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1 Introduction

Measuring physical properties of an object—whether 
macroscopic or microscopic—is in most cases associated 
with an interaction. For example, scattering photons off an 
object allows one to detect its presence in a given region 
of space. However, this also produces a small perturbation 
of its state by direct momentum transfer. It is well known 
from numerous discussions on the physics of the quantum 
measurement process (see, e.g., Refs. [1, 2]) that a meas-
urement in general modifies the quantum evolution unless 
the object is already in an eigenstate of the measurement 
apparatus [3]. This is even in the case when the measure-
ment yields a negative outcome, that is, when we did not 
find the particle on a certain trajectory that had originally 
a nonvanishing probability amplitude to be occupied. For 
example, in a double-slit experiment, quantum interference 
is suppressed as soon as a measurement detects the which-
way information, regardless of whether the information is 
acquired by direct interaction or indirect negative infer-
ence. Quantum mechanics formalizes the loss of interfer-
ence in terms of the quantum measurement process, show-
ing that measurements are generally invasive as they entail 
a modification of the subsequent quantum evolution. While 
the quantum measurement process is still intensely debated 
in the literature [4], we adopt here the pragmatic view that 
a measurement applied to a superposition state causes a 
sudden reduction of the wave function to a subspace of the 
Hilbert space.

Ideal negative measurements, that is, measurements 
without direct interaction, play an important role in a 
physical scenario known as macro-realism [5–7]. This 
scenario advocates a classical worldview describing the 
state of macroscopic objects, according to which mac-
roscopic objects are always in one of several possible 
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macroscopically distinct states. In a macro-realistic world-
view, it is plausible to assume that a negative outcome of a 
measurement cannot affect the evolution of a macroscopic 
system, meaning that negative measurements are noninva-
sive [8]. In order to rigorously test the macro-realistic point 
of view, Leggett and Garg have derived an inequality from 
the assumptions of macro-realism and noninvasive meas-
urability, which can be violated by quantum-mechanical 
superposition states [9]. Relying on the implementation of 
an ideal negative measurement protocol—a prerequisite for 
any genuine test of the Leggett–Garg inequality—experi-
mental violations of the macro-realistic worldview have 
been experimentally demonstrated with phosphor impuri-
ties in silicon by Knee et al. [10] and with trapped atoms by 
Robens et al. [11].

The definition of the degree of “macroscopic distinct-
ness” has been a matter of discussion in the literature ever 
since [12], and is likely to remain as such till an experiment 
[13] will shed new light, for example, discovering a physi-
cal “classicalization” mechanism that causes an objective 
reduction of wave packets. Recently, Nimmrichter and 
Hornberger proposed a quantitative criterion based on a 
minimal macro-realistic extension of quantum mechan-
ics to quantify the macroscopicity of an object [14]. Their 
objective criterion of macroscopicity allows us to experi-
mentally test the behavior of a single trapped atom—how-
ever microscopic it is, according to our intuition—under 
the hypothesis of macro-realism, as we can put its macro-
scopicity directly in relation to that of other, ideally more 
massive physical objects.

It was pointed out by Ghirardi [15] that a Leggett–Garg 
test of macro-realism is naturally related to the notion of 
interaction-free measurements introduced by Elitzur and 
Vaidman [16]. In a rather dramatic scenario, Elitzur and 
Vaidman proposed a quantum device able to single out live 
“bombs” from a collection containing also duds without 
triggering them nor interacting with them. While the first 
realizations of the Elitzur–Vaidman experiment employed 
“flying” photons [17] and “flying” neutrons [18], we here 
implement a variation of this experiment with neutral 
atoms trapped in a one-dimensional optical lattice. A con-
venient scheme for interaction-free measurements with 
neutral atoms has been demonstrated by Robens et al. [11] 
exploiting state-dependent optical potentials. Following the 
idea of Ghirardi, we tested the hypothesis of macro-real-
ism with our atomic implementation of the Elitzur–Vaid-
man “bomb testing” Gedankenexperiment. Our experiment 
shows explicitly that the Leggett–Garg inequality is vio-
lated by 21 σ. In addition, trapped atoms can be held for 
long times. By controlling the duration of a suitably chosen 
wait interval, it is straightforward to study the influence of 
decoherence and experimentally observe the gradual transi-
tion from quantum to classical behavior.

It is our pleasure to honor with these recent experimen-
tal results Theodor W. Hänsch. For many decades he has 
laid the foundations in laser physics and technology, with-
out which present-day laser control of quantum particles is 
hardly conceivable. In this sense, the objective of this arti-
cle is to experimentally demonstrate yet another example of 
exploring the world with lasers and laser-controlled atoms 
at the quantum-classical boundary.

2  Brief review: The Elitzur–Vaidman 
interaction‑free “bomb test”

Let us illustrate the concept of the interaction-free “bomb 
test” as presented in the original work by Elitzur and Vaid-
man [16], based on a single photon travelling on a quan-
tum superposition of trajectories along the two paths of a 
Mach—Zehnder (MZ) interferometer.

The two branches A and B of a MZ interferometer can 
be balanced in such a way that one of the two output ports, 
say D2, is always bright while the other one, D1, is always 
dark, see Fig. 1a. If any object (e.g., a “live bomb” trig-
gered by a single photon) intercepts the trajectory of the 
photon in the lower branch B, the photon field is removed 
from that branch and the balance of the MZ interferometer 
is disturbed. As shown in Fig. 1b, the photon has a 50% 
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Fig. 1  Bomb testing with a Mach—Zehnder interferometer operated 
with a single photon at a time. The beam splitters have split ratio 
50:50. a The phase difference between the two arms is adjusted such 
that all photons are directed to detector D2. The object situated close 
to the lower branch B (e.g., a dud bomb not equipped with the trig-
ger) does not intercept the photons. b The object (e.g., a “live bomb” 
equipped with an avalanche photodiode which is triggered by a single 
photon 1) intercepts the photons in the lower branch B

1 For Wile’s safety, the avalanche photodiode must be cooled to near 
absolute zero in order to suppress dark counts.
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probability to be blocked without ever reaching the detec-
tors. This event is of course highly invasive: the “bomb” is 
triggered to explode by absorbing the travelling photon.

In all other events, the photon must have followed branch 
A, thus avoiding interacting with the object, and is subse-
quently routed to the detectors D1 and D2 with equal prob-
ability. In case detector D2 clicks, insufficient knowledge is 
gained to conclude on whether the object is present, as this 
outcome also occurs for no object present (“dud bomb”). 
If the dark detector D1 lights up, however, the presence 
of an object in one of the two arms is signaled with cer-
tainty. Since the photon could not reach the detector if it 
had touched the object, finding a photon with detector D1 
detects the presence of the object without touching it, there-
fore leaving the “bomb” intact. Following Elitzur and Vaid-
man, we call this measurement scheme interaction free [19].

We obtain further insight in the Elitzur–Vaidman “bomb 
test” by analyzing its outcomes from the perspective of 
statistical hypothesis testing, where the Elitzur–Vaidman 
quantum device is employed to test whether the “bomb” 
is live (positive test result). The typical figure of merit in 
hypothesis testing is the statistical power 1− β, that is, 
the fraction of “live bombs” which are correctly identi-
fied (without being triggered) and rescued. In their original 
work [16], Elitzur and Vaidman showed that this fraction 
amounts to 25% (true positives). It is worth extending the 
analysis of “bomb testing” to quantum devices that, under 
realistic conditions, are impaired by decoherence. We 
assume that decoherence reduces the fringe amplitude of 
the MZ interferometer in an unbiased way, resulting in a 
contrast C less than unity. In the presence of decoherence, 
the statistical power of the test remains unchanged, since 
this quantity describes the situation of a “live bomb,” where 
the coherence of the photon plays no role, see Fig. 1b. We 
therefore introduce a second figure of merit accounting 
for decoherence, which is given by the statistical error of 
type I, that is, the probability α that we erroneously res-
cue the bomb even though the bomb is a dud (false posi-
tive). One can show that the probability of type I errors is 
α = (1− C)/2. This measure vanishes only for a decoher-
ence-free “bomb tester” and becomes α = 1/2 in the com-
pletely incoherent limit (equivalent to random selection). 
It is also worth mentioning that, by allowing for repeated 
measurements (this is always possible until the “bomb” has 
not exploded), the statistical power 1− β can be straight-
forwardly increased to 1/3 for 50:50 beam splitters and to 
1/2 for beam splitters with different split ratios. Further-
more, a more complex variant of this scheme based on the 
quantum Zeno effect has been suggested [20] and experi-
mentally demonstrated using traveling photons [21], allow-
ing one to approach unity efficiency (β = 0).

Let us now reconsider the situation illustrated in Fig. 1b 
from the perspective of a macro-realist, who conducts the 

same experiment but with a massive, ideally macroscopic 
object traveling along the two branches of the MZ inter-
ferometer. For a macro-realist, the massive particle travels 
either along branch A or along branch B, but not in a super-
position state of the trajectories A and B. If one discards 
by post-selection all events where the particle’s presence 
on one of the two trajectories has been directly detected 
through the absorption by the object, then only interaction-
free measurements (i.e., ideal negative measurements) of 
the particle’s position are considered. By intercepting the 
particle at one time in branch A and at another time in 
branch B, the macro-realist learns about the particle’s posi-
tion in the MZ interferometer avoiding any interaction with 
it. Therefore, to a macro-realist, ideal negative measure-
ments must appear noninvasive, since the subsequent evo-
lution of the particle could have not been influenced by the 
presence of an object where the particle was not. Noninva-
sive measurements constitute an important prerequisite for 
any rigorous test of macro-realism through a violation of 
the Leggett–Garg inequality [22].

3  Relation to the Leggett–Garg inequality

Based on two assumptions, (A1) macro-realism and (A2) 
noninvasive measurements, the Leggett–Garg inequal-
ity bounds a linear combinations of two-time correlation 
measurements,

where Q(ti) denote the outcome of measurements carried 
out on the object at three subsequent times (i = 1, 2, 3). The 
values assigned to the individual measurement outcomes 
have to fulfill the condition |Q(ti)| ≤ 1 but can otherwise be 
freely chosen. While macro-realism fulfills this inequality, 
standard quantum mechanics allows experiments violating 
it.

Observing a violation of the inequality (1) allows one 
to refute (i.e., falsify) the assumptions underlying the Leg-
gett–Garg test in the range of parameters investigated by 
the experiment, which in general are represented by the 
mass of the superposition states and their spatial split dis-
tance [14]. For simple logical reasons, a violation of Eq. (1) 
implies that at least one of the two assumptions (A1) and 
(A2) must not hold. In conducting a Leggett–Garg test, it 
is therefore crucial that assumption (A2) of noninvasive 
measurability cannot be simply dismissed by a macro-real-
ist claiming that a measurement operation, due experimen-
tal inadvertence, has influenced the subsequent evolution 
of the particle; or else, even in case of an observed viola-
tion, no claim can be made concerning assumption (A1) 
of macro-realism. In the literature, this type of objection is 
addressed as the clumsiness loophole [23]. To circumvent 

(1)K = �Q(t2)Q(t1)� + �Q(t3)Q(t2)� − �Q(t3)Q(t1)� ≤ 1,
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it, Leggett and Garg suggested using ideal negative meas-
urements, which, to say it à? la Vaidman and Elitzur, are 
interaction free. It should also be noted that in standard 
quantum theory both assumptions do not hold. In fact, 
standard quantum theory postulates (1) no limit on the 
mass and split distance of a superposition state and that (2) 
even a negative measurement can cause the wave packet’s 
reduction. The latter point is indeed central to the Elitzur–
Vaidman interaction-free experiment.

In the Elitzur–Vaidman experiment, the object that is put 
to the test of the Leggett–Garg inequality is the single pho-
ton travelling along the two paths of the MZ interferometer. 
In the following we define the three measurement opera-
tions performed on the photon and their assigned values 
Q(ti), which are employed to perform the Leggett–Garg test 
in Eq. (1): 

Q(t1) :  We identify the first measurement at t1 with the 
preparation of the initial state - a photon in the 
input of the MZ interferometer. This measure-
ment is by definition noninvasive, as it leaves 
the particle in the initial state. We assign to this 
measurement the value Q(t1) = +1.

Q(t2) :  This measurement is performed at time t2 when 
the photon is either in branch A or B of the MZ 
interferometer. It detects in which branch the 
photon travels by removing the photon at one 
time from branch A, at another time from branch 
B. The events in which the photon was directly 
intercepted by the object (i.e., when the “bomb” 
exploded) are discarded by post-selection in 
order to ensure that only ideal negative meas-
urements are performed; this measurement must 
thus appear to a macro-realist as noninvasive as 
it avoids any direct interaction with the photon 
itself. We assign to this measurement the con-
stant value Q(t2) = +1 regardless of which tra-
jectory the photon has taken. It should be noted 
that this measurement is not performed when 
evaluating the correlation function 〈Q(t3)Q(t1)〉 
of the Leggett–Garg test. In fact, from the per-
spective of a macro-realistic who advocates (A1) 
and (A2), an ideal negative measurement could 
not have influenced the evolution of the particle.

Q(t3) :  The final measurement is performed at time t3 
when the photon has reached the output of the 
MZ interferometer. Depending on whether detec-
tor D1 or D2 has clicked, we assign to this meas-
urement the value Q(t3) = +1 or Q(t3) = −1, 
respectively. Because we are not interested in the 
system’s evolution after t3, noninvasiveness of 
this measurement operation is not required.

Previous Leggett–Garg experimental tests prior to 
Robens et al. [11] only considered dichotomic designations 
of Q(t2), as opposed to the constant choice of Q(t2) = +1 
here. By deliberately disregarding the unnecessary, dicho-
tomic constraint, we allow the Leggett–Garg correlation 
function of the Elitzur–Vaidman experiment to reach the 
maximum value, K = 2, as permitted by quantum theory 
for a two level system (i.e., the photon in a superposition 
state of the trajectories A and B). It can be shown that a 
violation of the inequality in Eq. (1) is also produced in the 
Elitzur–Vaidman experiment for a dichotomic choice of 
Q(t2) (see “Appendix C”). However, in this case the maxi-
mum value of K predicted by quantum theory is only 3/2 
[24, 25] instead of 2.

Taking into account our specific designation of Q(ti), we 
can recast Eq. (1) into a simpler form. Since Q(t2) = 1 , the 
correlation function 〈Q(t3)Q(t2)〉 equals 〈Q(t3)〉with Q2, that 
is, the average value of Q(t3) conditioned on a negative result 
of the measurement Q(t2). Likewise, since Q(t1) = 1, the cor-
relation function 〈Q(t3)Q(t1)〉 simplifies to 〈Q(t3)〉without Q2, 
that is, the average value of Q(t3) without having measured 
the position of the photon at t2. Our experiment can thus be 
analyzed with a simplified version of Eq. (1),

It is interesting to go one step further to provide an interpre-
tation of the Leggett–Garg correlation function K from the 
point of view of quantum theory. We know that the values 
of Q(t3) = ±1 are evenly distributed when the Q(t2) meas-
urement is performed, since the latter reveals the which-way 
information; hence �Q(t3)�with Q2 = 0. Moreover, one can 
prove that 〈Q(t3)〉without Q2 is identical to the contrast C of 
the MZ interferometer (see “Appendix D”). Thus, we find 
that the correlation function K takes the suggestive form

Intuitively, the function K provides a quantitative indica-
tion, say a witness, of the amount of superposition involved 
in the evolution of the quantum particle. Note that K can be 
put in relation to the first quantum witness W of superpo-
sition states introduced in Ref. [26] (also described as no-
signaling in time in Ref. [27]). In fact, W = |K − 1| = C 
as shown in Ref. [11]. This demonstrates that the figure 
of merit α of a partially decohered “bomb tester” (see 
Sec. 2) is directly related to the quantum witness W since 
α = (1−W)/2. Furthermore, our results shows that any 
quantum particle exhibiting a nonvanishing interference 
contrast should allow, according to quantum theory, for 
a violation of Eq. (1), provided that one can additionally 
show through an experiment that the which-way informa-
tion acquired through interaction-free measurements yields 
a vanishing contrast, that is, �Q(t3)�with Q2 = 0 .

(2)K = 1+ �Q(t3)�with Q2 − �Q(t3)�without Q2 ≤ 1 .

(3)K = 1+ C .
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4  Interaction‑free measurement with trapped 
atoms

Our atomic realization of the Elitzur–Vaidman experi-
ment employs single neutral atoms trapped in an optical 
potential instead of flying photons. Instead of delocal-
izing the particle on two distinct trajectories as in the MZ 
interferometer shown in Fig. 1, we let the particle evolve 
in a superposition of two long-lived internal states, which 
we denote by |↑� and |↓� hereafter. In our experiment, an 
atomic Ramsey interferometer plays the role of the optical 
MZ interferometer.

4.1  Experimental apparatus

4.1.1  State-dependent optical conveyor belts

At the core of our realization of the Elitzur–Vaidman exper-
iment with trapped atoms are polarization-synthesized (PS) 
optical lattices, which were recently introduced by Robens 
et al. [28]: two one-dimensional, periodic optical potentials 
can be independently shifted along their common longitu-
dinal direction to selectively transport atoms in either one 
of two internal states, |↑� and |↓�. In essence, two copropa-
gating laser beams of opposite circular polarization inter-
fere with a third, counterpropagating, linearly polarized 
beam. Their interference gives rise to two standing waves 
of left- and right-handed polarization, whose positions 
are actively controlled by means of two independent opti-
cal phase-locked loops. We obtain a residual jitter of their 
relative position on the order of 1 Å, which is much smaller 
than the longitudinal extent of the atom’s wave function of 
≈20 nm. At the so-called magic wavelength �L = 866 nm 
of cesium atoms, the internal state |↑� = |F = 4,mF = 4� 
interacts exclusively with the σ+-polarized component, 
while |↓� = |F = 3,mF = 3� predominantly interacts with 
the σ−-polarized component [29]. Moreover, we choose 
a relatively deep lattice with a depth of U/kB ≈ 80µK to 
prevent tunneling between different sites. Hence, atoms in 
the two internal states are bound to two spatially superim-
posed, but orthogonally polarized lattices, which can be 
individually shifted much like two independent optical con-
veyor belts: atoms in the |↑� and |↓� states follow, nearly 
rigidly, the σ+-polarized and σ−-polarized standing waves, 
respectively.

State-dependent optical lattices have been pioneered first 
in the MPQ laboratories [30, 31], demonstrating another 
example of Theodor W. Hänsch’s legacy as an inspiration 
for future generations of experiments. Compared to former 
realizations of state-dependent optical lattices, PS opti-
cal lattices have replaced the polarization control formerly 
based on an electro-optic modulator by a direct synthesis of 
light polarization, which enable arbitrary, state-dependent 

displacements of atoms. Polarization synthesis is realized 
through rf-control of the optical phases (0.1◦ RMS phase 
jitter) of two overlapped beams with opposite circular 
polarization [28].

4.1.2  Microwave control

We employ microwave radiation at the cesium clock fre-
quency of 9.2GHz to induce coherent oscillations between 
the two atomic hyperfine states, |↑� and |↓� with a Rabi 
frequency of 55 kHz. Therefore, the application of the 
microwave radiation field for 4.5µs realizes a so-called 
π/2 pulse, which transforms a pure internal state into an 
equal superposition of |↑� and |↓�. In our realization of the 
Elitzur–Vaidman experiment, microwave π/2 pulses repre-
sent the atomic analogue of the beam splitters for photons, 
which are illustrated in Fig. 1.

4.1.3  Nondestructive spin state measurement

Exploiting PS optical lattices, we devised a novel meas-
urement method to detect the internal state of the atom in 
the most gentle way possible. In quantum mechanics, least 
perturbative measurements are called nondestructive (or, 
equivalently, quantum nondemolition measurements): the 
state of the object is preserved after the measurement in 
the eigenstate of the measured quantity corresponding to 
the observed outcome [32]; a repeated measurement of the 
same quantity would therefore leave the state unchanged. 
Conversely, the widely employed push-out method, which 
expels atoms in one particular internal state from the trap 
by applying state-selective radiation pressure [33], repre-
sents a destructive measurement.

Our method is closely related to an optical Stern–Ger-
lach experiment [34, 35], where spin-position entangle-
ment is created by state-dependent light fields, and is remi-
niscent of the nondestructive Stern–Gerlach experiment 
by Dehmelt [36, 37]. We realize nondestructive measure-
ments by displacing atoms by a discrete number of lattice 
sites conditioned on the internal state, thereby transferring 
spin states to well-separated positions. The position can be 
detected efficiently at a later time by fluorescence imaging 
under molasses illumination without any atom loss [38]; we 
identify the correct position, and therefore the spin state, 
with >99% reliability. The translational invariance of the 
optical lattice ensures that this measurement protocol con-
stitutes a nondestructive measurement of the internal state. 
Note also that it is not necessary that the position readout 
immediately follows the state-dependent displacement. 
The possibility to postpone the “destructive” fluorescence 
image of the atoms till the end of the evolution allows us 
to leave the evolution of the system minimally perturbed 
as required by a nondestructive spin measurement. We use 
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this technique for the ideal negative measurement Q(t2), in 
which case only one spin component at a time is displaced, 
leaving the other unperturbed (see Sect. 4.2). It should also 
be noted that nondestructive measurements are not strictly 
needed in order to perform the ideal negative measurements 
that are instead required for the Elitzur–Vaidman experi-
ment and the Leggett–Garg test [20]. This fact is illustrated 
in Fig. 1 where the photon removal represents indeed a 
destructive measurement, since the particle is destroyed if 
intercepted by the “bomb.”

4.2  Measurement protocols

We start each experimental sequence with, on average, 1.2 
atoms loaded into the lattice. The loading procedure is sto-
chastic and only atoms sitting at sufficiently separated lattice 
sites are considered. Atoms are cooled to the longitudinal 
ground state using first molasses cooling and then microwave 
sideband cooling [39]. With the quantization axis chosen 
along the lattice direction, optical pumping by a σ+-polarized 
laser beam initializes >99% of the atoms in the state |↑�.

time

t3

t2

t1

or

or

π/2 pulse

π/2 pulse

long state-dependent shift (removal)

π/2 pulse

Spin position mapping Q3

D2
D1

D2
D1

Without Q2 With Q2

State preparation Q1

Fig. 2  Illustration of the Elitzur–Vaidman experiment using single 
atoms. Atoms are trapped in state-dependent optical lattices, which 
consist of two independently movable, periodic optical potentials for 
atoms in the internal states |↑� and |↓�. The two atomic states form 
a spin-1/2 system, which is represented on the Bloch sphere at dif-
ferent moments of the time evolution; short microwave pulses allow 
us to rotate the spin. On the left-hand side, protocol of a Ramsey 
interferometer, whose pulses are configured to produce the state |↓�;  

this situation is equivalent to that in Fig. 1a. The spin information is 
eventually mapped onto two different positions on the lattice, D1 and 
D2, which are efficiently detected by fluorescence imaging. On the 
right-hand side, protocol of a Ramsey interferometer where an inter-
action-free measurement (i.e., an ideal negative measurement) of the 
spin state is performed at the intermediate time t2. This measurement 
intercepts only atoms in one spin state by transporting them far apart 
(grayed lattice regions); this situation is equivalent to that in Fig. 1b
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We outline in Fig. 2 the protocols employed to meas-
ure the two terms forming in the Leggett–Garg inequality 
in Eq. (2). On the left-hand side, we present the procedure 
with no “bomb” present, which comprises Q(t1) (prepara-
tion of the initial spin state preparation) and Q(t3) (detec-
tion of the final spin state) measurements, but not Q(t2) (the 
“live bomb” in one of the interferometer’s branch): the spin 
preparation is followed by a π/2 pulse, a variable waiting 
time, a second π/2 pulse with adjustable microwave phase 
φ, and a nondestructive spin measurement mapping the spin 
state onto different positions as described in Sect. 4.1. This 
sequence describes a Ramsey experiment interrogating the 
spin coherence of a trapped atom. Note that this situation is 
fully equivalent to the unobstructed MZ interferometer of 
Fig. 1a, where the atomic internal states here take the place 
of the distinct trajectories of the photon. Here we adjust the 
microwave phase φ beforehand in order to ensure the high-
est probability to detect |↓� at time t3, much like in the MZ 
interferometer one must balance the two branches to route 
all photons to detector D2.

Let us turn to the application of the atomic “bomb 
test” illustrated on the right-hand side of Fig. 2. After 
the initial microwave π/2 pulse, which puts the atom 
in a coherent superposition state (for a macro-realist, a 
stochastic mixture of both states), we spatially remove 

atoms, in different experiments, at one time in state 
|↑� and at another time in state |↓� by transporting them 
apart by seven lattice sites in about 200µs. The number 
of sites is chosen sufficiently large to avoid any error in 
the final position measurement, and therefore in the spin 
reconstruction. For the Leggett–Garg test, we post-select 
the events where an atom is indeed found at position D1 
or D2, meaning that it has not been removed at time t2,  
and its spin has thus been measured by an ideal nega-
tive measurement Q(t2), as was argued in Sect. 3. The 
excluded events instead correspond to the atoms removed 
from the Ramsey interferometer, and are tantamount to 
having triggered the “bomb” in one of the two branches of 
the MZ interferometer of Fig. 1b.

5  Experimental results

In panels Fig. 3a–c, we show the raw data corresponding to 
our atomic realization of the Elitzur–Vaidman experiment 
for three different situations: (a) without the “bomb,” (b) 
with the “bomb” removing atoms in |↑�, and (c) again with 
the “bomb” but removing atoms in |↓�. From the dataset 
(a) we reconstruct the correlation function 〈Q(t3)〉without Q2, 
while by merging the datasets (b) and (c) we obtain the cor-
relation function 〈Q(t3)〉with Q2. The combination of these 
two correlation functions produce a violation of the Leg-
gett–Garg inequality as defined in Eq. (2). In Fig. 3d we 
present the recorded Leggett–Garg correlation function K 
for different durations of the waiting time, which separates 
the two microwave π/2 pulses of the Ramsey interferome-
ter. For a minimum waiting time of 5µs, we record a value 
of K = 1.958± 0.033, which violates the Leggett–Garg 
inequality by 21 σ. While this value of K lies very close 
to the decoherence-free prediction (K = 2), the recorded 
values of K decrease visibly for longer waiting times (i.e., 
increasing decoherence) till they reach the value of 1 for 
fully decohered spin dynamics, in fulfillment of the Leg-
gett–Garg inequality.

In the present experiment, we attribute the main source 
of decoherence to scalar differential light shift [40], caus-
ing inhomogeneous spin dephasing of the atoms, which 
in our case are thermally distributed over more than 100 
vibrational levels in the directions transverse to the lattice. 
Besides producing a rigorous violation of the Leggett–Garg 
inequality for a pseudo-spin-1/2 particle, our results show 
that the correlation function K can be interpreted, from 
the point of view quantum theory, as a quantum witness of 
superposition states, and employed to study decoherence—
one of the most basic mechanisms affecting atoms trapped 
in optical potentials [41].

Fig. 3  Experimental violation of the Leggett–Garg inequality in the 
quantum-to-classical transition. From a to c, distributions at time t3 
of the detected atom at sites D1 and D2 for a waiting time of 100µs
, corresponding to the solid point in (d) for three different protocols. 
a Without the Q(t2) measurement (left-hand-side protocol in Fig. 2). 
b With the Q(t2) measurement shifting atoms in |↑� away at time t2 
(right-hand-side protocol in Fig. 2). c The same but with atoms in |↓� 
shifted away. d Values of the Leggett–Garg correlation function K 
of Eq. (2) for increasing waiting times between the two π/2 pulses. 
Decoherence gradually suppresses the quantum behavior of the atom. 
The shaded band represents the theoretical quantum-mechanical pre-
diction for coherence times between 75 and 200µs caused by differ-
ential scalar light shift [40]. Percentage values are referred to the total 
number of interrogated atoms in each dataset. The vertical error bars 
represent 1 σ statistical uncertainty
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6  Conclusions

In this paper, we have shown that the “bomb-testing” 
experiment not only provides dramatic evidence of the 
“weirdness” of quantum mechanics, as originally intended 
by Elitzur und Vaidman, but also can be recast in a rigorous 
test of the macro-realistic worldview based on the viola-
tion of the Leggett–Garg inequality. With our realization of 
the Elitzur–Vaidman experiment, we can refute the macro-
realistic assumptions for individual cesium atoms with a 
21 σ statistical confidence. While from the point of view 
of “macroscopicity”, the present Leggett–Garg experiment 
does not improve on the results obtained with quantum 
walks by Robens et al. [11], our atomic implementation of 
the Elitzur–Vaidman experiment can be directly extended 
in the future to superposition states involving splitting dis-
tances on the macroscopic scale of a millimeter and beyond 
[42, 43]. Moreover, the analysis of the experimental results 
allows us to understand the exact relation between the Leg-
gett–Garg correlation function K and the interference con-
trast C of the corresponding Ramsey interferometer, thus 
providing intuition about the quantum-to-classical transi-
tion of the Leggett–Garg test.

It is also worth noting that our experiment demonstrates 
a nondestructive measurement technique of the spin state 
of the atoms, where spin-position entanglement is used 
to transfer information from spin to position space. This 
mapping technique allows us to directly read out both spin 
states in a Ramsey interferometer, thus avoiding the short-
comings of the widely used push-out technique, where 
atoms are lost after the measurement and, most impor-
tantly, the measurement outcomes must be corrected for 
atom losses. Further, with the nondestructive measurement 
technique demonstrated here we could recycle atoms mul-
tiple times. We finally anticipate that nondestructive spin 
measurements, preserving spatial coherence of atoms delo-
calized over several lattice sites, can find application in the 
realization of dissipative quantum-walk protocols [44].
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Appendix A: Statistical errors

In this work, the confidence intervals of the correlation 
measurements represent 1 σ statistical uncertainty, which 
has been computed by fitting a Gaussian profile to the 
bootstrapped distribution (i.e., the distribution obtained by 
resampling with replacement). Independently from boot-
strapping, we also computed the statistical uncertainties 
using Monte Carlo resampling, where the statistical errors 
of position distributions are estimated with binomial statis-
tics (Clopper–Pearson method). The two estimation meth-
ods lead to consistent results. While Monte Carlo analysis 
requires invariant statistical properties to be valid, boot-
strapping analysis remains valid also in the presence of 
slow drifts of experimental parameters. The close agree-
ment between the two statistical analyses indicates that 
each correlation measurement of K (lasting about 120min) 
is performed under constant experimental conditions.

Appendix B: Systematic errors

Provided that the experiment is performed under constant 
experimental conditions, systematic errors do not invalidate 
the result of a Leggett–Garg test. In fact, if we consider the 
three main mechanisms that bring about systematic fluc-
tuations: (1) Imperfect initialization prepares <1% of the 
atoms in the wrong internal state. However, to derive the 
Leggett–Garg inequality, a statistical mixture defining the 
initial state is perfectly admissible. (2) Imperfect recon-
struction of the atom’s position can be accounted for in 
terms of a noisy measurement apparatus. (3) Spontaneous 
spin flips due to the finite T1 time can be accounted for in 
terms of an additional stochastic process, which also con-
tributes to determine the system’s evolution. We estimate 
that each of these three mechanisms actually affects the 
position distribution by <1%, that is less than the statistical 
uncertainty.

Appendix C: Dichotomic choice

We verified that our system produces a violation also with 
a dichotomic definition of Q(t2). We performed a Ramsey 
sequence using two subsequent π/3 pulses. In this case, we 
set Q(t1) = 1 by preparation and designated both Q(t2) and 
Q(t3) as +1 for |↑� and as −1 for |↓�. The measured value 
K = 1.503± 0.051 is consistent with the quantum mechan-
ical expectation of K = 3/2.
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Appendix D: Relation with Ramsey contrast

A Ramsey interference fringe is represented by the prob-
ability p↑ of measuring |↑� as a function of the Ramsey 
phase. Assuming the fringe is centered around the aver-
age value p↑ = 1/2 (this is true in case of, e.g., pure spin 
dephasing), the contrast can be expressed as

where p↑,max/min is the maximum/minimum value of the 
fringe. Because the two Ramsey π/2 pulses in the Elit-
zur–Vaidman experiment are set to have the same phase 
(Sect. 4), the value of p↑ measured when evaluating 
〈Q(t3)Q(t1)〉 corresponds to p↑,min. Hence, we obtain that 
the correlation function reads

which together with the definition of the LG inequality in 
Eq. (1) proves Eq. (3).
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