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Abstract

In this thesis, experiments with an ultracold gas doped with few and single atoms

of another species are presented.

The techniques to adequately prepare and manipulate an ultracold Rb gas and

to dope it with a precisely known number of few Cs atoms are presented. These

techniques allow the time-resolved observation of the sympathetic cooling of initially

laser-cooled, cold impurity atoms into the ultracold temperature regime of the Rb

buffer gas. During the cooling, the confinement of the impurity atom is enhanced

to a reduced volume inside the buffer gas, which increases the interspecies collision

rate. By analyzing the cooling process, the interspecies scattering cross section is

estimated.

The lifetime of the resulting hybrid system is limited by three-body recombination

of the impurity atom with atoms of the buffer gas. The atomic resolution of the

impurity atom number allows the determination of the lifetime atom-by-atom. Ad-

ditional information is gained from the precisely known fluctuations of the number

of lost impurity atoms. This information is exploited to assign the three-body losses

unambiguously to a single loss channel.

The interaction of an impurity atom in a quantum-mechanical superposition state

with the buffer gas is of special interest for future experiments. First experiments

into this direction are presented at the end of the thesis.

Zusammenfassung

Gegenstand dieser Arbeit ist ein mit wenigen und einzelnen Fremdatomen dotiertes,

ultrakaltes Gas.

Die notwendigen Techniken, um ein ultrakaltes Rb Gas zu erzeugen, geeignet zu

manipulieren und gezielt mit einer genau bekannten Anzahl weniger Cs Atome zu

dotieren, wurden im Rahmen dieser Arbeit entwickelt und werden vorgestellt. Diese

Techniken erlauben es, das sympathetische Kühlen der anfangs laser-gekühlten,

kalten
”
Störatome“ in das Regime ultrakalter Temperaturen des Rb Puffergases

zeitaufgelöst zu beobachten. Während des Kühlens wird das Störatom in einem

immer kleiner werdenden Volumen innerhalb des Puffergases gefangen, was zu einer

Verstärkung der Stoßrate führt. Durch die Analyse des Kühlvorgangs wird die

Streulänge der elastischen Zweikörperstöße abgeschätzt.

Die Lebensdauer des so erzeugten Hybridsystems ist begrenzt durch Dreikörper-

rekombination des Störatoms mit Atomen des Puffergases. Die atomare Auflösung

der Anzahl der Störatome erlaubt die Bestimmung der Lebensdauer Atom für Atom.



Die präzise bekannten Fluktuationen der Anzahl der verlorenen Störatome bieten

zusätzliche Information, die genutzt wird, um die Dreikörperrekombination ein-

deutig einem einzigen Verlustkanal zuzuordnen.

Von besonderem Interesse für zukünftige Experimente ist die Wechselwirkung von

Störatomen in einem quantenmechanischen Superpositionszustand mit dem Puffer-

gas. Erste Experimente in diese Richtung werden am Ende der Arbeit vorgestellt.

Parts of this thesis have been published in the following paper:

• N. Spethmann, F. Kindermann, S. John, C. Weber, D. Meschede

and A. Widera, Inserting single Cs atoms into an ultracold Rb gas,

Applied Physics B, doi: 10.1007/s00340-011-4868-6 (2012).



Contents

Introduction 1

1 Production and guided magnetic transport of ultracold Rb 5

1.1 Magnetic trap and magnetic transport . . . . . . . . . . . . . . . . . 6

1.1.1 Magnetic trapping of ultracold Rb . . . . . . . . . . . . . . . . 6

1.1.2 Magnetic transport . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Dipole trap as guiding field and spin-independent trap . . . . . . . . 12

1.2.1 Optical dipole trap for ultracold Rb . . . . . . . . . . . . . . . 12

1.2.2 Guided magnetic transport . . . . . . . . . . . . . . . . . . . . 14

1.2.3 Characteristics of the running wave dipole trap . . . . . . . . 15

1.3 Manipulation of the internal degrees of freedom . . . . . . . . . . . . 18

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Single Cs atoms in a species-selective lattice 21

2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 MOT as source and detection tool for single Cs atoms . . . . . . . . . 22

2.2.1 Source for single Cs atoms . . . . . . . . . . . . . . . . . . . . 22

2.2.2 MOT as detection tool . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Species-selective optical lattice . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Optical lattice parameter . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Typical sequence and statistical uncertainty . . . . . . . . . . 26

2.3.3 Trap frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.4 Off-resonant photon scattering rate . . . . . . . . . . . . . . . 29

2.3.5 Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Temperature measurements of single atoms . . . . . . . . . . . . . . . 33

2.4.1 Adiabatic lowering . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Release and recapture . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Inserting single Cs atoms into an ultracold Rb gas 43

3.1 Species-selective trapping and doping of Rb with Cs . . . . . . . . . . 43

i



Contents

3.2 Light-induced collisions and fine positioning . . . . . . . . . . . . . . 45

3.3 Analysis and simulation of the transfer . . . . . . . . . . . . . . . . . 47

3.3.1 Dichromatic running wave dipole trap . . . . . . . . . . . . . 48

3.3.2 Monochromatic running wave dipole trap . . . . . . . . . . . . 51

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Single Cs atoms interacting with an ultracold Rb gas 57

4.1 Interactions at ultracold temperatures . . . . . . . . . . . . . . . . . 58

4.1.1 Elastic two-body collisions . . . . . . . . . . . . . . . . . . . . 58

4.1.2 Inelastic two-body collisions . . . . . . . . . . . . . . . . . . . 60

4.1.3 Inelastic three-body collisions . . . . . . . . . . . . . . . . . . 60

4.2 Elastic collisions – Thermalization . . . . . . . . . . . . . . . . . . . 61

4.2.1 Temperature measurement of Cs in the running wave crossed

dipole trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Experimental techniques for the realization of interspecies in-

teraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3 Thermalization of Cs in the hyperfine ground state . . . . . . 65

4.3 Inelastic collisions – Two-body and three-body losses . . . . . . . . . 74

4.3.1 Experimental techniques for the realization of three-body loss

experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Three-body recombination with atomic resolution . . . . . . . 76

4.3.3 Two-body loss rate in the excited hyperfine state of Cs . . . . 82

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Conclusion and outlook 85

5.1 Coherence properties of single atom impurities immersed in a BEC . 86

5.2 Polaron physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 New apparatus – Choice of species . . . . . . . . . . . . . . . . . . . 88

Bibliography 89

ii



Introduction

Introduction

The development of laser cooling [1, 2] and evaporative cooling [3] allows to cool

atomic samples routinely into the regime of ultracold temperatures. This has en-

abled the production of Bose-Einstein condensates (BECs), matter waves governed

by the laws of quantum mechanics [4, 5]. First experiments demonstrated strik-

ing features of the quantum world, like the interference of matter waves [6, 7], the

creation of vortices in a quantum gas [8, 9] and the coupling of atoms out of a

BEC, forming a coherent atom laser [10–12]. In the recent years, these macro-

scopic quantum objects proved to be excellent model systems to study many-body

physics [13].

In the few-body regime, single neutral atoms have been employed for many fasci-

nating experiments, as for instance a quantum register [14], the quantum walk in

position space [15] or the entanglement of single Rydberg atoms [16, 17]. These ex-

periments feature intrinsically single atom resolution and usually have a very good

spatial resolution, ideally single-site resolution [18]. In general, however, the real-

ization of coherent interactions between single atoms, that are usually laser cooled

and have therefore a rather large temperature, is challenging.

In a BEC, in contrast, coherent interactions dominate. In this case, detection and

manipulation on a single atom level and with high spatial resolution are quite de-

manding. Recently, some experiments combined features of these rather separated

fields of research, as for example the demonstration of single atom detection and ma-

nipulation in BECs [19–21], the study of an ensemble of single fermionic atoms in a

small bosonic field [22] and the creation of a system of a few interacting degenerate

fermions [23].

The study of these atomic systems is facilitated by the extremly good isolation

from the enviroment. Furthermore, impurities can be ruled out completely, allowing

to study perfect, defect-free model systems. However, many interesting effects in

physics arise because of the interplay of an impurity with a many-body system.

This is the starting-point of the experiments presented in this thesis. The goal is

the controlled doping of an ultracold many-body model system with single neutral

impurity atoms, to create a hybrid system.

Here, the interactions between the impurity atom and the buffer gas are of crucial

importance. Recently, in a similiar approach, a system of a BEC doped with a

single ion has been created [24, 25]. In this case, interactions are dominated by

the charge of the ion, leading to complex interaction dynamics [26]. In our system,

in contrast, the impurity atom is neutral. Therefore, interactions are completely
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Introduction

determined by s-wave scattering, as in the ultracold gas itself. Fundamental features

of quantum gases, as for example superfluidity [27], are caused by these interactions.

Furthermore, Feshbach resonances allow the tuning of the scattering length [28, 29].

This has been exploited in a variety of experiments, as for example the creation of

dimers [30] and entanglement [31], and the condensation of fermionic pairs [32–34].

This thesis presents experiments with a thermal ultracold rubidium (Rb) gas, doped

with few and single caesium (Cs) atoms. Initially, Cs is captured in a magneto-

optical trap. Its temperature is therefore about two orders of magnitude larger than

the temperature of the ultracold gas, that is cooled by evaporative cooling. After

bringing both subsystems into contact, we observe the cooling of the impurity atom

to the temperature of the buffer gas. This provides single atoms cooled far below

the limit of standard laser cooling. In a few single species experiments, prepara-

tion of ultracold, single neutral atoms has been demonstrated by extraction out of

an ultracold gas [23, 35]. With our hybrid system, it might be possible in future

experiments to cool impurity atoms containing quantum information by immersing

them into a BEC, without affecting the inscribed quantum state [36, 37]. Addition-

ally, the creation of a doped quantum gas should pave the way to study polarons, a

quasi-particle of the impurity dressed with atoms from the buffer gas, as observed

in a slightly imbalanced mixture of fermions [38].

Furthermore, the impurity atom can be employed as a probe for the many-body

system. In this thesis, first steps towards this goal are presented. Besides measuring

the temperature of the buffer gas, the time-resolved observation of the cooling of the

impurity atom allows estimating the interspecies scattering cross section. During the

cooling, the impurity atom becomes localized in a reduced volume inside the buffer

gas because of the species-selective trap employed. In future experiments, with

comparable techniques, the spatially resolved probing of a BEC could be realized.

Furthermore, the coherence of the quantum gas could be analyzed by employing the

impurity atom as coherent probe [39, 40]. In certain regimes, the probing by the

impurity atom is a negligible perturbation.

Indeed, in the experiments discussed in this thesis, the buffer gas is not affected

by the interaction with the impurity atom. This simplifies the interpretation of the

observed three-body recombination considerably. Owing to the observation with

atomic resolution, the loss of impurity atoms immersed in the buffer gas can be

ascertained to be caused by an inelastic collision of an impurity atom with two

atoms of the buffer gas.

In most ultracold atom experiments, averaged quantities of a large number of atoms

are probed, usually with only small statistical fluctuations of this quantity. How-
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ever, fluctuations allow to directly observe the statistics governing the properties

of quantum gases. The observation of atom number fluctuations, for instance, has

been employed to directly observe sub-Poissonian number statistics in a BEC [41]

and the number squeezing in a Mott insulator [21, 42].

In our experiment, the fluctuations of the number of lost impurity atoms, that are

on the same order as the impurity atom number itself, facilitate identifying the

respective loss events of the three-body recombination. The occurrence of the loss

of a pair of impurity atoms, for example, shows that collisions involving more than

one impurity atom can be neglected in the regime studied in this thesis. In future

experiments, this could be employed as a sensitive probe. Many interesting effects

arise at the transition from a two-body to a many-body system. Two-body collisions

dominate the interaction in low density samples on short time scales, as is observed

in this thesis in the thermalization measurement. When more atoms come into

play, as for instance in three-body recombination [43–45], new effects arise, in this

example molecule formation. In our experiment, this transition could be studied in

the future in a controlled way by increasing the number of impurity atoms. Thus,

it should be possible to study the increase in complexity at a fundamental level,

caused for example by the onset of collisions with more than one impurity atom

involved. This could be observed by an enhanced probability for the loss of pairs of

impurity atoms.

The experiments presented in this thesis demonstrate the creation of the hybrid

system and provide insight into the interaction of both subsystems. This should

pave the way for the scenarios outlined above.
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Chapter 1

Production and guided magnetic transport

of ultracold Rb

The preparation of ultracold gases, as the first constituent of the hybrid system, is

introduced in this chapter. The goal is a Rb sample with high phase-space density

at the position, where in a next step single Cs atoms are cooled and trapped. The

same quadrupole coils as close as possible to the sample are employed for magnetic

trapping of ultracold Rb and, in a later step, for trapping single Cs atoms in a

magneto-optical trap (MOT). This facilitates to achieve the necessary strong mag-

netic field gradient for both sub-systems. To avoid Majorana spin flips [46], that lead

to loss of atoms from the trap, the quadrupole coils are combined with an Ioffe coil

for trapping ultracold Rb, forming a Quadrupole-Ioffe-Configuration (QUIC) trap

[47]. As a consequence, the trap center of the QUIC is shifted to a position about

7 mm apart from the quadrupole field center. In the QUIC trap, Rb is precooled by

evaporative cooling into the ultracold regime. Subsequently, a transport of the Rb

sample back to the center of the apparatus, where Cs can be trapped, is necessary.

The transport has to be adiabatic to avoid excitations and heating of the ultracold

cloud. Furthermore, the transport needs to be sufficiently precise and reproduce-

able to accurately and reliably adjust the spatial position of the Rb cloud relative to

the single atom trap. Furthermore, the spatial confinement should not significantly

decay during the transport.

Ultracold atoms stored in magnetic traps can be moved by varying the inhomo-

geneouse magnetic field creating the trap. In some experiments, a sequence of

quadrupole coils has been employed for this purpose [48, 49]. We use a similar mag-

netic transport, which works with the single pair of quadrupole coils present. As a

consequence, the confinement decays during this purely magnetic transport, leading

to a decrease of the atomic density and impeding evaporative cooling in the shifted

trap. Therefore, an optical dipole trap is used as a guiding field, allowing to keep

5



1 Production and guided magnetic transport of ultracold Rb

the confinement constant during the magnetic transport. Subsequently, a second

dipole trap is intersected with the guiding field to form a crossed dipole trap. The

manipulation of the internal degree of freedom of the Rb gas, stored in this trap in

close vicinity to the Cs MOT, is demonstrated. A final evaporative cooling stage is

applied, allowing to cool the sample to degeneracy.

1.1 Magnetic trap and magnetic transport

In the following, the concept to produce degenerate quantum gases in our experiment

is briefly summarized. The employed techniques are well established and used in

many labs, so that for details we reference to the literature [50–52].

1.1.1 Magnetic trapping of ultracold Rb

The starting point of our experiment is the preparation of a 87Rb sample in the

QUIC trap. Laser cooling is employed as a precooling stage. For this, an atomic

beam is produced by pushing atoms out of a vapour pressure MOT. This atomic

beam loads a second MOT (UHV-MOT) in an ultra-high vacuum with a pressure

of about 10−11 mbar, that allows storing the sample with a decay time constant of

160 s, limited by collisions with atoms of the background gas. The phase-space

density in the UHV-MOT is about 10−8.

In a MOT, the energy scale of the atoms is limited to the recoil energy ~2k2/(2m)

by scattering of photons, which is much larger than the typical energy scale of ultra-

cold gases. Therefore, in the next step, a conservative potential without scattering

of photons is required. For this, a magnetic trap is employed, that relies on the

interaction of the magnetic moment of the atom µ = gfµBmF and an inhomogenous

magnetic field B, where µB is Bohr’s magneton, gf the Landé factor and mF the

projection onto the quantization axis. Hence, the resulting potential V = gfµBmFB

depends on the Zeeman state of the atom. As a consequence of the Maxwell equa-

tions, it is not possible to create a static magnetic field maximum in free space.

Therefore, magnetic trapping is only possible for those states, which experience a

minimizing of their energy for decreasing magnetic field (low field seekers) and can

therefore be trapped in a field minimum [53]. For 87Rb and 133Cs, this is the case

for states with mF > 0.

In the next step of the sequence, the UHV-MOT is switched off, and the Rb gas

is optically pumped into the |F = 2,mF = 2〉 state. Subsequently, the sample is

transferred into a magnetic quadrupole trap, which is then transformed into the

QUIC. In this trap, forced evaporative cooling using a microwave transition is ap-

plied. Loading of the UHV-MOT requires about 30 – 40 s, the evaporative cooling

6



1.1 Magnetic trap and magnetic transport

z
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quadrupole coils
Ioffe coil

axial dipole trap

radial dipole trap
lattice

MOT position QUIC position

Figure 1.1: Schematic setup of the experiment. Single Cs atoms can be trapped
in a high-gradient MOT at the center (x = y = z = 0) of the apparatus. Ultracold
Rb clouds are prepared in the QUIC-type magnetic trap at a position about 7 mm
apart from the center (y ≈ 7 mm, x = z = 0). By the guided magnetic transport,
the Rb gas is moved along the y-direction to the center in close vicinity to the
single atom MOT.

in the QUIC takes about 20 s, so that one cycle of the experiment needs approxi-

mately one minute. A more detailed description of this part of the apparatus and

the employed techniques is given in [54–58]. Fig. 1.1 shows a simplified sketch of

the setup.

The Rb sample can be cooled to quantum degeneracy by evaporative cooling in this

stage of the sequence. A typical time evolution of the phase-space density during

the evaporative cooling is presented in Fig. 1.2(a). For probing the atomic sample,

time-of-flight imaging is employed [59]. For this, the trap is switched off, the sample

drops due to gravity and expands. After a certain time-of-flight, a resonant light

pulse is applied to the sample and the shadow of the atoms is recorded on a CCD

chip. From the determined optical density, the atomic density is calculated. The

expansion of the gas maps the momentum distribution onto a spatial distribution and

allows to extract the temperature. Due to the resonant photon scattering involved,

this probing heats the sample and destroys the quantum state. Therefore, for each

realization a new experimental shot is performed. In Fig. 1.2(b) time-of-flight

absorption images of a BEC with ≈ 3 × 105 atoms coupled out of the QUIC are

shown.
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1 Production and guided magnetic transport of ultracold Rb
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Figure 1.2: Ultracold Rb in the QUIC trap. a) Phase-space density during the
last stage of evaporation in the QUIC trap. Errors are on the order of 10 %
and left out for clarity. The red arrow indicates the point where typically the
evaporation is stopped and Rb is moved to the center with the guided magnetic
transport. b) Time-of-flight images of a BEC released from the magnetic QUIC
trap, the temperature of the atoms is about 200 nK.

1.1.2 Magnetic transport

For the transport, the evaporative cooling of Rb in the QUIC is typically stopped

before the phase-space density comes close to degeneracy, indicated by the red arrow

in Fig. 1.2(a). In this way, more robust thermal clouds are moved which can be

cooled further in the crossed dipole trap. The transport is accomplished by the

controlled lowering of the magnetic trap described in the following.

In a QUIC trap, an Ioffe and quadrupole field nearly cancel at the trap center,

which is in our case at a distance of about 7 mm from the zero-crossing of the

quadrupole field (see Figs. 1.1 and 1.3). The magnetic field can be approximated

by a combination of a quadrupole and a dipole field

~BQUIC(~r) = ~BQ(~r) + ~BI(~r), (1.1)

where
~BQ(~r) = ξ(~ex + ~ey − 2~ez) (1.2)

and

~BI(~r
′ = ~r − yI~ey) =

3py′~r′ − pr′2~ey
r′5

. (1.3)

Here, ξ ≈ 6.2 G/(A cm) is the gradient of the quadrupole coils, p ≈ 27.4 G cm3/A

is the dipole moment of the Ioffe coil and yI ≈ 30 mm is the distance between Ioffe

and quadrupole coils.
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Figure 1.3: Purely magnetic transport at four different stages. From top to
bottom: IQ = 16.9 A, IQ = 13 A, IQ = 8.6 A, IQ = 5.7 A. Left column: Cut
through the magnetic field in y-direction at different transport stages. Shown
are the Ioffe field (dashed line), the quadrupole field (dashed-dotted line) and the
absolute value of the effective magnetic field | ~BQUIC|, along with the harmonic
approximation (light gray). The shaded region indicates the field of view of the
absorption images shown in the right column. Right column: Absorption im-
ages of the Rb cloud in the magnetic trap corresponding to the field configuration
shown in the left panel. Due to the gravitational sag g/ω2

r , the center of the trap
shifts also in x-direction. To cover the entire field of view of more than 7 mm, for
this measurement the CCD camera is moved laterally several times. The position
of each image is calibrated such that it can be displayed in a sufficiently large
frame. The remaining part of the frame is filled with the color corresponding to
the background.
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1 Production and guided magnetic transport of ultracold Rb

The remaining offset field at the center of the trap is adjusted to B0 ≈ 1 G, in

order to avoid Majorana losses due to spin flips [46]. By exciting the center of mass

motion of trapped atoms we measured the trap frequencies in this compressed trap

(at IQ = II = 16.9 A) to be ωr = 2π × [179± 1] Hz (ωa = 2π × [17.9± 0.3] Hz) for

the radial direction along x and z (axial direction along y), in good agreement with

calculated values using ξ and p.

By decreasing the quadrupole field strength, the center of the trap moves towards

the quadrupole field zero crossing at the center of the apparatus (x = y = z = 0).

Using Eq. (1.1), the position of the trap center y0 is calculated to be

y0 = −
(

6IIp

IQξ

) 1
4

+ yI. (1.4)

Here, IQ is the current running through the quadrupole coil and II is the current

of the Ioffe coil. In the left column of Fig. 1.3, the corresponding magnetic fields

along the transport direction (y-direction, x = z = 0) are plotted, showing how the

field components add up to the effective field for varying values of IQ. In the right

column of Fig. 1.3 absorption images of a few million atoms with a temperature of

about 1 µK in the corresponding trap are presented. These images illustrate that,

upon decreasing IQ, the cloud moves towards the center of the apparatus (y = 0).

At the same time, however, the confinement decreases, leading to a larger cloud and

a larger gravitational sag.

Both observations, changing position and confinement, are quantified in Fig. 1.4.

The atoms move along the y-direction as the quadrupole current IQ is decreased

(Fig. 1.4(a)), in good agreement with the expectation according to Eq. (1.4). It

should be noted that the new trap center is given by the point where the slope of

the quadrupole field starts to be larger than the slope of the Ioffe field rather than

its absolute value. Therefore it is also possible to move the trap beyond the zero

crossing of the quadrupole field.

Fig. 1.4(b) shows the measured radial trap frequency ωr (along the x-direction)

during the transport. We model this decay of ωr as a function of quadrupole current

IQ. This is important in order to counteract the relaxing confinement by an optical

guiding field, discussed in section 1.2. Knowing the expression for the magnetic field

according to Eq. (1.1), ωr can be calculated by a harmonic approximation in the

center of the trap

Bx,harmonic = B0 +
∂2| ~BQUIC|

∂x2
x2, (1.5)
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Figure 1.4: Magnetic transport of ultracold Rb. a) By ramping down the
quadrupole current IQ while keeping the Ioffe current II constant, the ultracold
gas can be moved from the original QUIC position (left side, IQ = 16.9 A) across
a distance of about 7 mm to the center of the apparatus (Cs MOT position,
IQ ≈ 5 A). The red solid line shows the expected position according to Eq.
(1.4). b) Measured trap frequencies at different transport stages. The radial
trap frequency in the QUIC trap of ωr = 2π × 179 Hz is strongly decreased to
about 2π × 10 Hz at the end of the purely magnetic transport. The dashed red
line shows the expected trap frequencies according to Eq. (1.6). The decay of
the trap frequencies is compensated for by using a dipole trap as guiding field
(blue dotted line), see section 1.2. The effective trap frequencies of the guided
magnetic transport are approximately constant (green solid line). The errorbars
for the presented data are of a size comparable to the markersize and are therefore
not shown.

where

∂2| ~BQUIC|
∂x2

=

1
2

(
(IQξy

4−3IQξy
3yI+3IQξy

2y2I−IQξyy
3
I +2IIp)

2

(yI−y)6

) 1
2

× (IQξ(yI−y)5−3IIpy+3IIpyI)
2

(yI−y)4(IQξy4−3IQξy3yI+3IQξy2y
2
I−IQξyy

3
I +2IIp)2

and

B0 = | ~BQUIC(y0)|.
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1 Production and guided magnetic transport of ultracold Rb

The potential and, correspondingly, the radial trap frequency ωr is then given by

V = µBgfmFBx,harmonic =
mRb

2
ω2

rx
2. (1.6)

Here, mRb is the mass of the 87Rb atom. The measured values for ωr presented in

Fig. 1.4(b) are in good agreement with our model according to Eq. (1.6).

It should be noted that Eq. (1.5) approximates the field on the symmetry axis of

the QUIC coils (x = z = 0). Due to the gravitational sag the atoms are shifted away

from this axis (x 6= 0), which in turn leads to a change in the magnetic potential.

This effect only becomes noticeable for very low trap frequencies, or long transport

distances. The agreement with the experimental observation, however, is good for

all parameters considered. Also, using the optical guiding field (see section 1.2), the

cloud is forced to stay approximately on the symmetry axis, and the knowledge of

trap frequency decay at the start of the transport is sufficient.

Since the goal of the transport is a Rb sample with high atomic density at the Cs

MOT position at x = y = z = 0, both expansion and sag are not favorable.

1.2 Dipole trap as guiding field and spin-independent trap

Magnetic traps only allow the storing of low field seeking states, as has been dis-

cussed above. The study of spin dynamics in magnetic traps is therefore not with

all spin states possible. In our experiment, it is required to transfer the Rb sample

into spin states, which cannot be trapped in magnetic traps (high field seekers),

as will be discussed later in this chapter (see section 1.3). These limitations of

magnetic trapping can be overcome by employing a far detuned optical dipole trap.

When the frequency is properly chosen, all hyperfine and Zeeman states of the atom

experience approximately the same potential. Additionally, the limitations of the

magnetic transport discussed above can be avoided partially by using an additional

far detuned optical dipole trap as guiding field.

1.2.1 Optical dipole trap for ultracold Rb

Dipole traps are a well established technique employed in many ultracold atom

experiments. Therefore, only the basic concept is briefly introduced and the required

equations are given. A more thorough treatment can be found in [60, 61].

Dipole potential and spontaneous photon scattering

The mechanism of dipole traps relies on the interaction of the light field with the

induced dipole moment of the atoms. Due to this interaction, the atoms experience
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1.2 Dipole trap as guiding field and spin-independent trap

a potential, depending on the wavelength of the dipole trap, proportional to the

intensity of the light field.

In general, all possible transitions of the atom contribute to the resulting potential.

Therefore, the substructure of the atom, consisting of fine, hyperfine and Zeeman

levels, has to be considered. However, for all dipole traps employed in our experi-

ment, the detuning of the dipole trap is large compared to the hyperfine and Zeeman

splittings. Therefore, only the finestructure transitions are considered by summing

over the contributions of the D1 and D2 line. The corresponding potential is given

by

UDT = −3πc2I
2

[
fosc,D1

ΓD1

ω3
D1

(
1

ωD1−ω
+ 1

ωD1+ω

)
+

fosc,D2
ΓD2

ω3
D2

(
1

ωD2−ω
+ 1

ωD2+ω

)] (1.7)

where c is the speed of light, I the intensity of the dipole trap, ωD1 (ωD2) the

frequency of the D1- (D2-) transition, fosc,D1 (fosc,D2) the oscillator strength of the

D1- (D2-) transition, ΓD1 (ΓD2) the natural linewidth of the D1- (D2-) transition

and ω the frequency of the dipole trap. Depending on the frequency of the dipole

trap, the atom experiences either an attractive (red detuned) or a repulsive (blue

detuned) potential.

All dipole traps employed in this thesis are red detuned, so that the atoms are always

attracted into the regions of high intensity. In the case of the running wave dipole

trap introduced in this chapter, the trap is formed by a focused Gaussian beam.

The trapping potential in a MOT is based on the interaction with near resonant

light, therefore the atoms scatter photons with a high rate in this dissipative trap.

Optical dipole traps, in contrast, rely on the dispersive interaction, the created

potential is nearly conservative. Depending on the detuning of the dipole trap,

photon scattering can strongly by suppressed.

The total photon scattering rate, including Rayleigh and Raman scattering, can be

written as

Γ = −3πc2I
2~

[
fosc,D1

Γ2
D1ω

3

ω6
D1

(
1

ωD1−ω
+ 1

ωD1+ω

)2

+

fosc,D2
Γ2
D2ω

3

ω6
D2

(
1

ωD2−ω
+ 1

ωD2+ω

)2
]
.

(1.8)

The spontaneous photon scattering rate scales with I/∆2, whereas the dipole po-
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1 Production and guided magnetic transport of ultracold Rb

tential scales with I/∆, where ∆ is the detuning. For a sufficiently far detuned

dipole trap, the spontaneous scattering rate can be minimized. To provide a suffi-

ciently strong potential, the intensity has to be increased correspondingly. Typical

values for Rb stored in the running wave dipole trap, introduced in the following,

are UDT ≈ h× 1 MHz and ΓDT ≈ 1 s−1.

Dipole trap in the experiment

For the dipole trap, a Nd:YAG laser at 1064 nm boosted by a fibre amplifier is used.

The power is divided to provide two beams to eventually form a crossed dipole trap.

Both beams intersect at right angle at the center of the apparatus, so that a good

three dimensional confinement is achieved. One beam is propagating in the axial

(y) direction through a hole in the Ioffe coil (see also Fig. 1.1), forming the ”axial“

optical trap. The other beam propagates along the radial (z) direction, forming the

”radial“ trap. The power of each of the beams is stabilized by a home-built servo

loop (see [57]) to a maximum power of 3 W (axially) or 0.6 W (radially). Table 1.1

summarizes the beam and trap parameter.

1.2.2 Guided magnetic transport

The axial dipole trap propagates along the transport direction. The parameters of

this trap are chosen such, that it forms a nearly cylindrical potential with a radius of

waxial ≈ 100 µm on the distance from the QUIC center to a position in close vicinity

of the Cs MOT about 7 mm apart. Through this guiding potential the atoms are

moved by the magnetic transport.

For this, the power for the axial dipole trap is ramped up during the magnetic

transport, such that ωr =
√
ω2

QUIC + ω2
dipole is kept approximately constant in the

combined magnetic and optical potential (see Fig. 1.4(b)), calculating ωQUIC using

Eq. (1.6). In this way, a “mode matching” of the cloud into the dipole trap is

achieved. The magnetic transport then shifts the atomic cloud along the guiding

dipole field. This gradual transfer also makes the transport and the loading into the

dipole trap less sensitive to imperfections. For a reasonable range of positions of the

axial dipole trap around the center of the apparatus, the transport works without

noticeable degradation in phase-space density. This is important because later on

this position of the axial dipole trap will be used to change the relative positions of

Rb gas and single atom Cs MOT.

To provide a reasonable confinement also along the third direction (y-direction)

for the final experiments with the single atom Cs MOT, the radial dipole trap is

ramped up within 200 ms while the Rb is stored in the combined magnetic and
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1.2 Dipole trap as guiding field and spin-independent trap

λaxial 1064 nm
waxial 100 µm
zaxial 30 mm

Pmax,axial 3 W
λradial 1064 nm
wradial 48 µm
zradial 7 mm

Pmax,radial 0.6 W

Cs Rb
Γaxial 0.7 s−1 Γaxial 0.2 s −1

Uaxial 54 µK Uaxial 30 µK
Γradial 0.6 s−1 Γradial 0.2 s −1

Uradial 49 µK Uradial 27 µK

Table 1.1: Beam parameter of the running wave dipole trap and deduced prop-
erties of the corresponding potentials.

optical potential in the center of the apparatus at x ≈ y ≈ z ≈ 0. Then, the

magnetic fields of the QUIC are quickly switched off (within 1 ms), leaving the

sample stored in the purely optical trap. Immediately after switching off the QUIC

field, a homogeneous offset field is switched on to provide a quantization axis.

At the end of the transport, the Rb gas is typically cooled by evaporation in the

crossed dipole trap. With this final evaporative cooling an optically trapped BEC

with atom numbers in the range of 104 . . . 105 atoms can be produced in the center of

the apparatus. The advantage of evaporative cooling in the dipole trap rather than

transporting a BEC is a significantly higher stability. Small imperfections in the

transport that lead to heating can be compensated for by evaporative cooling after

the transport. The high trapping frequencies provided by the crossed dipole trap

support efficient cooling. Starting the transport with a Rb gas at about 1 µK in the

QUIC trap and further evaporating after the transport is experimentally identified

as the optimal strategy to produce a BEC after transport.

Thus, the guided transport provides a means to prepare ultracold Rb clouds in the

crossed dipole trap at a position that can be chosen in a large parameter range, in

particular in the vicinity of the single atom MOT.

1.2.3 Characteristics of the running wave dipole trap

For a precise characterization of the crossed dipole trap realized in the experiment,

the trap frequencies are measured.
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1 Production and guided magnetic transport of ultracold Rb

Trap frequencies

A sample of about 2 × 105 Rb atoms with a temperature of typically 500 nK is

produced in the crossed dipole trap with the guided magnetic transport. After that,

the trap is adiabatically compressed. This provides atomic samples cooled deep

into the trap and facilitates characterizing the trap at different depths, allowing

a more precise determination of the parameters. After compression, the intensity

of the axial (radial) trap is sinusoidally modulated for a time of typically 200 ms.

By parametric excitation the atoms are heated and eventually leave the trap. One

way of measuring the trap frequencies is therefore to monitor the loss of atoms for

varying modulation frequencies. Alternatively, the heating can directly be observed

by measuring the temperature using time-of-flight velocimetry. Especially for atoms

cooled deep into the trap like in our case this method is more sensitive, as atoms

can significantly be heated before leaving the trap.

In Fig. 1.5 the obtained excitation spectrum is shown for the radial and the axial

dipole trap. The behavior is as expected. When the modulation frequency is reso-

nant to the parametric excitation frequency, the temperature of the gas is increased

typically by more than a factor of two.

When the axial trap intensity is modulated, an additional peak arises at a frequency

of about 650 Hz. This peak stays constant for all values of the laser power of the

axial dipole trap beam, its frequency corresponds to the frequency of the radial

dipole trap beam for the power used (Iradial = 0.6 W). Therefore this peak can

be attributed to cross talk between axial and radial trap, when the axial trap is

modulated. A similar second peak is observed when modulating the radial dipole

trap at low (Iradial = 0.2 W) overall power. The frequency of this peak again roughly

corresponds to the axial trap at the power used (Iaxial = 2.5 W). Reasons for this

observed cross talk could be a small deviation of the cross angle of 90° between the

dipole trap beams, non-harmonic distortion of the trap or symmetry breaking by

modulated beam power (W) trap frequency (Hz)
radial axial theory experiment

radial 0.6 2.5 326 322± 3
radial 0.3 2.5 231 224± 3
radial 0.2 2.5 188 191± 7
axial 0.6 2 138 128± 2
axial 0.6 1 98 93± 2
axial 0.6 0.5 69 70± 2

Table 1.2: Trap frequencies of the axial and radial dipole trap.
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1.2 Dipole trap as guiding field and spin-independent trap
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Figure 1.5: Trap frequencies of Rb in the crossed dipole trap. The intensity of
either the radial (left row) or axial (right row) dipole trap beam is modulated.
The rise in temperature reveals the trap frequencies for different trap depths.
The solid red line is a fit of a sum of two Gaussians.

gravity. The effect is, however, quite small and does not pose any limit.

For a quantitative estimation, the parametric resonance frequencies are obtained

from the fits shown in Fig. 1.5. The inferred trap frequencies are listed in Table 1.2,

the error indicated are one sigma uncertainties derived from the fits. The expected

radial trap frequency can be calculated in harmonic approximation to

ωr =

√
4U0

mCsw2
0

(1.9)

where U0 is the depth of the potential and w0 the waist of the focus. In Table 1.2

the expected trap frequencies are listed, showing a reasonable agreement with the

measured values. The square root scaling according to Eq. (1.9) is reproduced.
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1 Production and guided magnetic transport of ultracold Rb

1.3 Manipulation of the internal degrees of freedom

For the insertion of single Cs atoms into the Rb gas discussed in chapter 3, Rb needs

to be prepared in a magnetic insensitive mF = 0 state. For experiments dealing with

the interspecies interaction, Rb is prepared in the absolute ground state |1, 1〉. Both

states cannot be trapped magnetically. In this section, the manipulation of the

internal degrees of freedom of Rb, stored in the crossed dipole trap, is introduced.

This manipulation allows the transfer of Rb from the initial |2, 2〉 state into these

target states.

1

F = 2

F = 1

0 

2

-1
mF = -2

0 
1

mF = -1

Figure 1.6: Adressing of hyperfine and Zeeman states of Rb. a) Level scheme
of Rb ground states. The states used in this thesis are marked by red circles. b)
Non-linear splitting of the Zeeman sublevels of the F = 1 hyperfine manifold of
Rb. The inset shows the splitting according to Eq. (1.10). In the main graph,
the difference ∆ω = ω|1,0〉→|1,1〉 − ω|1,0〉→|1,−1〉 between the two transitions with
F = 1 is plotted. This difference allows the adressing of a single transition within
the hyperfine manifold.

The energy dependence of atoms that experience small magnetic fields can be cal-

culated according to Eq. (1.6) by a simple linear scaling. This is sufficient to model

the magnetic trapping potential discussed above. A more precise model is provided

by the Breit-Rabi formula [62]

E(F,mF) =
∆Ehf

2(2I + 1)
+BmFµBgN ±

∆Ehf

2

√
1 +

4mF

2I + 1
x+ x2 (1.10)
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1.3 Manipulation of the internal degrees of freedom

with

x =
µB(ge − gN)

∆Ehf

B. (1.11)

Here, ∆Ehf is the hyperfine splitting of Rb, gN and ge are the nuclear and elec-

tronic Landé factors and I is the nuclear spin. The non-linear splitting described by

Eq. (1.10) lifts the degeneracy between the different Zeeman sublevels of a hyperfine

state.

Fig. 1.6 shows the calculated level shift corresponding to Eq. (1.10) in the range of

magnetic fields of up to 10 G. In the inset, the energy shift of all Zeeman sublevels

of the lowest Rb hyperfine state F = 1 are plotted. The increase in energy is

nearly linear and in the range of several MHz. In the F = 1 hyperfine state two

transitions are possible, mF = 0 → m′F = 1 with transition frequency ω|1,0〉→|1,1〉
and mF = 0 → m′F = −1 with transition frequency ω|1,0〉→|1,−1〉. To drive only one

of these transitions, the difference of the frequency ∆ω = ω|1,0〉→|1,1〉 − ω|1,0〉→|1,−1〉

caused by the quadratic Zeeman effect needs to be sufficiently large. ∆ω is plotted

in the main graph of Fig. 1.6, it increases to a value of about 14 kHz at 10 G. This

allows the addressing of a single Zeeman sublevel inside the hyperfine manifold,

discussed below.
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Figure 1.7: Rabi flopping of Rb atoms. a) Transition between the two hyper-
fine states, showing a Rabi frequency of ωRabi,|2,2〉→|1,1〉 ≈ 2π × 26.5 kHz. b)
Transition between two Zeeman sublevels inside the F = 1 hyperfine state with
ωRabi,|1,1〉→|1,0〉 ≈ 2π × 3.1 kHz.
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1 Production and guided magnetic transport of ultracold Rb

After the guided magnetic transport and the transfer of the sample into the crossed

dipole trap, the magnetic trap is switched off suddenly (in less than 1 ms). With

a homogeneous offset field of about 10 G applied, a transition between the two

hyperfine states of Rb is driven. In this case, the levels are non-degenerate, so

that the problem is well described by a two level model. A π-pulse at a frequency

around 6.8 GHz transfers the Rb sample from the initial |2, 2〉 state to the the |1, 1〉
state, with a pulse duration of about 19 µs, corresponding to a Rabi frequency of

ωRabi,|2,2〉→|1,1〉 ≈ 2π × 26 kHz. The population of the different states is determined

by a Stern-Gerlach experiment similiar to [63], where a magnetic field gradient is

applied to the sample during time-of-flight, separating the states corresponding to

their magnetic moment (for details see [58]). Fig. 1.7(a) shows the corresponding

Rabi oscillation.

Accordingly, a rf π-pulse around 7 MHz transfers the atoms from the |1, 1〉 state

to the |1, 0〉 state. In this case, the pulse duration is about 160 µs, corresponding

to a Rabi frequency of ωRabi,|1,1〉→|1,0〉 ≈ 2π × 3.1 kHz. The respective experimental

data is presented in Fig. 1.7(b). This transition behaves as a two level system due

to the non-linear level splitting described above. The efficiency of both transfers is

typically better than 95%.

1.4 Conclusion

In this chapter, the necessary techniques to prepare ultracold Rb gases were intro-

duced. Ultracold clouds are produced in a standard magnetic trap. The guided

magnetic transport allows to choose the final position of the Rb sample in a range

of several hundred µm around the trapping position of the single Cs atoms, without

significant degradation in phase-space density. Using microwave and radiofrequency

fields, Rb can be transferred into the magnetic field insensitive |1, 0〉 state while

being stored in the dipole trap. This enables the use of the magnetic field for the

high-gradient MOT to capture single Cs atoms without affecting Rb.
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Chapter 2

Single Cs atoms in a species-selective lattice

This chapter deals with the second constituent of the envisioned hybrid system, the

neutral impurity atoms. A high-gradient Cs MOT serves as a source for single and

few atoms [64–66]. Due to the random loading of atoms from the background gas,

the number of atoms captured in the MOT features a Poissonian distribution. In

some experiments, the deterministic preparation of a small number of atoms was

demonstrated [67–69]. However, we are interested in all atom numbers from one

to about ten. This can be achieved by adjusting the Poissonian expectation value

of the MOT. By post-selecting experimental shots, experiments with a precisely

determined number of atoms can be realized, so that the random loading does not

pose any limit in our case.

A MOT is a dissipative trap, atoms scatter photons at a high rate, impeding further

cooling and control of the internal state. Furthermore, when interacting with ultra-

cold Rb, interactions are dominated by inelastic light-induced collisions, that lead to

a rapid loss of Cs from the trap [58]. For the envisioned experiments, ground state

interactions “in the dark“ of the impurity atom with the buffer gas are required.

Therefore an optical lattice is added, that provides a conservative potential. Fur-

thermore, the trap for Cs has to be compatible with the ultracold Rb sample. This is

facilitated by choosing an appropriate wavelength for the optical lattice, that creates

a species-selective trapping potential. For the experiments with ultracold Rb, the

temperature of the impurity atom needs to be determined. Two different methods

to measure the temperature of single Cs atoms in the optical potential of the lattice

are presented.

2.1 Experimental setup

In most experiments, MOTs are used as a precooling stage to capture many atoms,

with atom numbers in excess of 1010. Two MOTs in this regime are also used in
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2 Single Cs atoms in a species-selective lattice

our experiment for the preparation of Rb. By choosing lower laser intensities and a

high magnetic field gradient, the MOT can drastically be altered to trap single and

few atoms. The setup of the single Cs atom MOT in our experiment is described in

detail in [57, 58, 70–72].

To observe this small amount of atoms, a sensitive detection system is required. The

main demand in our case is a reasonably simple setup, compatible with the existing

BEC experiment, that is capable to resolve single atoms. This is accomplished by

employing a standard high aperture laser collimation objective as first imaging lense.

The width of the point-spread function of the complete detection setup is about 7

µm, due to the aberration of the glass cell which is not compensated for [70]. A

spatially resolved imaging by a CCD camera would therefore only provide limited

information. Consequently, the collected photons are counted by an avalanche pho-

todiode after spectral and spatial filtering. In this way, the exact number of Cs

atoms can be counted without gaining spatial information, which is sufficient for all

experiments presented in this thesis.

The optical lattice is created by two counterpropagating beams that are focused

to a waist of wlattice ≈ 31 µm with a maximum power of 100 mW in each beam

at a wavelength of λlattice = 899.93 nm. The intensity of each beam is controlled

individually by a home-built servo loop of the same type like employed for the

running wave dipole trap [57]. In Fig. 1.1, the basic setup of the lattice in our

experiment is sketched, details are given in [72].

2.2 MOT as source and detection tool for single Cs atoms

For all experiments throughout this thesis, the high-gradient MOT serves as prepa-

ration and detection tool for single Cs atoms.

2.2.1 Source for single Cs atoms

From the detected fluorescence, the number of atoms in the MOT is inferred. Typical

time traces and a corresponding histogram of a few hundred shots are presented in

Fig. 2.1.

The number of atoms captured into the MOT from the background gas follows a

Poissonian distribution (see also Fig. 2.1). This reflects the random loading of

background gas atoms. Here, the probability to capture n atoms is given by

PN̄(n) =
N̄ne−N̄

n!
(2.1)
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Figure 2.1: Single Cs atom MOT. a) Fluorescence of Cs trapped in the MOT,
showing distinct steps corresponding to single atoms. b) Histogram of a few
hundred time traces. The envelope of the histogram is fitted with a Poissonian
distribution according to Eq. (2.1).

where N̄ is the mean atom number. To adjust the number of loaded Cs atoms, the

MOT is operated for a time of typically 150 ms with a lower gradient (typically 60

G/cm). In this way we adjust the Poissonian expectation value N̄ of the Cs atom

number, typically to a value around two atoms. After this loading stage, the MOT

is compressed by ramping up the gradient in a few ms to 300 G/cm, leading to a

tighter MOT with a diameter of approximately 30 µm. In this high-gradient MOT,

the loading rate is typically below one atom per second. Hence, we keep the number

of initially trapped atoms in the MOT for a sufficiently long time to reliably count

them.

2.2.2 MOT as detection tool

At the end of each experiment, Cs is recaptured in the high-gradient MOT and the

number of remaining Cs atoms is counted. For the recapture, at first the lattice is

ramped up. This allows to switch on the magnetic field gradient in the next step,

because the lattice provides a sufficiently deep potential to trap atoms also in high

field seeking states, that experience a repulsive potential due to the magnetic field

gradient. Finally, the MOT lasers are switched on, the lattice is extinguished and

the fluorescence of the atoms is detected to determine the atom number. Switching
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2 Single Cs atoms in a species-selective lattice

on the MOT lasers after applying the magnetic gradient ensures that the probability

to load atoms from the background gas during recapture is smaller than one percent

and can be neglected.

Bayes analysis of fluorescence data

For suffieciently long binning times and low atom numbers, the distinctive peaks

corresponding to single atoms are well separated in the histogram. In these cases, a

simple threshold analysis can be used to deduce the atom number from the observed

fluorescence, as is evident in the data presented in Fig. 2.1(b).

For some experiments, however, it is advantageous to be able to determine the atom

number with a shorter binning time. Furthermore, the noise increases for higher

absolute photon counts due to shot noise [57], which leads to a broadening of the

peaks corresponding to higher atom numbers. Both effects cause a gradual overlap

of the peaks, impeding a simple threshold analysis.

Therefore, alternatively a Bayesian approach based on inductive reasoning is em-

ployed [73]. The quantity of interest is the posterior probability p(H|D), the proba-

bility that the hypothesis H is true, under the condition that the experiment yielded

the data D. Usually, the likelihood function p(D|H), the probability of observing

the data D when the hypothesis H is true, can be assigned in an experiment. Bayes

theorem relates these conditional probabilities. It can be written as

p(H|D) ∝ p(D|H)× p(H) (2.2)

where p(H) is the prior probability, reflecting the initial knowledge of the hypothesis.

This reasoning can be applied to our case. The fluorescence traces consists of dis-

crete, binned time intervals (see Fig. 2.1(a)). Initially, the probability for each

atom number that occurs in the histogram is set equal, since we do not have any

information yet. In the next time intervall, we gain information in the form of the

number of counted photons. With the corresponding histogram (see Fig. 2.1(b)),

the likelihood function p(D|H) can be calculated, the probability to observe a num-

ber of photons given a certain atom number. With Bayes theorem, the posterior

probability p(H|D) is calculated, yielding the probability for each atom number.

The resulting posterior probability is used in the next time step as prior probability,

reflecting the increased knowledge about the atom number. Additionally, the inde-

pendently measured loading and loss rates of atoms in the MOT can be included

in the analysis. This adjusts the ”willingness“ of the algorithm to detect loading or

loss events. Finally, with the photon number measured in the next binning interval,
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2.3 Species-selective optical lattice

the new posterior probability is calculated. This is repeated for the complete fluo-

rescence trace. The result is a time trace, where a probability is assigned to each

atom number. Therefore the most probable atom number is known, along with a

measure for the confidence. In our case, one certain atom number typically has a

probability close to unity, so that the Bayes algorithm works very reliably.

With the methods introduced, single atoms can be prepared, recaptured and de-

tected in the MOT. This is the prerequisite to perform experiments in the conser-

vative lattice potential, described in the following.

2.3 Species-selective optical lattice

The lattice potential has to be sufficiently deep to load a laser cooled Cs atom di-

rectly from the MOT. At the same time, the lattice should be reasonably shallow

for Rb, to facilitate the adiabatic loading of ultracold Rb and to keep the den-

sity as low as possible to prevent high collisional losses. In addition, the limited

laser power has to be taken into account. To fulfill these requirements, the em-

ployed Ti:Sa laser is tuned to 899.93 nm, which is roughly 5 nm to the red of the

D1-transition of Cs at about 894.59 nm [74]. This leads to a relatively high off-

resonant photon-scattering which limits the lifetime of the spin polarization, dis-

cussed in detail below. Accordingly, the lattice creates a significantly shallower

potential for Rb than for Cs.

2.3.1 Optical lattice parameter

In an optical lattice, two counterpropagating beams create an interference pattern

with a periodicity of λ/2. The corresponding intensity can be described by

I(x, y, z) = I0 cos2(kz) exp(−2(x2 + y2)/w2
lattice) (2.3)

where k is the wavevector of the lattice. From this intensity, the corresponding

potentials for Rb and Cs are calculated.

Like in the case of the running wave dipole trap, the detuning is large compared

to the hyperfine and Zeeman splitting. Therefore it is sufficient to sum over the

contributions of the D1 and D2 line. In Table 2.1 the trap parameters obtained

with Eq. (1.7) and Eq. (1.8) are listed. As intended, the trap depth for Rb is

significantly lower than for Cs, the difference is about one order of magnitude.

These parameters are theoretical and do not take into account experimental imper-

fections and uncertainties of the initial beam characteristics. In the following, the

trap is characterized experimentally, providing a way to check these parameters.
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2 Single Cs atoms in a species-selective lattice

λlattice 899.93 nm
wlattice 31 µm
zlattice 3 mm

Pmax,lattice 100 mW
Imax,lattice 0.27×109 W / m2

Cs Rb
ΓCs 426 s−1 ΓRb 1.8s −1

U0,Cs 900 µK U0,Rb 84 µK

Table 2.1: Beam parameters of the optical lattice and deduced properties of the
corresponding potential.

2.3.2 Typical sequence and statistical uncertainty

Before starting with the experimental characterization of the lattice, some essential

experimental techniques are introduced in the following. A typical sequence starts

with the preparation of a precisely known number of Cs atoms in the MOT. Sub-

sequently, the atoms are transferred to the lattice, the efficiency of this transfer is

close to unity. The MOT is switched off and an experiment is performed with the

atom stored in the conservative potential in the dark. Because of the low atom

number, the probability to load two atoms into the same potential well can be ne-

glected, so that each individual atom is stored in an isolated well of the lattice. In a

typical experiment, the quantity to be measured (e.g. trap frequency, lifetime, ...) is

mapped onto the survival probability of the Cs atom. Finally, the remaining atoms

are recaptured in the MOT and counted. In Fig. 2.2 a basic sequence is presented.

Figure 2.2: Typical sequence. Single or few Cs atoms are trapped in the MOT
and transferred to the lattice. Cs is stored in the optical lattice “in the dark”
and then recaptured in the MOT.
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2.3 Species-selective optical lattice

For a single atom, the outcome is either the survival or the loss of the atom.

The statistical uncertainty for an experimentally determined survival probability

p = m/N with N trials with single atoms and, correspondingly, m surviving atoms,

is given by a binomial distribution

P (N,m, p) = pm(1− p)N−m N !

m!(N −m)!
. (2.4)

From this relation the confidence intervals are calculated. A detailed derivation

can be found in the PhD thesis of Stefan Kuhr [75]. In general, the derived errors

are asymmetric. For all single atom survival probability measurements throughout

this thesis, the statistical uncertainty is given within this framework, unless stated

otherwise.

Adiabatic lowering of the optical lattice

For most experiments with single Cs atoms in the lattice, the potential depth is

lowered adiabatically. For the criteria for adiabaticity, the reasoning in the thesis of

Wolfgang Alt is followed [76]. The waveform used is given by

U(t) =


U0 for t ≤ t0

U0

(
1− t2

4T 2
c

)
for 0 < t ≤ Tc

√
2

U0
T 2
c

t2
for t > Tc

√
2

where U0 is the initial potential depth and Tc is the time constant for the waveform.

The radial motion of atoms in the trap defines the characteristic timescale, given

by the radial trap frequency of ωr ≈ 2 kHz (see section 2.3.3). The characteristic

timescale is therefore set to Tc = 5 ms to fulfill the criteria for adiabaticity. This

also defines the duration of the ramp; lowering the trap to 1% of the initial trap

depth takes 50 ms. In Fig. 2.3 the lowering of the potential with a duration of

50 ms is plotted.

2.3.3 Trap frequencies

The characterization of the lattice potential starts with the determination of the

trap frequencies. The axial ωz and radial ωr trap frequencies are given by

ωz = 2π

√
2U0

mCsλlattice

(2.5)
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2 Single Cs atoms in a species-selective lattice
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Figure 2.3: Adiabatic lowering of a potential to 1% of the initial trap depth,
according to the waveform described in the text.

and

ωr =

√
4U0

mCsw2
lattice

(2.6)

where λlattice is the wavelength and wlattice the waist of the lattice beams. With the

potential depth U0 = 900 µK, this yields theoretical values of ωr = 2.3 kHz for the

radial trap frequency and ωz = 345 kHz for the axial trap frequency for Cs atoms.

To compare this calculated values with the realization in the experiment, the trap

frequencies are measured. For this, the trap intensity is modulated for 200 ms with

an amplitude of typically 20% of the total trap depth. Then the trap is adiabatically

lowered to about half the initial trap depth to allow heated atoms to escape. This

transforms the determination of the survival probability to a temperature measure-

ment in the framework of adiabatic lowering (as discussed below in section 2.4.1).

This leads to a much higher sensitivity, like discussed above for Rb, see section 1.2.3.

Finally, the number of surviving atoms is measured.

The result is shown in Fig. 2.4. For the radial trap frequency, two loss dips are

observed. The dip at about 2 kHz probably corresponds to resonant heating. How-

ever, it only consists of a single data point, so that the it cannot be employed for

a reasonable analysis and is therefore ignored. Instead, the radial trap frequency is

determined from the second dip at ωr,parametric = (4.2±0.1) kHz, that corresponds to

parametric heating, to be ωr = (2.1 ± 0.1) kHz. The axial frequency is determined

from the fit of Fig. 2.4 to be ωz = (311 ± 1) kHz. Both radial and axial frequency
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Figure 2.4: Measurement of trap frequencies of Cs stored in the lattice. When
the modulation frequency is resonant to the parametric excitation frequency, the
atoms are heated out of the trap. a) Radial trap frequency. b) Axial trap
frequency.

are found to be reduced by about 10% compared to the theoretical expected values.

The deviation can be explained by experimental imperfections like aberrations in

the focusing optics, limited aperture of the optics that leads to diffraction and thus

reduced intensity in the focus, and loss of intensity by reflection off the glass cell.

Since both radial and axial trap frequencies are lower by the same factor, a possible

loss in contrast due to polarization impurity seems not to play a role here. For the

analysis in the rest of this thesis, the trap parameters deduced from the measured

trap frequencies are used. The resulting trap depth is therefore Ulattice ≈ 720 µK,

since ω ∝
√
U (see Eq. 2.4).

2.3.4 Off-resonant photon scattering rate

The disadvantage of the high selectivity of the lattice for Cs compared to Rb is

a small detuning of only 5.3 nm to the Cs D1-line. This causes a relatively high

off-resonant scattering rate of lattice photons. This scattering consists of elastic

Rayleigh scattering (F = F ′) and inelastic Raman scattering (F 6= F ′). Both

processes transfer energy to the atom (see section 2.3.5); Raman scattering events

in addition change the (hyperfine and Zeeman) state of the atom. This limits the

time scale on which manipulations of the internal degree of freedom are possible

with the atom stored in the lattice.
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2 Single Cs atoms in a species-selective lattice
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Figure 2.5: Decay of the spin polarization due to off-resonant photon scattering,
for both hyperfine states and different lattice intensities. At full lattice intensity,
the spin polarization is lost within a few ms (H: F = 3, Plattice = 100 mW and
�: F = 4, Plattice = 100 mW). For lower lattice intensity, the decay is accordingly
slower (�: F = 3, Plattice = 8 mW and •: F = 4, Plattice = 8 mW).

When loaded from the MOT, the Cs atoms have arbitrary F and mF quantum

numbers. A simple way to control the hyperfine state is to leave on the repumper

(cooler) of the MOT laser, thereby pumping the Cs atom into the F = 4 state

(F = 3 state).

In order to determine the hyperfine state, a Stern-Gerlach type experiment, as ap-

plied for ultracold Rb clouds in this thesis, is not suitable because time-of-flight

imaging is not possible. Instead, a (hyperfine) state-selective push out is used

[75, 77]. For this purpose, a laser is locked to the F = 4 → F ′ = 5 transition.

This transition is nearly closed, so that enough photons are scattered before the

atom is transferred into the F = 3 state. By using a sufficiently high intensity,

the atoms are pushed out of the trap in less than one oscillation period. This en-

sures that the push out mechanism relies on the transfer of momentum, rather than

energy. In this way, a good selectivity close to unity is achieved.

To quantify the off-resonant photon scattering of the Cs atoms by the lattice light,

the decay of the spin polarization of the Cs atoms is measured. For this Cs is loaded

into the lattice and subsequently the lattice depth is lowered adiabatically to the

desired value. The atoms are then optically pumped either into the F = 3 or the

F = 4 state. After a variable storage time, the push out laser is applied to the

sample, removing atoms in the F = 4 state. Finally, the fraction of atoms in the

F = 3 state is determined.
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2.3 Species-selective optical lattice

In Fig. 2.5 the experimental results are presented. At maximum lattice intensity

(Plattice = 100 mW), atoms initially prepared in the F = 3 state decay into an

equal spin mixture with a time constant of (8.6± 1.1) ms. Correspondingly, atoms

initially prepared in F = 4, decay within (6.5 ± 1.3) ms. For a lower lattice power

of Plattice = 8 mW, the time constants are determined to be (155 ± 26) ms for the

F = 3 state and (149± 19) ms for the F = 4 state.

From the calculated scattering rate at full lattice power, an off-resonant photon

scattering rate, including both Raman and Rayleigh scattering, of about 340 s−1

is expected. The Raman scattering is reduced by a factor that depends on the

wavelength [78]. The measured decay time on the order of 100 – 200 s−1 seems to

be in agreement with the expectation. The scaling of the decay rate should scale

linearly with the lattice power. This is also roughly confirmed by the measured time

constants for Plattice = 8 mW.

2.3.5 Lifetime

To determine the lifetime of an atom stored in the lattice experimentally, Cs is

loaded into the lattice and stored for varied time intervals. After the storage time,

the remaining atoms are counted. Fig. 2.6 shows the result. With a time constant

of about 6 seconds, atoms are lost from the trap.

The lifetime of a Cs atom stored in the lattice is given by several fundamental

and technical loss and heating processes. A fundamental loss mechanism are col-

lisions with high temperature background gas atoms, that lead to an immediate

loss of atoms from the trap. However, at the UHV conditions (pressure of about

10−11 mbar) in our apparatus, the lifetime due to these collisions was measured to

be about 160 s for Rb stored in the magnetic trap and can be completely neglected

here.

The dominant fundamental loss process in the lattice is the recoil heating of atoms

out of the trap due to off-resonant photon scattering from the lattice beams. Each

scattered photon increases the energy of the atom by twice the recoil energy

Erec =
~2k2

2mCs

(2.7)

where k is the wavevector of the lattice laser. Assuming the total photon scattering

rate to be ΓCs ≈ 340 s−1, the heating rate Pheat can be calculated [61, 79] from this
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Figure 2.6: Lifetime of single Cs atoms stored in the lattice at full intensity
(Plattice = 100 mW). The red line indicates the expected loss rate due to heating
by lattice photons.

to be

Pheat = 2ErecΓCs. (2.8)

In our case the recoil energy amounts to Erecoil = 89 nK, yielding a heating rate of

76 µKs−1 at full lattice power (P = 100 mW). The lifetime τlattice of the atoms due

to recoil heating is hence given by

τlattice =
Ulattice

2Pheat

(2.9)

where Ulattice is the depth of the lattice potential for Cs [79]. Assuming

Ulattice = 720 µK, the time constant for the lifetime equals to τ = 6.0 s. A

plot of an exponential decay with this time constant presented in Fig. 2.6, along

with the experimental data shows a reasonable agreement for small storage times

(t ≤ 3 s). For longer times, however, a faster, non-exponential loss is observed,

pointing to an additional heating mechanism.

A technical source of heating in the trap is optical phase noise, caused by electronic

phase noise of the driving electronics of the acousto-optical modulators used for

power stabilization. Any relative shift of the phase of the two lattice beams leads
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2.4 Temperature measurements of single atoms

to fluctuations of the position of the lattice potential wells. This can lead to rather

high heating rates on the order of several hundred µKs−1 [76]. To avoid any phase

noise in our setup, the rf driving signal for the acousto-optical modulators is derived

from the same voltage-controlled oscillator. Hence, phase noise should not play a

role in our setup.

Since all experiments in the lattice take only few tens of milliseconds, the photon

scattering does not limit the survival probability of Cs. The relatively high heating

rate of 76 µKs−1 holds for full lattice power. For most experiments, the lattice is

ramped down adiabatically directly after the transfer of the atom from the MOT

within milliseconds to a few percent. The heating rate is proportional to the scat-

tering rate which is proportional to the lattice intensity. Thus the overall heating in

the lattice in a typical experiment can be estimated to be below 1 µK. This has to

be compared to the temperature of the atom when loaded from the MOT of about

30 µK, see next section. Hence, the heating is on the order of a few percent and can

be neglected here.

2.4 Temperature measurements of single atoms

Time-of-flight velocimetry with absorption imaging is a standard tool of cold atom

experiments and is also used in this experiment with ultracold Rb gases. For single

atoms, it cannot be applied since absorption imaging is not possible. Employing

fluorescence imaging, the temperature of single atoms has been obtained from time-

of-flight measurements [80]. However, this approach needs an inappropriate tech-

nical effort for our purpose. Techniques relying on microwave spectroscopy require

the motional sidebands to be resolvable [81]. In the lattice, this is possible only

in the axial degree of freedom with a trap frequency of hundreds of kHz. For the

interaction experiments with Rb in chapter 4, both species are stored in a running

wave trap with trap frequencies of few hundred Hz, which impedes the use of this

technique.

Instead, two simple methods that rely on the thermal distribution in the trap are

applied here. In the first method, the trap depth is lowered adiabatically. From the

survival probability for different trap depth at the end of the lowering, the thermal

distribution of the atoms can be inferred. This technique was employed in our

group earlier [76]. In a second approach, the trap is switched off non-adiabatically

for a short time ∆t, allowing hotter atoms to escape with higher probability. The

survival probability in dependence on the release time ∆t can be analyzed to extract

the temperature. This method is particularly useful for lower temperatures, as will

be discussed in the following.
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2 Single Cs atoms in a species-selective lattice

2.4.1 Adiabatic lowering

The basic adiabatic lowering experiment is illustrated in Fig. 2.7. An atom with

initial energy E0 is prepared in the trap (Fig. 2.7(a)). Then, the trap is lowered

adiabatically (Fig. 2.7(b)). During the adiabatic lowering, the initial energy E0 of

the atom is lowered, the conserved quantity here is the action. The energy E(t) of

the atom decreases more slowly than the trap depth U(t), causing the atom to leave

the potential at some finite escape energy Uesc (Fig. 2.7(c)).

The atoms in the trap have a thermal distribution, so that the initial energy E0 for

each atom is different. The survival probability for an ensemble of single atoms for

a certain, fixed lowered energy Ulow determines the fraction of atoms above a certain

level of initial energy E0. Hence, the measurement of the survival probabilities

in dependence on the lowered energy Ulow allows to extract the temperature and,

furthermore, the energy distribution of the atoms, providing a consistency check for

this technique. Additionally, the energy distribution needs to be known to model

the release and recapture technique, discussed later in this section.

Theory and simulation of adiabatic lowering

For a quantitative analysis, the escape energy Uesc has to be connected to the initial

energy E0 of the atom in the trap. To model the adiabatic lowering, the equations

of motion have to be solved for atoms in the lattice potential. The lattice potential

is given by

V (x, y, z, t) = Ulattice(t) cos2(kz) exp(−2(x2 + y2)/w2
lattice) +mCsgx (2.10)

where Ulattice(t) is the time-dependent potential depth and wlattice the waist of the

lattice. There is no analytic solution for the equations of motion given by this po-

tential. The treatment within a harmonic approximation is not sufficient, since the

atom experiences the full volume of the trap during the lowering sequence. Grav-

ity plays an important role especially for low traps and needs to be included. The

trajectories of the atom are therefore in general strongly non-harmonic. Addition-

ally, gravity leads to a coupling of the perpendicular degrees of freedom. To obtain

realistic trajectories of the atoms in this potential, the equations of motion where

numerically solved. For all simulations in this thesis, the scipy and numpy libraries

of python are employed [82, 83].

The general approach of the simulation follows the steps taken in [76]. First the

initial energy E0 of the atom is fixed. Then this energy is randomly distributed

among the three degrees of freedom. Now the equation of motion for one degree
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Figure 2.7: Adiabatic lowering of a potential. a) Initially, the atom is stored
in the potential with an energy E0. b) The energy of the trapped atom E
decreases more slowly than the potential depth U of the potential. c) At some
potential depth Uesc the energy of the atom equals the potential depth and the
atom escapes.

of freedom is integrated for a random fraction of the one-dimensional oscillation.

By this means one-dimensional spatial coordinates and velocities are generated,

combining these gives a set of three-dimensional phase-space coordinates. Since the

potentials are non-linear, this can lead to a slightly different energy. To compensate

for this, the atom is slightly moved in the three-dimensional potential towards the

center (away from the center) and the velocities are slightly decreased (increased)

in order to decrease (increase) its energy. In this way, the energy is adjusted to a

precision of better then 0.1% of the initial value. Overall this approach ensures that

the phase-space for the initial conditions is populated equally.

With these initial conditions the three-dimensional equations of motion given by

Eq. (2.10) are integrated for a given time interval, in this case on the order of

several ten ms. During this evolution, the potential is ramped down according to

Eq. (2.3) to a value Ulow. The trap depth is then held constant at Ulow for 20 ms,

to allow the atom to escape from the recapture region of the MOT. After this, the

distance of the atom to the center (MOT-position) is measured. If this distance is

more than 100 µm, the atom is counted as lost.

This procedure is repeated at least 200 times for a given E0, such that the statistic

uncertainty is reasonably small. The result of a run for a given E0 is the evolution

of surviving probability with the lowered trap depth Ulow at the end of the lowering.

For a quantitative determination of the escape energy Uesc and the energy selectivity

∆Uesc from this data, the decay of the survival probability around Uesc is fitted with
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2 Single Cs atoms in a species-selective lattice

an error function

erf(Ulow) =
2√
π

∫
exp

(
−(Ulow − Uesc)

∆Uesc

)
dx. (2.11)

In this way, for each initial energy E0 the escape energy Uesc and the energy selectiv-

ity ∆Uesc is found. The final result of the simulation of adiabatic lowering is shown

in Fig. 2.8. The data points indicate the escape energy Uesc, the bars correspond to

the energy selectivity ∆Uesc.

For an experimentally measured escape energy Uesc, the initial energy of the atom

in the trap E0 can now be inferred. For this purpose, an empirical function of the

form

E0(Uesc) = a
√

(Uesc − b)− c− dUesc − eU2
esc − fU3

esc (2.12)

is fitted to the simulated data. With the obtained parameters, the experimental

data is scaled to extract the temperature.

Experimental results of adiabatic lowering

The experiment contains the same steps discussed above for the theoretical model-

ing. Cs is prepared in the lattice at full power, subsequently the lattice is lowered

adiabatically to a value between 0.5% - 8% of the initial trap depth. The remaining

number of atoms is counted.

The result of this measurement is shown in Fig. 2.9. At trap depths Ulow below

about 4%, the atoms start to leave the trap. The total transfer efficiency is about

97% in this measurement. By scaling this data according to Eq. (2.12) with the

parameters obtained by the simulation, the energy distribution is calculated. It is

shown in Fig. 2.10. To extract a temperature, a Maxwell-Boltzmann distribution

of the form

pMB(~v) = (mCs/2πkBT )
3
2~v 2 exp(−mCs~v

2/2kBT ) (2.13)

is assumed. The cumulative probability distribution according to Eq. (2.13) is

used to fit the data, the fitted function is shown in Fig. 2.10. The agreement

between experimental data and the fit is reasonable. Additionally, in Fig. 2.10 the

corresponing probability density for the data is shown. The fit yields a temperature

of 27 µK, where the error is estimated by the uncertainties of the trap parameters

to be about 20%. The measured temperature is considerably below the Doppler
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Figure 2.8: Initial energy of the atom E0 versus escape energy Uesc obtained
from the simulation, in linear scale (upper panel) and logarithmic scale (lower
panel). An atom with an initial energy E0 of for example 0.8 U0 will escape from
the potential at lower potential depth, in this case approximately 0.5 U0. The
experimentally determined entity is the escape energy Uesc, that can be translated
into the initial energy of the atom E0 by the fit with an empirical function given
by Eq. (2.12) (red line). For details see text.
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Figure 2.9: Survival probability of single atoms in the lattice versus reduced
trap depth Ulow at the end of adiabatic lowering.

limit of 125 µK, indicating sub-doppler cooling in the MOT during transfer. This

temperature is comparable to the results of another experiment in our own group

[76] and with experiments performed in the group of P. Grangier with single Rb

atoms [84]. Furthermore, the atoms are observed to obey a Maxwell-Boltzmann

energy distribution.

The disadvantage of the technique of adiabatic lowering is the low sensitivity for

colder atoms as for instance prepared by sympathetic cooling of Cs in ultracold Rb

in chapter 4. This can be seen in Fig. 2.8. For lower initial energies E0, the slope of

the empirical fit function becomes steeper, such that a small error in the measured

escape energy causes a drastic change in the extracted initial energy of the atom.

Furthermore, for smaller trap depth, gravity plays an increasingly important role

and can lead to deviations that are not reflected by the simulation, as for example a

non-perfect perpendicular alignment of the trap with respect to gravity. For lower

temperatures the release and recapture technique is a good alternative, as discussed

in the next section.

2.4.2 Release and recapture

The release and recapture technique is one of the most basic and earliest temperature

measurements performed with cold atoms [59]. The basic idea is shown in Fig. 2.11.

The trap is switched off in a non-adiabatic way. The atoms experience a short time
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Figure 2.10: Energy distribution of single atoms measured by the adiabatic low-
ering of the potential. a) Cumulative energy distribution, yielding a temperature
of T = 27 µK. b) Corresponding probability density.

of free expansion ∆t, after which the trap is switched on, again in a non-adiabatic

way. The probability to recapture an atom in the trap is the higher, the lower the

kinetic energy was.

The criterion for a non-adiabatic extinguishing of the lattice light is again (like the

criterion for adiabaticity in section 2.3.2) determined by the trapping frequencies.

Due to the limited bandwidth of the power stabilization servo loop of at most 100

kHz, switching off the lattice takes a finite time. Therefore the trap is switched off

in a non-adiabatic way for the two radial degrees of freedom (ωradial ≈ 2 kHz), but

for the axial degree of freedom any switching using the servo loop is an adiabatic

process (ωaxial ≈ 311 kHz). In the simulation introduced in the following, this is

modeled by an exponential decay with a time constant τ = 13 µs, that was measured

experimentally for the specific experimental parameters.

In order to extract a temperature from the experimental data, a realistic simulation is

necessary. The trap potential is again given by Eq. (2.10). The aim of the simulation

is now to reproduce a release and recapture experiment for a given temperature of

the atom. This is done for a set of different temperatures. Then, for an experimental

data set, the simulation with the least squared deviation is determined to find the

best estimate of the temperature.
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Figure 2.11: Schematic release and recapture sequence. The potential is
switched off non-adiabatically. For a time ∆t the atomic sample is allowed to
expand freely. Then the trap is switched on non-adiabatically and the number of
surviving atoms is counted.

Since it is now the temperature of the atom that is fixed, and not the energy like in

the simulation of the adiabatic lowering, an energy distribution has to be assumed.

From the adiabatic lowering this distribution is known to be well described by a

Maxwell-Boltzmann distribution. Therefore, for a given temperature the initial en-

ergy of the atom is randomly chosen with a Maxwell-Boltzmann probability function

given by Eq. (2.13). In Fig. 2.12 the resulting energy distribution for one typical

simulation run consisting of 2000 shots is shown.

For a certain energy in one shot, a random position and kinetic energy in the po-

tential are chosen, along the lines of the simulation of the adiabatic lowering. The

equations of motion are then integrated numerically to determine the trajectory of

the atom, with the release and recapture sequence (see Fig. 2.11) included into the

simulation after a certain time. Finally, the distance of the atom to the MOT posi-

tion is calculated. If the atom has departed more than 100 µm from the MOT, the

atom is count as lost. For each temperature, the release time is varied to reproduce

a complete experimental run.

Experimental results

The experimental run consists of the same steps like discussed for the simulation.

Few Cs atoms are transferred into the lattice, the trap is switched off for a time

∆t between 0 – 3 ms, and the remaining fraction of atoms is determined. For each
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Figure 2.12: Energy distribution of an ensemble of single atoms with a temper-
ature of T = 30 µK, as calculated by the simulation. For details see text.

data point about 200 shots are taken. Fig. 2.13 shows the results. For very short

expansion times ∆t, basically no atoms are lost. With increasing release time, the

survival probability drops further with the highest slope at about 500 µs. After

3 ms, the survival probability is less than 10%.

This characteristic shape is reproduced by the numerical simulation. To find the best

estimate for the temperature, a least squared analysis is performed for simulation

runs of different temperature. The experimental data is fitted with the simulation

of all simulated temperatures. The only fit parameter is the overall loading efficient,

which is very close to unity and thus has only little influence. In Fig. 2.13 the

simulation with T = 30 µK, that reproduces the experimental data best, is presented.

The simulation agrees well with the experimental data. As an estimate of the

uncertainty, the simulation corresponding to a temperature of T = 20 µK and

T = 40 µK is plotted in Fig. 2.13, showing a significant deviation. Within the

uncertainty, the temperature measured with the release and recapture method is

equal to the one determined from the adiabatic lowering.

2.5 Conclusion

In this chapter, all necessary methods dealing with the impurity atoms were in-

troduced. The analysis of the trap parameters shows a reasonable agreement with

theory. The temperature of single Cs atoms is determined, the two employed meth-

ods provide a consistent quantitative understanding also in terms of the energy
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Figure 2.13: Temperature measurements of single Cs atoms in the lattice by a
release and recapture experiment. The survival probability decays with a char-
acteristic shape, that is reproduced by the numerical simulation. The simulation
with T = 30 µK describes the experimental data best, for comparison the simu-
lation for T = 20 µK and T = 40 µK is plotted.

distribution. With the release and recapture technique, a way to measure the tem-

perature of atoms cooled deep into the trap is introduced. The understanding of the

two sub-systems gathered in the last two chapters opens the way for the immersion

of single and few Cs atoms into the ultracold Rb gas.
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Chapter 3

Inserting single Cs atoms into an ultracold

Rb gas

In the preceding chapters, the two different cooling and trapping schemes for laser-

cooled single Cs atoms and ultracold Rb gases were introduced. These systems

represent two different regimes. Single Cs atoms are loaded directly from a MOT

and have therefore a relatively large temperature of about 30 µK. Rb, in contrast,

is prepared by evaporative cooling with a temperature of about hundred nK and

high atomic densities. These distinct properties lead to correspondingly different

trapping potentials. The trap for single Cs atoms is stiff and deep, compared to the

rather soft and shallow large volume trap employed for ultracold Rb.

The challenge here is to transfer single Cs atoms into the Rb cloud with a reasonable

efficiency without affecting the ultracold Rb sample. In the following, a sequence is

presented combining the traps of both subsystems in a way that allows the doping

of the ultracold gas with impurity atoms.

3.1 Species-selective trapping and doping of Rb with Cs

To cool and trap two different atomic species in close proximity, a species-selective

trap is necessary, for example by the choice of the dipole trap wavelength [85]. In

our case the selectivity is created by operating a high-gradient MOT for Cs while

Rb is optically trapped in a mF = 0 Zeeman sublevel. Due to the large difference in

wavelengths of the D2-transitions of Rb and Cs (780 nm versus 852 nm), Rb atoms

are not affected by the Cs MOT laser. For the Cs MOT, in turn, the dipole trap is

a small perturbation (energy shift of ≈ kB×100 µK ≈ h× 2 MHz at full intensity)

causing a light shift which does not impede the operation of the MOT.

The sequence starts by producing an ultracold Rb cloud in the running wave crossed

dipole trap. Then, Rb is transferred into the magnetic-insensitive |F = 1,mF = 0〉
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Figure 3.1: Schematic sequence to insert a single Cs atom into a Rb gas (not
to scale). a) An ultracold Rb gas (red) is prepared in the crossed dipole trap
in the |1, 0〉 state, with a high-gradient MOT in close vicinity. Single Cs atoms
are captured from the background gas. b) A lattice is adiabatically ramped up,
confining both species in its optical potential. c) After switching off the Cs MOT,
both species are stored in the conservative lattice potential in separated lattice
sites. d) The lattice is ramped down (to zero intensity) adiabatically, thereby
transferring both species into the original crossed dipole trap.

state, as discussed in section 1.3. Subsequently, the Cs MOT is switched on, with its

center slightly offset from the Rb gas (in z-direction at z ≈ 30 µm, Fig. 3.1(a)). Rb

atoms remaining in a mF 6= 0 state due to an imperfect pulse efficiency are removed

from the trap by the gradient of the Cs MOT. During the low gradient loading stage

(see 2.2.1), the geometrical size of the Cs MOT is large and the Cs density is low, so

that strong light-induced Rb-Cs collisions are avoided. This ensures that a sufficient

number of Cs atoms can always be trapped, independent of the relative position of

Cs MOT and Rb gas. In the high-gradient stage, the density increases, the volume

shrinks, and the loss rate can be employed for a precise relative positioning as ex-

plained below. The waist of the axial dipole trap is chosen to be waxial = 100 µm, a

few times larger than the diameter of the high-gradient Cs MOT of about 30 µm.
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3.2 Light-induced collisions and fine positioning

With the Cs MOT running, we transfer both species into the one-dimensional lattice

(Fig. 3.1(b)). After switching off first the MOT laser and then the magnetic

quadrupole field, both species are stored in purely optical potentials while being

still separated (Fig. 3.1(c)). Then, Cs is optically pumped into the desired target

state, described in more detail in section 3.3.2. Optionally, the internal state of Rb

can as well be manipulated by rf/microwave radiation.

In the last step of the sequence, the lattice is ramped down adiabatically and the

potential is transformed back into a running wave (Fig. 3.1(d)). Cs is cooled by this

adiabatic expansion from a temperature of initially about 30 µK to a temperature of

about 5 µK, discussed below in section 4.2. At some lattice depth, the Cs atom leaves

its lattice site and is trapped in the running wave dipole trap together with the Rb

gas. This process is discussed in more detail in the next section. From this point on,

Rb and Cs interact in the conservative potential of the running wave dipole trap. In

this chapter, however, we restrict the discussion to the transfer process and the fine

positioning employing light-induced collisions of the two species. The understanding

of these technical issues paves the way to study ground state interactions between

single Cs atoms and the ultracold Rb gas presented in chapter 4.

3.2 Light-induced collisions and fine positioning

During the operation of the Cs MOT, the Cs atom scatters photons with a rate on

the order of MHz. If in contact with the Rb cloud, the presence of near resonant

light causes interspecies light-induced collisions [58, 71, 86]. These collisions provide

a strong inelastic loss channel, causing Cs loss in a short time from the MOT if

overlapped with Rb. In this regard a clear separation of the Cs MOT from the Rb

cloud is favorable. To transfer the Cs atom into the running wave dipole trap, in

contrast, the MOT should be as close as possible to the center of the trap, where

the Rb is stored. A compromise between these two requirements allows to find an

optimal position with a transfer efficiency of about 80%.

In order to find this optimal position, we first determine the transfer efficiency of Cs

atoms into the running wave trap without Rb present. By superimposing the spa-

tial modes of radial dipole trap and the lattice beams we ensure a good alignment

for the radial dipole trap. This leaves the z-direction as the only free parameter

influencing the transfer efficiency, which can be adjusted by the axial dipole trap.

In Fig. 3.2 we measured this transfer efficiency as the survival probability of Cs

in the running wave dipole trap using the sequence introduced above for different

relative z-positions of the axial dipole trap without Rb present. We obtain a max-

imum survival probability after a storage time of one second of about 90%, where
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Figure 3.2: Fine tuning the relative distance of Cs single atom MOT and Rb
cloud using light-induced collisions. Without Rb stored in the trap (�), the
survival probability of Cs transferred to the crossed dipole trap is measured for
different positions of the axial dipole trap in z-direction. The same measurement
with a Rb gas stored in the crossed dipole trap shows a loss feature (•), indicating
interspecies light-induced collisions that map out the density overlap of both
species.

we attribute the slight reduction in survival probability to transfer loss. For an

intentional misalignment, the survival probability decreases: For a displacement of

about 50 µm, the survival probability is reduced roughly by a factor of two. The

data of this experiment is fitted with a Gaussian profile ps exp(−z2/w2
YAG), where

ps is the amplitude of the survival probability and wYAG the waist of the Gaus-

sian. The fit shows a reasonable agreement. As expected, the obtained width

wYAG =86 µm roughly corresponds to the waist of the axial dipole trap of 100 µm.

In a second step, we store Rb in the trap, which drastically changes the situation.

In a typical sequence, we cool Rb by evaporation in the dipole trap to a temperature

of 100 – 200 nK, with Rb atom numbers of a few 104. To decrease the size of the Rb

gas and to provide a sufficient trap depth for the Cs atom, the trap is adiabatically

compressed by ramping up the power of the dipole traps again. The temperature of

the Rb gas rises due to this compression to several hundred nK, the size of the Rb

cloud is about (7,7,14) µm and the density is in the low 1013/cm3 range. Then the

Cs MOT is switched on (Fig. 3.1(a)) and the lattice is ramped up (Fig. 3.1(b)).

Here, any overlap between the two species will lead to loss due to light-induced
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3.3 Analysis and simulation of the transfer

collisions. Hence, upon varying the relative position between Cs MOT and Rb gas

by changing the axial dipole trap position, the fraction of surviving Cs atoms will

map out the effective interspecies overlap.

To prevent ground state interspecies collisions in the dark for this positioning mea-

surement, we push Rb out off the trap immediately after loading into the lattice with

a short resonant light pulse, directly after switching off the Cs MOT (Fig. 3.1(c))

and before ramping down the lattice (Fig. 3.1(d)). We have verified that this pulse

does not affect the Cs atoms. This push out ensures that the two species are inter-

acting via light-induced collisions only. Light-induced collisions during recapture of

Cs are thus also avoided.

Assuming inelastic Cs-Rb two-body collisions as the dominant loss mechanism, the

loss probability of Cs atoms is directly proportional to the density-density overlap

of Rb and Cs. The density distributions for a thermal Rb cloud as used in this

experiment as well as for the compressed Cs MOT can be described by a Gaussian

with widths of wRb ≈ 14 µm (Rb gas) and wCs ≈ 15 µm (Cs MOT). To provide a

model for this loss, a Gaussian ploss exp(−z2/w2
loss) is subtracted from the survival

probability of Cs without Rb. The measurement presented in Fig. 3.2 shows the ex-

perimental data and a fit with a function corresponding to this model. For distances

of more then about 40 µm between Cs MOT and the center of the trap, the survival

probability is the same as without Rb present. For smaller distances, however, the

survival probability is reduced. With the MOT in the center of the trap, essentially

no Cs atom survives, indicating a matched overlap between Cs and Rb.

The agreement between our model (Fig. 3.2, red solid line) and the data is rea-

sonable. The width wloss of the ”loss feature“ is given by the convolution of the

density profiles of both species and thus expected to be wloss,theo =
√
w2

Cs + w2
Rb ≈

21 µm, close to the value of wloss = 27 µm obtained from the fit. However, there are

significant deviations. The slope of the loss feature (0 < |z| ≈ ± 40 µm) appears

to be steeper than expected from our simple model. A reason for this could be the

onset of Cs-Rb-Rb three-body losses for higher Rb densities in the center of the trap.

For our purpose, however, it is sufficient to experimentally determine the point of

highest survival probability for Cs with Rb present, at z ≈ ± 30 µm. At this point,

the insertion of single Cs atoms into the Rb cloud has an efficiency of close to 80%.

3.3 Analysis and simulation of the transfer

For the study of ground state collisions, the time tT when Cs is transferred from

its lattice site to the running wave dipole trap defines the start of interspecies in-

teraction. Therefore, the knowledge of tT is crucial. Because of the thermal energy
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3 Inserting single Cs atoms into an ultracold Rb gas

distribution of the atoms, there is a finite probability for a Cs atom to leave the

lattice already during the adiabatic lowering, before the lattice is extinguished com-

pletely. This effect analogous to evaporation is analyzed in the following.

The adiabaticity in the transformation from the running wave to the lattice and back

is necessary to adiabatically cool Cs and to prevent excessive heating of the ultracold

Rb cloud. On the other hand, this approach inevitably smears out the point in time

at which Cs leaves its lattice site and is trapped in the running wave trap. Hence, a

trade-off between these two requirements is necessary here. In the experiments, the

lattice is ramped down in an adiabatic way for Cs to a finite value below 1% and

then non-adiabatically switched off. Due to the smaller trap frequencies for Rb, the

condition for adiabaticity is not strictly fulfilled for Rb. The heating of Rb caused

by the adiabatic lowering and the non-adiabatic extinction of the lattice is included

in all measurements by monitoring the temperature always after inserting Cs. To

address the question of the transfer time of Cs, simulations of the experiments are

performed, discussed in the following.

The transformation from the lattice to the running wave crossed dipole trap intro-

duced in the preceding section (see Fig. 3.1(c) and 3.1(d)) is realized in two different

configurations. The first beam of the running wave crossed dipole trap is always pro-

vided by the axial dipole trap, that also guides Rb during the magnetic transport.

In the first approach, both lattice beams are independently adiabatically lowered.

The transformation is accomplished in this case by lowering one beam to a finite

intensity while completely extinguishing the other. The result is a “dichromatic”

running wave crossed dipole trap at the end of the lowering ramp, where one beam

has a wavelength of 1064 nm (axial beam) and the other 899.93 nm (single lattice

beam). In the second configuration, the lattice beams are lowered simultaneously

and then extinguished at the same time. The second beam of the crossed dipole

trap in this configuration is provided by the radial dipole trap introduced above. In

this way, the atoms are stored in an usual “monochromatic” running wave dipole

trap at the end of the sequence.

In the following, the characteristics of both configurations are discussed in detail.

Both configurations are employed later to study interspecies ground state interac-

tions.

3.3.1 Dichromatic running wave dipole trap

The experimentally simplest way to transform the lattice to a running wave crossed

dipole trap is to use a single lattice beam as the second beam of the cross. In

Fig. 3.3(b), the intensity ramp of both lattice beams in this approach is plotted
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3.3 Analysis and simulation of the transfer

logarithmically. The shape of the ramp is the same as the one introduced in section

2.3.2, so that adiabaticity is fulfilled for Cs. Both arms of the lattice are ramped

down in 100 ms, one arm to 11% of the initial intensity, the second arm is com-

pletely extinguished after 100 ms. At this time, the intensity has a value of about

0.2%. During the course of the lowering, the intensity difference between both arms

increases, thereby creating a running wave crossed dipole trap.
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Figure 3.3: Transformation of the lattice to a “dichromatic” running wave
crossed dipole trap. a) Histogram of transfer times tT obtained by the simu-
lation. b) Intensity ramp of the two counter propagating lattice beams (beam
A and beam B) and the axial dipole trap. One beam (beam B) is completely
extinguished after the adiabatic lowering, the other one (beam A) is lowered to a
finite level of 11% of the initial intensity. The axial dipole trap stays at constant
intensity during the whole sequence. c)-f) Resulting overall potential for Cs at
different stages of the sequence. The lattice spacing is increased by a factor of 30
for clarity, the field of few is 200 µm × 200 µm. The color coding corresponds to
a potential depth of 770 µK (c)), 105 µK (d)), 76 µK (e)) and 67 µK (f)).
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Since one lattice beam is left at finite power, the adiabatic lowering is different from

the basic process in the pure lattice. The influence of gravity is weaker, because there

is always one arm of the lattice potential that supports the atoms. Furthermore,

the axial dipole trap is at constant trap depth during the whole transformation,

providing additional confinement. This is also the main reason why the atoms leave

the lattice at relatively low intensities. For comparison, in the pure lattice potential

only about 10% of the atoms survive a lowering to 1% of the initial lattice depth.

In order to get a quantitative description of the transformation, a numerical simula-

tion of the trajectories of a Cs atom during the transformation process is performed.

For this, the simulation in the same manner introduced in section 2.4 is employed.

It starts by choosing an Cs atom with random energy, where the energy distribution

is governed by a Maxwell-Boltzmann distribution with T = 27 µK. Then, the atom

is put into the lattice at full intensity at random spatial position and velocity. The

insertion point of the atom in z-direction is chosen at 30 µm offset from the center

of the axial dipole trap, corresponding to the position of the MOT. The atomic

trajectory is then calculated for the complete time evolution of the intensity shown

in Fig. 3.3(b). During the whole time of the simulation, the axial dipole stays at

constant intensity.

The atomic trajectory can be described in two major regimes. In the first part

(0 < t < ≈ 20 ms), the atom is trapped in its lattice site and experiences an

adiabatic expansion. Therefore the velocity of its oscillation shrinks, the energy is

lowered. In the second part (≈ 20 ms < t < 100 ms), there is a finite probability

that the atom leaves its lattice site and gets trapped in the running wave trap,

30 µm offset. The time of the transfer depends on the energy of the atom and the

initial conditions. Finally, at t = 100 ms, the remaining lattice is non-adiabatically

extinguished. At this point, any Cs atom is transferred into the running wave trap,

irrespective of its energy.

In order to quantify the transfer timing, for each calculated atomic trajectory the

point in time is found where the atom first crosses the focus of the running wave

trap at z = 0. In Fig. 3.3(a) the histogram of transfer times is shown. The majority

of the atoms leave the trap at t = 100 ms, when the lattice is extinguished. A

finite fraction, however, is transferred already during the course of the lowering.

As a consequence, with Rb stored in the trap, the interspecies interaction in this

sequence starts before the lattice is completely extinguished. This effect is also

observed in the thermalization measurement in section 4.2, discussed below.

The fraction of atoms leaving the lattice before t = 100 ms and the shape of the

histogram is found to strongly depend on parameters like the offset between MOT
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and crossed dipole trap and the temperature. Also, the simulation for the transfer

process provides only a rough approximation. The distribution of the start positions

of the atoms due to the finite size of the MOT, for instance, is not considered here.

Therefore, the result of the simulation has to be interpreted with care. However, the

simulation provides an approximate description of the process, that can be employed

to compare the two different trap configurations used.

Because one of the lattice beams is used to form the potential, the dichromatic

running wave dipole trap is relatively near resonant. The photon scattering rate for

Cs atoms can be estimated to be ΓCs,dc ≈ 9 s−1, the corresponding heating rate is

accordingly PCs,dc ≈ 1.7 µKs−1.

3.3.2 Monochromatic running wave dipole trap

In a second approach, the running wave dipole trap at the end of the transformation

is formed by two beams at a wavelength of 1064 nm, that create the axial and the

radial dipole trap introduced above. The result is an usual monochromatic crossed

dipole trap. This configuration has several advantages, the most important being

the wavelength. Heating and optical pumping of Cs are significantly suppressed at

1064 nm (ΓCs,mc ≈ 1 s−1, PCs,mc ≈ 130 nKs−1). Another benefit is the free choice

of the trap geometry. The drawback is the higher complexity in experimental setup

and adjustment.

The experiment in this case starts with preparing an ultracold Rb sample in the

monochromatic crossed dipole trap. Subsequently, the sequence to insert single Cs

atoms described above is applied. During the whole procedure, the crossed dipole

trap at 1064 nm is held at constant intensity. The transformation back into the pure

running wave crossed dipole trap is in this case simply accomplished by ramping

down both lattice beams simultaneously in 80 ms to about 0.5% of the initial lattice

depth. At this point, both arms are completely extinguished, leaving the original

crossed dipole trap as the only potential. Fig. 3.4 shows the lattice potential ramp

during the transformation in the same scale like the dichromatic case in Fig. 3.3.

The approach with the monochromatic running wave crossed dipole trap shows a

slightly sharper transfer timing. The fraction of atoms being transferred before the

lattice is extinguished is smaller, furthermore the time period in which atoms are

transferred is shorter. Additionally, the suppression of photon-scattering in this trap

facilitates the control of the internal state of Cs.

51



3 Inserting single Cs atoms into an ultracold Rb gas

re
l. 

oc
cu

re
nc

e 
t Ta

0 20 40 60 80 100 120 140
time / ms

10-4

10-3

10-2

10-1

100

U
/U

0

running 
 wave

la
tt

ic
e

transfer
b

axial + radial
lattice beam A
lattice beam B

c

t = 0 ms

d

t = 18 ms

e

t = 40 ms

f

t > 80 ms

Figure 3.4: Transformation of the lattice to a “monochromatic” running wave
crossed dipole trap. a) Histogram of transfer times tT obtained by the simulation.
b) Intensity ramp of the two counter propagating lattice beams. Both beams
(beam A + beam B) are completely extinguished after the adiabatic lowering.
The axial and radial dipole trap, forming the final crossed dipole trap, stay at
constant intensity during the whole sequence. c)-f) Resulting overall potential
for Cs at different stages of the sequence. The lattice spacing is increased by a
factor of 30 for clarity, the field of few is 200 µm × 200 µm. The color coding
corresponds to a potential depth of 946 µK (c)), 138 µK (d)), 104 µK (e)) and
96 µK (f)).

Manipulation of the internal degree of freedom of Cs in the monochromatic

running wave crossed dipole trap

For the interspecies interaction, the control of the internal degrees of freedom of

both species is substantial. This section introduces the techniques used for the case

of single Cs atoms stored in the monochromatic running wave crossed dipole trap

and presents the experimentally achieved manipulation. For all experiments in this

section, the same sequence discussed above (section 3.1) is used without Rb stored
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3.3 Analysis and simulation of the transfer

in the trap. Cs is loaded in the center of the running wave dipole trap, causing

accordingly slightly higher survival probabilities of Cs.

Optical pumping. To prepare Cs in the F = 3, mF = 3 Zeeman sublevel, an

optical pumping scheme is applied. A laser with σ+-polarization, resonant with the

F = 3 → F ′ = 3 transition, pumps atoms from any Zeeman sublevel within the

F = 3 manifold into the F = 3,mF = 3 state. At the same time, atoms in the

F = 4 state are pumped (back) into the F = 3 hyperfine manifold by another laser

resonant to the F = 4 → F ′ = 4 transition. The quantization axis is provided by

the same coil that is used to optically pump Rb into the |2, 2〉 state.

The optical pumping is applied in the lowered lattice (see Fig.3.1(c)), before Cs and

Rb are brought into contact. On one hand, this ensures that the photon scattering

rate is kept low such that Cs is not pumped into different states by off-resonant

Raman scattering. On the other hand, Cs is prepared in its target state before

interacting with Rb, such that the interspecies interaction can be studied with well-

defined states. Additionally, light-induced processes during interaction with the

optical pumping beams are avoided.

Microwave spectroscopy and Rabi oscillations. To read out the Zeeman sub-

level of Cs, the state-selective pushout cannot be used due to the small level splitting.

Therefore a transition between the hyperfine states of Cs is driven using microwave

radiation to map the Zeeman sublevel onto the hyperfine states. The hyperfine

state can then be determined by the state-selective pushout. This also enables the

estimation of the efficiency of the optical pumping.
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Figure 3.5: Fourier-limited spectrum of single Cs atoms stored in the running
wave dipole trap.
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3 Inserting single Cs atoms into an ultracold Rb gas

In a first experiment, the microwave spectrum of single Cs atoms is measured. For

this, a Cs sample is prepared in the running wave crossed dipole trap without Rb

stored. Then the atoms are pumped into the |3, 3〉 state. Subsequently, a microwave

pulse with a duration of 80 µs is applied (see [72] for details). The frequency of

this pulse is scanned across the |3, 3〉 → |4, 2〉 transition. Finally, the state-selective

pushout removes atoms in the F = 4 state from the trap. The remaining atoms in

the F = 3 state are counted.

In Fig. 3.5 the corresponding spectrum is presented. When the mircowave pulse

is resonant to the transition, the survival probability (for atoms transferred into

F = 4) decreases to about 10%, whereas the survival probability for a far detuned

pulse amounts to about 90%. From this, the efficiency of the optical pumping can

be estimated to be better than 80%. The reduction in efficiency can be caused by

the optical pumping itself, loss during the transfer or by the state-selective push out.

The width of the transition is Fourier-limited, the red line is a fit corresponding to

the expected transfer.
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Figure 3.6: Rabi flopping of single Cs atoms showing a Rabi frequency of
ω|3,3〉→|4,2〉 ≈ 2π × 6.2 kHz.

With the microwave radiation, it is possible to drive Rabi oscillations between the

two hyperfine states of Cs. For this the frequency is set to the resonance of the

transition. Then the pulse duration is varied and, after the state-selective pushout,

the number of atoms remaining in the trap is counted. Fig. 3.6 shows the Rabi

flopping of single Cs atoms in the running wave crossed dipole trap. For several

Rabi cycles, the contrast stays constant at about 75%. This enables the coherent

manipulation of Cs, that is used for Ramsey spectroscopy (see section 5.1 and master

thesis of Farina Kindermann [72]).

A main advantage of the running wave crossed dipole trap is the strongly suppressed
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Figure 3.7: Experiment to estimate the off-resonant scattering of dipole trap
photons. The state of Cs does not change on the observed time scale.

photon scattering rate. To confirm this experimentally, Cs is prepared in the running

wave crossed dipole trap in the |3, 3〉 state. After a holding time, the state-selective

pushout is used to read out the state.

In Fig. 3.7 the resulting data is plotted. For the investigated time scale on the order

of several hundred ms seconds, no loss indicating a change of state can be detected.

This is consistent with the expected time on the order of several seconds [75, 78].

Compared with the situation in the lattice even at low intensities (section 2.3.4),

this is a drastic improvement.

3.4 Conclusion

A sequence to dope ultracold Rb gases with Cs impurity atoms was introduced.

Two configurations were presented, both of which are used in the next chapter to

study ground state interspecies interactions. The approach using the dichromatic

trap is suited best, when the photon scattering from the lattice beam can be ne-

glected, as in the case of the rapid interspecies thermalization in section 4.2. The

monochromatic running wave trap allows to store both species for long times with

negligible off-resonant photon scattering. This is the prerequisite for the measure-

ment of three-body collisions in defined Zeeman sublevels of both species presented

in section 4.3. Furthermore, in the monochromatic running wave dipole trap, coher-

ent manipulation of single Cs atoms was demonstrated.

For future experiments, the doping of a BEC with impurity atoms is of special inter-

est. However, the experiments presented in this thesis deal with the interactions of

both subsystems. For this, a BEC is not necessary, therefore the insertion sequence

was up to now only applied to thermal, high-phase space density samples. In general,
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3 Inserting single Cs atoms into an ultracold Rb gas

however, the introduced technique should be directly applicable to dope a BEC. Due

to the selectivity of both the monochromatic and the dichromatic trap, it should be

possible to cool the high density thermal Rb cloud to quantum degeneracy without

loosing the Cs atom, if necessary.
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Chapter 4

Single Cs atoms interacting with an

ultracold Rb gas

Many properties of ultracold gases are governed by interactions of the constituent

atoms. Accordingly, the interaction between an impurity atom and the buffer gas

determines the properties of the hybrid system that is the object of this thesis. In

this chapter, elastic and inelastic collisions between the impurity atom and atoms

of the buffer gas are studied, providing insight into the interaction properties. Here,

our system shows some distinctive features.

In most experiments, large ensembles of atoms are employed, as for example in mix-

tures of two species [29, 55, 87]. Therefore usually both subsystems are affected by

the interaction. In the experiments presented in the following, in contrast, few and

single Cs impurity atoms interact with a by far larger many-body system, repre-

sented by the Rb buffer gas. The time-resolved thermalization of the impurity atom

via elastic collisions with atoms of the buffer gas is observed, allowing the estimation

of the interspecies collisional cross section. While the impurity atom experiences a

strong change of its thermodynamical properties, the buffer gas remains effectively

unaffected. This demonstrates the probing of the temperature of the many-body

system by the impurity atom.

Accordingly, experiments dealing with a large number of atoms are sensitive to

averaged properties of the ensemble, so that fluctuations of the probed quantity

usually do not play a role. However, these fluctuations are governed by the statistics

of the ultracold gas and can therefore be employed to gain information about the

system. This has been exploited, for instance, to directly observe sub-Poissonian

number statistics in a BEC [41], pair-correlations in a gas of fermionic atoms [88]

and number squeezing in a Mott insulator [21, 42]. Since our experiment monitors

single impurity atoms, number fluctuations are resolved with atomic resolution. This

is exploited when the decay of the survival probability of the impurity atoms due

57



4 Single Cs atoms interacting with an ultracold Rb gas

to interspecies three-body recombination is studied. The exact knowledge of the

impurity atom number allows observing interactions atom-by-atom. Furthermore,

the fluctuating number of atoms lost facilitates to study losses event-by-event. With

this additional information, losses can be attributed to a single loss channel, which

is not directly possible in experiments dealing with balanced mixtures. Extending

the demonstrated approach to higher impurity atom numbers could be employed to

study the transition from two-body to many-body systems in future experiments.

4.1 Interactions at ultracold temperatures

Before discussing the experimental results of the interspecies interaction, in this

section, the relevant theoretical framework of ultracold collisions is briefly reviewed

[13, 86, 89, 90]. The emphasis here is given to the interaction of an impurity atom

with one atom of the buffer gas (two-body collisions) or with two atoms of the buffer

gas (three-body collisions). The discussion focuses on collisions of distinguishable

particles in the regime realized in the experiment.

4.1.1 Elastic two-body collisions

In our experiment, single Cs atoms are interacting with an ultracold Rb gas with a

mean density below n̄ = 1014 cm−3. Despite the low temperature, the gas is therefore

dilute such that n̄a3 � 1, where a is the scattering length. Hence, interactions can

be described to a large extend by elastic two-body collisions, where a single Cs atom

is colliding with a single Rb atom of the many-body system. In this framework the

interspecies thermalization discussed in section 4.2 can be understood.

By introducing the reduced mass mred = m1m2/(m1 + m2), the two-body problem

can be reduced to a one-body problem and is described in the centre-of-mass frame

by the stationary Schrödinger equation

(
~2

2mred

∇2 + V (~r)

)
Ψ(~r) = EΨ(~r). (4.1)

The incoming wave can be assumed to be a plane wave with wavevector ~k. For large

distances, the asymptotic solution for a short range potential V (~r) is a spherical

wave, so that

lim
r→∞

Ψ(~r) ∝ ei
~k~r + f(k,Θ)

eikr

r
. (4.2)
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4.1 Interactions at ultracold temperatures

The scattering amplitude f(k,Θ) is connected to the total cross section σ via

σ =

∫
Ω

|f(k,Θ)|2dΩ, (4.3)

where Θ is the angle between the incoming wave and the axis of detection and Ω is

the solid angle.

For a spherical potential the total angular momentum has to be conserved dur-

ing a collision. Since the problem is independent from the azimuthal angle, the

Schrödinger equation is reduced to a one-dimensional problem. The solutions can

be expanded in partial waves for the angular momenta l. The effective potential can

then be written as the sum of a spherical potential V (r) and a centrifugal potential

Veff(r) = V (r) +
l(l + 1)

2mredr2
. (4.4)

The centrifugal potential vanishes for l = 0 (s-wave scattering). For higher l, the

centrifugal potential adds a barrier that can not be passed for low scattering energies,

so that no interaction occurs. In the temperature regime in our experiment with

T < 10 µK, only the s-wave scattering contributes to the interaction.

The scattering can be described by a phase shift δl(k) of the outgoing wave with

respect to the incoming wave. The total cross section is then given by

σ =
4π

k2
sin2 δ0(k) (4.5)

where only s-wave scattering is considered. In the limit of vanishing k, the phase

vanishes because δ0 ∝ k. The total cross section in this regime becomes

σ0 = 4πa2, (4.6)

with the s-wave scattering length

a = − lim
k→0

tan δ0(k)

k
. (4.7)

In general, Alkali atoms feature several asymptotic states. For small distances, the

corresponding atomic quantum numbers are no good quantum numbers anymore.

Instead, coupled quantum numbers have to be employed, that lead to corresponding

potentials, that are in general different from each other. Each of the corresponding

potentials can be described in terms of a respective s-wave scattering length. In
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4 Single Cs atoms interacting with an ultracold Rb gas

Table 4.1 singlet (as) and triplet (at) intra- and interspecies s-wave scattering lengths

for Rb and Cs are listed.

Rb [91] Cs [92] Rb-Cs [56]
as(a0) 90.4 280 unknown
at(a0) 99 2400 ≥ 150

Table 4.1: Singlet and triplet scattering lengths for Rb and Cs.

4.1.2 Inelastic two-body collisions

Depending on the initial states of two colliding atoms, final states with a lower total

energy can exist. The difference in energy is then transformed into kinetic energy,

leading to a loss from the trap if the energy difference is sufficiently large.

Inelastic two-body collisions can be classified into spin-exchange collisions with

∆mF = 0 and dipolar relaxation with ∆mF + ∆ml = 0, where ∆ml is the quantum

number of the projection of the angular momentum. The Zeeman splitting for Rb

is 700 kHz / G and 350 kHz / G for Cs [74, 93]. In section 4.3.3 two-body loss of Cs

impurity atoms in the excited hyperfine state (F = 4) is observed. If both species

are prepared in their absolute ground state (|3, 3〉 for Cs, |1, 1〉 for Rb), no final

states with lower energy exist, such that inelastic two-body collisions are forbidden.

In this case, losses are dominated by three-body recombination.

4.1.3 Inelastic three-body collisions

Even though a major part of the interactions of ultracold gases can be understood

in terms of two-body collisions, ultracold gases are strongly subcooled and therefore

meta-stable. In a two-body collisions, energy and momentum conservation can not

be fulfilled at the same time, effectively inhibiting molecule formation. Three-body

collisions, in contrast, allow the conservation of energy and momentum. For increas-

ing interaction times, collisions of the impurity atom with two atoms of the ultracold

ensemble play an increasing role and can lead to the formation of a molecule. The

binding energy in the range of typically several hundred MHz is then converted into

kinetic energy that is shared among the colliding atoms according to their mass

ratio. Since the typical trap depth is on the order of kB× 10 µK corresponding to

≈ h×200 kHz, it is safe to assume that the atoms are lost from the trap. The three-

body loss rate coefficient L3 shows a strong dependence on the s-wave scattering
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4.2 Elastic collisions – Thermalization

length a. It is predicted to scale as

L3 =
3C~
m

a4 (4.8)

where C is a dimensionless constant between 0 and 70 [43, 94, 95]. This scaling

was observed in several experiments [44, 96, 97]. In our experiment, three-body

recombination limits the lifetime of the impurity atom, as observed in the experiment

described in section 4.3.2.

4.2 Elastic collisions – Thermalization

A fundamental signature of interspecies interaction in the hybrid system is the sym-

pathetic cooling of the impurity atom by the buffer gas. In order to avoid interspecies

two-body losses during interaction with the buffer gas, Cs is pumped into the lowest

hyperfine manifold (F = 3 state). The experiments in this section use the “dichro-

matic“ crossed dipole trap, where the axial dipole trap and one arm of the lattice

are combined. Fig. 4.1 gives an impression of the setup in this configuration.

Rb gas

Cs atom

axial dipole trap

latticeCs MOT

a b

single lattice
beam

Figure 4.1: Illustration of the setup for the dichromatic running wave dipole
trap, as used in this section (not to scale). a) Loading single Cs atoms into the
MOT with Rb stored (see also Fig. 3.1(b)). b) Interaction of both species in the
dichromatic running wave dipole trap, consisting of axial dipole trap and a single
lattice beam (see also Fig. 3.1(d)).
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4 Single Cs atoms interacting with an ultracold Rb gas

4.2.1 Temperature measurement of Cs in the running wave crossed dipole

trap

To study the interspecies thermalization, the determination of the temperature of

Cs in the running wave crossed dipole trap is necessary. The main demand here is

the measurement of relatively low temperatures of the impurity atom, therefore the

release and recapture method, as discussed in section 2.4, is best suited.

In a first experiment, single Cs atoms are inserted into the dichromatic running

wave dipole trap with the sequence presented in the previous chapter 3, without Rb

stored in the trap. The parameters of the trap used are given in Table 4.2. Then the

release and recapture measurement is performed by switching off non-adiabatically

the running wave trap. Fig. 4.2 shows the results. Again, the initial survival

probability is about 80%, as expected due to the insertion sequence. From this

value, the survival probability decays within a release time of 2 ms to below 10%.

The shape of this decay is significantly different from the corresponding experiment

in the lattice, presented in section 2.4.2.

This characteristic shape is reproduced by a numerical simulation in the same man-

ner as for the lattice potential in section 2.4.2. The corresponding potential is now

the dichromatic running wave crossed dipole trap, where one beam is formed by

the radial dipole trap and the other one by a single arm of the lattice. It can be

described by

VDT(x, y, z, t) = UTiSa(t) exp(−2(x2 + y2)/w2
TiSa)

+ UYAG(t) exp(−2(x2 + z2)/w2
YAG). (4.9)

radial axial Ti:Sa running wave
Rb depth/kB (µK) 0 27 1.8
Cs depth/kB (µK) 0 48 19
Wavelength (nm) 1064 1064 899.9
Waist (µm) 48 100 31
Rb rad. freq. (Hz) - 160 130
Rb ax. freq. (Hz) - <1 <1
Cs rad. freq. (Hz) - 170 350
Cs ax. freq. (Hz) - <1 2

Table 4.2: Parameters of the traps used in this section for the thermalization
measurement.
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Figure 4.2: Release and recapture experiment with single Cs atoms in the
running wave dipole trap, without Rb present. The solid line indicates the decay
of survival probability obtained by the simulation, yielding TCs ≈ 4.8 µK.

The release and recapture experiment in the running wave is computed for tem-

peratures 0.2 < T < 5 µK in steps smaller than 200 nK. To extract the abso-

lute value of the temperature from the release and recapture measurements like in

Fig. 4.2, a least-square fit is performed for all simulated temperatures, where the

only free parameter is the initial transfer efficiency. This value amounts to around

80%, in good agreement with the transfer discussed in section 3. As a measure

of the goodness-of-fit, χ2 is calculated. The simulation with the smallest χ2 then

determines the temperature, discussed in more detail below (section 4.2.3).

In Fig. 4.2 the result of this analysis is plotted as a solid line. The decay of survival

probability agrees with the experimental data within the uncertainty, corresponding

to a temperature of 4.8 µK. The experimental sequence bringing both species into

contact relies on the adiabatic extinguishing of the lattice, causing an adiabatic

expansion and thereby a cooling of the Cs sample. The initial temperature of Cs

in the lattice was determined to be T0 ≈ 30 µK (see chapter 2). In harmonic

approximation the trap frequency scales with the square root of the potential depth

ω ∝
√
U , the temperature after the expansion can be estimated for the new trap

depth by T (U ′) = T0

√
U/U ′. Thus the temperature is expected to be T0

√
U/U ′ ≈

5 µK, in good agreement with the measured temperature of 4.8 µK.

Regarding the task to insert a ”hot” laser-cooled atom into the ultracold gas, the

importance of the adiabatic cooling via the lattice becomes apparent. The trap
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4 Single Cs atoms interacting with an ultracold Rb gas

depth of the potential for the ultracold gas is only on the order of few 10 µK (see

Table 4.2). The Cs atom has a temperature of about 30 µK when loaded from the

MOT, which is already below the Doppler limit. To reliably store the Cs atom in

the dipole trap the potential depth should be at least a factor of ten deeper than

the temperature. This can also be seen from Fig. 2.12, where the temperature

distribution for an atom with T = 30 µK is plotted. Hence, without adiabatic

cooling, Cs can not be transferred efficiently into the running wave trap. With the

adiabatic cooling the trap used to store ultracold Rb can easily be made deep enough

to fulfill the criteria and therefore reliably store Cs.

It should be noted that this cooling process is a purely thermodynamic expansion

and does not involve any dissipation. The vibrational state does not change during

the expansion. This is different for the sympathetic cooling discussed below.

4.2.2 Experimental techniques for the realization of interspecies interaction

In the first step of a typical experiment, the sequence described in chapter 3 is used

to prepare a Rb sample doped with single Cs atoms. Light-induced collisions lead

to a rapid loss of Cs stored in a MOT, when interacting with ultracold Rb, as was

observed in our experiment (chapter 3, [58]). Therefore, after a variable interaction

time tI, in which both species are stored in the common running wave crossed dipole

trap, the Rb cloud is pushed out of the trap with a resonant light pulse. This light

pulse does not affect Cs, no influence on the survival probability is observed. After

that push-out, the MOT can be employed to recapture and count the Cs atoms.

The production of the ultracold Rb gas takes about one minute in our experiment,

roughly half a minute for loading the UHV-MOT and another half a minute for evap-

orative cooling. Typically, about two impurity atoms are inserted into the buffer

gas on average. Hence the data acquisition rate is limited to the result of experi-

ments with about two atoms per minute. To obtain data with reasonable statistical

sigificance, the experiment has to be repeated sufficiently frequent. For achieving

an uncertainty of ≈ ±5% at a total survival probability of 50%, experiments with

120 atoms are necessary, which requires about 60 minutes measurement time (see

Eq. 2.4). For higher and for lower survival probabilities, the uncertainty decreases

slightly faster. Overall, measuring the temperature of the Cs impurity atom once

with the resolution like shown in this thesis takes about 10 hours. The challenge

here is to get the apparatus running stably and reproduceably over such long times.

Accordingly, monitoring of the buffer gas is required. Because both subsystems

are necessarily stored in a common trap, standard time-of-flight imaging of the Rb

buffer gas unevitably removes also the Cs impurity atoms from the trap.
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4.2 Elastic collisions – Thermalization

Therefore, the Rb push-out beam is employed to obtain absorption images of the

Rb cloud in the trap in each shot. However, the information obtained by these

images has to be interpreted with care. Because these images are taken in trap, it is

not possible to extract information about the momentum distribution and therefore

the temperature of the gas. Due to the small size of the sample (below the optical

resolution of the imaging system), the atom number can only roughly be estimated.

However, this is sufficient for a check if the apparatus is running well. Furthermore,

the relative change in the number of the Rb atoms can be determined, despite a

constant systematic error.

To get reliable quantitative parameters for the Rb sample, independent time-of-

flight measurements with otherwise identical conditions are performed. In these

shots, Cs can not be recaptured and is completely lost. The obtained parameters for

the buffer gas are checked from time to time while running interspecies interaction

experiments. The properties of the buffer gas are determined from the averaged

time-of-flight measurements. Here, the Rb temperature is observed to have a good

reproducibility. This can be expected due to the fact that the achieved temperature

is mainly determined by evaporative cooling, which itself is governed by the well

controlled magnetic and optical potentials. The Rb atom number depends on many

more parameters and is therefore much more prone to fluctuations, which is also

observed in the experiment. Due to our limited monitoring capability of the buffer

gas during most shots of a typical experimental run, the error of the atom number

is estimated to be 20% in the following.

The conditions for Cs, other than the interaction time tI, in any of these experiments,

are held constant. For instance, the storage time of Cs is always held at the same

time, typically at one second. The reduction of survival probability without Rb

is constant and on the order of a few percent. Any mechanisms that affect Cs

when stored without Rb, like collisions with background gas atoms and loss due to

transfer, are thus constant for all interaction times. The experiment is therefore

only sensitive to the interspecies interaction.

4.2.3 Thermalization of Cs in the hyperfine ground state

To study the sympathetic cooling of Cs, a Rb sample is prepared in the |1, 0〉 state.

The properties of the Rb sample are measured independently by time-of-flight ex-

periments, yielding an average atom number of NRb ≈ 12.000 and a temperature of

TRb = (250± 50) nK. The error of the atom number is assumed to be 20%. Subse-

quently, the ultracold Rb gas is doped with single Cs atoms prepared in the F = 3

hyperfine manifold. For varying interspecies interaction times tI, the temperature
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4 Single Cs atoms interacting with an ultracold Rb gas

of Cs is measured with the release and recapture method.
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Figure 4.3: Thermometry of single Cs atoms interacting with an ultracold Rb
gas. For increasing interaction time tI, a release and recapture measurement is
performed (•). The solid line shows the simulation corresponding to the tem-
perature that reproduces the experiment best (blue solid line). For reference, the
data without Rb present is plotted (�, red solid line). The green dashed line
indicates the limit for atoms with vanishing initial velocity, for details see text.

In Fig. 4.3 the results are presented, for reference the release and recapture mea-

surement for Cs without Rb is plotted. Already for short tI, at the same release

time ∆t the survival probability is slightly enhanced. Accordingly, for longer ∆t

the slope of the decay increases. For the longest interaction time tI = 117 ms, the

shape of the decay is changed drastically. The trap can be extinguished for as long

as 1.4 ms without any reduction in the survival probability. At longer release time,

the decay is correspondingly much steeper.

This observation can be understood by the cooling of Cs deep into the trap. The

ultimate limit for the release time is given by gravity. An atom at v = 0 initially

stored in the center of the trap needs ∆tl ≈
√

2wTi:Sa/g ≈ 2.5 ms to leave the
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4.2 Elastic collisions – Thermalization

trapping volume. In this simple picture, the survival probability is constant for

∆t < ∆tl and then drops abruptly to zero. In Fig. 4.3 this limit is plotted as a

green dashed line. For atoms with a finite temperature, this decay is smeared out

towards a smaller survival probability.

In the same manner like above, the simulation with the temperature that fits the

experimental data best, is determined. For all interaction times, the simulation is

shown in Fig. 4.3 as a solid blue line. The agreement is reasonable, the change

of the shape of the decay is reproduced by the simulation. With the help of the

simulation, the absolute value of the temperature of Cs is extracted from all data

sets, discussed in more detail below. The release and recapture measurement for the

longest interaction time comes already quite close to the ultimate limit discussed

above. In this regime, the dynamic range of this technique is mostly used up.
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Figure 4.4: Thermalization of single Cs atoms. Main graph: Cs is cooled
from its initial temperature of TCs,initial ≈ 4.8 µK to TCs,final ≈ 0.4 µK within a
few tens of ms. The final temperature TCs,final ≈ 0.4 µK is compatible within the
uncertainty to the temperature of the Rb buffer gas TRb ≈ 0.25 µK, as determined
independently by time-of-flight velocimetry (red solid line). The blue solid line
indicates the sympathetic cooling corresponding to the model as described in the
text for an scattering length of |aRbCs| = 450 a0 (blue line). For comparison,
the green (orange) solid line shows the expected cooling for |aRbCs| = 550 a0

(|aRbCs| = 350 a0). The dashed line indicates the time at which the lattice is
completely extinguished. For details see text. Inset: Lifetime of the Cs atoms
during sympathetic cooling, taken from the same data.
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4 Single Cs atoms interacting with an ultracold Rb gas

In Fig. 4.4 the cooling of the Cs immersed in the Rb cloud is presented. From

the initial temperature of about 4.6 µK Cs is cooled in about 50 ms close to the

temperature of the Rb gas of T = (250 ± 50) nK, as determined by time-of-flight

velocimetry. Within the uncertainty, the temperature of both species is the same.

This consistency check confirms the methods used to measure the temperature of

single Cs atoms.

The survival probability of the impurity atom is found to be only slightly reduced

during the sympathetic cooling (inset of Fig. 4.4). One reason for this loss is

interspecies three-body recombination. Due to the relatively high photon scattering

rate of ΓCs,dc ≈ 9 s−1 and the small detuning of about 5 nm in the dichromatic

running wave dipole trap, the Cs atom can also be transferred into the excited

F = 4 hyperfine state, additionally opening an interspecies two-body loss channel.

In the dichromatic dipole trap, a distinction between these loss channels is not

directly possible. Therefore, both loss channels are studied in detail in section 4.3,

where the photon scattering rate can be neglected.

The dashed line in Fig. 4.4 indicates the point where the lattice is completely

extinguished. The cooling of the impurity atom is observed to start about 20 ms

before this point. This can be understood by our loading sequence discussed in

section 3.3. With a certain probability, Cs atoms are evaporated out of the lattice

before the end of the lowering sequence. Therefore, the interspecies interaction

takes place initially in the combined potential of running wave dipole trap and

lattice. However, the lattice intensity at this point of the sequence is already below

3× 10−3 of the initial intensity (see Fig. 3.3). Since a more detailed analysis of this

effect as presented in section 3.3 would require more information about the insertion

dynamics, the influence of this effect is neglected here and the interaction is assumed

to start at t ≈ − 20 ms. The consequences for the determination of the scattering

length are discussed in more detail below.

Another effect of our loading scheme is the off-center loading of the Cs impurity

atoms. Initially, its trajectory in the trap will be strongly anisotropic. This could

lower the probability of Cs interacting with Rb, which is stored in a small volume in

the center of the trap. However, due to the coupling of the different axes because of

gravity and trap inhomogeneities, the oscillation should quickly recover an isotropic

trajectory. Additionally, after the first collision with Rb, the direction of the Cs

trajectory is randomized. This is also supported by the temperature measurements,

which assume a random phase-space distribution for the modeling.
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4.2 Elastic collisions – Thermalization

Uncertainties of the temperature measurement of the Cs impurity atoms

To obtain a measure for the uncertainty of the temperature determination of the

Cs atom, the least-square analysis is employed. For each simulated data set, cor-

responding to a certain temperature, χ2 is calculated. Fig. 4.5(a) shows the re-

lease and recapture measurement for an interaction time of 29 ms, in Fig. 4.5(b)

the obtained χ2 for different simulated temperatures is plotted. The best fit oc-

curs at T = 2 µK. As a measure for the uncertainty, the temperature is found at

which χ2 is increased by one [98]. The respective simulations showing this deviation

are plotted in Fig. 4.5(a). Hence, the result in this example is a temperature of

T = (2.0± 0.6) µK.
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Figure 4.5: Error estimation of the temperature determined by the release and
recapture measurement. a) Release and recapture experiment after an interaction
time of 29 ms, taken from the data presented above. The green solid line indicates
the simulation that fits the experiment best, corresponding to T = 2 µK. The
error is estimated by the simulation, where χ2 is increased by about one, plotted
as red dashed line (T = 2.6 µK) and blue dash-dotted line (T = 1.4 µK). b) χ2 of
this data set for some simulated temperatures. The lowest χ2 is indicated by the
green solid line, the red dash-dotted line shows where χ2 has increased by one.

Results: Scattering length

For a mixture of classical gases with a temperature difference ∆T , the average energy

transfer can be written as Ė = ΓRbCs · kB · ∆T · ξ, where ΓRbCs is the interspecies

collision rate and ξ = 4m1m2/(m1 + m2)2 is the reduction factor due to the mass

difference, in the case of a Rb-Cs mixture ξ =0.96 [87, 99, 100]. Here, the interactions

are assumed to be in the collisionless regime, such that the elastic collision rate does

not exceed the trap frequencies. This will be validated in the following analysis.

The change of the temperatures of the two components of the gas is given by
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4 Single Cs atoms interacting with an ultracold Rb gas

ṪRb =
ĖRb

CRb

ṪCs = −ĖCs

CCs

(4.10)

where CRb = 3NRbkB and CCs = 3NCskB are the heat capacities of the harmonically

trapped atoms. Hence the thermalization time constant can be expressed as [101,

102]

τ−1
therm = − 1

∆T

d

dt
∆T =

ΓRbCsξ

3

NRb +NCs

NRbNCs

. (4.11)

In order to connect the thermalization rate to the microscopic interspecies cross

section σRbCs, the density distributions nRb(~r) and nCs(~r) of the two species need to

be taken into account. The collision rate can be written as

ΓRbCs = σRbCsv̄

∫
d3r nRb(~r)nCs(~r), (4.12)

where

v̄ =

√
8kB

π

(
TRb

mRb

+
TCs

mCs

)
(4.13)

is the mean thermal relative velocity and the integral is a measure of the inter-

species spatial overlap [101, 103]. Due to the different polarizabilities and masses of

Rb and Cs, each species experiences a different potential depth and different trap

frequencies. Table 4.2 summarizes these parameters.

The difference of the gravitational sag amounts to ∆=g(1/ω2
Rb,x− 1/ω2

Cs,x) ≈ 4 µm,

leading to slightly different trap centers for the two species. The spatial overlap is

therefore reduced by a factor exp
(
−∆2

ρ2x

)
, where

ρx =

√
2kBTRb

ω2
Rb,xmRb

+
2kBTCs

ω2
Cs,xmCs

(4.14)

is the root-mean-square sum of the sizes of the clouds. In Fig. 4.6(a) the normalized

overlap for the relevant temperatures is plotted. Due to the shrinking size of the

trapping volume of Cs during the sympathetic cooling, the decrease of overlap caused
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Figure 4.6: Temperature dependence of the effective interspecies interaction vol-
ume. a) Reduction of the spatial overlap due to gravitational sag in dependence
of Cs temperature. b) + c) Shrinking trapping volume during the sympathetic
cooling, plotted is the normalized density of Rb (red) and Cs (blue). The peak
density of Rb amounts to ≈ 7×1012 cm−3, the peak density of Cs increases from
initially ≈ 7× 107 cm−3 to ≈ 6× 109 cm−3 at the end of sympathetic cooling.

by the sag is enhanced from initially about 90% at TCs = 5 µK to about 60% at

TCs = 250 nK. Fig. 4.6 gives an impression of the scales realized in the experiment.

While the sag reduces the interspecies overlap and accordingly the collision rate dur-

ing the sympathetic cooling, the shrinking trapping volume of Cs strongly enhances

the collision rate. This is described by the temperature dependent densities that

are used to calculate the interspecies trapping volume. With the analytic solution

of the integral expressed in terms of experimentally accessible parameters, we find

the overall spatial overlap

∫
d3rnRb(~r)nCs(~r) = NRbNCs (2πkB)−

3
2

[
TCs

mCsω2
Cs,x

+
TRb

mRbω2
Rb,x

]− 1
2

×

[
TCs

mCsω2
Cs,y

+
TRb

mRbω2
Rb,y

]− 1
2
[

TCs

mCsω2
Cs,z

+
TRb

mRbω2
Rb,z

]− 1
2

exp

(
−∆2

ρ2
x

)
. (4.15)

For equal masses and trap frequencies (linear dependent trap frequencies) we re-

produce the results of [100] ([102]). Summarizing the analysis outlined above, we

obtain for the thermalization rate

71



4 Single Cs atoms interacting with an ultracold Rb gas

τ−1
therm =

σRbCsξ(NRb +NCs)

√
8kB
π

(
TRb

mRb
+ TCs

mCs

)
3 (2πkB)

3
2 exp

(
∆2

ρ2x

) [
TCs

mCsω2
Cs,x

+
TRb

mRbω2
Rb,x

]− 1
2

×

[
TCs

mCsω2
Cs,y

+
TRb

mRbω2
Rb,y

]− 1
2
[

TCs

mCsω2
Cs,z

+
TRb

mRbω2
Rb,z

]− 1
2

. (4.16)

Note that only the sum of the number of atoms of both species enters, so that the

exact number of Cs atoms does not influence the determination of the scattering

cross section significantly. This reflects the negligible heat capacity of the impurity

atoms. The thermalization rate τtherm depends on the spatial size and therefore on

the temperature of both species. The heating of the Rb buffer gas ∆TRb caused by

the sympathetic cooling of a single impurity Cs atom is given by

∆TRb = (TRb,initial − TRb,final)

= TRb,initial −
NRbTRb,initial +NCsTCs,initial

NCs +NRb

< 1 nK (4.17)

and can clearly be neglected here. Furthermore, the atom number of the buffer gas

is approximately constant (discussed in more detail in the next section), so that

the properties of the Rb buffer gas remain effectively unaffected. Cs, in contrast, is

cooled by more than one order of magnitude in temperature, causing the trapping

volume to shrink significantly and leading to stronger interspecies interaction. It

is therefore not sufficient to assume a single cooling time constant for the entire

thermalization. Instead, the sympathetic cooling of Cs is calculated in discrete

steps in an iterative approach for a fixed, energy independent scattering cross section

σRbCs. Starting at t0 = 0 with the initial Cs temperature TCs,initial, Eq. 4.16 is used

to compute τtherm,0. The temperature at t1 = t0 + ∆t is determined to be

TCs,t1 = (TCs,initial − TCs,final) exp (−t/τtherm,0) + TCs,final (4.18)

where TCs,final is the final temperature of Cs. With the new temperature TCs,t1 the

new thermalization time constant is calculated, and the next step of the thermaliza-

tion is computed. This is repeated with sufficiently short time steps to the desired

extend in time. In this way, the sympathetic cooling is described with a time con-

stant that is itself time-dependent.
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4.2 Elastic collisions – Thermalization

Fig. 4.4 shows the result of this calculation that best fits the experiment, corre-

sponding to a scattering cross section of

σRbCs ≈ 7.4× 10−11cm2. (4.19)

From the scattering cross section σRbCs the corresponding s-wave scattering length

is calculated to be

|aRbCs| =
√
σRbCs/4π ≈ 450 a0 (4.20)

where a0 is the Bohr radius. The agreement with the experiment is reasonable.

For comparison, the model for sympathetic cooling is also plotted for a scattering

length of |aRbCs| = 550 a0 (green solid line) and |aRbCs| = 350 a0 (orange solid

line). Both cases feature a significant deviation, so that the uncertainty, without

considering systematic errors, can be estimated to be on the order of ±50 a0. Since

only the hyperfine state of Cs is controlled in this experiment, the impurity atoms are

distributed across all Zeeman sublevel. The scattering cross section is therefore the

effective value including all Zeeman sublevels within the F = 3 hyperfine manifold

of Cs. Additionally, our experiment is not sensitive for the sign of the scattering

length.

At the determined scattering cross section, the thermalization time constant de-

creases during the cooling from initially τtherm,initial ≈ 44 ms to τtherm,final ≈ 16 ms.

Accordingly, the interspecies collisions rate per Cs atom increases from initially

ΓRbCs,initial/NCs ≈ 70 s−1 to ΓRbCs,final/NCs ≈ 200 s−1 at the end of the sympathetic

cooling, despite the effect of the gravitational sag. This underlines the need of

assuming τtherm to be temperature and therefore time-dependent.

The highest possible thermalization rate is reached, when the collisional dynamics

enter the hydrodynamic regime. This happens when the elastic collision rate exceeds

the frequencies of the trap by far. In this case, the thermalization rate is limited

by the trap frequencies, since local thermal perturbations can not spread across the

sample faster than the trap frequencies [104–107]. In our case, the radial trap fre-

quencies are at least a factor of two higher even at the lowest reached temperatures,

whereas the axial trap frequency is on the order of the elastic collision rate only at

the end of the thermalization, when both species are almost in thermal equilibrium.

Therefore, the cooling dynamics can be described in the collisionless regime and the

assumption in the derivation of Eq. (4.11) is justified.

In a thermalization experiment in a magnetic trap, in a nearly balanced Rb-Cs
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4 Single Cs atoms interacting with an ultracold Rb gas

mixture (Rb: |1,−1〉, Cs: |3,−3〉) at temperatures of several 10 µK, the scattering

length was measured to be |aRbCs| ≈ 595 a0 [108]. In our group, from the sympa-

thetic cooling dynamics in the magnetic trap (Rb: |2, 2〉, Cs: |4, 4〉) a lower limit

of |aRbCs| ≥ 150 a0 was deduced [55]. Recently, magnetic field spectroscopy of a

mixture with both species in the ground state yielded aRbCs = +(630± 60) a0 [109].

In the light of our insertion sequence, the derived value for the interspecies scattering

length should be regarded as a lower limit. Nevertheless, the interspecies interaction

is very strong for our species combination. The impurity atom is cooled rapidly

below one µK, with only a few percent lifetime decay (see Fig. 4.4). The temperature

of the impurity atom is given by the temperature of the buffer gas, which could easily

be cooled further into the degenerate regime. During the sympathetic cooling, the

impurity atom becomes tightly localized, enhanced by the species selective trap,

causing the density to increase by about two orders of magnitude. The buffer gas

remains completely unaffected by the sympathetic cooling. Despite the differential

gravitational sag, already with this first easy experimental realization the doping of

the Rb gas with a strongly interacting, tightly localized impurity atom is achieved.

4.3 Inelastic collisions – Two-body and three-body losses

The limit of the lifetime of the impurity atom is given by inelastic collisions with

atoms of the buffer gas. Depending on the internal state of both species, inelastic

two-body and three-body collisions are possible.

The main experimental challenge for measuring three-body recombination is to dis-

tinguish three-body losses from two-body losses. In magnetic traps, this is difficult

in general, because dipolar relaxation is present as an inherent two-body loss mech-

anism. When both species are stored in an optical dipole trap in their absolute

ground state, the only remaining loss channel is a three-body collision [44, 110].

In the following, the lifetime of the impurity atom is studied with both species

prepared in the absolute ground state. Owing to the atomic resolution for Cs,

three-body recombination is observed atom-per-atom and event-by-event. Again,

the buffer gas is unaffected by the probing with the Cs atom. The timescale of

the losses is on the order of hundreds of ms. The timing behavior of the insertion

sequence, as discussed in the framework of the sympathetic cooling, can therefore be

neglected here. Finally, in the last section the decay of Cs in the excited hyperfine

state due to inelastic two-body collisions is presented.
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Rb gas

Cs atom

axial dipole trap

latticeCs MOT

a b

radial dipole 
trap

Figure 4.7: Illustration of the setup for the monochromatic running wave dipole
trap, as used in this section (not to scale). a) Loading single Cs atoms into the
MOT with Rb stored (see also Fig. 3.1(b)). b) Interaction of both species in
the monochromatic running wave dipole trap, consisting of axial dipole trap and
radial dipole trap (see also Fig. 3.1(d)).

4.3.1 Experimental techniques for the realization of three-body loss

experiments

All experiments in this section use the monochromatic crossed dipole trap, where

the axial dipole trap and the radial dipole trap are combined. Fig. 4.7 illustrates

the setup in this configuration. This ensures that the photon scattering rate can be

neglected for the relevant time scale (see Fig. 3.7). Furthermore, the confinement

of both species after thermalization is nearly equal in this case (see Fig. 4.8(c)), so

that it is sufficient to assume the same, common trapping volume for both species,

simplifying the analysis.

To facilitate an unambiguous interpretation of the loss channels, the Rb buffer gas

should be solely prepared in the absolute ground state (|1, 1〉). During the insertion

radial axial Ti:Sa running wave
Rb depth/kB ( µK) 27 27 0
Cs depth/kB (µK) 48 48 0
Wavelength (nm) 1064 1064 899.93
Waist (µm) 48 100 31
Rb rad. freq. (Hz) 326 160 -
Rb ax. freq. (Hz) 2 <1 -
Cs rad. freq. (Hz) 365 172 -
Cs ax. freq. (Hz) 2 <1 -

Table 4.3: Parameters of the traps for inelastic collision experiments.

75



4 Single Cs atoms interacting with an ultracold Rb gas

sequence of single Cs atoms, Rb is transferred with a π-pulse from the |1, 1〉 state

into the |1, 0〉 state. This is necessary to employ the magnetic field for the Cs MOT,

as discussed in detail in chapter 3. For this experiment, with both species stored in

the lattice, the same π-pulse is applied a second time to transfer the Rb gas back

into the |1, 1〉 state. To avoid any admixture of Rb atoms remaining in the |1, 0〉
state, subsequently a microwave pulse with a duration of typically 40 ms resonant

to the transition |1, 0〉 → |2,−1〉 is applied. In this way, any Rb atom left in the

|1, 0〉 state will eventually be transferred into the |2,−1〉 state, where it is removed

by a push-out pulse resonant to the F = 2→ F ′ = 3 transition.

Accordingly, Cs is optically pumped into the desired state (|3, 3〉 or F = 4) before

being immersed in the Rb cloud. Then, both species are brought into contact and

are stored in the running wave dipole trap for a varying interaction time tI. During

the hold time in the dipole trap, a homogeneous offset field of ≈ 800 mG is applied

to provide a quantization axis. In Table 4.3 the parameters of the traps in this

experiment are summarized. Finally, Rb is pushed out of the trap and the number

of surviving Cs atoms is counted.

4.3.2 Three-body recombination with atomic resolution

To study the interspecies three-body recombination, single Cs atoms prepared in

the |3, 3〉 state are immersed in a Rb buffer gas containing on average NRb ≈ 21.000

atoms prepared in the |1, 1〉 state at a temperature of TRb = (700 ± 50) nK. The

error of the atom number is assumed to be 20%.

Fig. 4.8 shows the results, averaged over shots with 1 – 4 Cs atoms initially immersed

in the buffer gas. From the survival probability of about 80% due to losses during

the insertion, the survival probability for the impurity atoms decays with a time

constant of τL3 = (732 ± 47) ms. At the same time, the Rb buffer gas does not

show a significant loss of atoms. This is in agreement with the expected lifetime

due to intraspecies three-body recombination of Rb in this state (see Table 4.4,

[111]) and the decay of lifetime due to collisions with the background gas, which

is measured independently with a time constant of τ1 ≈ 160 s. Both effects lead

to the theoretical lifetime plotted as a solid red line in Fig. 4.8(a). The effect of

the small number of interspecies three-body collisions on the Rb gas can obviously

be neglected completely. This implies that the density of Rb, which determines the

interspecies interaction dynamics, is effectively constant during the whole interaction

time.

From the same data, the loss rate can be inferred for an exactly defined number

of impurity atoms by selecting the experimental shots with the respective atom
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Figure 4.8: Three-body recombination of impurity atoms with atoms of the
buffer gas. a) During the interaction, the buffer gas does not experience any loss
of atoms in the relevant time. The red line is the expected decay, taking into
account the known intraspecies three-body loss rate for Rb (see Table 4.4, [111])
and the decay of lifetime due to collisions with background gas atoms, in our
case given by τ1 ≈ 160 s. b) Decay of 1 – 4 Cs impurity atoms immersed in the
ultracold Rb gas, showing an exponential time constant of τL3 = (732± 47) ms.
c) Normalized density distribution of both species in the trap after thermalization
(Rb: red, Cs: blue). The peak density of Rb (Cs) amounts to 1.2 × 1013 cm−3

(1.4× 109 cm−3).

number. In Fig. 4.9(a–d) the decay is shown for exactly 1, 2, 3 and 4 atoms initially

immersed in the buffer gas, respectively. For each data set, the fit of the averaged

data is plotted to provide a comparison. The decay rate for all atom numbers as

well as the average data set agrees within the uncertainty.

In an approximately balanced mixture, potentially all possible combinations (Rb-

Rb-Cs, Cs-Cs-Rb, Cs-Cs-Cs) cause Cs loss due to three-body recombination. The

knowledge of the exact number of impurity atoms allows to constrain the possible

loss channels, as illustrated in Fig. 4.9. For a single Cs atom, for instance, only

Rb-Rb-Cs three-body recombination remains. Accordingly, for two impurity atoms

Cs-Cs-Cs collisions are impossible, whereas for three and four impurity atoms all
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Figure 4.9: Three-body losses observed atom-by-atom. Lower row: For all
impurity atom numbers from one to four, the data can be described by a simple
exponential decay with the same time constant determined from the average data
of Fig. 4.8. Upper row: Illustration of the possible loss channels corresponding
to the impurity atom number. Blue (red) spheres represent Cs (Rb) atoms.

loss channels are allowed. The fact that all decay rates for 1 – 4 impurity atoms are

the same, points to Rb-Rb-Cs three-body recombination as the only relevant loss

channel in our experiment.

This can be verified by looking one step closer at the statistics of the losses, which

are also resolved by our experiment. There are three possible outcomes of a single

experiment of immersing two impurity atoms in the buffer gas: Two atoms, one atom

or no atom may be lost. These cases are easily identified by the fluorescence traces

after recapture, examples are presented in Fig. 4.10(a). From many experimental

realizations, the respective probabilities p0 (no atom lost), p1 (single atom loss) and

p2 (two atoms loss) are determined for each interaction time tI, corresponding to a

certain total survival probability p.

Assuming the same, independent survival probability p for each Cs atom, the prob-

ability for each of these cases can be written as
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Figure 4.10: Three-body losses for exactly two impurity atoms, observed event-
by-event. a) Fluorescence traces showing all three possible loss events and the
according allowed loss channels. b) Corresponding relative occurrences for all
possible case: two atom loss (N), one atom loss (H) and no atom loss (•). The
solid lines show the expectation according to Eqs. (4.21).

p0 = p2

p1 = 2p(1− p)
p2 = (1− p)(1− p). (4.21)

If there was any inelastic loss process involving two Cs atoms (Cs-Cs-Rb three-

body recombination), the probability p2 that both Cs atoms are lost from the trap

would be increased compared to the probability p1 of a single atom loss and to

the probability p0 that no atom is lost. In Fig. 4.10 the expectation according to

Eqs. (4.21) is plotted together with the corresponding relative occurrences obtained

from the experiment, showing a good agreement. It is therefore solely Rb-Rb-Cs

three-body recombination, which leads to the observed decay rate.
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Results: Three-body loss rate

In a three-body recombination, the released binding energy is shared among the

colliding atoms. Depending on the trap depth and the gained energy, the atoms

leave the trap. However, a part of the energy can be transferred to the remaining

atoms of the gas, leading to heating of the whole sample. Because the probability

of three-body recombination depends quadratically on the density of the buffer gas,

this effect happens predominantly in the cold and dense parts of a cloud in the

center of the trap. Since it removes colder atoms with higher probability, this effect

is called “anti-evaporation” [44]. In our case, the small number of collision events

allows neglecting this effect. Indeed, no significant heating of the Rb gas is observed.

This further facilitates the interpretation of the lifetime measurement.

The decay of lifetime of Cs immersed in the Rb gas can be described by

1

NCs

dNCs

dt
=
ṄCs

NCs

= −L3 <n
2
Rb> (4.22)

where <n2
Rb> is the mean squared Rb density and L3 the three-body loss coeffi-

cient. Usually, both Cs atom number and Rb density are time dependent, so that

Eq. 4.22 can in general not be solved analytically. In our case, in contrast, <n2
Rb>

is constant (see Fig. 4.8), so that Eq. 4.22 is solved by N(t) = N0 exp (−t/τL3) =

N0 exp (−L3 <n
2
Rb> t). This is also validated by the experimental data being well

described by an exponential decay (see Fig. 4.8). Expressing the mean squared

density of Rb by the directly observed quantities NRb and TRb, the three-body loss

rate L3 can be inferred from the measured decay time τL3 by

L3 =
1

τL3

(
2πkB

√
27

mRbω̄2
Rb

)3
T 3

Rb

N2
Rb

(4.23)

where ω̄Rb is the geometric mean of the trap frequencies of Rb. With the decay time

and the experimental parameters, Eq. 4.23 yields

L3 = (5± 2)× 10−26 cm6s−1. (4.24)

Here, the error includes uncertainties of TRb, τL3 and NRb. The main contribution

to the error comes from the uncertainty of NRb.

In other experiments working with Rb-Cs mixtures, the three-body loss coefficient

was measured with (nearly) balanced mixtures. Due to the difficulties to extract
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87Rb 133Cs
|F,mF〉 |2, 2〉 (BEC) |1, 1〉 (BEC) |1,−1〉 (BEC) |3, 3〉

L3 (cm6s−1) 1.8× 10−29 [112] 3× 10−29 [111] 5.8× 10−30 [113] ≈ 10−24 [44]

Table 4.4: Intraspecies three-body loss rates for some states of 87Rb and 133Cs
in thermal clouds and BECs at low magnetic fields.

the pure loss coefficient in this case as discussed above, these groups give a rather

rough estimation of L3 ≈ (10−25−10−26) cm6s−1 [114] and L3 < 10−25 cm6s−1 [109].

Our results are compatible to these findings, which implies that Rb-Rb-Cs three-

body recombination is the reason for a significant fraction of the losses observed in

balanced Rb-Cs mixtures.

For comparison, in Table 4.4 intraspecies three-body loss coefficients for some states

of Rb and Cs are summarized. For Rb, the loss rate is suppressed by about two orders

of magnitude, which facilitates the use of this species as the “workhorse” species in

ultracold atom experiments. For Cs, in contrast, the loss rate at low magnetic

fields in the absolute ground state is about two orders of magnitude higher than

the interspecies rate. Cs in the ground state features a Feshbach resonance close to

zero magnetic field, which makes the interaction strongly dependent on the external

magnetic field already at low field strengths [92, 105, 115]. Since the three-body loss

rate coefficient scales with the fourth power of the interaction strength a (see Eq.

4.8), this also drastically changes the three-body recombination rate. Overall, this

makes Cs gases difficult to handle. Bose-Einstein condensation of Cs, for instance,

was achieved only in optical traps with samples in the absolute ground state and by

tuning the interaction strength [105, 116].

The three-body recombination coefficient for Rb-Cs mixtures lies in between these

two cases. Combined with the challenges of single species Cs gases, in balanced mix-

tures the relatively high interspecies three-body loss rate leads to quite demanding

experimental requirements [109, 114]. It is not possible to tune interactions to a

region where all Rb-Rb, Rb-Cs and Cs-Cs interaction strength are reasonably small,

in fields of up to 667 G, as has been reported lately [109]. Only recently, double

BECs of Rb and Cs have been produced [109, 117], in one case by merging ultra-

cold clouds prepared in separated traps to avoid strong losses due to interspecies

collisions [109].

In our experiment, in contrast, there are no Cs-Cs interactions, as was discussed

in this section, while the Cs impurity atoms interact strongly with the Rb buffer

gas. Accordingly, the employment of Feshbach resonances to tune the interspecies

interaction is not limited to magnetic fields where Cs-Cs losses are low. Without
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4 Single Cs atoms interacting with an ultracold Rb gas

tuning the interspecies interaction, evaporative cooling of the Rb gas with Cs atoms

immersed is limited to a few 100 ms. However, with the sequence presented in

chapter 3, Rb can be cooled independently to the desired temperature before Cs is

inserted. Since the thermalization due to elastic collisions is much faster than the

decay of lifetime due to three-body collisions, the lifetime of the impurity atom is

sufficiently long for future experiments.

By using few and single atoms as probes, the interspecies three-body loss rate was

determined without affecting the Rb buffer gas. The decay in lifetime can be traced

back to a single loss channel, allowing an unambiguous estimation of the three-body

loss coefficient.

4.3.3 Two-body loss rate in the excited hyperfine state of Cs

To experimentally investigate the effect of two-body collisions in the “excited“ hy-

perfine ground state, Cs is pumped into the F = 4 hyperfine manifold, with an

otherwise identical experimental sequence like in the preceding section. For a di-

rect comparison, the lifetime measurement for Cs in the absolute ground state is

repeated. The Rb atom number in this experiment is about NRb ≈ 19.000, slightly

lower than in the preceding L3 measurement. The uncertainty of the atom number

is assumed to be 20%. The temperature of the Rb gas is TRb = (700± 50) nK, the

trap parameter are the same as listed in Table 4.3.

Fig. 4.11 shows the experimental results. The loss is again well described by a simple

exponential decay. For Cs in the absolute ground state, the survival probability

decays with a time constant of τL3 ≈ 900 ms, slightly slower compared to section

4.3.2 due to the lower Rb density. For atoms in the excited hyperfine state, the

decay shows a much faster time constant of τL2 = (111± 10) ms.

Like in the case discussed in the preceding section, heating and atom loss in the Rb

gas can be neglected, so that the properties of the buffer gas are constant during the

interaction with Cs. The amount of internal energy (about 9.2 GHz) is extremely

large compared to the trap depth. When it is released in a collision with an atom

of the Rb buffer gas, both atoms involved leave the trap.

Assuming the loss to be caused solely by two-body collisions, the lifetime of the

impurity atom can be described by

1

NCs

dNCs

dt
=
ṄCs

NCs

= −L2 <nRb> (4.25)

where <nRb> denotes the mean density of the Rb gas. Like in the case of the
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4.3 Inelastic collisions – Two-body and three-body losses
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Figure 4.11: Lifetime for on average about 10 Cs atoms prepared in the absolute
ground state (F = 3, mF = 3 (�)) and in the excited hyperfine state (F = 4
(•)) immersed in an ultracold Rb gas. The statistical errors are on the order of
the markersize and therefore not shown.

three-body collisions discussed in the preceding section, this equation is solved with

a simple exponential decay N0 exp(−t/τL2) = N0 exp(−L2 <nRb> t). Expressing L2

in experimentally directly accessible quantities, we get

L2 =
1

τL2NRb

(
4πkBTRb

mRbω̄2
Rb

) 3
2

. (4.26)

With the experimental parameters, this yields for the interspecies two-body loss rate

coefficient

L2 = (3± 1)× 10−12 cm3s−1. (4.27)

87Rb 133Cs
|F,mF〉 |2, 2〉 (BEC) |1,−1〉 (BEC) |4, 4〉 |3,−3〉

L2 (cm3s−1) 1×10−15 1×10−15 4×10−12 4×10−13

[112, 118] [112, 118] [119] [120]

Table 4.5: Intraspecies two-body loss rates for 87Rb and 133Cs for some states,
that can be trapped magnetically.

In Table 4.5 the corresponding intraspecies two-body loss rate coefficient for Rb and

Cs are listed. Compared with the determined interspecies loss rate, two-body losses
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4 Single Cs atoms interacting with an ultracold Rb gas

in Rb gases are strongly suppressed by about three orders of magnitude, which is one

of the reasons why Rb is very well suited to study high density clouds and BECs.

For Cs gases, in contrast, the two-body loss rate for states, that can be trapped

magnetically, is on the same order of magnitude. For this reason, Cs can only be

condensed in optical traps and with tuning its interactions via Feshbach resonances.

For our experiment, the loss rate in this state also poses a limit, which is the reason

to prepare Cs in its ground state for most experiments.

4.4 Conclusion

A system of single Cs atoms interacting with an ultracold Rb gas was presented

in this chapter. During the sympathetic cooling of single Cs atoms, the survival

probability decays by an amount of only a few percent. While the impurity atoms

are cooled by more than one order of magnitude, the Rb buffer gas is observed to

remain unaffected. Three-body recombination was measured with atomic resolution,

while again leaving the many-body system unchanged. By employing a species-

selective trap, the impurity atom was tightly localized inside the ultracold Rb gas,

demonstrating the doping of a many-body system with a spatially confined impurity.
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Chapter 5

Conclusion and outlook

In this thesis, I have presented a method to prepare ultracold gases doped with an

exactly known number of few and single impurity atoms. The sympathetic cooling

of the impurity atoms without a significant decay of the survival probability was

observed, where the temperature is limited only by the temperature of the ultracold

Rb gas. The thermalization dynamics were analyzed to deduce the elastic inter-

species scattering length. Inelastic three-body collisions were studied with atomic

resolution, allowing to unambiguously assign losses to Rb-Rb-Cs three-body recom-

bination.

These observations reveal the elementary properties of the interspecies interactions,

that determine the properties of the hybrid system. The ratio of ”bad” inelastic

collisions to ”good” elastic collisions was found to be favorable enough to perform

experiments with the hybrid system, without the need of tuning the interspecies

interactions. In all experiments, the buffer gas remains unaffected by the interaction

with the impurity atoms, demonstrating the employment of single atoms as non-

destructive probes for a many-body system. The presented hybrid system paves the

way for a set of interesting scenarios.

For these scenarios, outlined in some detail below, mainly two requirements remain

to be shown. The first one is to dope a BEC, rather than an ultracold, high phase-

space density thermal gas, like employed for most of the studies described in this

thesis. However, production of BECs in the employed traps was demonstrated and

the presented preparation scheme should accordingly allow the doping of a BEC. Al-

ternatively, a doped high phase-space density sample could be further evaporatively

cooled to degeneracy. Secondly, tuning of the interspecies scattering length would

allow to tailor the interactions in a controlled way, as was demonstrated in a variety

of ultracold atom experiments. In a balanced Rb-Cs mixture, several interspecies

Feshbach resonances have been observed in the absolute ground state [121]. By ap-
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5 Conclusion and outlook

plying a homogeneous magnetic field to our hybrid system, tuning of the interaction

should be immediately possible. It should be observable by enhanced three-body

recombination, like in balanced mixtures. With these next steps, the proposals

introduced in the following should be within reach.

5.1 Coherence properties of single atom impurities immersed in

a BEC

Single neutral atoms are candidates for use as qubits in quantum information pro-

cessing experiments [14, 31, 68, 122], where the quantum state is usually stored in

internal states of the atom. In most manipulation and trapping schemes, a certain

heating rate is unevitable. The decoherence time in these experiment is crucial,

since it determines the storage time of quantum states. Higher temperatures usu-

ally cause shorter coherence times [72, 123], hence cooling of such qubits might be

necessary. This cooling is not allowed to change the quantum state of the atom. A

possible solution to this challenge has been proposed by the immersion of qubits into

a BEC [36, 37]. Potentially, the atom could be cooled coherently and continuously

in this way by transferring energy to excitations of the superfluid. Furthermore,

excitation of the quantum gas could be employed to mediate interaction between

two impurity atoms. Provided this interaction could be tailored adequately, even

the entanglement of two impurities could be possible [124].

A similiar idea is to study the coherence of the BEC with the help of the impurity

atom, as suggested in [40]. The basic concept here is to immerse a single atom pre-

pared in a superposition of two internal states into a BEC and study the interaction

of both sub-systems. By a species-selective trap, in the same manner like shown in

the thermalization measurement in this thesis, the impurity atom could additionally

be tightly localized inside the BEC, which would allow to spatially resolve the exper-

iment. In another proposal, the interaction between an impurity atom trapped on

a lattice site and an ensemble of probe atoms is studied. The adequate interactions

provided, the probe atoms are reflected if the impurity atom is in one spin state, but

transmitted if it is in another spin state. This could be exploited for a single-shot

non-demolition read-out of the quantum state of the impurity atom [125].

For all these scenarios, coherent manipulation of the impurity atom is crucial. In

a set of experiments, we studied the decoherence of single Cs atoms, stored in

the running wave crossed dipole trap without Rb present, by Ramsey spectroscopy

[123, 126]. In Fig. 5.1(a) a typical Ramsey fringe for a hold time thold = 500 µs

is shown. By measuring the contrast for different holding times, the decoherence

time tdeco can be determined. The corresponding data is presented in Fig. 5.1(b),
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Figure 5.1: Ramsey spectroscopy of single Cs atoms. a) Ramsey fringe after a
hold time of 500 µs. b) Ramsey contrast in dependence of the hold time, showing
a decoherence time of tco ≈ 1.2 ms. Details are discussed in the master thesis of
Farina Kindermann [72].

yielding tdeco ≈ 1.2 ms. Details on these experiments can be found in the master

thesis of Farina Kindermann [72]. In chapter 4, the lifetime of the impurity atom

in both the hyperfine ground state (F = 3) and the excited state (F = 4) was

found to be on the order of hundreds of ms, more than two orders of magnitude

longer than the decoherence time tdeco. Hence, the study of an impurity atom in

a superposition state immersed in the buffer gas would not be limited by inelastic

three-body recombination. Furthermore, it was shown in this thesis, that single

Cs atoms are sympathetically cooled within a few tens of ms. Therefore it could

also be possible to observe the coherence of the impurity atom during sympathetic

cooling. Unfortunately, a sudden vacuum leak detained us from continuing Ramsey

spectroscopy with Rb stored in the trap.

5.2 Polaron physics

Another possible line of research is the investigation of polaron physics in our system.

A single-atom impurity in a BEC is predicted to have a bound ground state in

which it is self-localized [127, 128], provided strong enough interaction. In this

polaronlike state, the atom distorts the surrounding density of the BEC which leads

to a self-trapping potential. The polaron is suggested to be probed by “Bose-Nova“

experiments, where a strong expansion of the BEC is observed in time-of-flight

images [129]. An alternative probing method would be microwave or rf spectroscopy

of the impurity atom. Formation of a polaron should be visible by a distinct peak
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5 Conclusion and outlook

in the spectrum, as was demonstrated in Fermi polarons [38].

5.3 New apparatus – Choice of species

Since a new apparatus with the same research goal is currently designed, the question

arises which atomic species are to be used. Rb and Cs are quite strongly interacting

already without tuning, as was observed in this thesis. While a strong interaction is

desired in principal, the drawback is a strong interspecies three-body recombination,

limiting the lifetime of the impurity atom to several hundred ms. This time is

sufficiently long for most envisioned experiments. Due to the long time scale for

evaporative cooling of the buffer gas on the order of several seconds, the only way

to prepare a doped many-body system with this choice of species is therefore to first

prepare ultracold Rb, and then dope it with single Cs atoms. One relatively simple

way to achieve this was presented in this thesis.

The three-body recombination rate scales with the density of the buffer gas squared.

Experiments with higher buffer gas density will therefore lead to a farther shortened

lifetime of the impurity atom. In these cases, the tuning of the interaction strength

via Feshbach resonances could be necessary. Because intraspecies Cs interactions

can be neglected in our case, tuning the interaction is not limited to regions were Cs

interactions are small enough, like discussed above. This would provide a means to

reduce the interaction strength and therefore elongate the lifetime of the impurity

atom. The use of Rb has the advantage that BECs are easy to produce because of

the favorable intraspecies scattering properties.

Another advantage of our species combination is the maximum possible difference

of the wavelength of atomic transitions for a combination of stable Alkali atoms of

about 70 nm. This allows the optical adressing of one species without affecting the

other. In particular, we can operate a MOT to cool and trap single Cs atoms, while

an ultracold Rb gas is stored inside the beam diameter of the Cs MOT, without

affecting the Rb gas.

Overall, Rb and Cs seem to be good candidates also for future experiments. There-

fore, the primary demand for the new apparatus will be a faster cycle time. Em-

ploying more recent technologies, mainly a two-dimensional MOT for a high flux

atomic beam and an all-optical route to BEC, should shorten the time for one shot

from about one minute to a few seconds.
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ics of a single trapped ion in an ultracold buffer gas. New Journal of Physics,

13(5):053020, May 2011.

[27] M. Tinkham. Introduction to superconductivity. Courier Dover Publications,

2004.

[28] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn,

and W. Ketterle. Observation of feshbach resonances in a Bose-Einstein con-

densate. Nature, 392(6672):151–154, 1998.

[29] C. A. Stan, M. W. Zwierlein, C. H. Schunck, S. M. F. Raupach, and W. Ket-

terle. Observation of feshbach resonances between two different atomic species.

Physical Review Letters, 93(14):143001, 2004.

[30] R. Wynar, R. S. Freeland, D. J. Han, C. Ryu, and D. J. Heinzen. Molecules

in a Bose-Einstein condensate. Science, 287(5455):1016 –1019, February 2000.

[31] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch. Con-
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J. Estève, and J. Reichel. Cavity-Based single atom preparation and High-

Fidelity hyperfine state readout. Physical Review Letters, 104(20):203602, May

2010.

[36] A. J. Daley, P. O. Fedichev, and P. Zoller. Single-atom cooling by super-

fluid immersion: A nondestructive method for qubits. Physical Review A,

69(2):022306, February 2004.

[37] A. Griessner, A. J. Daley, S. R. Clark, D. Jaksch, and P. Zoller. Dark-

State cooling of atoms by superfluid immersion. Physical Review Letters,

97(22):220403, November 2006.

[38] A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein. Observation of

fermi polarons in a tunable fermi liquid of ultracold atoms. Physical Review

Letters, 102(23):230402, June 2009.

[39] M. Bruderer and D. Jaksch. Probing BEC phase fluctuations with atomic

quantum dots. New Journal of Physics, 8(6):87–87, June 2006.

[40] H. T. Ng and S. Bose. Single-atom-aided probe of the decoherence of a Bose-

Einstein condensate. Physical Review A, 78(2):023610, 2008.

[41] C.-S. Chuu, F. Schreck, T. P. Meyrath, J. L. Hanssen, G. N. Price, and M. G.

Raizen. Direct observation of Sub-Poissonian number statistics in a degenerate

bose gas. Physical Review Letters, 95(26):260403, December 2005.

[42] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling,
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A high phase-space density mixture of 87Rb and 133Cs: towards ultracold

heteronuclear molecules. The European Physical Journal D, April 2011.

[115] C. Chin, V. Vuletic, A.J. Kerman, and S. Chu. High resolution feshbach

spectroscopy of cesium. Physical Review Letters, 85(13):2717–2720, September

2000.

[116] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm. Bose-Einstein
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