@article{2018-zhou-hanf, Abstract = {

In the Discrete Quantum Simulator (DQSIM) experiment in Bonn it has been planned to study topologically protected transport of atoms along the edges separating distinct topological phases. To realize sharp edges, structured intensity patterns will be used and are to be holographically projected onto the caesium atoms trapped in a two-dimensional (2D) state-dependent optical lattice. A robust technique to reproduce sharp-edged diffracted patterns has been accomplished and is presented in this thesis. This technique is based on a Gerchberg-Saxton-like algorithm, which has overcome the well-known stagnation problem and is able to suppress speckles induced by random phase vortices, and has been further extended to create sharp, diffraction-limited edges in the reconstructed intensity pattern. Computer-generated holograms (CGHs) corresponding to the desired intensity patterns can be calculated with high computational efficiency (∼ 100 iterations) and the intensity patterns can be reconstructed with high fidelity (relative RMS 3.9%).

}, Author = {Zhou-Hanf, W.}, Journal = {}, Pages = {}, Title = {{Robust Holographic Generation of Arbitrary Light Patterns: Method and Implementation}}, Volume = {}, Year = {2018} }