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We experimentally demonstrate real-time feedback control of the joint spin-state of two neutral cesium

atoms inside a high finesse optical cavity. The quantum states are discriminated by their different cavity

transmission levels. A Bayesian update formalism is used to estimate state occupation probabilities as well

as transition rates. We stabilize the balanced two-atom mixed state, which is deterministically inaccessible,

via feedback control and find very good agreement with Monte Carlo simulations. On average, the feedback

loop achieves near optimal conditions by steering the system to the target state marginally exceeding the

time to retrieve information about its state.
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Two or more quantum systems sharing a single excitation
are forming joint quantum states, also called Dicke states.
They are important building blocks for controlled quantum
systems with applications in, e.g., quantum communication
[1,2] or quantum simulation [3]. Experimental realizations
are based on several different platforms including trapped
ions [4], cold atoms [5], artificial atoms, and circuit cavity
QED systems [6].

Schemes based on both deterministic [7] and probabilistic
[8] methods have been proposed for the creation of joint
quantum states in a cavity QED system. In practice, passive
or dynamic measures are used to reduce the influence of
external disturbances and decoherence needed to approach a
unitary evolution of the many particle system. In this Letter
we demonstrate that the application of active feedback
schemes can significantly extend tight control [9], i.e., the
fidelity of the processes creating joint two-particle quantum
states, beyond purely passive deterministic or probabilistic
state preparation.

A proposal by Balykin and Lethokhov [10] called a
feedback method ‘‘information cooling’’ for motional con-
trol of atoms, emphasizing the close connection of infor-
mation and control. Feedback control leading to cooling
was recently realized [11,12] with atoms strongly coupled
to a high-finesse optical resonator. The method is success-
ful at the single particle level in the strong coupling limit of
cavity QED: The transmission of the optical resonator
allows real-time monitoring of the atomic position and
motional control via modulation of a trapping potential.

Here, in contrast, we focus on feedback onto the internal
atomic state: We experimentally perform projective mea-
surements to discriminate the joint discrete two-atom quan-
tum states �̂�¼0�j##ih##j, �̂�¼1�1=2ðj"#ih"#jþj#"ih#"jÞ
and �̂�¼2�j""ih""j, where � corresponds to the number of
atoms in the spin up state, and invokes actuators to drive the
system towards the target state �̂�¼1. For optimal feedback

loop operation the time to correct a state should not exceed
the measurement time needed to detect a deviation from the
target state. Thus, a rapid and efficient processing of the
limited information retrieved from the system in the pres-
ence of quantum and technical noise is essential. We use an
algorithm [13] based on Bayes’ rule [14] for conditional
probabilities. It assigns and updates time-dependent proba-
bilities p�ðtÞ to the quantum states �̂� after every individual
measurement of the number of transmitted photons nðtÞ for
a bin time�t, using the contained information in an optimal
way. We achieve a correction of our state after a time of
1.12 times the measurement time bin, thus approaching
optimal feedback response efficiency.
In our experiment, the pseudospin states are implemented

by the two long-lived hyperfine ground states jF¼3i¼j#i
and jF¼4i¼j"i of cesium. We trap two laser-cooled Cs
atoms inside a high finesse optical cavity using a far off-
resonant standing wave dipole trap, see Fig. 1(a) [15,16].
The cavity resonance frequency is blue detuned from the
F ¼ 4 ! F0 ¼ 5 transition of the Cs D2-line and is on

FIG. 1 (color online). (a) Schematic of experimental setup,
(b) simplified level scheme of Cs, (c) two-atom states and
transition rates of probe (R21,R10), repumping (Rr) and depu-
mping (Rd) laser.
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resonance with the frequency of a weak probe laser, see
Fig. 1(b).

The detuning of the cavity from the atomic resonance

and the position of atoms inside the cavity mode are

optimized to achieve long storage times of the atoms and

maximally spaced transmission levels: The two-atom

states �̂�¼0;1;2 reduce the probe laser transmission by 0%,

30%, 60% to resolve the different atomic states with the

highest contrast [13]. While the driving of the atom-cavity

system by the probe laser allows us to continuously obtain

information about the joint atom state via the transmitted

light, the probe beam itself also induces spontaneous tran-

sitions �̂�¼2ð1Þ ! �̂�¼1ð0Þ by inelastic Raman scattering at

rates R21 (R10), see Fig. 1(c).
The cavity transmission is measured by a single photon

counter [15] which is connected to a digital signal proces-
sor (DSP) controlling the intensities of both a repumping
laser (rate Rr, F ¼ 3 ! F ¼ 4) and a depumping laser
(rate Rd, F ¼ 4 ! F ¼ 3) in real time, see Fig. 1.

To exclude atom losses during the experiment, we de-
termine the number of atoms via fluorescence at the begin-
ning and the end of each experimental sequence and we
measure the cavity transmission after optical pumping to
�̂�¼2 at the end to exclude positioning errors leading to bad
coupling.

For the estimation of the rates we choose continuous
weak repumping laser intensities (Rd ¼ 0, Rr � R10), at
which we observe abrupt state changes called quantum
jumps as shown in Fig. 2(a) [13].
We estimate the state of the system by assigning occupa-

tion probabilities pðtÞ ¼ ðp0ðtÞ; p1ðtÞ; p2ðtÞÞT to the states
�̂�. At discrete times spaced by the bin time �t we deter-
mine the number of transmitted photons nðtiÞ. Application
of Bayes’ theorem [14] yields a posteriori state probabilities

from a priori probabilities p
pri
� ðtiÞ,

ppost
� ðtiÞ ¼ p½�jnðtiÞ� ¼ p½nðtiÞj��ppri

� ðtiÞP
� p½nðtiÞj��ppri

� ðtiÞ
; (1)

based on the distribution of conditional probabilities p½nj��
for the same bin time. These distributions are known from
photon count histograms of separately measured cavity
transmissions for exactly 0, 1, 2 atoms optically pumped
to strongly couple to the cavity, see right diagram in Fig. 2.
With no further information available the a posteriori prob-
abilities would become the a priori probabilities for the
following measurement, ppostðtiÞ ! ppriðtiþ1Þ. This proce-
dure can be interpreted as repeated updating of our knowl-
edge about the state of the system based on the measured
number of photons nðtiÞ. The initial a priori probabilities
ppriðt0Þ ¼ ð0; 0; 1ÞT are assigned according to the state �̂�¼2

FIG. 2 (color online). (a) Detected number of transmitted photons nðtiÞ through the cavity for continuous weak repumping for a bin
time of �t ¼ 1ms. Right: The corresponding photon count histogram of nðtiÞ (black curve) is shown in comparison to separately
measured photon count histograms p½nj�� for � ¼ 0; 1; 2 coupled atoms (shaded areas). (b) Estimated probabilities ppost

� ðtiÞ, which are
computed in real time according to the Bayesian update formalism based on nðtiÞ as shown in (a). (c) Evolution of the Bayesian
probabilities of the quantum jump rates starting from a uniform a priori distribution over 19 successive transmission measurements of
300 ms each. (a.u., arbitrary units.)
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prepared by optical pumping at the beginning of each
experimental sequence.

The average evolution of our system is described by rate
equations. Thus we can further improve our knowledge of
the a priori system state at time tiþ1 by taking into account
the evolution from the previous a posteriori system state
ppostðtiÞ. For weak continuous repumping [rates fRjg ¼
fR21; R10; Rrg � �t�1, Fig. 1(c)] the linearized solution is

ppriðtiþ1Þ¼

2
66641þ�t

�2Rr R10 0

2Rr �R10�Rr R21

0 Rr �R21

0
BB@

1
CCA

3
7775�ppostðtiÞ;

(2)

where 1 is the 3� 3 identity matrix.
The model implemented by Eq. (2) allows us to extend

Bayes’ theorem to generalized probabilities pð�; fRjgÞ for
states and rates, overcoming the need to determine fRjg by
an independent measurement:

ppost½�; fRjgjnðtiÞ� / p½nðtiÞj��pprið�; fRjgÞ: (3)

The photon count histograms p½nj�� are not directly
affected by the rates if fRjg � �t�1. Nevertheless, every

measurement nðtiÞ provides information about the rates
since Eq. (2) updates our knowledge by predicting an
a priori distribution for the generalized probabilities
pprið�; fRjgÞ.

We take an initially flat probability distribution (no
knowledge) for the rates and evaluate the probabilities on
a discrete grid in the four dimensional space of states and
rates for each measurement nðtiÞ. The probability values
for any rates or states alone can be calculated using the
marginalization rule, e.g.,

ppost½�jnðtiÞ� ¼
X
fRjg

ppost½�; fRjgjnðtiÞ�: (4)

An example of the time evolution of a free running, weakly
repumped system is given in Fig. 2(b) for the state prob-

abilities p
post
� and in (c) for the distribution of rates R10 and

R21 where, with increasing data accumulation (information
gain), a narrow peak emerges. The transition rates and
errors are extracted as the expectation values and the root
mean square values of the probability distribution. We stop
data acquisition when the uncertainty of the transition rates
is approximately 10% yielding rates R10 ¼ ð50� 6Þs�1,
R21 ¼ ð35� 4Þs�1, and Rr ¼ ð59� 5Þs�1, where 5.1 s of
data acquisition (	 250 quantum jumps) were used.
Compared to Ref. [13] a significantly lower number of
quantum jumps is needed to achieve the same accuracy
with this method.

Theoretically, the Bayesian data analysis is independent
of the choice of bin time for�t < R�1

i for shot noise limited
signals. Experimentally, the analysis yields constant rates in

the range of�t ¼ 0:3 ms . . . 10ms. Below�t ¼ 0:3 mswe
observe an increase of the extracted transition rates due to
a super-Poissonian broadening of the photon count histo-
grams p½nj�� [13]. We attribute this broadening to
atom-cavity coupling fluctuations induced by atomic
motion. They cause correlations not accounted for by the
Bayesian state estimation, which leads to noise affecting
the rate estimation. They are more relevant at short bin times
where the photon number distributions p½nj�� are
not well separated. We have thus chosen a bin time of
�t ¼ 1 ms which maintains high time resolution while
providing acceptable separation of the photon count histo-
grams. Before closing the feedback loop we measure the
photon count histograms and determine the rates R21,R10

according to Eq. (3).
In order to steer the system towards the target state �̂�¼1

we continuously monitor the cavity transmission and use
Eqs. (1) and (2) for real-time state estimation of the state
probabilities. The algorithm controlling the application of
short, intense pulses of repumping and depumping laser light

minimizes the Kolmogorov distance [17] D½ptarget;pðtiÞ� ¼
1
2

P
�jptarget

� � p�ðtiÞj. This distance quantitatively measures

the difference of the estimated time-dependent probabilities
from the target state and is equal tomaximizingp1ðtiÞ in case
of p

target
� ¼ ð0; 1; 0ÞT.

The short laser pulses drive state changes with transition
probabilities Tr;d during a single pulse of length �t. This
knowledge is included in our algorithm by multiplying
ppostðtiÞ with a matrix

Mr ¼
ð1� TrÞ2 0 0

2Trð1� TrÞ 1� Tr 0

T2
r Tr 1

0
BB@

1
CCA; (5)

for a repumping laser pulse and accordingly Md for a
depumping pulse. The optimal transition probabilities
can then be calculated by minimizing the distance
D½ptarget;Mip

postðtiÞ� with respect to Ti. Here, the optimal

Ti depend on pðtiÞ and lie within a range of [0.25, 0.5] per
pulse. However, simulations show that the mean occupa-
tion of the target state does not change significantly if
the algorithm is simplified as follows: We use a fixed value
of TrðTdÞ and apply a repumping (depumping) laser pulse
if p0ðtiÞ> p1ðtiÞ; p2ðtiÞ ½p2ðtiÞ> p0ðtiÞ; p1ðtiÞ�, respec-
tively. Since this feedback method is less demanding to be
technically implemented, we have experimentally set Tr;d to

values that maximize the estimated probability of the target
state by fixing the length of the pulses to �t � 1:5 �s and
optimizing its intensity. The computation of the closed feed-
back loop algorithm takes a time of about 6 �s on our
digital signal processor (TMS6713 by Texas Instruments)
and can thus be neglected with respect to the update fre-
quency of 1 ms�1.
A typical measurement of the probe transmission with

feedback is plotted in Fig. 3. The vertical lines in the
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background of the transmission data indicate a repumping
and depumping laser pulse. The random telegraph pattern
of the quantum jumps is strongly suppressed and the
state probabilities are dominated by p1. Furthermore,
the photon-count histogram of the experimental feedback
trace (black) is almost identical with the photon count
histogram of a single coupled atom (� ¼ 1, green), con-
firming the reliability of our state estimation and feedback
scheme. In principle an out-of-loop measurement of
the atomic states could be performed via a push-out
technique [18].

The mean probability of the target state �̂�¼1 over many

experiments is hppost
1 ðtiÞi ¼ 84%, see Fig. 4(a). This is in

excellent agreement with a Monte Carlo simulation of the
feedback based on the measured rates R21, R10 and the
measured photon count histograms p½nj��. The scheme is
also capable of stabilizing the states �̂�¼0;2, but these states

are trivially accessible by optical pumping.
The time constant for the atom-cavity system to stay in

�̂�¼1 is determined to be � ¼ ð19� 2Þms � 1=R10, in
full agreement with the prediction by the rate equations:
The mean time in state � ¼ 1 is ultimately limited by
inelastic scattering of the probe laser with rate R10 yielding
a probability of 1� R10�t to stay in this state during a time
bin �t. The effectivity of the feedback loop is character-
ized by the time constant until the target state is reached
which is experimentally given by 1.12 ms and thus, near
the theoretical optimum of a single time bin. The slightly
larger mean probability of the lowest state �̂�¼0 compared
to �̂�¼2, visible in Fig. 4(a). is caused by the depumping
due to the probe laser.

Without feedback the highest passively achievable
mean probability of the target state �̂�¼1 is 50% for
saturating repumping and depumping lasers. In this limit,
the pumping lasers dominate the system dynamics and

cause very high transition rates. In a more appropriate
case of a weak continuous repumping laser (Rr ¼ 59s�1)
we have experimentally determined the mean probability

hppost
1 ðtiÞi ¼ 33%, see Fig. 4(c). The solution of Eq. (2)

for traces of 300 ms length under the same initial
condition of pðt0Þ ¼ ð0; 0; 1ÞT depending on the repumping
rate Rr yields the expected mean probability as a function
of Rr, see Fig. 4(d). Even at an optimal repumping rate,
the mean target state probability never exceeds 37%, see
Fig. 4(b).
In order to increase the mean target state probability we

have to minimize the error probability R10�t of leaving
the target state within a time bin while maintaining the

FIG. 3 (color online). (a) Detected number of transmitted photons nðtiÞ through the cavity while feedback onto the two-atom state
�̂�¼1 is applied. The vertical lines indicate repumping and depumping feedback pulses, respectively. Note that the photon count
histogram of nðtiÞ (black) resembles the histogram for exactly one coupled atom to a high degree as shown in the right figure.
(b) Estimated Bayesian state probabilities p

post
� ðtiÞ calculated in real time.

FIG. 4 (color online). Comparison of mean probabilities for
the case of feedback (a) and continuous weak repumping experi-
ments for measured (c) and optimal repumping rate (b). The
shaded bars indicate simulated results. (d) Analytical solution of
the mean probabilities for different repumping rates Rr.
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separation of the photon count histograms as discussed
above. The error minimization could be realized by a
reduction of the optimal bin time �t or the transition rate
R10 although these variables are not independent in gen-
eral: The first depends on our 4.4% detection efficiency of
the transmitted light [13]. An enhancement by a factor of
two of the detection efficiency would lead to a separation
of the photon count histograms allowing us to reduce the

bin time and thus the error probability 1� hppost
1 ðtiÞi by the

same factor. Also improving localization of the atoms in-
side the cavity by means of an additional dipole trap would
allow us to reduce the width of the photon count histo-

grams to Poissonian shape and increase hppost
1 ðtiÞi to 86%.

In cavities with a very high single atom cooperativity C a
further enhancement of the cavity-atom detuning would
result in a reduction of R10 / 1=C which would decrease
the error probability linearly.

The mixed state �̂�¼1 that has been stabilized in our
experiment can be viewed as a statistical mixture of the

two Bell states j��i ¼ ðj "#i � j #"iÞ= ffiffiffi
2

p
, which are indis-

tinguishable by the projective transmission measurement
employed here. In order to extend the feedback scheme
to entangled states, one could use the fact that the state
j��i is the only eigenstate of a successive application of
a common �=2 single qubit rotation of both atoms and
the transmission measurement with a transmission level
of � ¼ 1. Any contribution from j�þi will be projected
onto the states �̂�¼0ð2Þ after a sufficient number of repe-

titions. Thus, a future quantum feedback algorithm might
utilize this measurement scheme to detect and purify the
entangled state j��i and to restore it in case of �̂�¼0ð2Þ:
For this one could create j�þi according to a probabilis-
tic scheme proposed by Sørensen and Mølmer [8] and
convert j�þi to j��i with a differential phase shift
between the two atoms, e.g., by a magnetic field gradient.
This stabilization scheme would require a total photon
scattering of less than a single photon per atom state
detection [19].
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