The presence of the cavity increases this
number to about 7× 104 counts/s. Of course, the fluorescence rate of a single atom stays
the same, namely 3×104 counts/s. The increased background level results in an increased
statistical noise of the detected fluorescence of the running MOT, thus decreasing the
maximal faultlessly countable number of trapped atoms from 19 (see Ref. [56]) to about 10.
However, since in the planned cavity QED experiments we aim on using few or even single
atoms, the scattering of the MOT beams off the cavity mirrors does not constrain us.

Due to the spatial filtering of the probe laser beam transmitted through the cavity,
this scattering is not visible on the APD detecting the cavity transmission and thus also
does not influence our cavity transmission measurements.

Modification of the dipole trap geometry

The main demand on the geometry of the DT beams is a reasonably small beam size at the
MOT position (to provide a deep trapping potential for efficient loading of the DT) and
inside the cavity mode (to not clip the DT beams on the mirror edges). These two points
are separated by 4.6 mm. The DT beams with a waist of wold = 25.6µm, which were used
in the experiments described in Chapter 2, had a Rayleigh range of 2.0 mm. This small
range would have resulted in a beam diameter of 128µm inside the cavity, comparable
to the clearance of 156µm. Therefore, for the cavity experiments we have increased the
beam waist to about wnew = 36µm, extending the Rayleigh range to 4.0 mm, and have
shifted the waist position midway between the MOT and the cavity mode. As a result,
from now on the beam radius at these two positions is about 42µm.

Due to the increased size of the DT beams at the MOT position the depth of the
dipole potential for the same YAG laser power is smaller by a factor of w2

new/w
2
old ≈ 2.7

than was, e.g., in Chapter 2. For atoms trapped in a shallower DT, the optical molasses
illumination is more critical. For instance, a small imbalance in the intensities of the
counter propagating illumination beams can push atoms out of a shallow trap, while in a
deep trap such imbalance in light pressure is outweighted by a large dipole force holding
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the atoms. Reducing the intensity of the optical molasses beams helps to keep the atoms
trapped. However, it also reduces their fluorescence and thus the signal of the atoms seen
on a CCD image. To overcome this difficulty we have performed an accurate balancing of
the intensities of the MOT laser beams used for illuminating trapped atoms and increased
the power of the trapping beams.

Note that for technical reasons described in Sec. 1.3 we have replaced the Nd:YAG laser
(1064 nm) used in experiments of Chapter 2 by an Yb:YAG laser (1030 nm) providing up
to 20 W output power in a single mode. Normally, in experiments in Chapter 4 involving
imaging of atoms, we use about 3 W of the DT laser power per beam (in contrast to 1 W
used in Chapter 2). According to equation (1.7), the resulting DT depth is about 1.4 mK.

The new beam waist of 36µm was measured without glass cell by deflecting the beam
under investigation sidewards. Its measured M2-parameter is close to 1.0 indicating that
the beam is close to a perfect Gaussian one [79]. After passing through the class cell and
refocusing the DT beam by similar optics we measure a waist of 41µm and M2-parameter
of about 1.2, although the divergence of the beam is the same as measured before the cell.
Therefore we conclude that the vacuum system introduces additional aberrations to the
beam. This can result in decreased DT laser power and increased beam width inside the
cavity leading to a dipole trap depth smaller than the 1.4 mK calculated above.

Heating the cavity mirrors with the DT beams

We have observed, that some small fraction of the DT beams is clipped and absorbed by
the cavity mirrors heating them even when the DT passes through the center of the cavity.
Besides, due to the small cavity clearance of only 150µm, it is difficult to avoid hitting
the cavity and its holder with the powerful YAG beams while aligning the DT onto the
MOT and then the cavity onto the DT. To estimate the possible damages to our cavity
caused in this situation, we have investigated the thermal influence of the YAG beam on
different cavity elements.

Several minutes of exposing a mirror substrate in air to the YAG beams with a power
of 2 W, shined in on the substrate from a side, result in heating the mirror up to about
40–50 centigrade which is not harmful. However, because of the lower heat conductance
of mirrors placed in vacuum, the mirror temperature in the glass cell can be higher and
is difficult to estimate. Therefore, we try to avoid long direct exposure of the mirror
substrates to the YAG beams.

We have tested that the same YAG laser power focused in air down to about 30µm
directly on a mirror surface (what is very unlikely to happen in the experiment) does not
noticeably damage the mirror coating. Moreover, the damage threshold of the coating,
as specified by the manufacturer, lies about 10 times higher. Furthermore, no damage is
detected if focusing the laser onto the glue between mirrors and PZTs.

The most vulnerable element of the cavity assembly is found to be the gold-coated
surface of the shear PZTs. If during beam walking the DT beam slides across the PZTs’
surface, the laser immediately burns holes and traces on it. Of course, this should be
strictly avoided by carefully performing the DT prealignment with low power.

Although we have seen that the DT beams going through the cavity spacing do not
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damage the cavity, heating of the locked cavity can significantly shift its resonance fre-
quency relative to the probe laser frequency and thus hinders our experiments. This
problem and its solution are discussed in the next Sec. 3.5.

Aligning the cavity onto the DT

Due to the small size of our atom traps and their high sensitivity on all instabilities and
thermal drifts of optical elements forming them, both the MOT and the DT beams should
be accurately aligned at least once a day before performing any experiment with atoms.
The presence of the cavity inside the glass cell complicates the alignment procedure of
the DT beams. To avoid strong heating of the cavity and damaging the PZTs with the
YAG laser beams while aligning them onto the MOT, their transmission through the
cavity spacing is permanently observed. If we detect clipping of the beams, the cavity
holder is displaced appropriately to let them pass between the cavity mirrors and the DT
alignment is continued. Besides, an infrared CCD camera watching the cavity from the
side monitors the YAG scattering off the cavity mirrors, thus giving us good qualitative
information about the position of the cavity with respect to the DT beams.

After the DT is aligned onto the MOT and its position is fixed, we start to align
the cavity relative to the DT. First, we set the right vertical position of the cavity by
measuring the transmission of one of the DT beams through the cell while moving the
cavity up and down. For large cavity displacements in both directions the transmission
starts to decrease due to clipping of the beams. The optimal position is in the middle
between these two regions. The estimated precision of this method is about 20µm.

The alignment of the cavity in the horizontal plane transversely to the DT beams is
more demanding, since the DT axis and the cavity mode should overlap precisely. This
alignement is performed by using transported atoms as a probe for measuring the position
of the cavity mode with micrometer precision. Several alternative experimental procedures
for locating the mode are presented and discussed in Sec. 4.3.

Local vacuum between the mirrors

In general, the local vacuum between the two closely spaced cavity mirrors can be
worse than the vacuum in the rest of the glass cell [93] due to outgassing of the mirror
substrates. In order to make sure that the local vacuum here does not affect the trapped
atoms, we measure the lifetime of atoms in the DT transported between the cavity
mirrors. For this purpose, we move several (on average 5) atoms into the cavity with
the probe and lock lasers switched off. After a variable waiting time we transport the
remaining atoms back and count them by transferring the atoms back into the MOT.
The experimental sequence is repeated 30 times. As a reference, we perform the same
lifetime measurement without transporting atoms. The result is shown in Fig. 3.16. In
both measurements the measured lifetime is about 10 s, mainly limited by phase noise of
the AOMs used for shifting the standing-wave trap, see also Sec. 1.3. Consequently, the
local vacuum between the cavity mirrors should not constrain our experiments.
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Figure 3.16: Lifetime of trapped atoms placed between the cavity mirrors (circles).
For comparison the atom survival is also measured without transporting atoms into the
cavity (squares).

3.5 Compensation of thermal drifts of the locked cavity

The laser beams of the dipole trap, while passing between the mirrors, are partially clipped
and absorbed by the mirror edges. Since the index of refraction of the mirror coating is
in general temperature dependent, the resulting heating of the coating changes the phase
shift of the cavity mode light penetrating into it. If the cavity is locked, this phase shift is
compensated by changing the cavity length, thus keeping the cavity always resonant with
the lock laser.

Due to the difference in wavelength, the probe and lock lasers have different penetration
depths into the mirror dielectric coating (the lock laser penetrates deeper) and thus their
“thermal” phase shifts are different. As long as the mirror temperature stays constant,
the constant differential phase shift can be corrected by slightly changing the frequency
of the lock laser in order to bring the cavity in resonance with the probe laser.

However, during any experimental run consisting of many repetitions of some exper-
imental sequence we repeatedly switch the DT beams on and off (e.g., for loading and
counting atoms in the MOT). The rapidly alternating heating and cooling of the mirrors
determine a new thermal equilibrium for the cavity which is approached after the experi-
ment has been started. This equilibrium depends on the average DT laser power affecting
the cavity during one repetition of the experiment and is thus different from that before
the experiment was started. As a result, the cavity, while remaining stabilized to the lock
laser, drifts away from the probe frequency. Hence, the probe laser transmission through
the cavity drops during the successive execution of several experimental shots, as can be
clearly seen in Fig. 3.17. In this measurement the duration of one shot is about 1 s with
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Figure 3.17: Probe transmission with (diamonds) and without (circles) compensation
of the cavity thermal drifts. The transmission is measured for 20 successive experimental
shots within one experimental run. The compensation method used is the center-of-mass
method. A slight increase of the cavity transmission in (b) originates from a drift of the
incident power of the probe laser.

the DT switched on about 60 % of the time. Before the experiment has been started, the
DT laser beams were on continuously and the cavity was set in resonance to the probe
laser. One sees that already after a few experimental shots the transmission is significantly
decreased, making further execution of the experiment useless.

The differential thermal phase shift between the lock and the probe laser can be de-
creased by reducing the amount of the absorbed DT laser power. However, in our ex-
periments this cannot be achieved by simple means. For instance, decreasing the DT
laser power, what is the first natural candidate in reducing the cavity heating, will not
allow us to take images of the trapped atoms without loosing them, see Sec. 3.4. Next,
increasing the spacing between cavity mirrors will result in an undesirable decrease of the
atom-photon coupling, see Sec. 3.1. Finally, decreasing the diameter of the DT beams will
inevitably reduce their Rayleigh range, complicating the transport of atoms over several
millimeter distances. Therefore, having no means to reduce the cavity heating, we can
take it into account and try to actively compensate it.

Active compensation of the differential thermal phase shift

To actively compensate for the described thermal drifts of the locked cavity, we adjust the
frequency of the lock laser during the experimental run in such a way that the cavity, being
stabilized to the lock laser, stays resonant with the probe laser. The lock laser frequency
is tuned by means of the AOM 2 shown in Fig. 3.12. The frequency of the AOM driver is
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Figure 3.18: Compensating for the cavity thermal drifts resulting from switching the DT
beams on and off. The time interval A is reserved for performing cavity QED experiments
and can have an arbitrary length depending on the planned experiments. The intervals
B to F are reserved for determining the optimal control voltage of the lock laser AOM
which provides the maximum transmission of the probe laser. (a) Time dependence of
the control voltage sent to the lock laser AOM. The initial optimal voltage U0 is found
from the previous experimental shot. (b) The corresponding cavity transmission of the
probe laser as detected by the APD.

controlled via its VCO input by the PC analog output card.
The compensation procedure works as follows. After the cavity QED measurement

has been performed and the atoms are moved out of the cavity mode we scan the cavity
resonance over the probe laser frequency in a way depending on the specific compensation
method, see below, and measure the cavity transmission of the probe laser. Then, we
determine the AOM control voltage Umax, which corresponds to the maximum transmission
of the probe laser, and use its value in the next experimental shot.
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Center-of-mass method

There are several algorithms to determine Umax. The easiest one is to linearly scan over
the whole transmission spectrum of the probe laser and to find the center of mass of the
transmission peak. The realization of this method is illustrated in Fig. 3.18. Part (a)
shows a time sweep of the AOM control voltage prepared for scanning the cavity and
determining Umax. Part (b) presents a typical cavity transmission signal corresponding to
the cavity scan of (a). In this example the transmission is detected by an analog APD.
However, the compensation methods described in this chapter work as well with a single
photon counting detector.

The time interval A is reserved for the cavity QED part of the experiment and its
length can be set arbitrary. The AOM voltage U0, which is supposed to correspond to
the maximum transmission Tmax of the probe laser, equals Umax, which was calculated
in the previous shot. During the intervals B to F we determine a new optimal voltage
Umax which will be automatically used for the next experimental shot. The probe laser
transmission line is recorded in the time interval D. During the time intervals C and E
we measure the background level.

After the whole voltage sweep A–F is executed and the corresponding cavity trans-
mission is recorded, the cavity control software calculates the position tc of the center
of mass of the background-free cavity transmission and the corresponding AOM voltage
Umax. Then, it reprograms the PC analog output card with a new AOM voltage sweep
similar to Fig. 3.18(a) with U0 given by the newly found Umax.

Two-point method

Our second method of finding the center position of the transmission peak, which has
a Lorentzian form, is based on precisely measuring the transmission level at two points
located on the opposite slopes of the transmission peak. Using these two values together
with the maximum transmission and the background level, which are in general constant
and thus are measured independently before the main experiment, we then determine the
position of the peak maximum. To realize this method, we apply an AOM voltage scan
similar to that of Fig. 3.18(a). The two transmission values are measured during the
time intervals C and E, respectively. For this purpose, we use a small voltage span ∆V ,
corresponding to a half width of the transmission peak.

Results

The efficiency of the center-of-mass method (CMM) for compensating cavity thermal drifts
is demonstrated in Fig. 3.17. We are able to keep the cavity transmission high in each
experimental shot, making our experiments insensitive to the thermal drifts of the cavity.
The cavity transmission compensated with the two-point method (TPM) looks very similar
(within statistical errors) to that of CMM and thus is not shown here.

Although in this demonstration the results of the two compensation methods look
similar, the methods differ significantly by their capture range ∆U . It defines the maximal
thermal drift between two successive experimental shots, which can be compensated. In
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Figure 3.19: Re-thermalization of the locked cavity during an experimental run. One
shot lasts 1.06 s. The straight line is an exponential fit with a decay time of 27.6(±0.6) s.

contrast to TPM having a small ∆U , the capture range of CMM can be set arbitrary
large, depending on the experimental needs. However, being more sensitive to small
transmission shifts, TPM gives a more precise peak position compared to CMM for the
small thermal drifts, since it measures the signal at the most sensitive points (the slopes)
of the transmission peak.

All experiments described in Sec. 4.5 have been performed with the robust center-of-
mass method, although in the future, after improving the stability of the experimental
setup and passively reducing the thermal drifts, see Outlook, we plan to use the more
precise two-point method.

Re-thermalization of the cavity

The cavity re-thermalization during successive executions of many experimental shots can
be explored by recording values of Umax determined in individual shots. Since the cavity
is actively kept resonant with the probe laser, the change of Umax corresponds to the
differential thermal phase shift in the cavity between the lock and probe laser. Figure 3.19
presents the re-thermalization in an experiment consisting of 100 shots. The graph shows
the optimal AOM voltage Umax found in each experimental shot. The right vertical axis
shows the corresponding frequency shift applied to the lock laser for compensating the
thermal changes in the mirror coating. The duration of one experimental sequence together
with the time interval between two successive shots is 1.060 s. The overall run duration
is thus 106 s. The DT beams are switched on during 59% of this time. The continuous
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line is an exponential fit with a decay time of 27.6(±0.6) s. One sees that already after 20
shots the thermal drift of the locked cavity relative to the probe laser frequency is about
0.5 MHz, which is about a half-width of the cavity resonance line. This result is consistent
with the decrease of the cavity transmission observed in Fig. 3.17 with no compensation
applied.

Knowing the frequency shift, νshift, the differential phase shift can be found from
the same formula as used for calculating the frequency splitting of birefringent modes
depending on a round trip phase shift, see equation (3.14). This results in the following
relation

δtherm = 2πνshift
2L
c
. (3.30)

Thus, the frequency shift of, e.g., νshift = 1 MHz results from the phase shift between the
probe and lock laser wavelengths in the cavity of δtherm = 0.65× 10−5 rad.

Conclusion and discussion

All experiments described in Sec. 4.5 have been performed with the center-of-mass sta-
bilization method. In this way the probe laser transmission was kept maximal even in
experiments with almost 10 seconds long shots, see e.g. measurements of Fig. 4.19. More-
over, both methods have been successfully applied in experiments with very low probe
laser power having a signal-to-noise (S/N) ratio of about 1.5. For comparison, S/N in
Fig. 3.18(b) is about 6.5. If experiments require an even smaller probe laser power, the
durations of the intervals C, D, and E can be increased in order to overcome the lower
S/N. Alternatively, we can increase the probe laser power only during the compensation
phase B–F, when the atoms are not affected by the cavity field anymore.

Although both stabilization schemes serve reliably, we still try to keep thermal drifts
of the cavity as small as possible by leaving the DT beams switched on all the time, except
for loading the MOT with atoms and collecting the MOT fluorescence. Furthermore, the
beams are kept on even between execution of different experimental runs and between
different experimental shots within individual runs. This helps to reduce temperature
changes of the cavity mirrors.

In some experiments we might require the cavity not to be resonant with the probe
laser, but instead to have a well-defined detuning relative to it. Still, we can use the
described stabilization methods in order to find the exact position of the maximum of the
laser transmission and only then shift the cavity by the required frequency relative to the
probe laser by means of the lock laser AOM.

Summarizing, the developed stabilization schemes allow us to precisely control the
cavity resonance frequency relative to the frequency of the probe laser in the presence of
thermal heating and cooling of the cavity mirrors due to switching the DT laser beams
on and off. This thermal changes result in different thermal expansion of the cavity seen
by the lock laser and the probe laser. In this case, the cavity resonance, stabilized by
the lock laser, moves away from the probe laser frequency due to thermal expansion or
contraction.



Chapter 4

Deterministic atom-cavity
coupling

4.1 Introduction

For several years all experimental progress in our research group has been achieved with the
objective of realizing deterministic atom-cavity coupling. The developed optical conveyor
belt allows us to transport a single atom or any small number of atoms over macroscopic
distances [23, 24]. Besides, this transport has been demonstrated to preserve the coherence
of the prepared atomic quantum state [19]. The realization of a quantum register on a
string of trapped atoms [18] gives us the possibility to prepare and manipulate quantum
states of individual atoms. Thus, in combination with the coherent transport, this should
allow us to let atoms coherently interact at a location different from the state preparation
and read-out, e.g., inside a remote high-finesse cavity.

The first version of the required cavity setup was developed in our group about 5 years
ago [80]. During my thesis the assembly and test of the improved high-finesse optical
resonator have been performed. Besides, several special techniques, such as the number-
locked loading of the dipole trap [56] and the precise position control of single atoms [25],
necessary for the deterministic manipulation of single atoms, have been developed. So
now, after coming a long way, we are ready to tackle the long-expected goal of our group
– the deterministic atom-cavity coupling.

This chapter starts with the basic theoretical backgrounds necessary for understanding
the main properties of a coupled atom-cavity system (Sec. 4.2). Next, I describe several
methods for precisely locating the cavity mode, which is necessary for placing atoms at the
field maximum and thus for achieving the highest possible atom-cavity coupling (Sec. 4.3).
In Sec. 4.4 I present the transportation of bunches of several atoms into the cavity and
their coupling to the cavity mode. These experiments with many atoms helped us to better
understand our new system as well as to test the compatibility of different components
and techniques. Finally, the main result of my thesis – the deterministic transport and
coupling of single atoms to the mode of a high-finesse optical resonator – is presented in
Sec. 4.5.

81
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4.2 Basics of cavity quantum electrodynamics

In this section I recall a basic theoretical approach how to treat a coupled atom-cavity
system. It is based on the so-called Jaynes-Cummings model of the spin-spring interac-
tion – coupling of a two-level system (atom) with a quantum harmonic oscillator (cavity
mode) [2]. The Jaynes-Cummings Hamiltonian gives us the eigenstates and eigenvalues
of the coupled system depending on the coupling strength and the respective frequencies
of the system components. The contribution of dissipation present in any open physically
realizable system is treated by using the density matrix formalism and solving the master
equation [94]. This approach allows us to find the expectation values of the relevant oper-
ators describing the system as well as to calculate the modified spectrum in the presence
of the coupling. A more detailed introduction into the cavity quantum electrodynamics
system can be found, e.g., in Refs. [78, 95]. Concerning atom-photon interaction I refer to
[96].

4.2.1 Atom-cavity coupling rate

The interaction between atom and cavity is based on the electric dipole interaction of
the atomic dipole moment, d, with the electric field of the cavity mode, E(~r). The
corresponding coherent coupling rate g can be introduced as

g(~r) =
d ·E(~r)

~
. (4.1)

Due to the spatial structure of the cavity mode field, ψ(~r), the atom-cavity coupling rate
is position dependent and can be expressed as

g(~r) = g0 ψ(~r), (4.2)

where g0 is the coupling rate at the maximum of the mode. Considering the fundamental
TEM00 mode of the cavity and neglecting the divergence of the Gaussian mode for the
short cavity, we get

ψ(~r) = exp
[
−x

2 + y2

w2
0

]
sin

(
2πz
λ

)
. (4.3)

Here, the oscillatory term indicates the standing-wave structure of the cavity mode with
a wavelength λ along its axis (z direction) and the Gaussian term is the transversal mode
profile of the cavity fundamental mode with a waist ω0 (x and y directions).

The r.m.s. electric field amplitude of the vacuum in the cavity mode of a volume V
and of an angular frequency ωc is given by [97]

E =
√

~ωc

2ε0V
(4.4)

with ε0 denoting the permittivity of free space. Thus, using (4.1), the maximum coupling
rate reads

g0 = d

√
ωc

2~ ε0V
. (4.5)
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Figure 4.1: Eigenstates of the resonant atom-cavity system. For the resonant system,
the frequency spacing ω coincides with ωa and ωc.

4.2.2 Jaynes-Cummings model

The Hamiltonian of a coupled atom-cavity system is generally expressed as a sum of three
terms – atomic, cavity, and interaction:

H = Hatom +Hcavity +Hint . (4.6)

Let us consider a two-level atom with the ground and excited levels |g〉 and |e〉, respec-
tively. The levels are separated by the energy difference ~ωa with ωa the angular resonance
frequency of the atomic transition as shown in Fig. 4.1(a). The Hamiltonian for the atom
then reads

Hatom =
∑

i

Ei|i〉〈i| (4.7)

with Ei the energy of the atomic state |i〉. For convenience, we set the energy Eg of the
ground state to zero.

In the following we introduce the atomic raising and lowering operators, σ† and σ,
defined as σ† = |e〉〈g| and σ = |g〉〈e|. They describe the excitation and deexcitation of
the atom, respectively, and their product σ†σ = |e〉〈e| gives the projection operator onto
the atomic excited state. The atomic Hamiltonian can now be expressed as

Hatom = ~ωaσ
†σ . (4.8)
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The Hamiltonian for the cavity mode with a frequency ωc is given by

Hcavity = ~ωc

(
a†a+ 1

2

)
, (4.9)

where a† and a are the field creation and annihilation operators, respectively. Their prod-
uct corresponds to the photon number operator, N̂ , defining the number of the excitations
in the cavity. The energy spectrum of the cavity consists of equidistant photon number
states |i〉 separated by the cavity resonance frequency ωc, see Fig. 4.1(b). The ground
state |0〉 is referred to as the vacuum state.

The interaction Hamiltonian based on the electric dipole coupling between the atom
and the cavity reads

Hint = d̂ · Ê (4.10)
= d(σ†eiωat + σ e−iωat) · E(a†eiωct + a e−iωct). (4.11)

Here, the dipole moment operator, d̂, and the electric field operator, Ê, are expressed via
the atomic and cavity operators in the Heisenberg interaction picture. In the approxima-
tion |ωa − ωc| � (ωa + ωc) the Hamiltonian (4.11) reduces to

Hint = ~g(σ†a+ σa†) (4.12)

with g the coherent atom-field coupling rate, introduced above.
The total Hamiltonian of the atom-cavity system now reads

H = ~ωaσ
†σ + ~ωc

(
a†a+ 1

2

)
+ ~g(σ†a+ σa†) (4.13)

and corresponds to the Jaynes-Cummings model [2] for a single two-level atom in an
electromagnetic field in the absence of dissipation.

Without interaction, e.g., for g = 0, the levels |g〉|n〉 and |e〉|n−1〉 of the resonant
uncoupled atom-cavity system are degenerate, having energy n~ω with ω = ωa = ωc, see
Fig. 4.1(c). The coupling lifts this degeneracy and the new eigenstates of the coupled
system are found by diagonalizing the Hamiltonian (4.13), yielding

|±n〉 = (|g〉|n〉 ± |e〉|n−1〉)/
√

2 , (4.14)

where n is the number of excitations in the system. The corresponding energy eigenvalues
read

E±n = n~ω ±
√
n ~g (4.15)

and their spectrum is schematically shown in Fig. 4.1(d). The eigenstates with non-zero
energy are symmetrically split by 2

√
n ~g. The frequency splitting of the first excited state

of 2g is called vacuum Rabi splitting. This frequency is also known as the single-photon
Rabi frequency since it determines the energy exchange rate between the atomic dipole
and the cavity electric field containing one photon. It is worthwhile mentioning that if N
identical atoms are simultaneously coupled to the cavity mode, the vacuum Rabi splitting
is increased by a factor of

√
N and reads [78]

ΩRabi = 2
√
N g . (4.16)
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4.2.3 Density matrix and master equation

The Jaynes-Cummings Hamiltonian describes a system in the absence of dissipation and
driving, i.e. a closed system isolated from the environment. However, our system is subject
to dissipation: The atom spontaneously decays into modes other than the cavity one with
a dipole decay rate γ and the cavity photon leaks out of the cavity mode with a leakage
rate κ due to finite transmission, absorption, and/or scattering on cavity mirrors. In
addition, the coupled system can be probed by an external classical driving (laser) field.
Thus, our experimental atom-cavity coupling can not be completely described by the
Jaynes-Cummings Hamiltonian (4.13) alone.

In the presence of dissipation the atom-cavity system cannot be treated independently
from the environment. The joint evolution of the atom-cavity-environment system can
be treated using the Schrödinger equation with the joint Hamiltonian. However, since we
are not interested in the environmental states, which are in general not known, we can
trace over them if using the density matrix formalism. The time evolution of the open
atom-cavity system is then described by the master equation [94, 98]

dρ

dt
= Lρ (4.17)

with the atom-cavity density operator ρ and the Liouvillian L, which is defined as

Lρ = − i
~

[H, ρ ] + Ĉρ Ĉ† − 1
2
Ĉ†Ĉρ− 1

2
ρ Ĉ†Ĉ . (4.18)

The Jaynes-Cummings Hamiltonian H now includes coherent driving of the cavity by
a probe laser field ε(t) = ε0 e

iωpt and can be expressed in a frame rotating at the probe
frequency ωp as

H = ~(ωa − ωp)σ†σ + ~(ωc − ωp)a†a+ ~g(a†σ + a σ†) + ~ε0(a+ a†). (4.19)

Dissipation is formally introduced in (4.18) by the collapse operator Ĉ in the form [94, 99]

Ĉ =
√

2γ σ +
√

2κ a . (4.20)

The two terms correspond to spontaneous emission from the atom and leakage from the
cavity, respectively.

The master equation provides a valid description of the atom-cavity system in any
range of parameters (g0, κ, γ). In some limits it can be solved analytically, see e.g. [81] for
the case of resonance between the atom and the cavity driven by a weak external field.
In general we solve the master equation numerically by seeking for a steady-state solution
for ρ such that Lρ = 0. Since the expectation value of any operator Ô can be found as

〈Ô〉 = Tr(ρ Ô), (4.21)

the density matrix provides us the complete information on the system. For instance,
the intra-cavity field intensity is given by the expectation value of the photon number
operator, 〈N̂〉, and thus the cavity output rate is 2κ〈N̂〉 = 2κTr(ρ a†a).
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Figure 4.2: Vacuum Rabi splitting from a steady-state solution of the master equation
for our experimental dissipation rates (κ, γ) = 2π× (0.43, 2.6) MHz. The system is
probed with a weak external laser with a drive strength of n = 10−3 photons (i.e., the
probe laser fills the resonant cavity mode with on average 10−3 photons).

4.2.4 Vacuum Rabi splitting

Before performing a numerical analysis of the master equation, we have to choose ap-
propriate values of the main experimental parameters to use, namely the parameter set
(g0, κ, γ). Given by equation (4.5), the coupling rate depends on the atomic dipole mo-
ment and the mode volume. We consider the atomic cycling transition |F = 4,mF =
±4〉 → |F ′= 5,m′

F = ±5〉 in cesium. Its electric dipole moment reads

d =

√
3~ ε0λ3Γ

8π3
= 3.167 ea0 (4.22)

with λ and Γ denoting the wavelength and the natural line width of this transition, respec-
tively. The cavity geometry gives us the mode volume of V = 6.6×104 µm3, see Sec. 3.3.4,
resulting in the coupling g0/2π = 18 MHz.

According to equation (3.12), the decay rate of the cavity field is determined by the
cavity finesse and for F = 1.12 × 106 equals κ = 2π × 0.43 MHz. For a cesium atom
γ = 2π× 2.6 MHz. Consequently, the expected parameters of our atom-cavity system are

(g0, κ, γ) = 2π × (18, 0.43, 2.6) MHz . (4.23)
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Figure 4.3: Energy levels of the coupled atom-cavity system for (g0, κ, γ) = 2π×
(18, 0.43, 2.6) MHz. The grey color gradient from white to black corresponds to the
cavity transmission from 0 to 1. Two straight lines indicate the position of the uncoupled
energy states.

Figure 4.2 shows the coupled atom-cavity transmission spectrum found via a steady-
state numerical solution of the master equation (4.17) for the parameters (4.23). In this
calculation the cavity is resonant with the atom and is driven by a weak probe laser.
The transmission is calculated as a function of the coupling rate g and of the probe laser
detuning from the atomic resonance ∆p = ωp − ωa.

Without interaction between the atom and the cavity (g = 0), the transmission has
a Lorenzian line profile of an empty cavity with a full width at half maximum of 2κ. As
the coupling increases the peak splits into two lines reflecting the vacuum Rabi splitting
(or normal-mode splitting). As predicted by equation (4.15), the splitting equals twice
the coupling rate, i.e. ∆split = 2g. The line width of the Rabi sidebands is given by twice
the sum of all dissipation rates in the system, i.e. ∆FWHM = 2(κ+ γ) [81]. The reduction
of the height of the Rabi sidebands, TRabi, relative to the height of the Lorentzian peak,
TLorentz, is given by

TRabi

TLorentz
=

(
κ

κ+ γ

)2

. (4.24)

This relation is valid in the strong coupling regime when g � (κ, γ) and does not depend on
g. In our case of (κ, γ) = 2π×(0.43, 2.6) MHz, the reduced height of the sidebands is 2.0 %
of the maximal. Note that a dependence similar to (4.24) has been observed in classical
transmission of light through a Fabry-Perot resonator. According to equation (3.23b), the



88 Chapter 4: Deterministic atom-cavity coupling

presence of mirror absorption and scattering losses A reduces the cavity transmission by
a factor of T 2/(T +A)2. In the coupled atom-cavity system the atom with a decay rate γ
plays a role of a photon scatterer, similar to A, leading to the same transmission law.

As seen from Fig. 4.2, the Rabi splitting cannot be observed if the coupling rate g
is smaller than the system’s linewidth, i.e. if g � (κ + γ). In other words, in the weak-
coupling regime the dissipation processes, represented by κ and γ, overwhelm the atom-
field interaction, g. In contrast, if g � (κ, γ), we get into the strong-coupling regime when
the atom-cavity system has time to couple coherently before the energy in the system
dissipates. This regime is of most interest for us since it allows us to explore coherent
evolution in the atom-cavity system. The quality of atom-cavity system is often measured
by the cooperativity parameter, defined as

CN =
Ng2

2κγ
(4.25)

for N atoms simultaneously coupled to the cavity mode. It compares the atom-cavity
coupling rate g with the cavity photon decay rate κ and the atom decay rate γ. Thus, in
the strong coupling regime for one atom in the cavity C1 � 1.

The transmission of the probe laser through the cavity detuned with respect to the
atomic resonance is shown in Fig. 4.3. The two dark stripes of high cavity transmission
represent the behavior of the energy states of the coupled system. The straight lines
indicate the eigenstates of the uncoupled atom-cavity system: the horizontal and diagonal
lines show the atom and the cavity resonances, respectively. In the resonance case of
∆c = 0, the spectrum demonstrates the vacuum Rabi splitting discussed above. The non-
resonant atom-cavity coupling (i.e. in the so-called dispersive regime) of |∆c| = |ωc−ωa| �
g results in a shift of the cavity resonance with respect to the empty-cavity by [78]

∆shift =
g2

∆c
. (4.26)

4.2.5 Atom oscillations in the dipole trap

Due to the finite atomic temperature an atom trapped in a potential well oscillates along
its axial as well as two radial directions. Since the cavity field has a complex spatial
structure, given by equation (4.3), an atom, which is placed into the cavity mode and
simultaneously oscillates in the DT, experiences a time-dependent atom-cavity coupling
rate, which is smaller than the maximum coupling g0 given by (4.5). The axial oscillation
(along the DT axis and the cavity holder) has a small amplitude due to the tight axial
confinement in the standing-wave trap of better than λDT/2 = 0.515µm. Thus this
oscillation does not significantly change the atom-cavity coupling.

In contrast, the radial atom confinement is weaker due to the larger radial extension of
the trapping potential given by the width of the DT beams, wDT � λDT/2. In harmonic
approximation the radius of the atomic spatial distribution can be found as [51, Eq. (2.62)]

wrad =

√
kBT

mΩ2
rad

(4.27)
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Figure 4.4: Expected cavity transmission for an atom oscillating along the cavity axis.
If an atom would be permanently coupled to the cavity field with the coupling strength
of g0/2π = 18 MHz, we would expect no cavity transmission. However, due to oscillation
of the atom, the expected mean cavity transmission is 3.2 % of the maximal one.

with T the atomic temperature and Ωrad the radial oscillation frequency in the trap given
by expression (1.16). For the realistic experimental parameters of wDT = 42µm and
U0 = 1.4 mK and supposing T ≈ 125µK (the Doppler temperature),1 we get Ωrad =
2π × 2.3 kHz and wrad = 6.2µm. Another way to determine wrad would be to directly
measure the width of the atomic fluorescence spot from the image of a trapped atom.

Since the oscillation amplitude wrad is much larger than the periodicity of the cavity
mode of λprobe/2 = 0.426µm, the atom oscillating in the DT along the cavity axis will
probe all possible atom-cavity coupling strengths from zero to maximum. If the bandwidth
of the transmission measurement is smaller than Ωrad, which is the case in our experiment,
the detected cavity transmission is an average over all possible transmission levels during
one oscillation period.

To determine the mean transmission, we numerically calculate the cavity transmission
while the atom moves along the cavity standing-wave mode. The numerical method is
based on solving the master equation of the coupled atom-cavity system in the presence
of dissipation, see Secs. 4.2.3 – 4.2.4. We consider the resonant case, i.e. when the cavity
resonance, the probe laser frequency, and the atomic resonance frequency are all equal,
and the maximum atom-cavity coupling strength of g0 = 2π×18 MHz. The thick curve in
Fig. 4.4 corresponds to the spatial variation of the coupling rate g along the cavity axis,
which is proportional to the local field amplitude. The thin line is the cavity transmission,
T , calculated for the local coupling g. Naturally the regions of high g and low T (and
vice versa) coincide. The dashed horizontal line indicates the corresponding mean cavity
transmission T̄ of about 3.2 %.

1Note that the real atom temperature can be significantly different from the Doppler temperature due
to complicated heating/cooling dynamics inside the cavity mode, see e.g. Sec. 4.5.3.
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Let us now consider the radial oscillations of atoms transversal to the cavity mode
(along y direction). Taking into account equations (4.2)–(4.3) and supposing for simplicity
that an atom is trapped at an antinode of the cavity standing-wave field, the atom-cavity
coupling rate along the y direction varies as

g(y) = g0 exp
[
− y2

w2
0

]
. (4.28)

The average coupling experienced by an atom during its radial transversal oscillation can
be found as

g =
∫ ∞

−∞
p(y) g(y) dy , (4.29)

where p(y) is the atomic distribution in the DT along y given by

p(y) =
1√

2π wrad

exp
[
− y2

2w2
rad

]
. (4.30)

For our experimental parameters we get g ≈ 0.965 g0. Thus, the reduction of the coupling
rate due to the radial transversal oscillations is 3.5 % and can be neglected compared to
other effects reducing g0.

In general, the coupling rate g can be smaller than the expected one, g0, for instance
because of not precisely placing the atom into the mode center. Moreover, the value of g0
is calculated for the strongest transition in a cesium atom, namely between the outermost
Zeeman states |F =4, mF =±4〉 → |F ′=5, m′

F =±5〉. Therefore, any mixing of mF states
(e.g., due to non-circular polarization of the probe laser) further reduces g and increases
T̄ . For instance, if the maximal coupling is half the expected one, the mean transmission
T̄ is 6.4 % of Tmax. For the extreme case of g = 0.1 g0, T̄ = 0.35Tmax.

4.2.6 Conclusion

Summarizing, the presence of the atom-cavity coupling manifests itself via the splitting
of the cavity transmission line in the resonant regime (ωa = ωc) or via the shift of the
resonance in the dispersive regime (|ωa − ωc| � g). If the dissipation is strong, the broad
resonance lines screen these spectrum changes. Whereas in the strong coupling regime,
i.e. for g � (κ, γ), the modifications to the spectrum of the coupled system are dramatic
and should be directly observable.

In all experiments presented in this chapter ( Secs. 4.4 – 4.5), we detect changes of
the transmission of the probe laser through the cavity while transporting few or single
atoms into and out of the cavity mode. The laser is resonant with the empty cavity
providing high cavity transmission in the absence of atoms. Even one atom placed inside
the cavity mode and coupled to it strongly modifies the system’s spectrum and results
in a reduction of the probe laser transmission. The degree of transmission changes gives
us the information on the coupling strength in the system. Ideally, that is in the strong
coupling regime, the transmission should completely vanish.
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4.3 Locating the cavity mode

Obviously, after integrating the cavity holder into our main experimental setup, there are
two main requirements to be fulfilled in order to allow deterministic transport of an atom
into the cavity mode: The DT should pass through the center of the cavity mode and the
position of the cavity mode along the DT axis should be known precisely. For that we
first need to precisely locate the cavity mode relative to the DT and to the MOT. Then,
we should move either the cavity or the DT beams such that the cavity mode perfectly
crosses the DT axis.

The coarse pre-alignment of the cavity onto the DT is described in Sec. 3.4. Next,
to locate the cavity mode precisely, we use transported atoms as a probe. Several exper-
imental methods used for this purpose are presented below in the course of the section.
Although using different physical processes, all of them are based on the interaction of
trapped atoms with the probe laser coupled into the cavity.

After the separation between the cavity mode and the DT axis is determined, we make
them intersect by horizontally shifting one of them or both. Large relative displacement
can be achieved by moving the cavity horizontally, perpendicular to the DT axis by means
of the 3-D positioner attached to the cavity holder, see Fig. 3.10. For displacements smaller
than several tens of micrometer we shift the DT axis horizontally by synchronously tilting
the last DT mirrors, see Fig. 2.8.

4.3.1 Using optical pumping

The cavity mode can be located by means of optical pumping induced by the probe laser
which is coupled into the cavity and resonant with the atomic transition F = 4 → F ′= 4.
Since the probe laser acts only on atoms in the F = 4 state, on average two scattered
photons are enough to pump an atom placed inside the mode from the F = 4 ground state
to F = 3. The maximum of the pumping efficiency measured for different cavity position
relative to the DT and for different transportation distances indicates the location of the
cavity mode.

Experimental sequence

The experimental sequence realizing this method consists of the following steps. First, we
load the DT with several atoms and prepare them in the F = 4 state. For this purpose,
we illuminate the atoms with the MOT repumping laser (resonant with the transition
F = 3 → F ′= 4) for typically 10 ms after transferring them from the MOT into the DT.
Then, we transport the atoms over a fixed distance towards the cavity mode excited by
the probe laser. The power of the probe laser coupled to the cavity is typically 0.3 nW
resulting in 0.16 mW intra-cavity power (see equation (3.27)). After a short waiting time
of typically 1 ms, which is enough to pump the atoms placed at the field maximum to the
F = 3 state, the standing wave is moved back to its original position. The hyperfine state of
the atoms is detected by exposing them to a σ+-polarized “push-out” laser, resonant with
the F = 4 → F ′= 5 cycling transition [100, 19]. It pushes any atom in the F = 4 state out
of the dipole trap, whereas atoms in F = 3 remain untouched and thus stay trapped. The
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Figure 4.5: Locating the cavity mode using optical pumping by the probe laser. The
measurement of the distance between the MOT and the cavity mode (a) and the align-
ment of the cavity mode onto the DT (b) are performed by maximizing the efficiency of
the optical pumping for a fixed power of the probe laser.

survival probability of the atoms, which equals the probability of the population transfer
between the two hyperfine states, is determined by transferring the surviving atoms back
into the MOT and counting them there. The probability is measured for different radial
position of the cavity relative to the trap and for different transportation distances. The
maximum probability indicates the location of the cavity mode.

Results

The results of this method are presented in Fig. 4.5. Each data point contains a contribu-
tion from 30 experimental shots with on average 5 atoms each. In the first measurement (a)
we vary the transportation distance. When it is too short, the atoms stop outside the cav-
ity mode and stay unaffected by the probe laser. Thus, they do not change their F = 4
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state and are subsequently removed out of the trap by applying the push-out laser. For the
optimal transport, the atoms are pumped into the F = 3 state and thus remain trapped
after the application of the push-out laser. If the transport is too long, the atoms are
stopped on the other side of the cavity mode. However, they still temporarily interact
with the cavity field while crossing it. That is why the survival probability for large dis-
tances is higher than that for short ones. To eliminate this asymmetry in the recorded
signal, one can switch the probe laser on only when the atoms are fully stopped. Without
applying the push-out laser, we detect about 80 % of atoms survived the loading of the
DT and the transport. This determines the maximal survival probability measured here.

From the measured survival probability we determine the optimal transportation dis-
tance dtrans of 4.59(±0.02) mm. Since after transferring the atoms into the DT they are
spatially distributed along its axis over the size of the MOT of 10µm, dtrans is defined here
between the centers of the MOT and of the cavity mode. As long as the MOT size, which
can be considered here as a size of our “atomic probe”, is smaller than the error of dtrans,
it does not influence the measurement precision for the present measurement statistics.

To precisely align the cavity mode onto the DT, we perform the same experiment
with the fixed transportation distance of 4.59 mm, but for different radial displacements
of the cavity (in the horizontal plane perpendicular to the DT axis). The result of this
measurement is presented in Fig. 4.5(b). As in (a), the signal is saturated to about
70 %, measured independently. Yet, in contrast to (a), this signal is symmetric, since the
atoms do not cross the cavity mode. By fitting the data with a Gaussian function we
determine the optimal displacement of the cavity relative to its initial position set by a
coarse prealignment with an uncertainty of about ±2.0µm. Although the choice of the fit
function is arbitrary and does not properly describe the physics under the measured line
form, it is still justified here for determining the center of the symmetric distribution.

The precision of both measurements presented is mainly limited by the statistical error
and by the saturation of the measured signal, which broadens its maximum and makes it
difficult to fit it with an appropriate peak function. The saturation can be reduced by using
either a smaller probe laser power or a shorter waiting time in the cavity, whereas the sta-
tistical error can be decreased by using larger number of data points. Note that we cannot
use much more atoms per shot, because of the impossibility of counting them in the MOT.

4.3.2 Using atom losses

The next two methods of locating the cavity mode do not require the manipulation of the
atomic states, namely state preparation, optical pumping, and state detection. Instead,
they are based on detecting the losses of atoms from the dipole trap induced by the intense
probe laser coupled to the cavity mode and resonant with the F = 4 → F ′ = 5 cycling
transition of the trapped atoms. In both following methods we transport the trapped
atoms over a known distance towards the cavity mode, induce strong scattering of the
probe laser photons which leads to the heating of the atoms out of the DT, and detect
their survival probability as a function of the transportation distance.

The easiest experimental sequence is the following. First, we load the DT with a
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Figure 4.6: Locating the cavity mode by detecting atom losses induced by the intense
probe laser. The trap displacement is measured relative to its original position set by
the coarse DT pre-alignment. Straight lines are fits described by equation (4.31).

small known number of atoms, transport them over a known distance towards the cavity
mode, switch on the probe laser for a time long enough to heat the strongly coupled
atoms out of the trap, transport the surviving atoms back, and finally count them again
after reloading into the MOT. In this way we measure the survival probability of the
trapped atoms depending on the transportation distance. The maximum of the atom
losses, i.e. the minimum survival probability, corresponds to the cavity mode position. To
avoid atomic population in the F = 3 state, not coupled to the probe laser, we use an
auxiliary repumping laser, resonant with the F = 3 → F ′ = 4 transition and shined in
along the DT axis during the experiment.

The measured dependencies are shown in Fig. 4.6. In (a) we vary the transportation
distance. The graph (b) corresponds to the radial alignment of the DT onto the cav-
ity mode. In contrast to the previous calibration method, where the cavity holder was
displaced manually, here we displace the dipole trap axis in the horizontal plane (i.e. per-
pendicular to the cavity axis) in an automated way by synchronously tilting the last DT
mirrors, see Fig. 2.8. Each point in (a) and (b) is measured from 20 shots with on average
14 and 5 atoms each, respectively. The difference in atom numbers results in different
statistical errors in two graphs. The waiting time in the cavity is 10 ms. The intracavity
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probe laser power in (a) is about 0.4 mW, whereas in (b) the power was slightly reduced
in order not to saturate the measured minimum to zero.

To find the minimum of both dependencies we fit them with a suitably chosen fit
function

y(x) = a |x− b| c + d . (4.31)

This function describes well the measured dependencies which do not show a prominent
minimum, see straight lines in Fig. 4.6). The found optimal transportation distance is
4.610(±0.001) mm and the optimal DT alignment onto the cavity mode is found with a
precision of about ±3.0µm. Although the graph (a) is saturated almost to zero and (b) is
not, the precision of the both measurements is about the same. As in the previous locating
method, the transportation distance is measured between the centers of the MOT and of
the cavity mode. The precision is better than that of the optical pumping method due to
the use of a better fit function and can be increased by the same means, e.g., by increasing
the number of the measured points.

Single atoms for probing the cavity mode

In principle, the two previous methods of locating the cavity mode are sensitive to the
initial position of the atoms, since all of them are transported over the same distance
towards the cavity regardless of their unknown initial locations. To get rid of this
uncertainty we can use the technique of the precise position control of individual atoms
for probing the cavity mode. Now, we load the the DT only with one atom using our
number-locked loading technique (Sec. 1.4). Then, by means of our position control
technique (Sec. 2.5) we shift the trapped atom to a chosen position along the DT axis
close to the cavity mode which has to be probed. After switching on the intense probe
laser, the standing-wave trap is moved back. As before, the survival of the atom is
detected by loading it into the MOT. The typical calibration curves in this case look very
similar to those shown in Sec. 4.3.2, although for achieving the same measurement error
we can use about 5–6 times less atoms. However, requiring position control technique,
this method takes longer experimental time because of the need to take an ICCD image
for the initial position measurement.

4.3.3 Using losses of many atoms determined from CCD image

The last method we have developed for locating the cavity mode yields a small statistical
error because of using a larger number of atoms and is insensitive to the initial atom
position in the DT. As the previous method it is also based on detecting losses of atoms
induced by the probe laser. However, here, the atom losses are detected by comparing
two images of the trapped atoms recorded before and after transporting them towards the
cavity, inducing their losses, and moving them back.

In the first step, we load a large number of typically several tens of atoms into the DT.
To broaden their spatial distribution in the trap, which normally extends only over the
MOT size of roughly 10µm, we switch off one of the DT beams for 1 ms. In the absence
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Figure 4.7: Locating the cavity mode by inducing the losses of many atoms and detect-
ing them with a CCD camera. First, we load the DT with several tens atoms and take
a CCD image of them. Then, we transport the atoms towards the cavity over a fixed
transportation distance and induce their losses by shining in the probe laser through the
cavity. Finally, we move the remaining atoms back and take the second image. We repeat
this measurement 40 times and add up all initial images (a) and all final images (b). The
atom losses are detected by building the ratio (c) of the two images. The position of
the maximum losses corresponds to the location of the cavity mode. Note that here one
CCD pixel corresponds to 0.4967µm.
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of the standing-wave structure, the atoms freely expand along the trap axis during this
time. Next, we take a CCD image of the trapped atoms and then transport them over the
fixed transportation distance of 4.6 mm in the direction of the cavity. By applying the
intense probe laser for several milliseconds we remove those atoms from the trap, which
are placed within the cavity mode. After transporting the remaining atoms back to their
initial position we take the second image. For a better signal-to-noise ratio we repeat this
experimental sequence 40 times and then add up all initial images and all final images.

The resulting two images are shown in Fig. 4.7. Image (a) shows the initial homo-
geneous distribution of the atoms along the DT axis. Yet, the final atom distribution in
the image (b) has a dip corresponding to the absent atoms which were placed into the
cavity mode and then lost after applying the probe laser. To analyze these images, we bin
their pixel counts in the vertical direction within a narrow horizontal region denoted by
two red lines. This procedure is the same as that applied for measuring the position of
individual atoms, see Sec. 2.2. The obtained histograms are shown in Fig. 4.7 below the
corresponding images.

To find the exact distribution of the lost atoms, we normalize the initial distribution
of atoms onto their final distribution. For this purpose, we build a ratio of the initial
histogram, Nbefore, to the final histogram, Nafter, of the corresponding distributions after
subtracting from them the background histogram, Nbg, as follows

R =
Nbefore −Nbg

Nafter −Nbg
. (4.32)

The background level Nbg is measured from the same images by binning their pixels within
a horizontal stripe of the same width as that denoted by the horizontal lines, but located
on the image away from the illuminated atoms. The obtained histogram R is shown in
Fig. 4.6(c). A fit with a Gaussian function yields a peak position of xpeak = 36.46µm
with an uncertainty of ±0.15µm. Note that with this method we locate the cavity mode
relative to the CCD image. Thus, for the transportation distance of dtran = 4.6 mm, the
center of the cavity mode is located at a distance dmode = xpeak +dtran = 4636.5(±0.2)µm
from the object point on the DT axis, which has the first pixel of the CCD camera as its
image. The whole calibration procedure takes about 3–4 minutes.

Radial position of the cavity mode

To align the DT radially, i.e. perpendicularly to the cavity mode, we perform the
experiment described above several times for different horizontal displacements of the
trap axis. For each displacement we measure the height of the ratio histogram, see
Fig. 4.8. The maximum of the measured dependence corresponds to the situation when
the DT goes perfectly through the center of the cavity mode. Here, to determine the
position of the maximum, we fit the data with a Gaussian function yielding the optimal
DT position with a precision of ±0.2µm.
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Figure 4.8: Aligning the DT onto the cavity mode using many atom losses. For each
trap displacement we perform the measurement of Fig. 4.7 and determine the height of
the ratio histogram (c). By fitting a Gaussian function to the obtained dependence, see
the straight line, we determine the optimal horizontal alignment of the dipole trap.

4.3.4 Summary and discussion

Summarizing, we have developed and tested several different methods of locating the mode
of our high-finesse optical cavity. Although all of them use atoms as a probe, they are
based on different physical processes, use different experimental techniques, and have their
own features and advantages.

The optical-pumping method is very sensitive to low laser intensities and thus can be
also used to detect weak fields, i.e. weak light scattered off the mirrors. Besides, it is
so-called background-free, since in the absence of the cavity mode or the light field the
detected signal stays low.

The easiest in realization is the second method based on detecting the atom losses
induced by the probe laser filling the cavity mode. It does not require the manipulation
of atomic states and the only demand is to compare the final number of atoms with the
initial one. In order to be not sensitive to the initial atom position in the DT, this method
can be modified by applying the position control technique to precisely position single
atoms inside the cavity mode. However, it requires the CCD camera and thus longer
measurement times for getting sufficient statistics with single atoms.

Finally, the last calibration method allows us to use more (up to 10 times) atoms
per shot, thus significantly reducing the statistical error of the measurement. Moreover,
by taking CCD images of the atoms before and after the transport, we get not only
the information about the survival probability of the atoms, but also about its position
dependence. In this way, we effectively test all transportation distances simultaneously.
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Because of the slow drifts of the experimental elements (the cavity holder, the DT
mirrors, the ICCD camera, etc.) on the time scale of several days, the calibration of
the mode position should be performed regularly. In the experiments described in the
following part of this chapter we have alternately used all these methods, depending on
the planned experiment. For instance, if the experiment does not require the use of the
CCD camera, we calibrate the cavity position by the first two methods. In this way we
do not need to look for the optimal parameters for illuminating the trapped atoms only
in order to locate the cavity.

4.4 Transport of many atoms into the cavity

After the cavity is locked and its mode is located, we can tackle the main goal of the current
research project – deterministic coupling of atoms to the mode of a high-finesse cavity and
its detection. First, we examine our system with many (from few to several tens) atoms in
order to qualitatively study the influence of different important experimental parameters
onto the trapped atoms and the atom-cavity coupling.

For transporting several atoms we do not use the method of precise positioning of
single atoms inside the cavity. Since the trapped atoms are distributed along the DT
over about 10µm (diameter of the MOT), after a correct transport all of them should be
simultaneously coupled to the cavity mode, having a width of about 46µm, although with
different coupling rates. By transporting many atoms into the cavity, we are less sensitive
to the local atom-cavity coupling strength experienced by each atom. Even if at least one
of them is strongly coupled, the cavity transmission should completely vanish. Besides,
according to equation (4.16), the simultaneous coupling of N atoms effectively increases
the coupling strength by a factor of

√
N . Therefore, in our very first experiment we use

several (on average 5) atoms and move them into the cavity mode while observing the
transmission of the probe laser through the cavity, the decrease of which should be the
evidence of atom-cavity coupling.

The experimental sequence consists of the following main steps. First, we load several
atoms into the DT and optically pump them into the F = 4 ground state (the probe laser
is resonant with the F = 4 → F ′ = 5 transition). Then, we transport the atoms into
the cavity mode while detecting the probe transmission through the cavity. After 3 ms
waiting time the DT is moved back to its initial position and the remaining atoms, if any,
are loaded back into the MOT and counted there.

One of the recorded transmission traces showing the complete vanish of the cavity
transmission when the atoms are held inside the cavity is presented in Fig. 4.9. The
transmitted probe power is measured with the analog APD, see Sec. 3.3.3. From its
output voltage we subtract a constant background, which corresponds to the APD offset
voltage and to not-filtered stray light. As indicated in the figure by the horizontal bar,
the probe laser is switched on and then off again at about 1 ms and 14 ms, respectively,
thus showing that the zero level indeed corresponds to no probe transmission. At 2 ms we
start to transport the prepared atoms towards the cavity and after a 4 ms transportation
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Figure 4.9: Vanishing cavity transmission in the presence of several (about 5) atoms in
the cavity mode. The transmission of the probe laser is measured with the analog APD.
Negative transmission appearing on the graph stems from subtracting the APD offset
voltage and noisy stray light level from the measured signal. The atom transport starts
at 2 ms and lasts 4 ms. The arrival of atoms into the cavity mode is accompanied by a
vanishing probe transmission. After about 1 ms all atoms are lost and the high cavity
transmission level is restored.

duration they arrive into the cavity mode. As a consequence of the atom-cavity coupling,
the cavity transmission drops to zero at this moment.

The observed increase in transmission following the drop indicates that all atoms are
lost from the DT. This is confirmed by detecting no surviving atoms in the MOT at the
end of the sequence. On the other hand, about 90 % of the atoms survive the whole
experimental sequence if the probe and lock lasers are blocked. Therefore, the atom losses
are presumably induced by one or both of those lasers, as will be investigated below in
Secs. 4.4.1 and 4.4.2.

Noteworthy, the increase of the transmission in traces, which show the transmission
drop, is always sudden. This can be explained if a single atom leads to complete extinction
of the transmission due to its strong coupling to the cavity mode. In this case, there is
no transmission until the very last atom leaves the trap. However, if one atom does not
saturate the cavity, the rapid transmission change can nevertheless occur if last atoms are
lost so fast that the detection bandwidth does not allow us to resolve the intermediate
transmission levels in the detected signal corresponding to different numbers of still coupled
atoms. In the current experiment we cannot distinguish these two cases and only in Sec. 4.5
we will see that one atom does not make the cavity transmission vanish completely.
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Figure 4.10: Influence of lock laser power and repumping laser on the transmission
decrease. At 4 ms the atoms enter the cavity mode. The power of the lock laser coupled
into the cavity is 25µW in (a) and 0.33µW in (b) and (c). An additional repumping laser
is applied along the DT in (c). The transmission increase in each graph is not sudden as,
e.g., in Fig. 4.9 because 64 individual traces have been averaged to yield each respective
trace.

4.4.1 Lock laser and repumping laser

Different recorded and analyzed individual transmission signals have a different duration
of the low-transmission phase. Yet, in some experimental shots no transmission drop is
observed at all. In order to quantitatively characterized the observed transmission changes,
we repeat the same experimental sequence many times and then average the measured
APD signals. The result of averaging over 64 single traces for three different sets of
experimental parameters is shown in Fig. 4.10.

In the measurement (a) the lock laser power coupled into the cavity is 25µW. The
transmission does not completely vanish when atoms enter the cavity mode at 4 ms indi-
cating that not all traces out of 64 had a transmission drop to zero. The observed increase
in transmission following the drop reveals the loss of all atoms within less than 0.3 ms.

Suspecting the lock laser to be one of the reasons for the atom losses, we reduce
its power to about 0.33µW in the next measurement (b). Indeed, the drop duration is
extended to about 1 ms, although it is still short. After 3 ms we move the standing wave
to its initial position and detect that about 25 % of the atoms have survived the whole
experimental procedure, although the initial transmission level in Fig. 4.10(b) is quickly
restored. This surprising result can be explained by optical pumping of the atoms into
the F =3 ground state. The pumping is induced by the probe laser, which off-resonantly
excites the atoms into the F ′ = 4 state, from where their are free to decay into the dark
F =3 state. There the atoms are not sensitive to the cavity field, resulting in the restored
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Figure 4.11: Storage time in the cavity depending on probe laser power. The storage
time is defined as the time until all atoms are lost. Each point is measured from 20
transmission traces with several tens atoms each.

transmission. After moving the DT back, these atoms can be loaded into the MOT and
subsequently detected there.

In order to depopulate the F =3 state we apply an additional repumping laser along
the DT in the measurement (c). It is derived from the MOT repumper and is resonant
with the F =3→F ′=4 transition. Its power of 0.2µW provides an efficient pumping rate
while keeping the unwanted light scattering off the cavity mirrors low. Now, the drop in
the cavity transmission is more significant compared to that of (b).

4.4.2 Reducing the probe laser power

In spite of the reduced lock laser power, the atoms are nevertheless lost after several milli-
seconds. Further lowering of the lock power does not improve the situation. Thus, we
conclude that the main heating is now induced by a too high power of the probe laser.
Despite the Rabi splitting in the coupled atom-cavity system, which shifts the system
resonance away from the probe laser frequency, the small fraction of the probe power off-
resonantly coupled into the cavity can still affect the atoms and eventually heat them out
of the DT.

A straightforward way to increase the lifetime of atoms in the cavity is thus to reduce
the power of the probe laser. Figure 4.11 shows the storage time for different powers of
the probe laser. Here we define the storage time as the time until all atoms are lost and
measure it between the transmission drop and its following increase to a half maximum
level after averaging over many single traces. Note that in this measurement we have
significantly increased the storage time relative to that of Fig. 4.10(c) by using more
(about 50) atoms per shot, see next Sec. 4.4.3.
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Figure 4.12: Cavity transmission for different numbers of coupled atoms. Each trace
is an average over 50 individual measurements resulting in a slow transmission increase
instead of an instantaneous one when all atoms are lost. See text for details.

By reducing the probe power, the storage time increases almost exponentially. Since
no saturation in the storage time is observed, the probe laser power should be further
reduced. However, since the minimal power detectable with the analog APD used here
is about 0.5 pW, the use of an even lower probe powers requires a more sensitive light
detector. We therefore use a single photon counting module in all measurements described
in Sec. 4.5. This allows us to reduce the power of the probe laser by a factor of about
100 and consequently to increase the storage time of single atoms over several seconds, see
e.g. Fig. 4.19.

4.4.3 More atoms, longer storage time

According to equation (4.16), the Rabi splitting is larger for a lager number of atoms.
Thus, simultaneously coupling more atoms to the cavity mode shifts its resonance fur-
ther away from the probe frequency resulting in less probe power coupled to the cavity.
Consequently, one expects the increase of the storage time of the atoms.

Figure 4.12 shows the cavity transmission measured for different numbers of trans-
ported atoms. Each trace presented is an averaged over 50 single measurements. The
average number of atoms for the three first measurements was measured as usually from
the MOT fluorescence, while in the last three measurements it was estimated from the
MOT loading time since the fluorescence from more than about 25 atoms saturates the
APD and cannot be measured anymore. Since two-atom losses in the DT are more prob-
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Figure 4.13: Storage time in the cavity depending on the atom number. The observed
non-logarithmic dependence shows a collective effect of many atoms which significantly
increases their storage time. See text for details.

able when loading more atoms [56], the estimated atom numbers in these measurements
can be systematically higher than actual ones by up to 20%.

The measured dependence of the storage time ts on the number of atoms initially
coupled to the cavity, N0, is shown in Fig. 4.13. For large N0, ts increases steeply and
non-linearly. This result is opposite to that of “usual” atom losses where each atom gets
lost independent on the current number of trapped atoms. For instance, if the lifetime of
atoms is limited by collisions with background gas, which is a probabilistic process, the
atom number decays exponentially as N(t) = N0e

−t/τ and the time ts when all atoms
are on average lost reads ts = τ lnN0. For the case of the atom losses induced by a
heating process [101], see e.g. Fig. 3.16 for the losses due to AOM phase noise, the atom
decay can be still approximated by an exponential for large times, thus also leading to the
logarithmically dependence of ts.

The result in Fig. 4.13 looks more like exponential rather than logarithmic dependence.
Therefore, we observe that the atoms simultaneously coupled to the cavity collectively
protect themselves from quickly being lost. This result agrees with our assumption that
the more atoms we couple to the cavity, the less probe power and thus heating they
experience.

4.4.4 Multiple transport

In a demonstration experiment performed with many atoms, we shuttle several tens of
atoms many times between the MOT position and the cavity mode. The cavity transmis-
sion is thereby “switched on and off”, see Fig. 4.14. At the end of the sequence all atoms
are lost. Note that, during this measurement, the atoms have passed more that 16 cm
distance in total, which is indeed a macroscopic distance in atomic physics.
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Figure 4.14: Multiple transport of a large number (several tens) of atoms into the
cavity. The atoms are shuttled between the MOT position and the cavity mode staying
inside the latter for 2 ms. The total transportation distance is about 16 cm.

Summarizing, in the first experiments, carried out with many atoms, we have found
out the influence of some important experimental parameters on the lifetime of atoms in
the DT while being coupled to the cavity. We have investigated the effect of the probe
and lock laser power, of the presence of the repumping laser, and of the number of initially
coupled atoms. In order to detect single atoms in the cavity, we have to further reduce
the probe laser power and to use a single photon counting detector for observing the
cavity transmission. This is realized in the next section where a series of measurements
with only one atom coupled to the cavity is presented.

4.5 A single atom inside the cavity

In the following, I describe experiments on deterministic transport and coupling of single
atoms to the cavity mode. The atoms are placed inside the cavity using our precise position
control technique. The cavity transmission is detected by a single photon counting module,
allowing us to significantly reduce the probe laser power and to avoid the loss of atoms
during the measurement. The atom-cavity coupling is indicated by a reduction of the
probe transmission.

4.5.1 Probe laser parameters

The main parameters of the probe laser which are of relevance to our experiments are its
power, polarization, and detuning from the atomic resonance.
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Power

The transmission of the probe laser is detected by the SPCM, see Sec. 3.3.3. The measured
optical power is related to the detected count rate, RSPCM, by

PSPCM = RSPCM hνprobe (4.33)

with νprobe denoting the frequency of the probe laser. According to equation (3.28), the
transmitted power is related to the intra-cavity power by the transmission of the cavity
mirror T . The detection efficiency of the SPCM, including photon losses in the optical
system between the cavity and the detector, is ηtotal ≈ 0.089, see equation (3.18). Thus,
the intra-cavity light power is given by

Pintra =
1
T

RSPCM hνprobe

ηtotal
. (4.34)

Similarly, we find the intra-cavity photon number of

Nintra =
1
T

RSPCM τround−trip

ηtotal
, (4.35)

where τround−trip = 2L/c is the round-trip time in the cavity of a length L.
As an example, 10 kHz count rate of the SPCM corresponds to Pintra = 80 nW and

Nintra = 0.09 photons. Typically, we use probe powers resulting in a detector count rate
of 2–6×104 counts/s.

Polarization

The cavity shows birefringence induced by mechanical stress on the glued mirror sub-
strates, see Sec. 3.3.4. The two birefringent modes have linear polarization and are ori-
ented parallel and perpendicular to the cavity holder axis, respectively. All experiments
in this chapter have been performed with the probe laser linearly polarized along the DT
axis.

Frequency

The probe laser is derived from the MOT cooling laser locked to the F = 4 → F ′ = 3/5
crossover transition, see Sec. 3.3.2, and is thus ∆4→3/5/2π = −226.12 MHz detuned below
the F = 4 → F ′= 5 transition (for cesium level structure see Appendix A). Its frequency
is further controlled by two AOMs, see Fig. 3.12, set up in a double-pass configuration.
The first modulator, AOM 1, is driven in the −1st diffraction order with a modulation
frequency in the range of 80–170 MHz. The second modulator, AOM 3, is driven in the
+1st diffraction order with a frequency of 180–300 MHz. Thus, the combination of the
two AOMs allows us to tune the probe laser frequency by ∆AOM/2π ≈ ±200 MHz about
the atomic F = 4 → F ′= 5 transition.

Apart from the laser frequency, the detuning of the probe laser also depends on the
exact atomic resonance frequency. In the far-off-resonance dipole trap, the atomic levels
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Figure 4.15: Light shift of the atomic excited and ground states in the presence of the
linearly polarized DT laser (power of PYAG = 3 W per beam, beam radius of wDT =
42µm). The strongest σ−, π, and σ+ transitions are shown as arrows.

are subject to the ac Stark shift (light shift), see Fig. 4.15. The mF -dependent shifts
for the ground (F = 4) and the excited (F ′ = 5) atomic levels are calculated by taking
into account the multi-level structure of a cesium atom interacting with a non-resonant
classical electro-magnetic field [55, App. A]. The relevant DT parameters used are the
power of each DT beam of PYAG = 3 W and the beam radius of wDT = 42µm.

While the light shift of the Zeeman multiplicity of the (6S1/2, F = 4) ground state
does not depend on the mF sublevels, the excited (6P3/2, F

′ = 5) state is split in mF

due to the coupling to the higher lying S and D states [55]. The light shift ∆ls/2π of a
specific transition is then the difference of the shifts of the corresponding mF sublevels.
The largest shift of −33 MHz is found for the π-transition between the mF = 0 states.
The outer-most σ+- and σ−-transitions have the smallest shift of −15 MHz.

In Ref. [102] a strong mF - and position dependence of the transition frequency has
been avoided by using the state-insensitive trapping of atoms with the DT operating at
the “magic” wavelength of 935 nm for cesium. At this frequency, the sum of ac Stark
shifts coming from different optical transitions results in the ground 6S1/2 and excited
6P3/2 states both being shifted downwards by comparable amounts. The dependence on
(F ′, m′

F ) is small and thus does not significantly change the atomic frequency.
Summing up the effects given above, the laser detuning from the atomic resonance,

∆p = ωp − ωa, is given by

∆p = ∆4→3/5 + ∆AOM + ∆ls . (4.36)
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Guiding magnetic field

The orientation of the guiding magnetic field sets the polarization of the probe laser: The
linearly-polarized probe laser with a perpendicular magnetic field can induce σ+- and σ−-
transitions at the same time, whereas with a parallel orientation of the guiding field to the
light polarization one can drive only π-transitions. Therefore, since the light shift ∆ls is
different for different transitions, the frequency detuning ∆p depends on the orientation
of the guiding field and on the mF sublevel occupied.

The occupation of the Zeeman levels depends on the optical pumping caused by the
probe laser. For instance, in the case of no Zeeman splitting, the π-light pumps about
34 % of the atomic population into the mF = 0 state and about 24 % into each adjacent
mF =±1 state. In contrast, if exposed to the (σ++ σ−) light, 39 % of the population is
concentrated in each outermost Zeeman state. In this way one can calculate the effective
light shift averaged over the atomic ensemble. However, since we do not know the real
DT power affecting the atoms, the exact calculation of the light shifts in our system will
be performed in the future after a more precise characterization of the system.

The atom-cavity coupling rate depends on the Zeeman states first of all because of the
mF dependence of the atom-cavity detuning. In addition, the transition strength defining
the coupling rate depends on the specific mF → m′

F transition: The coupling g0, given by
equation (4.22), is calculated for the strongest atomic transition |F =4, mF =4〉 → |F ′=
5, m′

F =5〉, whereas the coupling for the transition |F =4, mF =0〉 → |F ′=5, m′
F =0〉 is√

9/5 times weaker, see Table A.2 in Appendix A for dipole matrix elements.
Concluding, the orientation of the guiding magnetic field, which defines the polarization

of the probe laser and thus the atomic distribution over themF states, has a direct influence
on the atom-cavity coupling. Such an influence has been indeed experimentally observed
in Sec. 4.5.5.

4.5.2 Experimental sequence

A typical experimental sequence for all experiments presented below consists of the fol-
lowing main steps. First, we use our technique of number-triggered loading of the DT in
order to trap only one atom [56]. Next, we apply the position control procedure for placing
the atom inside the cavity [25]: We take an image of the atom, determine its position in
the trap, calculate the distance to the center of the cavity mode, and then transport the
atom there. Shortly before the atom is transported, we start to observe the transmission
of the probe laser through the cavity. After a fixed observation time (typically 2 s), the
dipole trap is moved back to its original position and the second CCD image is recorded.
Finally, the surviving atom, if any, is loaded back into the MOT. Thus, during each ex-
periment, we obtain three different types of information on the system: first, the atom’s
position in the DT before and after transport inferred from the two CCD images; second,
transmission of the probe and lock lasers through the cavity detected by the SPCM and
the APD, respectively; third, survival of the atom, detected at the end of the sequence in
the MOT.
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Figure 4.16: The rapid changes of the atom-cavity coupling seen in the cavity trans-
mission signal are assigned to hopping of the atom between potential wells of the DT.
The horizontal bar indicates the time when the atom is hold inside the cavity between
two transports.

4.5.3 Hopping atoms

A typical cavity transmission signal in the presence of one atom can be seen in Fig. 4.16.
Here, the atom enters the cavity at 0.03 s and is removed from the cavity mode at 2.64 s.
These events are accompanied with the corresponding decrease and increase of the trans-
mission. Other changes in the cavity transmission indicate rapid changes of the atom-
cavity coupling strength which is proportional to the local probe laser intensity seen by
the trapped atom. These changes can arise from the atom hopping between different po-
tential wells of our standing-wave DT. Such hopping can move the atom away from or
closer to the center of the cavity mode, thus changing its coupling.

The phenomenon of jumping atoms in the DT is often observed in our experiment
during their continued imaging with the CCD camera when the illumination of the atoms
is not optimal [55]. Any laser cooling process strongly depends on the laser detuning
relative to the atomic resonance frequency. If it changes sign, the laser radiation can, e.g.,
induce heating of the atom instead of cooling. An atom trapped in the dipole potential and
oscillating there has a complicated time dependence of the resonance frequency because
of the position-dependent ac Stark shift of the atomic levels. Moreover, this variation
depends on the atom temperature. Thus, in general, illuminating the atoms in the DT
can result in alternating cooling and heating: At some moment the atom can be heated
out of the trap and, being still under illumination of the cooling lasers, cooled down again
and subsequently recaptured in a different potential well of the DT.

The same effect occurs inside the cavity mode where the probe laser plays a role of the
illuminating laser field, although only along one direction. The trapped atom can undergo
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Figure 4.17: Hopping of atoms along the DT. The hopping distance dhop is measured
as the difference of the atom position before transporting the atom into the cavity mode
and after moving it back by the same transportation distance.

complicated dynamics in the crossed fields of the probe laser and the DT including hopping
between DT potential wells. As seen from the transmission traces, see e.g. Fig. 4.16, the
atom can hop both into the region of a higher probe laser intensity and of a lower one.

A more direct way to observe the atom hopping is to compare the atom position before
transporting it into the cavity mode and after moving it back over the same transportation
distance. For this purpose, we measure the hopping distance, dhop, as the difference
between the final and initial position of the atom in the DT measured from two CCD
images taken at the corresponding instants. Of course, we consider only those experimental
shots where the atom is not lost until the end of the sequence, which happens in about
30 % of the cases.

A strong correlation between changes in the cavity transmission and the measured
dhop has been observed. If the transmission stays constant during the whole observation
time, dhop is always equal to zero within the measurement error. In contrast, Fig. 4.17
shows the cumulative distribution of the measured hopping distances dhop only for the
traces where the cavity transmission shows at least one change during the observation
time. One can distinguish two regions of the most probable dhop: around about −30µm
and 10µm, respectively. They are separated by about twice the waist of the cavity mode
of w0 = 23.2µm. We conclude that the atoms hop until they are trapped at the edges of
the cavity mode At these points of reduced probe laser intensity, the heating of the atoms
and thus their further hopping is suppressed. The asymmetry of the two regions with
respect to the zero point can be explained by the unprecise knowledge on the location
of the cavity mode along the DT. Indeed, before this set of measurements, we have not
precisely located the cavity mode using one of the experimental procedures described in
Sec. 4.3.2, but instead we have used an old calibration from a previous measurement day.
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As a result, the atoms have been positioned about 10µm from the center of the cavity
mode in the MOT direction.

By performing the same measurements in the absence of the probe laser, we observe
neither atom losses nor hopping. Thus, the heating of the atoms in these measure-
ments as well as their subsequent cooling are induced with the assistance of the probe laser.

4.5.4 Influence of the lock laser

In Sec. 4.4.1 we have already seen evidence that the lock laser also affects the atoms placed
inside the cavity mode. Below I present a more detailed investigation of these effects.

Dipole interaction

Being resonant with the cavity mode, the lock laser forms a standing wave between the
cavity mirrors. Due to its blue detuning with respect to the atomic transition, the lock
laser produces a repulsive standing-wave potential, given by equation (1.7), which pushes
the atoms away from regions of high laser intensity, i.e. from its antinodes.

The dipole potential along the cavity axis formed by the lock laser and the DT is shown
in Fig. 4.18. The slow varying envelope corresponds to the trapping potential of our DT
in the vertical (radial) direction along the cavity axis with a width of wDT = 42µm and
a maximum depth of 1.4 mK. This potential is modulated by the repulsive (i.e. positive)
standing-wave potential formed by the lock laser. The height of the potential “hills” of
Ulock = 0.8 mK results from 1.4µW of coupled lock laser power. Note that the wavelength
of the lock laser in the figure is stretched by a factor of 5 to visualize the individual
potential hills. From now on, we distinguish three cases: the lock laser dipole potential
Ulock is smaller, about equal, or larger than the kinetic energy, Eatom, of the trapped atom
oscillating vertically in the DT. This will define whether the atom will move along the
cavity mode quasi-freely or if it will be confined between hills of the repulsive lock laser
potential.

Figure 4.19 shows the experimental investigation of the influence of the atom confine-
ment along the cavity axis caused by the lock laser standing wave on the cavity transmis-
sion. The lock laser powers coupled into the cavity mode are 0.28µW (a), 1.4µW (b),
and 2.8µW (c) producing 160µK (a), 0.8 mK (b), and 1.6 mK (c) high dipole potential,
respectively. The graphs on the left represent typical single transmission traces, while the
right graphs are averages over about 20 individual measurements.

If Ulock < Eatom, the oscillations along the cavity axis are not suppressed. Then,
according to the results of Sec. 4.2.5, the oscillating atom will probe regions of different
atom-cavity coupling strength resulting in the measured average transmission which is
significantly different from zero. Thus, the reduced, but not completely vanished cavity
transmission will stay constant until the atom leaves the cavity.

This case is illustrated in the measurement (a) in Fig. 4.19, where the lock laser
produces the dipole potential of a height of 160µK. All recorded traces show constant
transmission levels during the whole observation time until the atom is moved out of the
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Figure 4.18: Dipole potential formed by crossed DT and lock laser. The wavelength of
the lock laser is stretched by a factor of 5 to visualize the individual potential hills.

cavity. Noteworthy, none of them has a transmission lower than about 50 %. Therefore, we
conclude that in this case the atomic kinetic energy is higher than the lock laser potential
allowing the atom to oscillate along the probe laser standing wave, thus averaging the
cavity transmission.

If the kinetic energy of the atom is about the lock laser potential (Ulock ≈ Eatom),
the atoms can hop between the different wells of the lock laser trap. The higher the
temperature, the more frequent the hops. This happens because the atom temperature is
not a static property, but changes permanently, both increasing and decreasing, depending
on many experimental parameters, e.g., local light shift of the atomic transition, the probe
laser power, the coupling strength, etc. Similar hops, although between the potential wells
of the DT, have been observe before in Sec. 4.5.3.

In measurement (b) of Fig. 4.19 the lock laser potential of about 0.8 mK height which
corresponds to the total dipole potential shown in Fig. 4.18. The cavity transmission
shows rapid changes, similar to those in Fig. 4.16. However, the second image of the
atoms taken after moving them out of the cavity shows no atom hopping along the DT
axis. Therefore, the coupling strength changes due to hops of atoms along the cavity axis
between different potential wells of the lock laser. Note that the transmission level now
varies over a wide range of values from very low to maximum.

Finally, if Ulock > Eatom, the lock laser potential prevents the atom from moving along
the cavity axis. In the combination with the attractive DT, the resulting potential confines
the atoms along the cavity axis to better than λlock/2 – the periodicity of the lock laser
standing wave. The local atom-cavity coupling strength seen by an atom confined at the
minimum of the lock laser field depends on the local power of the probe laser. Because of
the difference in wavelength, the standing waves of the two lasers have different periods.
The beat length between them, i.e. the distance between regions of the same phase, is

dbeat =
λprobeλlock

2(λprobe − λlock)
= 22.3µm. (4.37)
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Figure 4.19: Cavity transmission for different powers of the lock laser: 0.28µW (a),
1.4µW (b), and 2.8µW (c) producing a 160µK (a), 0.8 mK (b), and 1.6 mK (c) high
dipole potential, respectively. Left column: typical single traces, right column: averaged
traces over about 20 single measurements. Horizontal bars indicate the time between
moving an atom into and out of the cavity mode.
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Thus, the distance between the regions of the maximum coupling of the confined atom to
the cavity field and of no coupling is only dbeat/2 = 11.2µm.

The case of a high lock laser potential is presented in the measurement (c) in Fig. 4.19.
Although the hops are still probable (from time to time the atom can gain enough energy
from some heating process to hop over the potential wall), they happen less often. For
the time being the placing precision of an atom along the cavity axis is low and the atom
may end up with different coupling strength to the cavity field. Therefore, any cavity
transmission from low to high can be observed if placing the atom into the cavity which
is indicated the still relatively hight averaged transmission.

Unfortunately, even higher powers of the lock laser could not be tested because of the
significantly increased heating rate of the atoms caused by the lock laser which leads to
fast atom loss. Already for the lock laser powers in (b) and (c) the survival probability
is about 65 % and 30 %, respectively, measured by loading the surviving atoms back into
the MOT at the end of the experimental sequence.

Placement precision

To insure a high coupling, the precision of the placement of an atom into the lock laser
standing wave should be much better than dbeat/2. This precision is mainly limited by
the amplitude of the radial oscillations of atoms in the DT (along the cavity axis), wrad,
before entering the cavity mode, see Sec. 4.2.5. For the typical experimental parameters
and for the Doppler temperature of atoms, wrad ≈ 7µm which is comparable to the half
beat length of dbeat/2. Hence, even for perfect alignment of the DT, i.e., with its axis
crossing the overlapping antinodes of the probe and lock laser standing waves, the radial
oscillation of the atom in the DT will prevent a precise placement into the maximum of
the cavity field. Note that the real atom temperature can be significantly higher than the
Doppler one due to complicated heating/cooling dynamics of the probe and lock lasers,
see Sec. 4.5.3.

The placing precision can be considerably improved by cooling the atom into its ground
oscillatory state which has a radial spread of only

a0 =

√
~

2mΩrad
= 130 nm, (4.38)

where the radial oscillation frequency Ωrad is given by expression (1.16). The corresponding
cooling, which is also required for many realistic schemes of atom-atom entanglement in
a cavity, is one of the next major projects in our group, see Outlook.

A further effect limiting the placing precision is the drifts of the DT position along the
cavity axis due to, e.g., thermal drifts of optical elements in the beam path. The standard
method to estimate this drift is to regularly take images on the DT loaded with many
atoms, sum up the detected fluorescence along the trap axis, and determine the center of
the obtained distribution, which gives us the vertical position of the DT axis. Typically
these slow drifts are up to 5µm per hour.
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Scattering rate

Apart from the dispersive dipole interaction, the lock laser can also off-resonantly excite
atoms. For instance, for an incoming laser power of 1µW the scattering rate for an atom
placed at the field maximum is 24 photons/s, see equation (1.8), and does not depend on
the hyperfine ground state. The recoil energy of cesium is Erad/kB = 99 nK. Therefore,
in the absence of all other loss mechanisms, the scattering of the lock laser should result
in a lifetime of atoms stored in a 1 mK deep DT of at least several minutes and is thus
negligible in our experiments.

Parametric heating of atoms

Although the scattering of the lock laser photons inside the cavity is low, we do observe a
strong reduction of the storage time of atoms if using several ten µW of lock laser power
or even less. For instance, in the measurement of Fig. 4.19(c) with 2.8µW laser power,
almost all atoms stay trapped inside the cavity for 2 seconds until we move them out of
the cavity mode. However, the atoms are always lost if we switch the probe laser off for
only 10 ms in this experimental sequence after the atoms are placed inside the cavity. This
indicates strong heating of the atoms caused by the lock laser which is counteracted by
some cooling mechanism originating from the probe laser.

The observed atom losses are attributed to parametric heating of atoms in the
lock laser dipole trap.2 This heating results from fluctuations of the depth of the lock
laser potential appearing at the twice radial oscillation frequency of the DT (typically
several kHz). The power fluctuations of the lock laser inside the cavity arise mainly from
its fluctuating coupling into the cavity mode due to non-ideal stabilization of the cavity
length onto the lock laser. Thus, the parametric heating can be reduced by improving
the performance of the cavity stabilization scheme or by reducing the external noise.

4.5.5 Guiding magnetic field

The guiding magnetic field splits the atomic Zeeman levels and determines the quantization
axis in the system. The probe laser is linearly polarized along the DT axis in all presented
experiments. Thus, recalling Sec. 4.5.1, if the guiding field is applied parallel to the
polarization of the probe laser, the laser can induce only π-transitions with ∆mF = 0, see
Fig. 4.15. However, if the quantization axis is perpendicular to the laser linear polarization
(e.g., oriented along the cavity or orthogonal to both the cavity and the DT), then both
σ+- and σ−-transitions with ∆mF = ±1 can be induced.

In our experiment the application of guiding fields is accomplished by three orthogonal
pairs of coils surrounding the vacuum cell. Typically, we apply magnetic fields of about
several Gauss. Figure 4.20 shows cavity transmission signals averaged over 20 single traces
for three different orientations of the guiding field. In each trace the atoms enter the cavity
mode at 0.075 s indicated by a drop in the detected transmission. After 2 s of observation
the remaining atoms are removed from the mode.

2For analysis of various heating mechanisms in a dipole trap see Ref. [51].
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Figure 4.20: Averaged cavity transmission for different orientations of the guiding
magnetic field.

The result of measurement (a) with only π-transitions possible differs strongly from
other two measurements (b) and (c) where only σ+- and σ−-transitions can be induced.
Note that the strongest π-transition is

√
9/5 times weaker than the strongest σ-transition

between outermost Zeeman states (see Table A.2). Thus, we would expect to observe
the larger transmission drop for the measurements (b) and (c) compared to (a). This
discrepancy can be qualitatively explained by different probe laser detuning for different
light polarizations effecting the atom-cavity coupling strength as shown in Fig. 4.15.

The two AOMs in these measurements shift the probe laser frequency by
∆AOM/2π = 245 MHz. Therefore, according to equation (4.36), the probe detun-
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ing for the strongest π- and σ-transitions is ∆π
p/2π = −14.5 MHz and ∆σ

p/2π = 4 MHz,
respectively (see Sec. 4.5.1). One sees that the large detuning ∆π

p should decrease the
atom-cavity coupling even further, thus contradicting the results shown in Fig. 4.20.
However, in the previous experiments [55] we have observed that due to abberations and
diffraction the actual trap depth measured from the oscillation frequencies of the trap
can be up to 3.3 times smaller than what we calculate from equation (1.7). If we suppose
the real trap depth to be half of the expected one, then the corrected probe detunings are
∆π

p/2π = 2 MHz and ∆σ
p/2π = 11.6 MHz. Now, the larger atom-cavity coupling rate for

the circularly polarized field can be diminished by the larger detuning from the atomic
frequency. A more quantitative analysis of the expected coupling rate should include
the atomic populations over mF levels, the mF -dependence of the light shifts and of the
transition strengths, as well as the experimentally measured dipole trap depth.

4.6 Conclusion

Following significant achievements in controlling single atoms in our standing-wave di-
pole trap and a successful design, assembly, and stabilization of our high-finesse optical
resonator, we are now able to realize deterministic atom-cavity coupling requiring rather
complex experimental sequences. A typical sequence includes cooling and trapping of
atoms in the MOT, loading them into the dipole trap, transporting over half a centimeter
into the cavity mode, probing the atom-cavity system with an external probe laser, and
finally moving the remaining atoms back and analyzing them in the MOT.

The first experiments using many atoms helped us to better understand our new system
as well as to test the compatibility of different components and techniques. We have
analyzed the influence of some important experimental parameters on the lifetime of atoms
in the DT coupled to the cavity, mainly of the probe and lock laser power, of the presence
of the repumping laser, and of the number of initially coupled atoms.

For coupling and detecting one atom in the cavity mode, we have further reduced the
probe laser power and used a single photon counting detector for observing the cavity
transmission. By means of number-triggered loading of the dipole trap with a single
atoms and sub-micrometer position control we prepare and place single atoms into the
cavity mode on demand. By observing the cavity transmission we obtain information on
the coupling and dynamics in the system. A series of measurements presented shows that
we are able to keep single atoms trapped inside the cavity for several seconds. Although
the atoms hop inside the mode, their recapture indicates the presence of some cooling
mechanisms preventing atom losses and keeping atoms coupled to the cavity.
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Chapter 5

Conclusion and outlook

The major achievement of this work is the deterministic coupling of a single atom to the
mode of a high-finesse optical resonator. I have presented a set of techniques allowing us
to place and hold a single atom inside the cavity mode on demand. The coupling between
atom and cavity field manifests itself by a strong reduction of the cavity transmission
probed by a weak laser. Moveover, we are able to move the atom out of the cavity and
to perform a final state analysis. All these steps are preparatory for deterministic cavity
QED experiments with trapped atoms, in particular for possible applications in quantum
information processing.

The first part of this thesis was devoted to establishing a sub-micrometer position
control of single atoms using our “optical conveyor belt” technique and the fluorescence
imaging of trapped atoms. It allows us to place single atoms precisely at the center of a
distant cavity mode independently of their initial location in the dipole trap. Next, I have
presented the manufacturing, assembly, and test of a miniature ultra-high finesse optical
cavity stabilized to the atomic transition. Its properties allow us to optimally integrate
the cavity into the present atom-trapping experiment and to operate the atom-cavity
system in the strong coupling regime. After transporting a single atom into the cavity,
its presence inside the mode is detected as a decrease of the cavity transmission. The
atoms stay trapped and coupled to the cavity field for up to 2 seconds until we transport
them out of the mode. The basic obstacles preventing the maximal coupling strength
have been investigated in a set of experiments presented at the end of the thesis.

Constant coupling

The next main task is to achieve a constant and maximum atom-cavity coupling rate. We
have determined that the basic effects reducing the coupling strength are the placing of an
atom not precisely at an antinode of the standing-wave field of the cavity mode, the atomic
oscillation in the dipole trap transverse to the cavity axis, a time-varying detuning between
the cavity resonance frequency and the atomic transition resulting from the position-
and mF -dependent light shift, and driving an atom on all the differently coupled |F =

119
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4, mF 〉 → |F ′=5, m′
F 〉 transitions. Based on this analysis, we are now planning a set of

modifications to our experimental setup. We are still working on improving the relative
frequency stability between the cavity and the lock laser. This measure should reduce the
intra-cavity power fluctuations of the lock laser which lead to parametric heating of the
atoms, and thus should allow us to increase the lock laser power in order to better confine
trapped atoms along the cavity axis in order to avoid the oscillating coupling strength.
Moreover, better confinement of atoms inside the cavity mode can be achieved by using a
more sophisticated geometry of the intra-cavity dipole trap, e.g., by simultaneously using
higher transversal modes of the cavity [103].

Spatial filtering of the dipole trap beams by using optical fibers is supposed to reduce
heating of the cavity mirrors, thus improving the cavity stability. In addition, optical
fibers should provide better pointing stability of the dipole trap leading to a constant trap
depth and a reproducible atom-cavity coupling. Next, characterization of our dipole trap
should allow us to precisely compensate ac Stark shifts of atomic levels in order to set the
right atom-cavity detuning for the future experiments.

Even if the best possible external stability is achieved, one cannot avoid fluctuations
of the coupling after inserting a thermal atom into the cavity. Thus the next project is to
implement a method of cooling the atoms in the dipole trap and/or in the cavity.

Raman and cavity cooling

By cooling an atom far below the Doppler temperature, we can better localize it at the
bottom of a trapping potential well. Besides making the atom-cavity coupling rate more
constant, the cooling reduces an undesired variation of the ac Stark shift arising from
the atomic thermal motion in the dipole trap. Moreover, some applications in quantum
information processing require an atom to be in its oscillatory ground state, which is the
ultimate cooling limit in an optical lattice.

Efficient ground state cooling of atoms in optical lattices has been achieved using Ra-
man sideband cooling [104, 105]. We have demonstrated that we can resolve the motional
sidebands due to the axial oscillation of the atoms in our dipole trap [100, 106], which is
a necessary prerequisite for these cooling schemes to work.

The presence of the cavity mode, which is strongly coupled to the atom and which
mechanically affects its motion [107], can give rise to novel cooling mechanisms [108]
which are not observed in free space. Such cavity-induced cooling has been demonstrated
experimentally in Refs. [102, 109]. The first evidence of a cooling process in our cavity
is the recapture of hopping atoms. Presently, possible implementations of cavity cooling
schemes are discussed in our group.

Atom-atom entanglement

The generation and the controlled manipulation of an entangled state is an important
benchmark for quantum information processing experiments. In a cavity QED system the
interaction between two atoms, which is required for their entangling, can be based on
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the exchange of a cavity photon. Despite a simple concept and a wide range of possible
applications, the entanglement between two ground-state atoms in an optical cavity has
not been realized yet.

There are basically three main approaches to entangle atoms in a cavity: determin-
istic, adiabatic, and measurement-induced. Deterministic entanglement schemes rely on
the coherent energy exchange between two atoms simultaneously coupled to the mode of a
high-finesse cavity. One of the most promising schemes is based on a resonant four-photon
Raman process involving the cavity mode and an auxiliary laser field [110]. However,
the best possible fidelity of this scheme for our experimental parameters is at most 85%
under condition of a precise realization of a π/2 four-photon pulse [55]. In contrast,
adiabatic entanglement schemes are not so sensitive to experimental parameters. How-
ever, being in general slower than resonant processes, they are still subject to dissipation
[111]. A completely different class of entanglement schemes relies on measurement induced
entanglement [112, 113], but being probabilistic they are not well suitable for quantum
information processing.

Despite recent progress in manufacturing high-quality mirrors, the achievable values
of the cooperativity parameter are still too low to permit the high fidelity generation of
entangled atomic states with existing proposals. Therefore, we are still seeking for the
most promising entanglement scheme that can be implemented in our system.
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Appendix A

Atomic data for 133Cs

The most important properties of the cesium atom relevant for this work are summarized
in Table A.1, and a level scheme of the first excited states is shown in Fig. A.1. Most of
the data is extracted from the data collection of D. Steck [114].

General properties

Mass m 2.21× 10−25 kg

62S1/2 ground state hyperfine splitting ωhfs 2π × 9.1926 GHz
D1-line

Wavelength λD1 894.35 nm
Natural lifetime 62P1/2 τD1 34.9 ns
Decay rate ΓD1 2π × 4.56 MHz

D2-line
Wavelength λD2 852.11 nm
Natural lifetime 62P3/2 τD2 30.5 ns
Decay rate ΓD2 2π × 5.22 MHz
Transition dipole matrix element 4.479 ea0

〈J = 1/2||er||J ′ = 3/2〉 3.797× 10−29 C m
Dipole moment (see Table A.2) d 3.167 ea0

|F = 4,mF = ±4 〉 �|F ′ = 5,m′
F = ±5 〉 2.685× 10−29 C m

Saturation intensity I0 11 W/m2

|F = 4,mF = ±4 〉 �|F ′ = 5,m′
F = ±5 〉

Doppler temperature TD 125 µK
Recoil energy Erad/kB 99 nK

Table A.1: Some physical properties of the 133Cs atom.
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Figure A.1: Level scheme of the first excited states in 133Cs.

The dipole matrix elements for specific |F =4,mF 〉 → |F ′=5,m′
F 〉 transitions are listed

in Table A.2 as multiples of 〈J=1/2||er||J ′=3/2〉 = 4.479 ea0 [114]. The transitionsmF →
m′

F = mF are coupled by π-polarized light, whereas the transitions mF → m′
F = mF + 1

are coupled by σ+-polarized light.

mF =-4 mF =-3 mF =-2 mF =-1 mF =0 mF =1 mF =2 mF =3 mF =4

m′
F =mF +1

√
1
90

√
1
30

√
1
15

√
1
9

√
1
6

√
7
30

√
14
45

√
2
5

√
1
2

m′
F =mF -

√
1
10

-

√
8
45

-

√
7
30

-

√
4
15

-

√
5
18

-

√
4
15

-

√
7
30

-

√
8
45

-

√
1
10

Table A.2: Dipole matrix elements for |62S1/2, F = 4,mF 〉 → |62P3/2, F
′ = 5,m′

F 〉
transitions in 133Cs, expressed as multiples of 〈J=1/2||er||J ′=3/2〉.
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Cavity ringing

When the length of a cavity is scanned faster than the cavity decay time, while being
excited by a monochromatic light field, the cavity output shows an amplitude oscillations
in its normal decay profile (see Ref. [87] and references therein). This cavity ringing effect
can be described classically. For this purpose, we consider the cavity as a damped harmonic
oscillator with a time-dependent resonance frequency driven by an external periodic force.
The differential equation describing the oscillator’s dynamics reads

d2

dt2
E(t) + 2κ

d

dt
E(t) + ω2(t)E(t) = Aeiω0t, (B.1)

where κ is the cavity decay rate, ω(t) is its time-dependent resonance frequency, A and
ω0 are the amplitude and the frequency of an incident laser field, respectively. The intra-
cavity field is given by

E(t) = E(t) e−iφ(t) eiω0t (B.2)

with E(t) denoting the complex field amplitude and φ(t) denoting the phase. Since the
cavity frequency is linearly scanned over ω0, its frequency and phase can be expressed as

φ(t) = S t2/2 (B.3a)
ω(t) = ω0 − S t. (B.3b)

The sweep rate S is defined as S = ωFWHM/τsweep, where τsweep is the sweep time through
the cavity linewidth. Since ωFWHM is the inverse of the cavity ring-down time, τCRD, we
get S = (τsweep τCRD)−1.

In an approximation of a slowly varying amplitude and phase of the intracavity field
compared to ω0, equation (B.1) can be rewritten as a first-order differential equation

d

dt
E(t) + κ E(t) = − i A

2ω0
eiφ(t). (B.4)

For the initial condition ε(t = −∞) = 0 the solution to (B.4) reads

E(t) = − i A

2ω0

∫ ∞

0
exp

[
− i

S(t− τ)2

2
− κ τ

]
dτ. (B.5)
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Figure B.1: Theoretical cavity ringing signal. The graph is the solution to equation
(B.7) for κ = 1 and τsweep = 0.2 τCRD.

This integral can be taken analytically in term of the error function1

E(t) = − i A

2ω0

(1− i)
√
π

2
√
S

exp
[
− i

S t2

2
− i

(κ− iS t)2

2S

]
×

×
(
1− erf

[(1− i)√
S

(κ− iS t)
])
. (B.6)

Finally, the intensity of the intracavity fields is I(t) = E∗(t) E(t). Since the cavity
output is proportional to its intracavity intensity, the cavity ringing signal can be described
by

Iout(t) = T I0 exp(−2κt)
∣∣∣1− erf

[(1− i)√
S

(κ− iS t)
]∣∣∣2 (B.7)

with I0 = (πA2)/(8Sω0) and T the mirror transmission. The exponential term in (B.7)
describes the cavity decay, while the term with the error function represents the cav-
ity ringing, i.e. oscillations with increasing frequency. For κ = 1/(2τCRD) = 1 and for
τsweep = 0.2 τCRD, which seems to be a reasonable proportion for our experiments, the
time dependence of the cavity output intensity is shown in Fig. B.1.

1The error function is defined as erf(x) = 2/
√

π
R x

0
exp(−t2) dt.
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