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1 Introduction

The development of the laser cooling technique [1] as well as the method of evaporative
cooling [2] allows to investigate temperature regions where quantum mechanical effects
are dominant. Since then, preparation, manipulation and detection of a well defined
quantum state have become easy to implement. In 1995 the groups of W. Ketterle, E.A.
Cornell and C.E. Wieman realised the first experimental Bose-Einstein Condensates us-
ing alkali metal atoms [3, 4]. This breakthrough motivated a tremendous increase of
experiments in this field.

The experiments evolved from the interference of coherent matter waves [5] and the atom
laser [6] over observation of quantised vortices [7] as proof for the BECs superfluidity to
the point when condensates consisting of magnons[8] or photons[9] were realised. Fur-
thermore, many phenomena in nature such as superfluidity [10] or formation of dimers
[11] and trimers [12] rely on the interaction between particles. This is also the case for
Feshbach resonances [13, 14], which allow to manipulate the interaction strength in a
controlled way. In the beginning the interest was mainly focussed on interactions be-
tween atoms of the same element, but nowadays more experiments investigate mixtures
of different atom species, so called heteronuclear mixtures. In 2002 a double condensate
of 39K atoms and 87Rb atoms was realised in a magnetic trap [15] for the first time.

Not only many body systems but also single quantum systems have been an interesting
and promising subject of research in quantum optics. Many experiments investigate the
detection and manipulation of few or single atoms. The development has improved in
such a way that it is nowadays possible to transport single atoms, which are stored in
a dipole trap, like being on a conveyor belt [16] or to perform a quantum walk [17] of a
single atom.

Different proposals for a combination of a many body system with a single particle
and for unbalanced mixtures have been made. For example a single atom being in a
superposition state may be cooled by a BEC and therefore gain a much longer coherence
time due to the suppression of heating effects [18, 19]. A combination of the two sys-
tems allows to use the advantages of both. Single atoms are easy to manipulate but it
is difficult to generate coherent interactions between them. In contrast many body sys-
tems such as BECs are perfect to study interactions, but single atom resolution remains
a challenge. Only recently, single site resolution in optical lattices was demonstrated
[20, 21].



1 Introduction

In this thesis an experiment using a strongly imbalanced mixture of two bosonic species
namely Caesium (133Cs) and Rubidium (87Rb) is investigated. A single Cs atom may
serve as a probe for the many particle system, consisting of Rb atoms, causing least
possible perturbation. Hence it could be possible to determine phase fluctuations [22]
or decoherence [23] of the BEC. First steps to combine the systems were the realisation
of a single atom magneto optical trap (MOT) and the construction of a fluorescence
detection setup for single atoms [24]. While pervious work[25, 26] was devoted to in-
vestigate molecular potentials, the focus is now laid on studies of coherent ground state
interactions of a single atom with a many body system.

One of the interesting next aims is to investigate the coherence time of a single atom
during the interaction with an ultracold cloud. Therefore, three important requirements
have to be fulfilled. First, the single atom needs to be stored in the same optical trap
as the ultracold cloud, so that both systems are combined. In a next step one needs
to control the internal degree of freedom of the single atom in order to generate a su-
perposition state and in a last step the coherence time of the single atom is studied by
Ramsey spectroscopy and spin echo measurements.

My thesis will present the experimental realisation and characterisation of all of these
prerequisites necessary for the investigation of the coherence dynamics of single atoms
immersed in a quantum gas: In the first chapter, the traps used to combine the single
Cs atom with the ultracold Rb cloud are presented and characterised. Afterwards the
methods used to control the internal degree of freedom of the Cs atom, e.g. microwave
spectroscopy, are introduced. In the last chapter the coherence time of the generated
superposition states is measured.
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2 Immersion of single Cs atoms into
an ultracold Rb gas

The aim of this thesis is to immerse the single Cs atom into the ultracold Rb cloud
and to investigate the coherence properties of the single atom. In order to achieve the
mixture of both species three different traps are used: a magneto optical trap (MOT),
a one dimensional optical lattice and a crossed dipole trap. In this chapter the theory
of these different optical traps is introduced. The reason to use three different traps is
explained and measurements of characteristic parameters are presented.

The description focusses on the involved traps and the preparation of the single atom,
because the preparation of the ultracold cloud has already been discussed in great detail
in [25] and [26].

2.1 General overview of the traps involved

All experiments are performed in a glass cell, which is part of an ultra high vacuum
system (pressure inside the system 10−11 mbar), in order to avoid limitations due to
background gas collisions. Figure 2.1 illustrates the three traps used. In the beginning
the single Cs atoms are stored in a dissipative magneto optical trap (MOT), whereas
the Rb is trapped in a conservative crossed optical dipole trap, from now on referred to
as running wave (trap). In order to obtain a high number of Rb atoms in the ultracold
cloud, a large trap volume is desired for the running wave trap.

The single atoms trapped in the MOT have a temperature of a few 100 µK, depend-
ing on the alignment of the laser beams. As the Rb is evaporatively cooled the running
wave trap is very shallow. It is therefore not possible to directly transfer the Cs atoms
into running wave trap. Hence, a one dimensional optical lattice, from now on referred
to as lattice, is used in an intermediate step. The lattice parameters, e.g. beam waist,
wavelength and power, are chosen such that on the one hand a trap depth that allows
to store even very hot atoms from the MOT is obtained and on the other hand Rb
is only slightly affected by the lattice potential. After transferring the atoms into the
lattice, they are further cooled by adiabatic lowering of the lattice potential down to a
temperature suitable to store the atoms in the running wave trap. During that process
the potential of the running wave trap is still present and in a last step the atoms are
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Figure 2.1: Schematic overview on the different traps (not true to scale). Few Cs atoms
are trapped in the MOT, which is depicted in orange. The MOT is formed within a
glass cell, which contains an ultra high vacuum (UHV). An optical lattice (depicted in
yellow) is used in an intermediate step to transfer the Cs atoms into the running wave
trap, where the Rb cloud is stored. The lattice is therefore overlapped with the radial
beam of the running wave trap (DT radial). The axial beam (DT axial) is shined in
perpendicular to the lattice axis. Additionally, quadrupole coils generating the magnetic
field for the MOT and the Ioffe coil used to create a magnetic trap for the ultracold cloud
are illustrated.

transferred into the running wave trap by lowering the lattice potential to a zero value.

2.2 Magneto optical trap for single Cs atoms

A magneto optical trap (MOT) uses the technique of laser cooling to cool single atoms
[1, 27]. The atoms are cooled by six perpendicular and counter propagating laser beams.
The laser beams are red detuned, which together with the Doppler effect causes the atoms
to preferably absorb counterpropagating photons. In this process, the atom is given a
momentum kick in direction of the photon before absorption. The atom is deexcited by
the spontaneous emission of a photon and because the direction of spontaneous emission
is isotropic, the atoms are cooled by the momentum exchange and pushed towards the
centre of the cooling region.

With this method the atoms are cooled but not trapped to the region of interest. There-
fore quadrupole coils are used to generate a magnetic field, which increases with radial
distance to the cooling region. Because of Zeeman splitting, which is proportional to
the magnetic field, the atoms experience a position-depending force towards the cooling
region. The polarisation of the laser beams determines the direction in which the atom
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2.2 Magneto optical trap for single Cs atoms

Figure 2.2: In the figure on the left, a loading curve of the MOT in high gradient phase
is shown. One can see that only one atom per second is loaded into the MOT. The
right picture illustrates a typical histogram recorded for the Cs MOT with fluorescence
imaging. The fluorescence count rate is related to the number of atoms in the trap. Each
gaussian distribution of fluorescence counts belongs to a specific atom number. Each
distribution is well separated from its nearest neighbours, enabling a good resolution
when counting the number of atoms. In addition the histogram reveals that during the
MOT loading phase only up to 5 atoms are trapped. [Pictures: N.Spethmann]

is pushed. Therefore laser beams with opposite handed circular polarisation are used
(σ+ and σ− light).

In this experiment the hyperfine states |F = 4〉 and |F ′ = 5〉 of the Cs atom are
used as the cooling cycling transition, which leads to a wavelength of 852 nm for the
cooling laser. Due to a finite excitation probability into the |F ′ = 4〉 level, the atom may
decay into the |F = 3〉 state and hence no longer participates in the cooling cycle. In
order to correct this another laser - the repumping laser - is used to transfer the atoms
back into the |F ′ = 4〉 state.

There are some possibilities to tune the MOT to only trap single Cs atoms, which
is desired in our experiments. At the beginning of the loading phase, a low magnetic
field gradient of 60 G/cm is used for 150 ms to load few atoms into the MOT. Then the
magnetic field is increased to about 300 G/cm. With this method and with small MOT
beam diameters, the trapping region is held small and therefore a loading rate of about
1 atom/s is achieved. In picture 2.2 a typical trace of the high gradient MOT phase is
shown.

The atoms are detected by a sensitive fluorescence imaging system which was built
in a prior Diploma thesis [24]. It consists of an high numerical aperture objective and
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a single photon counting module (SPCM). By illuminating the atoms in the MOT with
near resonant light, they send out fluorescence photons which are collected by the objec-
tive an guided through a glass fibre onto the SPCM chip. The chip is sensitive to single
photons and from the count rate of the chip it is possible to derive the atom number. A
recorded histogram, which is shown in figure 2.2(right), reveals the relation between the
fluorescence count rate and the atom number. Typical values for one atom are about
800-1000 counts/100 ms depending on the alignment of the MOT position with respect
to the imaging system as well as on parameters of the laser beams.

2.3 Optical Lattice

Because of the high temperature of the atoms in the MOT and its dissipative character,
it is not possible to directly transfer the atoms into the very shallow potential of the
running wave trap. Hence a one dimensional optical lattice is used to further cool the
atoms and to transfer them into the running wave trap. Furthermore the lattice is
also used to recapture the atoms from the running wave trap and reload them into the
MOT, where the atoms can be detected again. This is an important step because all
our experiments rely on counting the atom number before and after manipulation of the
atoms.

2.3.1 Theoretical description

The optical lattice is formed out of two linear polarised counter propagating gaussian
laser beams. Due to the interaction of the red detuned laser beams with the dipole mo-
ment of the atom, a row of harmonic potential wells are formed. The distance between
these potentials is given by the periodicity of the standing wave (= λopt/2).

The optical lattice is a quantum mechanical effect but nevertheless it may be described
by a classical model. The lattice is comparable to the Lorentz model of a classical
damped harmonic oscillator which is driven by an external electric field [28, 29]:

E(r, t) = (E0(r) exp(−iωt) + c.c.)/2 . (2.1)

In this model the dipole moment of the atom fulfils the classical equation of motion

d̈(r, t) + Γωḋ(r, t) + ω2
0d(r, t) =

e2

me

E(r, t) , (2.2)

with ω0 the resonance frequency of the oscillator and Γω the damping rate due to the
classical dipole radiation

Γω =
e2ω2

6πε0mec3
(2.3)
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2.3 Optical Lattice

with me the rest mass and e the charge of the electron and ε0 the dielectric constant.
The induced dipole moment is related to the electric field via the complex polarisability
α(ω):

d(r, t) = α(ω)E(r, t) . (2.4)

The stationary solution of equation (2.2) leads to

α(ω) =
e2

me

1

ω2 − ω2
0 − iωΓω

=
6πε0c

3(Γω0/ω
2
0)

ω2 − ω2
0 − iω3(Γω0/ω

2
0)
. (2.5)

In the last step the on-resonance damping rate Γω0 = (ω/ω0)2Γω and equation (2.3) were
used. The time average of the interaction energy between the induced dipole moment
and the driving electric field leads to the dipole potential

Udip(r) = −1

2
〈d(r, t)E(r, t)〉 = − 1

2ε0c
Reα(ω)I(r) , (2.6)

which depends on the field intensity I(r) = cε0|E0(r)|2/2 and the real part of the polar-
isability.

In a dipole trap the atom scatters photons from the trap laser, which is described by
the photon scattering rate

Rs(r) =
Pabs(r)

~ω
=

1

~ω
〈ḋ(r, t)E(r, t)〉 =

1

~ε0c
Imα(ω)I(r) , (2.7)

which is derived similarly to the dipole potential by using the absorbed power Pabs.

In this experiment, the rotating wave approximation can be used because the detun-
ing of the laser ∆ = ω − ω0 is much larger than the natural line width Γ. Additionally
the detuning is much smaller than the resonance frequency ω0 (|∆| � ω0) and therefore
ω/ω0 ≈ 1. It is now possible to write equations (2.6) and (2.9) as

Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r) , (2.8)

Rs(r) =
3πc2

2~ω3
0

Γ2

∆2
I(r) . (2.9)

One can see that both parameters depend linearly on the field intensity. The potential
Udip scales linearly with 1/∆ whereas the photon scattering rate scales quadratically
with it. Hence Rs decreases by increasing the detuning but this also leads to a lower
potential depth. This effect is compensated with increasing the field intensity. Further-
more, equation (2.8) demonstrates that the force depends on the sign of the detuning.
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Figure 2.3: (Figure not true to scale.)(a) Schematic sketch of the optical setup for the
lattice before the light is guided to the experimental table. The laser light is generated
by a Ti:Sa system. It passes first an optical isolator and is then splitted into two
different beams by use of a quarter wave plate (QWP) and a polarising beam splitter
cube (PBS). With an acousto-optic modulator (AOM) the power of each beam, which
is transmitted via single-mode-polarisation-maintaining-fibres to the main experimental
table, is stabilised. A telescope is used to focus the beam in order to achieve a high
coupling efficiency into the fibre. (b) Setup for the lattice on the experimental table.
The polarisation of the beams is increased by use of a half wave plate (HWP) and a
PBS. With dichroic mirrors the beams are coupled into the glass cell and a lens focusses
the beams down to 31 µm at the position of the atoms.

The trap frequencies, which are the oscillation frequencies of the atom in the trap,
in axial and radial direction are given by

ωrad =

(
4U0

mw2
0

)1/2

(2.10)

ωax =

(
2U0

mz2
0

)1/2

. (2.11)

Here w0 denotes the beam waist and z0 the Rayleigh length of the beam described in
Gaussian optics (details on Gaussian optics can be found in [30]).

2.3.2 Experimental Setup

In order to generate the lattice potential a commercially available Titanium:sapphire
(Ti:Sa) laser (Model: Microlase MBR-110) was aligned during this thesis. It is pumped
by a frequency doubled Neodym:YAG laser (Spectra Physics MilleniaX) which delivers
a power of 10 W at a wavelength of 532 nm. This leads to an output power of 700
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2.3 Optical Lattice

mW for the Ti:Sa laser operating at a wavelength of 899.9 nm. The wavelength dif-
fers by only 5.3 nm from the Cs D1 line [31] leading to a photon scattering rate of a
few 100 Hz, which is the limiting factor for the longitudinal relaxation time T1 (see sec.
4.2). However, the chosen wavelength provides the desired trap depth for the Cs atoms
and at the same time does not disturb the Rb. For more details on this point see [24, 32].

A schematic view on the optical path, which was set up during the thesis is shown
in figure 2.3. After passing an optical isolator (Newport) the laser beam is divided into
two beams, each containing roughly half of the laser power. In using a setup consisting
of a half wave plate (HP) and a polarising beam splitter cube (PBS) one is able to
change the power distribution of the beams. With acousto-optic modulators (AOM) the
power is actively stabilised and controlled by an electronical feedback loop. By means
of single-mode-polarisation-maintaining-fibres the light is guided to the vacuum setup
and is coupled into the vacuum chamber via dichroic mirrors, which transmit light of
860 nm and lower but are reflective for wavelengths greater than 860 nm. Afterwards
the light passes a lens to focus the beam to a waist of w0 = 31 µm at the position of
the atoms. After passing all optical components, a maximum laser power of 150 mW in
each beam is achieved.

To be sure that both beams perfectly overlap, one beam was coupled into the fibre
output of the other beam. In this case a coupling efficiency of 65% from one fibre into
the other is achieved. The deviation from unity arises due to aberration caused by the
optical elements in the beam path (see fig. 2.3) which affects the coupling efficiency.

2.3.3 Transfer efficiency and lifetime measurement

With the current experimental setup it is only possible to detect the Cs atoms dur-
ing MOT phases. Because nearly all performed experiments rely on the atom number
statistics before and after manipulation of the atoms, it is crucial to have a good transfer
efficiency between both traps. Hence, the alignment of the traps is an important step.
To gain the maximal overlap of MOT and lattice, the light shift caused by the AC-Stark
effect is used [33]. At the position of maximum observed light shift, the atoms see the
maximum intensity of the lattice beams and best alignment is achieved. We therefore
move the position of the lattice and directly study the light shift on the atoms stored
in the MOT, visible as a loss of fluorescence counts due to a shift of the resonance fre-
quency. Figure 2.4 shows a typical trace observed at best position of the lattice. After
the alignment of the traps a lifetime measurement for the atoms stored in the lattice is
performed, which also reveals the transfer efficiency.

In order to investigate the lifetime, first atoms are loaded into the MOT and held
there for about 150 ms to count the atom number. Afterwards the lattice is switched
on and both traps are operated at the same time for 50 ms. To transfer the atoms into
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Figure 2.4: (Left) A typical trace for observing the light shift is shown. The MOT
and the lattice are operated at the same time and due to the light shift caused by
the lattice, leading to a slightly different resonance frequency of the atoms, a loss of
fluorescence counts is observed. (Right) This picture illustrates the sequence to measure
the lifetime of the atoms: During the MOT phases the captured atoms are illuminated
by near resonant light to determine the number of atoms with fluorescence imaging. In
a next step atoms are transferred to and stored in the lattice for a certain amount of
time. In the lattice no fluorescence is observed due to the off-resonant wavelength of
the lattice laser. Afterwards the atoms are reloaded into the MOT and their number is
determined again. From the difference of atom numbers before and after the sequence
for different storage times in the lattice, the lifetime can be extracted. At the end of
every experimental cycle the background photons from the MOT lasers are detected.

the lattice, the MOT lasers are switched off before the quadrupole field is shut down.
This process was optimised in order to obtain the best transfer efficiency. Afterwards
the atoms are trapped only in the lattice potential for a certain time period in which
the experiments are performed. The same temporal overlap between the MOT and the
lattice is used during the reload of atoms back into the MOT potential. Here the atom
number is counted again. This experimental cycle is repeated 100 times with 2 atoms
in average to obtain a desired statistical error less than 3%. During the whole thesis
this experimental cycle is the standard technique (unless stated differently) and only
enhancements will be explained.

Comparison of the survival probability with the different holding times in the lattice
leads to the parameters of lifetime and transfer efficiency. Figure 2.5 shows the mea-
sured data points for the survival probability versus the holding time in the lattice as
well as the used fit function p(t) = p0 exp(t/τ). In this function the parameter p0 de-
notes the achieved transfer efficiency between the MOT and the lattice. From the fit
one obtains an efficiency of p0 = 1.06 ± 0.07. The transfer efficiency is over estimated

11



2.3 Optical Lattice

0 1 2 3 4 5 6 7 8
storage time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

su
rv

iv
a
l 
p
ro

b
a
b
ili

ty
 

Figure 2.5: Survival probability of the atoms versus the storage time in the lattice.
The red solid line indicates the fit function (see text).

in this case, due to the fact that the measured data points do not exactly follow an
exponential decay. However, a transfer efficiency close to unity is achieved. The lifetime
of the atoms is given by τ which is inferred from the fit to be τ = 3.9 ± 0.3 s. The
limiting factor in this case is as recoil heating. As the laser wavelength of 899.9 nm is
close to the resonance wavelength of 894 nm, it causes a photon scattering rate in the
order of a few 100 Hz at maximum beam power. This benefits recoil heating due to
spontaneous photon scattering. Laser intensity fluctuations are estimated to maximum
0.5% of the initial laser intensity and therefore are too small to affect the lifetime. Col-
lisions between atoms placed in the lattice are suppressed due to the low atom number
and their separation by many potential wells. Collisions with the background gas are
also very unlikely, because a lifetime of 160 s for Rb in the magnetic trap was observed.

2.3.4 Trap frequencies

As a next step the oscillation frequency of the atom in the lattice is measured. This is
done in both axial and radial direction of the trap. The sequence is similar to that of
the lifetime measurement. After loading the atoms into the lattice, the laser intensity is
modulated with a sinusoidal waveform, of frequency ωmod. During the stepwise scanning
of the modulation frequency, which is done with a combination of a signal generator and
the AOMs placed in the beam path, it crosses the resonance of the atoms. This results
in heating and hence the escape of atoms from the trap. The trap is adiabatically low-
ered to a trap depth where approximately 70% of the atoms survive in order to observe
the loss of atoms for small modulations of the potential. Here a modulation time of
200 ms with a modulation of ±10% of the trap depth ensures a significant parametric
excitation. Adiabatically lowering the trap depth to about 10% of its initial value leads
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Figure 2.6: Shown is the survival probability versus the excitation frequency. The loss
of atoms occurs due to heating at the resonance frequency. The red solid line indicates
the function fitted to the data (see text).

to a significant loss of atoms. Figure 2.6 shows the observed spectra of both beams. An
exponential function of p(ωmod) = p0 exp(−ωmod/b) fitted to the data reveals the para-
metric excitation frequency. Due to its good confinement in axial direction, leading to a
high oscillation frequency, the strongest loss of atoms at a frequency of ωmod = 311 kHz
is observed. This agrees well with the theoretically expected value of ωax,calc. = 362 kHz
for the axial trap frequency. However, the dip does not show parametric but resonant
heating. This might occur because of the used electronic setup: As the PID controller
of the AOM has a bandwidth, which is too small to be used at such high frequencies,
a small additional electric setup was placed behind the controller. Due to this setup
higher harmonics of the electronic signal might be generated and therefore a dip at the
resonance frequency instead of a dip at parametric frequency is observed. As no other
dips are observed at lower as well as at higher frequencies, we conclude that this is the
resonant frequency.

In radial direction, where the confinement is much weaker, one observe a loss of atoms
at ωmod = 4.2 kHz and at ωmod = 2.1 kHz corresponding to parametric and resonant
heating, respectively. This leads to a trap frequency of ωrad = 2.1 kHz. This fits within
90% to the calculated value of ωrad,calc. = 2.4 kHz [34].
The good agreement of the expected and measured parameters reveals that the lattice
is build in such a way that it fulfils the theoretically expected parameters such as the
beam waist and the trap depth.

2.4 Temperature measurements in the lattice

Knowing all parameters of the trap, a temperature measurement in the lattice is per-
formed. There are many different ways to measure the temperature of an atom ensemble
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Figure 2.7: (Left) The trap potential is switched off for a waiting time ∆t and the
atoms escape the trap. Afterwards the trap is ramped up again to recapture remaining
atoms. (Right) Sequence used for the release recapture measurements. After the atom
number in the MOT has been counted, atoms are transferred into the lattice, where they
are stored for a short time. The lattice potential is switched off for a waiting time ∆t
and then switched on again. The atoms are recaptured in the lattice and reloaded into
the MOT, where the atom number is obtained by fluorescence imaging.

like time of flight measurements, adiabatic lowering [33] or release recapture measure-
ments [35]. From this methods only adiabatic lowering and release recapture are suitable
for single atoms and both are used here to investigate the temperature of the single atoms
in the lattice. The difference between both methods is that adiabatic lowering reveals
the thermal distribution of the atoms, whereas the thermal distribution must be known
or estimated for the release recapture method. From the release recapture technique
a more precise value at low temperatures (in the regime of a few µK) is obtained and
therefore it is the preferred method throughout this thesis.

2.4.1 Release recapture method

The method of release recapture is a standard and easy-to-perform technique to measure
the temperature of single atoms, which is used in many experiments [35]. It takes
advantage of the thermal velocity distribution of the atoms. After atoms are trapped,
the potential is switched off rapidly and the atoms are released. For a short time ∆t
the trapping potential remains out of use. The hot atoms escape from the trap volume,
while colder and therefore slower atoms stay in the trap region. By switching on the trap
again the latter ones are recaptured into the potential. The relation between the velocity
distribution of the atoms and the waiting time determines the fraction of surviving
atoms. A schematic drawing of this principle is shown in figure 2.7(left). Temperature
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2 Immersion of single Cs atoms into an ultracold Rb gas

Figure 2.8: The survival probability is plotted as a function of the release time. Also
shown are the numerically calculated graphs [36]. The red solid line denotes the simu-
lated graph with the trend fitting best to the measured data, whereas the dashed lines
are shown to illustrate the significance of the fit.

is an ensemble parameter and hence, many iterations per ∆t with only few atoms in the
lattice are performed.

2.4.2 Experimental results

Again a similar experimental cycle as explained in section 2.3.3 is performed with the
only difference, that the lattice potential is completely switched off for the release time
(see fig. 2.7). The shut down process of the lattice is performed diabatically to avoid
adiabatic cooling. These measurements were carried out for release times from 0 µs up
to 3 ms. Figure 2.8 shows the measured survival probability as a function of the release
time ∆t. The curves to the corresponding temperatures are calculated numerically (for
details on the calculations see [36]). The red solid line is the curve which is in best
agreement to the trend of the data points. Whereas the dashed lines indicate upper and
lower bounds for the temperature. In this case the curve in best agreement with the data
points leads to a temperature of the atoms in the lattice of about 30 µK. Comparable
results were obtained in similar setups used by other members of this group, although
temperatures were obtained with the adiabatic lowering technique [33].

2.5 Atoms in the running wave trap

In the last section the transfer of the single atom into the lattice was explained and a
transfer efficiency close to unity was achieved. The last step is therefore to combine the
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Figure 2.9: (Left) Sequence used to transfer the atom into the running wave trap. The
process remains the same for the MOT and the lattice, except that during the lattice
phase the running wave trap potential is already present. With adiabatic lowering of
the lattice, which cools the atoms, the transfer into the running wave trap takes place.
(Right) Survival probability of the Cs atoms loaded into the running wave trap versus
the position offset of the axial beam in z direction

single Cs atom and the ultracold cloud in the running wave trap.

2.5.1 Experimental setup

Two perpendicular aligned laser beams form the optical dipole trap, generated by a fibre
amplifier system at 1064 nm. It consist of a seed laser (CrystaLaser) with a power of
a few 100 mW and a fibre amplifier (Nufern Laser) delivering a power of 10 W. With a
polarising beam splitter cube and a half wave plate, allowing a variable power splitting,
the power is divided into two beams. Both beams pass a shutter and an AOM, which
is used to control the beam power, before the beams are guided via a special glass fibre
for high light intensities (Liekki) to the experimental table (Details on this setup see
[26]). One beam, called axial beam (see fig. 2.1, is focussed through the Ioffe coil, which
is part of the QUIC trap [37] to generate the ultracold cloud (see [25, 26]), and has a
beam waist of 100 µm. Using a dichroic mirror the radial beam is coupled onto the same
axis as the lattice and is focussed down to a beam waist of 48 µm. This ensures high
spatial overlap of the beam with the lattice and thus a high transfer efficiency. In the
experiments we use a power of 2 W in the axial direction and a power of 0.6 W in radial
direction (unless stated differently). With the mentioned parameters we obtain a trap
depth of ≈ 100 µK for the Cs atoms in the dipole trap.
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2 Immersion of single Cs atoms into an ultracold Rb gas

Figure 2.10: Survival probability versus release time in the running wave trap. The
black squares are the measured data points and the red solid line indicates the simulated
graph with the trend fitting best to the measured data.

2.5.2 Transfer and temperature measurement of single atoms in
the running wave trap

A crucial step during the sequence is to transfer the atoms from the lattice into the
running wave trap. Hence, a good spatial overlap of both traps is needed to avoid atom
losses. As already mentioned in the last section, the lattice and the radial beam of
the dipole trap are operated on the same experimental axis, which allows to couple the
dipole trap beam into the fibre of one lattice beam (see fig. 2.3 and fig. 2.1), which
results in a good spatial overlap of both beams. Because the lattice is well aligned
with respect to the MOT, overlapping one beam of the running wave trap with the lat-
tice simultaneously guarantees a well aligned overlap of the running wave with the MOT.

For the axial beam of the trap, a measurement was performed to find the best posi-
tion, which is defined as the position where the maximal transfer efficiency for the Cs
atoms occurs. The transfer efficiency was measured at different voltages of a piezo elec-
tric mirror, resulting in slightly different positions in z direction of the dipole trap (see
fig. 2.9).

The experimental sequence is performed as follows (see also fig. 2.9):

1. A few atoms are stored in the lattice and at the same time the running wave trap is
ramped up to its full power.

2. Then the lattice is adiabatically lowered within a few ms leading to further cooling
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2.5 Atoms in the running wave trap

of the atoms.

3. At a certain lattice depth, the Cs atoms leave the trap and are from now on stored
in the crossed dipole trap.

At the point of best alignment a transfer efficiency of ≈ 93% is achieved. With the
already explained technique of a release recapture, one experimentally measures a tem-
perature of 4.6 µK for the single atoms in the running wave trap (see fig 2.10). The
lower temperature occurs due to the adiabatic lowering of the lattice, which results in
cooling of the single atom. For more details on the transfer of Cs atoms, when Rb in
the running wave is present, see [34].
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3 Coherent control of the internal
degree of freedom of a single Cs
Atom

In the previous chapter, the experimental procedure to store the single Cs atom in the
same trap as the ultracold Rb cloud was discussed. The next step is to investigate the
coherence time of the single atom. Therefore it is necessary to control its internal degree
of freedom. This is only possible in the lattice or the running wave trap, because of their
conservative and state preservative potential.

The desired state for the Cs atom is the |F = 3,mf = 3〉 state, which is the absolute
ground state so that no decay channels for Cs-Rb collisions exist (Note that Cs-Rb-Rb
collisions are still possible). Optical pumping [38, 39] is used to prepare the atoms in
the desired state |3, 3〉.

In order to generate a superposition state, of which the coherence time is investigated,
the transition between |3, 3〉 and |4, 2〉 is driven by a microwave pulse. The |4, 2〉 state
is chosen, because it provides the longest coherence time in combination with the |3, 3〉
state. This is required if one wants to investigate the cooling of the superposition state,
where the thermalisation time is in the order of 25 ms [36]. By the use of methods such
as microwave spectroscopy and driven Rabi oscillations, the control parameters for the
internal degree of freedom are studied.

The interaction between the single atom and the microwave radiation field and its dy-
namical evolution is to good approximation described by the semiclassical Bloch vector
model. In this model the classically treated radiation field interacts with a quantum
mechanical two level atom.

A variant of the Bloch equations [40], namely the optical Bloch equations are a sys-
tem of three differential equations. They delineate the evolution of the Bloch vector on
the Bloch sphere, which is comparable to the dynamical evolution of a spin-1/2 system
in presence of a magnetic field. Here the dynamical evolution of a pseudo spin system
with the atomic polarisation and the population difference as the components of the
vector is used instead. In the next chapters the Bloch vector model is extensively used
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to describe the experimental processes.

3.1 Optical Bloch equations

In this section the optical Bloch equations, which define the evolution of a pseudo spin
vector in an magnetic field, will briefly derived (for details see [41, 42]). The Hamilton
operator of a two level atom with ground state |g〉 and excited state |e〉 reads

ĤA =
p̂A

2

2m
+

~ω0

2
(|e〉〈e| − |g〉〈g|), (3.1)

with m the mass of the atom and ω0 the transition frequency between |e〉 and |g〉. For
the interaction of the atom with an external electromagnetic field E the dipole potential
can be expressed as

Vdip = −d̂E (3.2)

where d̂ denotes the dipole moment operator. In the case of atoms, a permanent dipole
moment does not exist and this leads to

d̂eg = −er̂eg = 〈e|d̂|g〉 (3.3)

d̂eg = deg〈e|g〉+ dge〈g|e〉
= degσ̂

† + dgeσ̂. (3.4)

By using these expressions and the relation σ̂†σ̂ = |e〉〈g|g〉〈e| = |e〉〈e| the Hamilton
operator and the dipole potential can be rewritten as

ĤA =
P̂A

2

2m
+ ~ω(σ̂†σ̂ − 1/2) (3.5)

V̂dip = −(degσ̂
† + dgeσ̂)E0 cos(ωt). (3.6)

It is now possible to express σ̂† and σ̂ in terms of the Pauli matrices σ̂x, σ̂y, σ̂z

σ̂† =
1

2
(σ̂x + iσ̂y) σ̂ =

1

2
(σ̂x − iσ̂y) (3.7)

and this leads to the final expressions for ĤA and V̂dip

ĤA =
P̂A

2

2m
+

~ω0

2
σ̂z, (3.8)

V̂dip = −degE0 cos(ωt)σ̂z . (3.9)

The solutions of the equation of motion for the Pauli operators written in the Heisenberg
picture

˙̂σj =
i

~
[ĤA + V̂dip, σ̂j] (3.10)
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3.1 Optical Bloch equations

lead to the set of equations

˙̂σx = −ω0σ̂y (3.11)

˙̂σy = ω0σ̂x −
2degE0

~
cos(ωt)σ̂z (3.12)

˙̂σz =
2degE0

~
cos(ωt)σ̂y . (3.13)

Note that here the Pauli matrix operators describe only a pseudo-spin system.

In absence of a driving field, i.e. E0 = 0, the system rotates rapidly around the z-
axis. By introduction of the frequency ωD of the driving field and by transformation
into a frame rotating at ω = ωD the rapid rotation is eliminated.

In the semi classical treatment, which is valid at high microwave power, the expectation
values of the Pauli matrix operators are written like

〈σ̂x〉 = u cos(ωt)− v sin(ωt) (3.14)

〈σ̂y〉 = u sin(ωt) + v cos(ωt) (3.15)

〈σ̂z〉 = w (3.16)

with

u̇ = δv + ΩR sin(2ωt)w (3.17)

v̇ = −δv + ΩR(1 + cos(2ωt))w (3.18)

ẇ = −ΩR sin(2ωt)u− ΩR(1 + cos(2ωt))v . (3.19)

Here the Rabi frequency ΩR = degE0/~ and the detuning δ = ω − ω0 from the atomic
resonance have been introduced.

In the rotating wave approximation (|δ| � ω0) terms containing 2ω can be neglected
due to fast rotation. Applying this to equations (3.17-3.19) leads to the so called optical
Bloch equations:

u̇ = δv (3.20)

v̇ = −δv + ΩRw (3.21)

ẇ = −ΩRv . (3.22)

Note that these equations do not include damping. The damped Bloch equations are
introduced later. It is also possible to write the Bloch equations in a single vector
equation

u̇ = −Ω× u (3.23)
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3 Coherent control of the internal degree of freedom of a single Cs Atom

with the torque vector Ω = (ΩR, 0, 0) and the so called Bloch vector u = (u, v, w). In
case of the undamped Bloch equations the Bloch vector has unit length and its evolution
lies on a unit sphere. A magnetic dipole transition is to good approximation described by
the Bloch equations. In this case the u and v components of the Bloch vector delineate
the components of the magnetic dipole moment which are in phase and in quadrature
with the driving field E , respectively. Furthermore equation (3.22) infers that u is the
dispersive component of the dipole moment and v is the absorptive component. The
population number difference of the two states is given by w and only one state is pop-
ulated in case of w = ±1.

It is also possible two write the Bloch vector in other representations of the two level
atom. A very common one is the state vector representation. The derivation of the
transformation into the corresponding state vector is not shown here (see [42]) but the
very descriptive solution is presented:

u = sinϑ cosφ (3.24)

v = sinϑ sinφ (3.25)

w = cosϑ . (3.26)

Here ϑ describes the angle of the Bloch vector with the w-axis and φ describes its position
in the uv-plane.

3.1.1 Rabi oscillations and resonant pulses

Rabi oscillations

In most cases it is not possible to solve the Bloch equations analytically, but some special
cases exist (see figure 3.1). The solution for an atom in a coherent radiation field leads
to an oscillation between the ground and excited state. With initial values of the Bloch
vector of u = (0, 0,−1) and a detuning of δ from the resonance frequency, the time
evolution is given by [42]

w(t, δ) = −1 +
2Ω2

R

Ω2
sin2(

Ωt

2
) (3.27)

where

Ω =
√
δ2 + Ω2

R (3.28)

is the generalised Rabi frequency. It denotes the frequency with which the atom flips
between both states. Equation (3.27) demonstrates that complete population transfer
is only possible in case of δ = 0, which leads to the simple form

w(t, δ = 0) = − cos(ΩRt) (3.29)
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Figure 3.1: Rotation of the Bloch vector u on the Bloch sphere. Picture (a) shows
a rotation of the Bloch vector about the u axis for a resonant pulse. The flipping into
the uv plane for a π/2 pulse is illustrated in (b) and (c) delineates the total population
transfer corresponding to a complete flipping of the Bloch vector from −w to w.

This resonant case also leads to a simple solution of the Bloch equations. With arbitrary
initial coordinates for the Bloch vector u0 = (u0, v0, w0) equation (3.23), can be written
as

u(t) = Θ(t) · u0. (3.30)

The matrix

Θ(t) =

1 0 0
0 cos θ(t) sin θ(t)
0 − sin θ(t) cos θ(t)

 (3.31)

describes a rotation of an angle θ(t) around the u-axis. This angle is the rotation angle
of the Bloch vector and is defined by the time integral of the Rabi frequency

θ(t) =

∫ t

0

ΩR(t′)dt′. (3.32)

Three important cases exist:

π/2 Pulse
Here the rotation angle θ(t) covers an area of π/2 and the rotation matrix reduces
to

Θ =

1 0 0
0 0 1
0 −1 0

 . (3.33)

It is easy to see that this rotation flips the v and w component of the Bloch vector.
Hence a superposition of both states is achieved, if the atom was initially prepared
in either state |e〉 or |g〉. The Bloch vector resides in the uv-plane of the so called
Bloch sphere.
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3 Coherent control of the internal degree of freedom of a single Cs Atom

π Pulse
In case of θ = π the rotation matrix reduces to

Θ =

1 0 0
0 −1 0
0 0 −1

 . (3.34)

This infers that v0 is transferred into −v0 and w0 into −w0, which means that a
population transfer takes place. If the system was initially in state |g〉 a population
transfer occurs into state |e〉. It should be noted again that a complete transfer is
only possible in the resonant case.

Free precession
In absence of a driving field (ΩR = 0) the Bloch vector rotates with frequency δ
around the w axis of the Bloch sphere. Its evolution in time t is described by the
rotation matrix Φfree

u = Φfree(t)u0 (3.35)

with

Φfree(t) =

 cosφ(t) sinφ(t) 0
− sinφ(t) cosφ(t) 0

0 0 1

 . (3.36)

During the free evolution of the Bloch vector it accumulates a phase φ(t), which
is represented by the total precession angle φ(δ, t):

φ(t) =

∫ t

0

δ(t′)dt′ (3.37)

In the next section these special cases are used to describe the experimental methods.

3.2 Experimental methods

3.2.1 Laser and microwave setup

The setup for the experiments remains mainly the same as in the other parts of the
thesis. Only few modifications are done such as the implementation of a few new laser
beams to optically pump the Cs atoms in the |3, 3〉 state. The guiding magnetic field
needed for optical pumping is provided by the so called optical pumping coils from the
Rb setup (see [26]), which also provide the quantisation axis. A microwave antenna is
placed near the glass cell to perform the microwave measurements.
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Laser system

In addition to the MOT beams, the lattice and the running wave trap, optical pumping
beams and a so called push out beam are implemented in the main setup.

MOT laser As in the previous chapters, the closed transition of F = 4 to F ′ = 5 is
used as the cooling transition. The laser power is provided by a Tapered Amplifier
system (Sacher Lasersystems), which is locked onto the F = 4 to F ′ = 3 transition
by polarisation spectroscopy. In order to obtain the desired transition the laser
frequency is shifted by an AOM, which is also used to control the atom number
and the fluorescence per atom during the experimental cycle. The repumping laser
runs on the F = 3 to F ′ = 4 transition and pumps the lost atoms in F = 3 back
into the cooling cycle. It is overlapped with the cooling laser beam via a PBS and
transmitted to the experiment by the same fibre.

Optical pumping beam The optical pumping of Cs is performed with two different
beams. For the first beam a diode laser, which is locked onto the F = 4 to
crossover F ′ = 4/5 transition, is used. With an AOM the frequency is shifted by
125.5 MHz to the frequency of the F = 4 to F ′ = 4 transition. The beam is shined
in on the lattice axis using π-polarised light.
The second beam is realised in diverting part of the light of the repumping laser,
which is then frequency shifted to the F = 3 to F ′ = 3 transition. This laser is
shined in along the axis of the radial dipole trap beam and consists of σ+-polarised
light.

Push out beam For state selective detection it is important to remove the atoms which
are not in the state of interest. Therefore the so called push out laser which runs
on the F = 4 to F ′ = 5 transition is used. It removes all atoms in the F = 4
state but leaves the atoms in F = 3 unaffected. The beam is provided by the same
laser which is used for the first optical pumping beam. In this case the frequency
is shifted with a double pass setup of the AOM. This beam is overlapped with the
second beam of the optical pumping and is therefore shined in on the radial axis
of the dipole trap.

Microwave setup

The ground state hyperfine splitting between F = 3 and F = 4 of Cs is nearly 9.2 GHz
[31]. In order to generate the microwave pulses a synthesiser (Agilent 83751A, 0.01-20
GHz, from now on referred to as synthesiser) is used, which is connected to the LO-Input
of the mixer (Mixer model: Mini Circuits ZMX-10G+, 3700-10000 MHz) and the signal
is then mixed with 50 MHz (IF-Input of the Mixer) from a Rhode and Schwarz signal
generator (from now on referred to as signal generator). Both, the signal generator and
the synthesiser are locked onto the 10 MHz Rubidium frequency standard. For Ramsey
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10	  MHz	   Agilent	  
(Synthesizer)	  
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(Lock) 
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Figure 3.2: The setup used to generate the microwave signals. The signals from the
Rhode and Schwarz signal generator and the Agilent synthesiser are mixed and then
amplified. A low loss cable and a waveguide transmit the signal to the atoms.
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Figure 3.3: Sequence used for the different measurements involving microwave pulses.
The beginning of the sequence remains the same as in the last chapters. The atoms are
stored in the running wave trap or the lattice depending on the particular measurement.
First the atoms are optically pumped into the desired |3, 3〉 state and then the microwave
pulse is applied. After a short storage time, the push out beam removes the atoms in
state F = 4 from the trap. The rest of the sequence remains the same as in the last
chapters.
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3.3 Microwave spectroscopy

spectroscopy it is in this case necessary to have access to phase modulation (see chapter
4.3). It is decided to use mixing of the signals as this is the simplest way to obtain phase
modulation, which can only be provided by the signal generator.

Both devices are operated in the cw mode, but while the signal generator delivers a
continuous signal, the synthesiser resides in the trigger mode. It is remote-controlled
by a computer and a signal is only generated if the synthesiser receives a trigger signal.
The generated signal is then pre-amplified (Amplifier model: Kuhne Electronics, KU
LNA 922 A HEMT-220) and finally sent to a power amplifier (Industrial Electronics,
AM53-9-9.4-33-35), which is connected to a waveguide ( see figure 3.2). In the end a
power of 4 W is achieved for the microwave pulse. To avoid high losses, short cables,
which are specified for microwave frequencies (Coax Multiflex 141, attenuation at 9.9
GHz: 1.45 dB/m), are used. The high power amplifier is connected to the wave guide
via a -3.5 dB cable with a length of 0.5 m.

3.2.2 Experimental sequence

Again the previously introduced experimental cycle with the transfer processes into the
lattice and the running wave trap is applied. It is however extended by the use of optical
pumping of the Cs atoms, application of microwave pulses and the push out beam. The
measurements are performed in both traps, in the lowered lattice and in the running
wave trap, respectively. However, the experimental cycle in figure 3.3 is only shown for
the running wave but remains the same in the lattice (except of the transfer in the run-
ning wave trap). Off-resonant Raman scattering destroys the Zeeman state preparation,
hence optical pumping into the |3, 3〉 state of Cs takes place directly after lowering the
lattice potential resulting in a lower photon scattering rate. Details about the Raman
scattering are given in section 4.2.

After optical pumping the atoms are stored in the lattice or the running wave trap,
respectively. During the storage an external magnetic field is applied and microwave
pulses are used to manipulate the atoms. The number of pulses as well as the duration
of the pulses depend on the particular experiment. In order to know the exact hyperfine
state in which the atom resides, the push out beam is used as a means of state selective
detection, leading to the removal of atoms in the F = 4 state. Note that the push out
beam only acts on the hyperfine state F and not to the particular Zeeman state mf ,
which is only resolvable with microwave spectroscopy for single atoms.

3.3 Microwave spectroscopy

An essential point is to understand the influence of an external magnetic field on the
level structure of an atom. In absence of an external magnetic field the hyperfine states
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3 Coherent control of the internal degree of freedom of a single Cs Atom

are degenerated. If an external magnetic field is present, the degeneracy is removed and
the hyperfine states F split into 2F + 1 sub levels. In this case the interesting states
are the F = 3 and F = 4 states, which split into 7 and 9 sublevels respectively. The
splitting depends directly on the strength of the applied external field. Only for small
magnetic fields B < 20 G, where the energy shift is small compared to the hyperfine
splitting, F is still a good quantum number. The energy shift is given by the analytic
Breit-Rabi formula [43]

∆EF,mF
= − ∆Ehfs

2(2I + 2)
− gIµBmFB ±

∆Ehfs

2

√
1 +

4mF

2I + 1
x+ x2 (3.38)

with the hyperfine splitting ∆Ehfs, m = mi ±mj and x given by

x =
(gI − gJ)µBB

∆Ehfs

, (3.39)

where gJ and gI denote the Landé factors. Cs atoms have a nuclear spin of I = 7/2,
the hyperfine splitting is ∆Ehfs = 9.2 GHz and the Lande factors are gJ = 2.0 and
gI = −0.4× 10−3, respectively [31].

The shift of the transition from m3 to m4 due to the linear Zeeman effect is given
by [31]

∆ωm3→m4 = 2π × 3.51
kHz

µT
(m3 + m4) (3.40)

and corresponds to a shift of 2π × 17.55 kHz
µT

for the |3, 3〉 to |4, 2〉 transition.

Measuring the microwave spectrum of the |3, 3〉 → |4, 2〉 transition

The atoms are prepared in the absolute ground state, i.e. |3, 3〉 and the measurements
are performed in the lattice as well as in the running wave trap, as explained in the pre-
vious parts of this chapter. In the running wave trap the measurements are performed
with a power of Paxial = 2.0 W in axial direction and Pradial = 1.5 W in radial direction.
In the lattice each beam has a power of Plattice = 100 mW.

In order to perform microwave spectroscopy the microwave frequency of the applied
pulse is stepwise scanned. The total span of the frequency is 90 kHz with a step size of 3
kHz in the running wave and 1 kHz in the lattice. For the measurements in the lattice a
more simple microwave setup was used, consisting only of the Agilent synthesiser with-
out mixing of the 50 MHz signal. In the running wave trap, the previously explained
setup (sec 3.2.1) was used and the frequency of the signal from the signal generator was
held stable at 50 MHz whereas the frequency of the synthesiser was varied.

Depending on the microwave frequency the pulse transfers the atoms into the |4, 2〉 state,

29



3.3 Microwave spectroscopy
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Figure 3.4: The graphs show the survival probability for atoms in the |3, 3〉 state versus
the microwave frequency relative to the resonance frequency. The left measurement
belongs to atoms in the lattice, whereas the right one is a measurement of the microwave
spectrum in the running wave. Crossing the resonance frequency leads to the dip,
because all atoms are transferred in the |4, 2〉 state and therefore removed from the
trap by the state selective detection. A sine squared curve is fitted to the data and is
shown here as the red line (see text).

Parameter Notation Lattice Dipole Trap

total population transfer A 0.59 ± 0.04 0.83 ± 0.03
Rabi frequency ΩR/2π (4947 ± 449) Hz (2359 ± 416) Hz
pulse duration t/2 (58 ± 2) µs (100 ± 5) µs
offset B -0.26 ± 0.01 -0.07 ± 0.01

Table 3.1: Fit parameter for the microwave spectra of the lattice and the running wave,
respectively.

leading to the spectra shown in figure 3.4. By fitting the following function resulting
from the Rabi formula (eq.3.27) to the data points [42]

P3(ω) = 1− (A · Ω2
R

Ω2
sin2(

Ω2t

2
)) +B with Ω2 = Ω2

R + (2π(δ − δs))2 (3.41)

one obtains the parameters summarised in table 3.1. The large offset in the lattice
arises due to imperfections of the optical pumping process resulting in the fact that a
few atoms are lost and one therefore only reaches about 80% survival probability in the
lattice. Optimisation of the process leads to the small offset in the running wave trap.
Due to the slightly different microwave setups, a smaller coupling strength is achieved in
the running wave trap. Thus the Rabi oscillations are slower and the π-pulse duration
is a bit longer compared to the values for the lattice. A pulse duration of 58 µs in the
lattice and 100 µs in the dipole trap, respectively, leads to a Fourier limited spectrum in
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Figure 3.5: (Left) Rabi oscillations in the lattice. (Right) Rabi oscillations in the
running wave trap. Survival probability for atoms in the |3, 3〉 state versus the pulse
duration of the microwave pulse. A fit of a cosine, indicated by the red line, to the data
yields a Rabi frequency of 2π × (8.8 ± 0.03) kHz for atoms stored in the lattice and a
frequency of 2π× (6.2±0.02) kHz for atoms stored in the running wave trap. This leads
to π pulse durations of approximately 56 µs and 80 µs, respectvely.

both traps.

With knowledge of the width of the Fourier limited spectrum, one can obtain a lower
bound for the resolution of the applied magnetic field. In the running wave trap, a pulse
with a duration of 100 µs was applied and hence a width of 10 kHz was measured. By use
of the theoretical value of equation (3.40) and the width ∆ωrs of the measured spectra,
the minimum resolution is inferred:

∆Bres =
∆ωrs

2π ×∆ωm3→m4

=
2π × 10 kHz

2π × 17.55 kHz
µT

= 0.57 µT . (3.42)

3.4 Rabi oscillations

Since the exact resonance frequency of the transition is known, one can measure the
Rabi frequency in both traps. The trap parameters stay the same as in the last section.
Again the transition |3, 3〉 → |4, 2〉 is driven by the microwave pulse, with the full power
of 4 W and the frequency of the signal is set to the measured resonance frequency. The
pulse duration is varied from 0 to 425 µs in steps of 25 µs. As in this case the resonance
frequency is used, the time evolution follows from equation (3.29), which is a solution of
the Bloch equations. Hence, the population in F = 3 can be calculated with [42]

P3(t) =
C

2
cos(ΩRt) exp(−t) +B. (3.43)
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3.5 Conclusion

Parameter Notation Lattice Dipole Trap

total population transfer C 0.58 ± 0.03 0.82 ± 0.03
π pulse duration t/2 (56.5 ± 0.2) µs (80.5 ± 0.3) µs
Rabi oscillation ΩR/2π (8.8 ± 0.03) kHz (6.2 ± 0.02) kHz
offset B 0.4 ± 0.01 0.5 ± 0.01

Table 3.2: Fit parameter for the Rabi oscillations of the lattice and the running wave
trap, respectively.

The measured oscillations are shown in figure 3.5 and the obtained fit parameters are
summarised in table 3.2. Due to imperfections in the optical pumping process and the
state selective detection, respectively, a reduced contrast results. The damping of the
Rabi oscillations in the lattice arises due to an inhomogeneous decay time in the order
of a π-pulse duration and is discussed in the next chapter.

3.5 Conclusion

In this chapter, the experimental details to control the internal degree of freedom have
been demonstrated. The Bloch vector model was introduced and served as a theoretical
model to describe the experimental techniques. By use of microwave radiation of ap-
proximately 9.2 GHz the transition of |3, 3〉 → |4, 2〉 was driven and probed by means of
microwave spectroscopy. On this transition also Rabi oscillations were observed, which
allow to infer the duration of a π- and π/2- pulse. These are important prerequisites in
order to perform Ramsey spectroscopy and spin echo, as explained in the next chapter.
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4 Measuring the coherence time of a
single Cs atom

A closed quantum system without any interaction has a coherence time of infinity. How-
ever, real quantum systems always couple to their environment and therefore the coher-
ence decays. The different decay constants, which are discussed in this chapter, are
implemented in the optical Bloch equations as damping terms. This decay constants,
directly corresponding to the so called coherence times, are investigated by use of Ram-
sey spectroscopy and spin echo techniques as described in this chapter.

With the knowledge of the π-pulse duration and the transition frequency of the states
|3, 3〉 → |4, 2〉 obtained in the last chapter, it is possible to control the internal degree of
freedom of the single atom. The microwave setup is now used to create a superposition
between both states representing a quantum system.

4.1 Classification of decoherence effects

Data acquisition and analysis relies on the observation of an ensemble average of quan-
tum states. In such systems decoherence manifests itself in the decay of the measured
macroscopic polarisation or the dephasing of the relative phase. This is caused by var-
ious effects, but it is however reasonable to classify these as either homogeneous or
inhomogeneous dephasing. Homogeneous dephasing mechanisms affect each atom of the
ensemble in the same way. In contrast inhomogeneous dephasing only appears if every
atom in the ensemble possesses a slightly different resonance frequency. Practically the
most important difference between both effects lies in the reversibility. While inhomoge-
neous dephasing can be reversed using a spin echo technique, homogeneous dephasing is
irreversible and also inevitable. This means that homogeneous dephasing is the limiting
factor for long coherence times.

Optical Bloch equations with damping

Because real quantum systems always couple to the environment, the initial state decays
with time. Hence the Bloch equations introduced in chapter 3.1 need to be extended to
describe a real quantum system. The decay rates are included as damping terms into



4 Measuring the coherence time of a single Cs atom

Name Symbol Dominant effects

population decay time (= longi-
tudinal decay time), irreversible

T1 Mixing of hyperfine and Zeeman
states due to off resonant Raman
scattering

homogeneous dephasing time
(=transverse decay time), irre-
versible

T ′2 variations of differential light shift
(caused by pointing instability of
the trap laser or magnetic field
fluctuations)

inhomogeneous dephasing time,
reversible

T ∗2 distribution of differential light
shift

total transverse decay time T2 1/T2 = 1/T ∗2 + 1/T ′2

Table 4.1: Summary of the different decay constants and their main sources.

the Bloch equations for an atom ensemble average

〈u̇〉 = δ〈v〉 − 〈u〉
T2

(4.1)

〈v̇〉 = −δ〈u〉+ ΩR〈w〉 −
〈v〉
T2

(4.2)

〈ẇ〉 = −ΩR〈v〉 −
〈w〉 − weq

T1

. (4.3)

Here 〈...〉 denotes the ensemble average. The homogenous longitudinal relaxation time
T1 and transversal decay time T2 have been introduced. T1 corresponds to the population
decay to a stationary value weq and hence to a loss of “polarisation”. In contrast T2 only
affects the relative phase and preserves the population. T2 is made up of two different
components, the inhomogeneous dephasing time T ∗2 and the homogenous dephasing time
T ′2. They are connected via the following relation

1

T2

=
1

T ∗2
+

1

T ′2
. (4.4)

With knowledge about all three relaxation times, summarised in table 4.1, it is possi-
ble to predict the whole evolution of an initially pure quantum system into a mixed state.

The dominant effect causing the longitudinal relaxation time T1 is in this case spon-
taneous photon scattering from the light field of the lattice and the dipole trap laser.
Due to Raman scattering the hyperfine and Zeeman states become distributed over all
possible states of an atom ensemble and the initially prepared polarised state is de-
stroyed. The effect is indeed observable for experiments performed in the rather near

35



4.2 Measuring the population decay time

resonant lattice potential and was measured for different trap depths (see section 4.2),
such that the T1 time can be estimated.

T ∗2 is the inhomogeneous and therefore reversible dephasing time. It is dominated by
the initial energy distribution of the atoms and results in a distribution of the light
shifts with respect to the initial temperature of the atom. This leads to slightly different
resonance frequencies for each atom and causes a phase decay.

The polarisation decay time, denoted by T ′2, is mostly affected by fluctuations of ex-
perimental parameters during the experimental cycle. Such parameters are the laser
intensity or the differential light shift, which are varying because of technical imperfec-
tions like the pointing instability of the lattice and the running wave trap laser. Another
point is the influence of fluctuating magnetic fields. Variations may arise from current
fluctuations in the coils, which create the magnetic traps or from magnetic stray fields
produced by electrical devices in the lab.
A common way to measure the components of the T2 time is Ramsey spectroscopy and
variations of this method.

4.2 Measuring the population decay time

Scattering of photons from the trap laser results in population relaxation of the two
ground states and is characterised by the decay time T1.
In an optical dipole trap, such as the lattice or the running wave trap, photon scattering
is inevitable [42, 44, 45]. Whereas in most cases the photons are elastically scattered
(namely Rayleigh scattering), which preserves the hyperfine state, a small fraction of
photons are scattered inelastically. This process, so called off-resonant Raman scatter-
ing, can result in a change of hyperfine or Zeeman level. In the present case the initial
state is the |3, 3〉 state and the possible final states are all Zeeman sublevels of the F =
3 and F = 4 states.
The photon scattering rate is anti-proportional to the detuning of the dipole laser with
respect to the D-lines of the Cs atom, which means that for small detunings a high
scattering rate is obtained. Due to the detuning of only 5 nm of the lattice laser from
the Cs D1-line [31], one expects a high scattering rate of a few 100 kHz and hence a
short T1 time.

To measure the population relaxation, atoms are either prepared in the F = 3 or in
the F = 4 state. The atoms are then stored in the trap for a certain time, before the
state selective detection reveals the number of remaining atoms in state F = 3. In the
lattice one observes an exponential decay of the survival probability for atoms initially
prepared in F = 3 and an exponential increase of the survival probability for atoms ini-
tially prepared in F = 4. Figure 4.1 shows the measured survival probability for atoms
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Figure 4.1: The left picture shows the survival probability for the atoms prepared
in different hyperfine sates versus the storage time in the lattice (λ = 899.9 nm). The
red and the blue line indicate atoms prepared in F = 3 and the black as well as green
indicate atoms prepared in F = 4, respectively. On the right site the same measurement
for atoms prepared in F = 3, which are stored in the running wave (λ = 1064 nm), is
depicted.

in the lattice and the running wave. Two measurements were performed in the lattice,
one with 100 mW power in each beam and another with a lowered trap using 8 mW per
beam. A fit of

p(t) = a+ p0 exp(−t/T1) (4.5)

to the data points measured in the lattice reveals a T1 time of approximately T1(100
mW) = 10 ms for the deep lattice and approximately T1(8mW) = 155 ms in the lowered
lattice. For p0 denoting the limit one obtains for atoms initially prepared in F = 3 a
value of p0 = 0.47 and for atoms prepared in F=4 a value of p0 = 0.43, yielding an equal
mixture of both hyperfine states.

In the running wave trap no decay on relevant time scales for atoms prepared in state
F = 3 is observed. Hence the T1 time is not the limiting factor for the coherence time
measured in the running wave trap. The following measurements are carried out in the
lowered lattice, where the T1 time is in the order of 150 ms. As will be demonstrated in
the next sections, the T1 time is not the limiting coherence time.

4.3 Ramsey spectroscopy

Ramsey spectroscopy is an ideal and well known technique to investigate the coherence
properties of a quantum system. It was first performed in the 1980s on molecular and
atomic beams [46, 47]. The principle is to apply two π/2 pulses (realised here with the
microwave setup) separated by a waiting time and then detect the atoms in a particular
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Figure 4.2: Ramsey spectroscopy illustrated for one atom of the ensemble. Initially the
Bloch vectors point downwards, corresponding to atoms prepared in state |3, 3〉. A π/2
pulse flips the Bloch vector into the uv-plane and a superposition between states |3, 3〉
and |4, 2〉 is generated. During the waiting time τ each Bloch vector of the ensemble
precesses freely. The dephasing is indicated by the purple area. With a second π/2 pulse
possessing a preset phase with respect to the first one, the accumulated phase is mapped
on the w-axis and probed by state selective detection.

state. Today it is the key technique for atomic clocks [48], because of the sensitivity
to phase shifts between the atomic resonance frequency and the driving field. The
beat signal between the driving field and the atomic resonance frequency, which is the
commonly detected signal, is also known as Ramsey fringe.
For the experiments the so called Ramsey phase spectroscopy method was employed. An
experimental advantage of this method is that it also works with low Rabi frequencies
due to the on resonance driving of the Bloch vector.

4.3.1 Experiment

Picture in the Bloch vector model

Ramsey spectroscopy uses two resonant π/2-pulses separated by a time interval τ , the
so called Ramsey time. The second pulse has a phase φrf with respect to the first mi-
crowave pulse, which is stepwise scanned during recording of the Ramsey fringe. From
now on the case of single atoms is considered.

After preparation of the atom in the initial |F = 3,mf = 3〉 state, corresponding to
the Bloch vector u0 = (0, 0, 1), a resonant π/2-pulse is applied, which generates a su-
perposition of the Zeeman states |3, 3〉 and |4, 2〉. As illustrated in figure 4.2 the pulse
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4 Measuring the coherence time of a single Cs atom

rotates the Bloch vector around the u-axis into the uv-plane of the Bloch sphere and
the final Bloch vector is given by u = (0, 1, 0). For the time interval τ the vector freely
precesses in the uv-plane and accumulates a phase Φa(τ) = δ · τ , with δ the detuning
between the microwave frequency and the resonance frequency of the atoms. The second
π/2 pulse shifted by an initially set phase φrf with respect to the first pulse rotates the
Bloch vector around the u-axis once again. The population in F = 3 is probed by state
selective detection.

The matrix formalism introduced in section 3.1.1 can be used to describe the Ram-
sey sequence,

uRamsey = Θπ/2 ·Φfree(t) ·Θπ/2 (4.6)

with Θπ/2 and Φfree(t) being known rotation matrices. The w-component depending on
the accumulated phase and the Ramsey time reads

wRamsey(φrf , τ) = C(τ) cos(φrf − Φa(τ)) (4.7)

with C(τ) the Ramsey fringe contrast. As one will see later, the last equations are
used to derive the fit function for the Ramsey fringe contrast in order to obtain the
inhomogeneous T ∗2 time.

Experimental parameters and observations

Ramsey spectroscopy was performed in both the lattice and the running wave trap. For
both measurements, already introduced techniques of state preparation and state selec-
tive detection as described previously in section 3.2.2 is used. The sequence remains
the same as for microwave spectroscopy, but instead of one microwave pulse, two res-
onant π/2 pulses are applied. For the phase modulation of the second π/2 pulse the
modulation capability of the signal generator is used. The rest of the microwave setup
remains the same as in the previous chapter. From the measured Rabi oscillations a π/2
pulse duration of 30 µs in the lattice and 40 µs in the dipole trap is inferred. For the
measurement in the optical lattice, the lattice depth is adiabatically lowered to 8% of its
initial value to avoid a high photon scattering rate, which may cause shorter coherence
times and at the same time the adiabatic lowering of the lattice potential leads to further
cooling of the atoms.

To investigate the time evolution of the system and hence the T ∗2 time, Ramsey fringes
for varying Ramsey times are recorded. Figure 4.3 shows a sample of recorded Ramsey
fringes from the lattice as well as from the dipole trap. A fit of equation (4.7) leads to
the Ramsey contrast C(τ), from which the T ∗2 time can be calculated.
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Figure 4.3: Ramsey fringes measured with different waiting times τ . A loss of contrast
from τ = 15 µs to τ = 100 µs is clearly observable for measurements in the lattice (see
upper two graphs). For measurements in the running wave trap (lower two graphs) no
significant loss is observed for waiting time τ = 60 µs compared to the contrast at τ =
20 µs.

4.3.2 Inhomogeneous dephasing

A non exponential decay is observed for the measured Ramsey contrast, which is caused
by the inhomogeneous dephasing described by the characteristic decay time T ∗2 . The
main source for inhomogeneous dephasing is in this case the energy distribution of the
trapped atoms. For different energies, the atoms experience different light shifts and
hence slightly different detunings from the resonance frequency. This leads to the fact
that every atom possesses a Bloch vector with a slightly different angular frequency.
Because every data point of the measurement is an average over many single atom
contributions, the Bloch vector dephases, which leads to a decay of the Ramsey fringe
contrast for increasing waiting time τ . As will be seen in the next chapter the differential
light shift is the main reason for the distributed angular frequencies.
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4 Measuring the coherence time of a single Cs atom

Differential light shift

Due to the light of the laser generating the trap (the Ti:Sa or the Nd:YAG, respectively)
the atoms experience a light shift, which is given via the trapping potential [29, 42]

U0 =
Γ~
8

Imax

I0

Γ

∆
(4.8)

with the natural line width of the transition Γ, the detuning ∆, the saturation intensity
I0, which is 1.1 mW/cm2 for the Cs 6S→6P transition [31] and the maximum intensity

Imax =
4P

πw2
0

(4.9)

with P the beam power and w0 the beam waist. For atoms in the hyperfine state F = 4
the detuning from the D-line of the trap laser is 9.2 GHz less than for an atom in
the state F = 3 leading to a slightly stronger shift for atoms in F = 4 and a shift of
the microwave frequency of the F = 3 → F = 4 transition towards smaller resonance
frequencies. The difference of the light shift for atoms in different hyperfine states is
called differential light shift and it can be calculated with

~δls = U0(∆eff)− U0(∆eff + ∆hfs) . (4.10)

Here ∆eff denotes the effective detuning of the trap laser, which is given by [42]

1

∆eff

=
1

3

(
2

∆3/2

+
1

∆1/2

)
(4.11)

with ∆J = ωL − ωJ the detuning from the D-line transition. The hyperfine splitting is
the F = 3→ F = 4 transition frequency ∆hfs = 2π × 9.2 GHz = 1.2 Γ.
For the lattice, lowered to 8% of its initial depth, with the parameters

λ = 899.9 nm (4.12)

Γ = 2π × 4.95 MHz (4.13)

∆eff = 522× 103 Γ (4.14)

one obtains a maximum differential light shift of δls = −2π × 30 kHz. The maximum
differential light shift for atoms in the running wave trap is given by δls = −2π×1.1 kHz
at a trap depth of ≈ 100 µK (for details see [42]). As the differential light shift is the
dominant effect causing the T ∗2 time, these values are used to calculate a theoretical T ∗2
time, which can be compared to the measured one.

Thermal distribution and T ∗2 time

Until now only atoms in the bottom of the trap with energy E = 0 were investigated,
but one needs to take into account that the atoms have a thermal distribution. Due to
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Figure 4.4: Ramsey contrast versus waiting time τ between both π/2 pulses. The red
line indicates the fit of equation (4.23) to the data points. A T ∗2 time of (58 ± 5) µs is
obtained from the fit.

their finite temperature, every atom has a different oscillation amplitude in the trap.
This leads to the fact that in general hot atoms experience a smaller light shift, because
they see a lower laser intensity than cold atoms.

If an energy distribution of the trapped atoms as a three dimensional Boltzmann distri-
bution with the probability density [28]

pB(E) =
E2

2(kBT )3
exp(− E

kBT
) (4.15)

is considered, then the distribution of differential light shifts, with an energy dependent
light shift δls, is given by [28]

pls(δls) =
β3

2
(δls − δls,0)2 exp[−β(δls − δls,0)] with β =

2U0

kBTδls,0

. (4.16)

Here T denotes the temperature of the atoms, δls,0 = δls(E = 0) is the maximum
differential light shift at the bottom of the trap and U0 is the trap depth. This equation is
only valid in the regime of a harmonic approximation of the trapping potential. Equation
(4.16) is in the next step used to derive an expression for the Ramsey fringe contrast in
order to obtain the inhomogeneous T ∗2 time.

Inferring the T ∗2 time from the Ramsey contrast

The w component of Bloch vector is already known:

wRamsey(φrf , τ) = C(τ) cos(φrf − Φa(τ)) . (4.17)
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4 Measuring the coherence time of a single Cs atom

Assuming a linear evolution of the accumulated phase of each atom

Φa(τ) = (δrf + δls)τ + Φrf,0 , (4.18)

with δrf a possible frequency detuning of both π/2 pulses from the atomic transition
frequency and Φrf,0 a constant accumulated phase during the application of the pulses,
one obtains an inhomogeneously broadened Ramsey signal

wRamsey,inho.(φrf , τ) =

∫ ∞
δls,0

pls(δ
′
ls)C(τ) cos(φrf − (δrf + δ′ls)τ − Φrf,0) dδ′ls (4.19)

= C(τ) cos(φrf − Φ(τ)) . (4.20)

Here C(τ) denotes the Ramsey fringe contrast and is given by

C(τ) = (1 +
τ 2

β2
)−3/2 . (4.21)

Here the physically reasonable value for the upper integration limit is given by δls/2, but
the limit ∞ is chosen to maintain an analytical solution for the integral. Although the
decay of the Ramsey fringe contrast is not exponential, the inhomogeneous dephasing
time T ∗2 is defined as the 1/e time of the Ramsey contrast

C(T ∗2 ) ≡ C(0)e−1 ⇒ T ∗2 = β
√
e2/3 − 1. (4.22)

By inserting equation (4.22) into equation (4.21) one obtains the fit function for the
Ramsey contrast

C(τ) =

(
1 + 0.948

(
τ

T ∗2

)2
)−3/2

(4.23)

with the only fit parameter T ∗2 .

The contrast inferred from Ramsey spectroscopy measurements performed in the lat-
tice is illustrated in figure 4.4, which additionally shows the fit curve indicated by the
red line. From the fit to the data points one obtains a maximum contrast of (92 ± 4)%.

The fit function yields an inhomogeneous dephasing time of

T ∗2 = (58± 5) µs, (4.24)

which is of the same order of a π-pulse time (t = (56.5± 0.5) µs) and therefore may be
the dominant effect causing the observed decay of the Rabi oscillation contrast.

From the measured temperature of 30 µK in the lattice at full power the temperature
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Figure 4.5: (Left) Ramsey contrast versus the waiting time τ between the two π/2
pulses. The data is obtained from measurements on atoms stored in the running wave
trap. (Right) Ramsey fringes for different waiting times measured on atoms stored in
the running wave trap. One can see that the survival probability fluctuates during the
measurements. A cosine could be estimated, but it was not possible to fit any reasonable
equation to the data points.

in the adiabatically lowered trap is calculated. This is possible because in a harmonic
potential the fraction E/Ω, with E the sum of the potential and kinetic energy and Ω
the oscillation frequency, is invariant under adiabatic changes of the trapping potential.
It results in the fact that, by using the relation Ω ∝

√
U , one can directly infer the

temperature from the trap depth via T (U) = T ′
√
U/U ′.

With a theoretically expected value of δls = −2π×30 kHz and a temperature of approx-
imately 9 µK in the adiabatically lowered trap of trap depth U0 = 58 µK an inhomoge-
neous dephasing time of

T ∗2,theo = 66± 9 µs (4.25)

is calculated from equations (4.22) and (4.16). The error is calculated with propaga-
tion of uncertainty by estimating a 10% error for the temperature as well as for the trap
depth. Within the error boundaries the measured value fits to the theoretically expected
time. It is hence reasonable to assume that the T ∗2 time in the lattice is dominated by
the differential light shift.

Until now only the T ∗2 time in the lattice was examined, but Ramsey spectroscopy was
also performed in the running wave trap. The contrast inferred from the Ramsey fringe
measured in the running wave trap, is shown in figure 4.5. Only three points are shown
because for longer waiting times τ it was not possible to measure the contrast. Due to
unknown effects the data points during recording of the Ramsey fringes fluctuated and
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Figure 4.6: Spin echo sequence in Bloch vector model. The only difference compared
to Ramsey spectroscopy is the application of an additional π pulse in the middle of the
sequence, which rephases the Bloch vectors of the ensemble.

it was not possible to fit an appropriate cosine to the data points (see fig 4.5). But
from the few points available one can assume a T ∗2 time much longer than in the lattice.
With the theoretically expected value of 2π × 1.1 kHz for the differential light shift, a
measured temperature of ≈ 5 µK and a trap depth of ≈ 100 µK a theoretical value of
T ∗2,theo = 2.8 ms is calculated corresponding well to the trend of the data points, but one
can see that the coherence time is not limited by the T ∗2 time.

4.4 Spin echo technique

Inhomogeneous dephasing can be reversed by the so called Spin-echo technique invented
by E. Hahn in the 1950s originally used for nuclear magnetic resonance [49]. Since sev-
eral years the method is also a standard technique for experiments with atoms in optical
dipole traps [50].

For Spin-echo measurements the Ramsey spectroscopy sequence is extended by an ad-
ditional π-pulse between the two π/2-pulses leading to a rephasing of the ensemble. It
is used to measure the homogeneous relaxation time T ′2.

4.4.1 Experiment

Picture in the Bloch vector model

During the waiting time after the first π/2-pulse, the Bloch vectors dephase because of
the reasons discussed in the previous section. The π pulse additionally applied after time
τπ rotates the Bloch vector by an angle of 180◦ around the u-axis of the Bloch sphere.
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Figure 4.7: Two exemplary Ramsey fringes measured with the spin echo technique for
atoms stored in the running wave trap. After a waiting time τπ of approximately 1 ms
an sufficient contrast is still observable.

This leads to a time reversal and hence the Bloch vectors are completely rephased in
state u = (0, 1, 0) after time 2τπ, see figure 4.6.

Because Ramsey spectroscopy and the spin echo technique are similar methods, the
matrix formalism derived in section 3.1.1 is used again to describe the spin echo se-
quence. The evolution of the Bloch vector prepared in the initial state u0 = (0, 0,−1),
yields

uecho(φrf , 2τπ) = Θπ/2 · Φfree,1(τπ) ·Θπ · Φfree,2(τπ) ·Θπ/2 · u0 (4.26)

with the known rotation matrices for Θπ/2, Θπ and Φfree (see section 3.1.1). For the w
component we obtain from equation (4.26):

wecho =
1

2
(1 + cos[φrf −∆Φ(τ) + π]) (4.27)

with ∆Φ = Φfree,1(τπ)−Φfree,2(τπ) the difference between the accumulated phases before
and after the π pulse, respectively.

Experimental parameters and Observations

For the spin echo sequence the same experimental parameters as for Ramsey spectroscopy
are employed due to similarities of the techniques. Again the transition |3, 3〉 → |4, 2〉
is used. The pulse length of the π-pulse is 60 µs in the lattice and 80 µs in the running
wave trap, respectively. In figure 4.7 some Ramsey fringes recorded with the spin echo
technique are depicted.

4.4.2 Homogeneous dephasing

In the ideal case, meaning that during the experimental cycle the individual resonance
frequency of each atom stays the same, the spin echo method is able to fully reverse the
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Figure 4.8: Spin echo contrast versus waiting time τπ. The black squares indicate the
data points, whereas the red solid line represents a fit of equation (4.34) to the data. A
homogeneous decay time T ′2 of (1.19± 0.06) ms is inferred from the fit.

dephasing which occurs during the time in which the Bloch vector precesses freely. The
result would be a spin echo contrast of 100 %.

However, the experiments show that the spin echo contrast decays, which is due to
irreversible dephasing mechanisms, denoted by the homogeneous dephasing time T ′2.
Sources for such effects are fluctuations of the laser intensity or of magnetic fields during
the performance of the sequence. These fluctuations lead to the fact that the accumu-
lated phases before and after the π pulse are different. The effect is expressed by a time
averaged detuning difference ∆δ in time τπ

∆Φa(τπ) = ∆δ · τπ. (4.28)

A Gaussian shape for the probability distribution of the average detuning difference is
assumed [28]

p(∆δ, τπ) =
1√

2πσ(τπ)
exp

[
− (∆δ)2

2σ2(τπ)

]
(4.29)

with mean ∆δ = 0 and variance σ2(τπ). Then the homogeneously broadened spin echo
signal is given by [28]

wecho,homo.(φrf , 2τπ) =

∫ ∞
−∞

p(∆δ), τπ)C(τ) cos[φrf −∆δτπ + π] d∆δ (4.30)

= C(2τπ) cos[φrf + π] (4.31)

with the spin echo contrast

C(2τπ) = exp[−1

2
τ 2
πσ

2(τπ)]. (4.32)
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Figure 4.9: Spin echo contrast versus waiting time τπ. The data was obtained from
atoms stored in the running wave trap at a different trap depth as the first measurement.
A power of Paxial = 3 W in axial direction and of Pradial = 0.6 W in radial direction was
used during this measurements.

Again the T ′2 time is defined as the 1/e time of the spin echo contrast signal

C(2τπ = T ′2) ≡ C(0)e−1 =⇒ T ′2 =

√
2

σ(τπ)
. (4.33)

Combining the last equation with equation (4.32) and adding a fit parameter, which takes
the deviation from the maximal contrast into account, leads to the used fit function of

C(2τπ) = Cmax exp

[
−
(
τ 2
π

T ′2

)2
]
, (4.34)

which directly reveals the inhomogeneous T ′2 time.

The measurements were performed in the running wave trap with a power of Paxial = 2 W
in axial direction and Pradial = 1.5 W in radial direction. Figure 4.8 shows the evolution
of the contrast depending on the spin echo time τπ. A dephasing time of

C(2τπ) = (1186± 60) µs (4.35)

is inferred from the fit resulting in a variance of

σ(τπ) = (190± 10) Hz . (4.36)

Measurements (see fig. 4.9) with a different trap depth (Paxial = 3 W and Pradial = 0.6 W)
yield nearly the same T ′2 times, which are T ′2 = (1300 ± 84) µs and T ′2 = (1129 ± 74) µs,
respectively. Hence intensity fluctuations or pointing instability of the trap laser, causing
changes of the trap depth and therefore changes of the differential light shift, are assumed
not to be the limiting factors.
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Analysis of dephasing mechanisms

In the next step the variances resulting from different effects are calculated and then
compared to the measured one, following the methods of references [42, 28]. The devia-
tions of the parameters are estimations in most cases.

Intensity fluctuations Fluctuations of the laser intensity of the trap laser directly affect
the trap depth and hence the differential light shift. Because we need to perform
the spin echo measurement about a 100 times, every atom sees a trap depth slightly
different resulting in a dephasing of the Bloch vectors corresponding to each atom.
Due to the fact that an electronic feed back loop is used to control the laser power
in each beam independently, one is only limited by its accuracy. Therefore the
fluctuations are estimated to ε = 0.5% of the initial intensity.
The variance caused by the fluctuations can be calculated via

σ(τ)

2π
=
√

2δlsε (4.37)

with ε the estimated variance of the parameter, rather than the Allen variance
used in [42]. For a maximum light shift of δls = 2π × 1.1 kHz one hence obtains

a variance of σ(τ)
2π

= 7.8 Hz. This is one order of magnitude too small to be the
limiting effect. It corresponds well to the fact that neither the trap depth nor the
differential light shift matter here.

Beam pointing instability Like intensity fluctuations the pointing instability of the
laser generating the trap causes fluctuations of the trap depth and hence of the
differential light shift. Here the pointing instability is estimated to be small com-
pared to the beam waist, as one would observe a lower transfer efficiency from the
lattice into the running wave otherwise. A variance of σ(τ)

2π
= 31 Hz is calculated

from equation (4.37) with ε = 2%. This is again too small to be the limiting factor.

Magnetic field fluctuations The current through the coils generating the magnetic
guiding field may be slightly unstable and hence results in fluctuations of the
magnetic field. Due to the linear Zeeman shift, this is directly translated into
resonance frequency shifts of the relevant transition (|3, 3〉 → |4, 2〉). The shift is
in this case calculated via

∆ω = 2B0∆ωm3→m4 (4.38)

with B0 = 1 mT the applied magnetic field strength and ∆ωm3→m4 = 2π ×
3.51kHz

µT
(m3 + m4) = 5 · 2π × 3.51kHz

µT
the splitting due to the linear Zeeman shift.

For the variance one obtains

σ(τ)

2π
=
√

2∆ωε = 208 Hz (4.39)

with ε = Irms/I0 = 3 × 10−6 given by the Toellner power supply. Although the
value is larger than the measured one, it is in the expected variance range and it
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makes sense that the magnetic field fluctuations are the limiting factor, due to the
strong dependency of the transition frequency for the outer Zeeman states on the
magnetic field.

Summarising the effect limiting the inhomogeneous decay time are probably magnetic
field fluctuations, because the transition frequency |3, 3〉 → |4, 2〉 strongly depends on the
magnetic field. It was furthermore found the differential light shift not to be responsible
for the limited coherence time in measurements for different trap depths. This statement
was supported by calculations for the beam pointing instability and the laser intensity
fluctuations. Note that the magnetic field fluctuations arising from electrical devices in
the lab are not taken into account.
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5 Conclusions and Outlook

During this thesis a species selective lattice was built and implemented in the current
setup. A transfer efficiency from the single atom MOT into the lattice and back close
to unity has been achieved. this is an essential prerequisite for future experiments, be-
cause all measurements rely on counting the atom number in the MOT before and after
manipulation of the atom. It was verified that the measured lattice parameters agree
with the theoretically predicted values. Therefore it is now used as an intermediate step
for combining a single Cs atom from a dissipative trap with a many particle system of
Rb atoms, which are evaporatively cooled and stored in a conservative shallow dipole
trap, resulting in the demonstration of sympathetic cooling of the single atom by the
Rb cloud (see [36]).

After combination of both systems it was the intention to investigate the coherence
behaviour of a single superposition state during or after the interaction with the ultra-
cold gas. The measurements being performed and introduced in this thesis are in fact
the calibration of such measurements. To this end a microwave setup has been built and
used to generate a superposition state of two Zeeman states in a single Cs atom.

From a Ramsey spectroscopy measurement performed in the lattice, the inhomogeneous
coherence time of nearly 60 µs has been inferred and the differential light shift has been
found to be the limiting factor. This time is however too small compared to the ther-
malisation time of 25 ms [36] to analyse a possible decay during the interaction of the
single atom and the ultracold cloud. Besides the fact that the Rb cloud is stored in the
dipole trap, the low differential light shift and hence a longer coherence time is another
reason to use the dipole trap instead of the lattice.

Within the dipole trap we measured the homogeneous coherence time of approximately
1200 µs using different trap depths, observing that the time stays the same in each mea-
surement. We therefore conclude that inhomogeneous effects, such as the differential
light shift, are not the limiting factors. In contrast homogeneous effects limit the co-
herence time. The limiting processes are mainly ascribed to fluctuations of the current
flowing through the coils generating the magnetic guiding field. This is reasonable be-
cause the used transition between the Zeeman states is very sensitive to magnetic fields
due to the linear Zeeman effect. Although we neither use the outer most transitions we
can compare our value to others measured in the group, where a time of 415 µs [28] for
|3, 3〉 → |4, 4〉 transition have been observed. Referring to this measurements our coher-



5 Conclusions and Outlook

ence time is much longer and is a good candidate to investigate the coherence properties
of a single atom during the interaction with an ultracold gas. The thermalisation time
for the Cs atom in the ultracold Rb cloud is in the order of 25 ms. Therefore on time
scales of the coherence time (1 ms) it is possible to observe cooling of the superposition
state. Unfortunately it was not possible to perform a combined measurement of a single
Cs atom and an ultracold Rb cloud because of a major vacuum leak.

In the near future a new experimental setup will be build having an all optical BEC
allowing a much faster measurement cycle (up to 6 s per BEC compared to 1 minute
in the old setup). With this setup, higher Rb densities may be gained resulting in a
faster thermalisation process and hence it is then possible to analyse the coherence time
during combination of both systems.
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an diesem spannenden Experiment anfertigen zu dürfen.

Prof. Dr. Artur Widera danke ich für die grossartige Unterstützung während meiner
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