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I

Abstract

This thesis presents experiments concerning the preparation and manipula-
tion of single neutral atoms in optical traps. The experimental setup as well
as the properties of the optical dipole trap are described. The long term
goal of this experiment is to use trapped atoms as information carriers in
quantum information processing. The examination and control of all trap-
ping parameters and heating effects is a prerequisite for the realization of
quantum gates.

A magneto-optical trap captures and cools down a few cesium atoms. By
efficiently detecting their fluorescence, we are able to determine their exact
number. They are then transferred without loss into a standing-wave optical
dipole trap. I have measured the temperature of the atoms in this trap using
two methods which are devised to work with small numbers of atoms: By
adiabatically lowering the trap depth, an energy-selective loss of atoms is
obtained, which yields the energy distribution of the atoms in the trap.
To obtain accurate and reliable results with this method, I have modeled
the measurement process with a three-dimensional numerical Monte-Carlo
simulation. Alternatively, the trapped atoms are continuously illuminated
by near-resonant light, and the fluorescing atomic cloud is observed with
a specially designed high-resolution imaging system. The temperature is
inferred from the size of the cloud and from the oscillation frequencies of
the atoms in the dipole trap. The oscillation frequencies are determined in
an independent measurement using resonant and parametric excitation.

I have experimentally and theoretically examined various intrinsic as
well as technical heating mechanisms in the dipole trap. I find that the
dominating sources of heating in the present setup are of technical origin,
and I point out possible ways to reduce them.

Finally, the setup of a miniature ultra-high finesse optical resonator is
presented, which will be used to couple two trapped atoms via the exchange
of a photon. The optical resonance frequency of the resonator is successfully
stabilized to the atomic transition by an electronic servo loop. In order not to
disturb trapped atoms in the cavity mode, a weak, far-detuned stabilization
laser is employed.

Zusammenfassung

Die vorliegende Arbeit berichtet über Experimente zur Präparierung und
Manipulation einzelner neutraler Atome in optischen Fallen. Der experi-
mentelle Aufbau wird vorgestellt, und die Eigenschaften der optischen Dipol-
falle werden beschrieben. Das langfristige Ziel dieses Experimentes ist es,
gespeicherte Atome als Informationsträger in der Quanteninformationsver-
arbeitung zu benutzen. Für die Realisierung von Quantengattern ist die
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Untersuchung und Kontrolle aller Fallenparameter und Heizmechanismen
entscheidende Voraussetzung.

Einzelne Cäsiumatome werden von einer magneto-optischen Falle einge-
fangen und gekühlt. Durch eine effiziente Detektion des Fluoreszenzlichtes
können wir die genaue Zahl der gefangenen Atome bestimmen. Anschließend
werden die Atome verlustfrei in eine optische Stehwellen-Dipolfalle umge-
laden. Ihre Temperatur in dieser Falle habe ich mit zwei Meßverfahren bes-
timmt, die speziell dazu entworfen wurden, mit einer sehr geringen Anzahl
von Atomen zu funktionieren: Zum einen wird ein energieabhängiger Verlust
von Atomen durch ein adiabatisches Absenken der Fallentiefe erreicht und
damit die Energieverteilung der Atome in der Falle bestimmt. Um dabei
genaue und zuverlässige Resultate zu erhalten, habe ich den Meßprozeß
mit einer dreidimensionalen numerischen Monte-Carlo-Simulation model-
liert. Zum anderen werden die Atome mit nahresonantem Laserlicht
beleuchtet und die fluoreszierende Atomwolke mit einem eigens entwickeltem
hochauflösendem Abbildungssystem beobachtet. Die Temperatur wird dann
aus der Größe der Atomwolke und den Oszillationsfrequenzen der Atome in
der Dipolfalle abgeschätzt. Die Oszillationsfrequenzen werden in einer un-
abhängigen Messung mittels resonanter und parametrischer Anregung bes-
timmt.

Verschiedene fundamentale sowie technische Heizmechanismen in der
Dipolfalle habe ich experimentell und theoretisch untersucht. Dabei habe ich
herausgefunden, daß die dominierenden Heizeffekte technischen Ursprungs
sind, und Maßnahmen zu deren Reduzierung vorgeschlagen.

Schließlich wird der Aufbau eines miniaturisierten optischen Resonators
sehr hoher Finesse präsentiert, der später verwendet werden soll, um eine
kontrollierte Wechselwirkung zwischen zwei gespeicherten Atomen durch den
Austausch eines Photons zu erzeugen. Eine elektronische Regelschleife sta-
bilisiert die optische Resonanzfrequenz des Resonators auf den atomaren
Übergang. Um gespeicherte Atome, die sich in der Resonatormode befinden,
nicht zu stören, verwenden wir zur Stabilisierung einen schwachen, in der
Frequenz weit verstimmten Laserstrahl.

Publications

Parts of this thesis have been published in the following papers:

1. W. Alt, An objective lens for efficient fluorescence detection of single
atoms, Optik 113, 142 (2002)

2. W. Alt, D. Schrader, S. Kuhr, M. Müller, V. Gomer, and D. Meschede,
Single atoms in a standing-wave dipole trap, Phys. Rev. A 67, 033403
(2003)
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Introduction

Experiments with individual quantum systems open the possibility to inves-
tigate quantum effects on a fundamental level. One topic which presently
receives much attention is quantum information processing. Quantum bits
or qubits are quantum-mechanical superposition states of the logical states
“0” and “1” of the classical bit. By processing qubits with quantum gates,
a quantum computer is fundamentally superior to classical computers in
certain cases. For example, the computation time required for the factoriza-
tion of a large integer by classical algorithms grows exponentially with the
number of digits. A quantum algorithm, however, is in principal capable of
performing the factorization in polynomial time [1].

The internal states of atoms are prominent candidates for the physi-
cal realization of qubits. Quantum gates, the fundamental building blocks
of quantum algorithms, can be performed by switching on and off a well-
controlled coherent interaction between two qubits. At the same time, the
interaction with the environment must be minimized as it leads to decay
(“decoherence”) of the fragile quantum superposition states.

Quantum logic operations have been demonstrated experimentally with
chains of ions in Paul traps [2, 3]. These gates use the coulomb interaction
of the ions, which at the same time makes them very sensitive to external
electric fields. Our goal is to construct a quantum register from neutral
atoms, which are potentially more robust to external perturbations.

For this purpose, we cool, trap and observe single cesium atoms with
a magneto-optical trap. A prior system [4] was completely rebuilt and im-
proved in many ways, as described in chapter 1.1 and in the thesis of Stefan
Kuhr [5]. It now provides better optical access, variable magnetic fields, a
high-resolution optical fluorescence detection system of increased sensitivity
and a computer control of all relevant parameters.

For the manipulation of internal atomic states, the atoms prepared in the
magneto-optical trap are then transferred without loss into an optical dipole
trap. Here, the atoms can be stored while their internal state is preserved.
This property makes the dipole trap a promising container for qubits. For
the dipole trap we use two counterpropagating focused laser beams, which
create a standing wave interference pattern, as described in chapter 1.2. This
one-dimensional optical lattice allows us to trap several atoms in individual
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2 INTRODUCTION

potential wells with very good axial confinement. Additionally, we are able
to transport atoms along the dipole trap axis by mutually detuning the
two laser beams, realizing an “optical conveyor belt” [5, 6]. A coherent
superposition of internal atomic states is conserved [7].

To obtain maximum control over the atoms in the dipole trap, I have
determined the important trapping parameters such as temperature, os-
cillation frequencies and heating rates. The temperature is an important
parameter because it leads to an inhomogeneous broadening of all atomic
transitions due to the influence of the dipole trapping potential. This effect
limits the coherence time available for quantum operations. Furthermore,
the temperature determines the localization of the atoms, which is a cru-
cial parameter for the coherent interaction required for two-qubit gates.
Knowledge of the oscillation frequencies of the atoms confirms our theoret-
ical description of the dipole trap and is required for cooling schemes such
as Raman cooling.

Since our traps operate only with relatively small numbers of atoms,
the standard methods for the measurement of the temperature of trapped
atomic ensembles, such as time-of-flight, cannot be used. I have therefore
developed suitable methods to measure the temperature of single trapped
atoms, described in chapter 2. One method is based on an adiabatic low-
ering of the trap depth to obtain an energy-selective loss of atoms, which
yields the energy distribution of the atoms in the trap. A short theoretical
description of this process is given, but I had to resort to extensive numeri-
cal modelling to include the effects of various experimental imperfections in
order to obtain a reliable and accurate result. The other method uses the
size of the trapped atomic cloud and the measured oscillation frequencies
to estimate the temperature of the atoms. For this purpose, the trapped
atoms are illuminated with near-resonant light and are observed with an
intensified CCD camera through our optical imaging system.

I further present a thorough analysis of heating effects in the dipole
trap in section 2.4, in which I identify the dominant heating mechanisms.
These results may enable us to improve the properties of our dipole trap by
eliminating technical sources of heating, and to evaluate possible schemes to
cool the atoms to significantly lower temperatures. Some cooling schemes
are mentioned in the outlook.

For the implementation of quantum gates we want to use the atom-atom
interaction mediated by an optical resonator. Two atoms placed into the
mode of a high quality resonator can exchange photons and in this way be-
come entangled [8], or exhibit dynamics corresponding to basic gates [9]. A
quantum phase gate has been experimentally demonstrated in microwave
cavities [10]. Present experiments send beams of atoms flying through a
microwave cavity [11], or throw clouds of atoms through an optical res-
onator [12, 13]. In these cases, the average number of atoms inside the cavity
mode must be small to avoid three-atom events. Therefore, the simultane-
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ous presence of two atoms in the cavity occurs with low probability. Our
standing wave dipole trap, however, can transport a predetermined number
of atoms over macroscopic distances. We plan to use this optical conveyor
belt to deterministically place exactly two atoms into the interaction region.

Quantum operations by photon exchange require strong coupling be-
tween atoms and cavity field in conjunction with a weak coupling to the
environment. Strong coupling is obtained by confining the light to a small
volume with a resonator, while the coupling to the environment is given by
the loss rate of photons from the cavity. It turns out that very high demands
are placed on the mirrors and their stability, especially in the optical region,
where the lowest technically feasible absorption and transmission losses are
required. We constructed such a high finesse optical resonator and mounted
it in such a way that it can be integrated into our existing single atom appa-
ratus. We have characterized the resonator [14], and we are able to stabilize
the resonance frequency of the resonator with an electronic servo loop close
to the required precision. Moreover, we achieve a continuous stabilization
without disturbing the atoms within the resonator by using a far-detuned
stabilization laser, as described in chapter 3.

Our endeavors to prepare and detect the quantum state of an atom in
the dipole trap and to transport the atom without changing its state have
recently been successful [7]. This level of control opens the route to the
construction of a quantum shift register with neutral atoms. Together with
the optical resonator, elementary quantum gates with neutral atoms might
be possible.
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Chapter 1

Trapping of single atoms

Electromagnetic cooling and trapping of neutral atoms is essential for ex-
periments where isolated atoms are to be studied for a long time compared
to the transit time of a thermal atom through an experimental region. Our
experiments on the optical control of single neutral atoms use two different
traps: a magneto-optical trap and an optical dipole trap. In the past years
these traps have been refined and optimized to enable us to prepare, manip-
ulate and observe single cesium atoms in various ways. Operations such as
preparing and detecting the hyperfine state of a single atom or transport-
ing an atom over macroscopic distances have become standard experimental
techniques in our lab.

1.1 A magneto-optical trap for single atoms

Cooling of atoms by near-resonant laser radiation (Doppler cooling) has been
proposed 1975 by T. Hänsch and A. Shawlow [15]. Three-dimensional laser
cooling has been first demonstrated in 1985 by S. Chu [16]. This configura-
tion evolved into a magneto-optical trap [17] by adding an inhomogeneous
magnetic field after a suggestion of J. Dalibard in 1987. The magneto-optical
trap (MOT) has become a widely used tool for atom trapping, since it cap-
tures atoms from a dilute gas at room temperature, cools them down to
sub-millikelvin temperatures and keeps them confined for long times. Ad-
ditionally, the MOT continuously excites the atoms, which in turn radiate
fluorescence photons. In our case, the fluorescence allows us to infer the
number of atoms in the MOT.

1.1.1 Operating principle

The MOT cools and confines atoms at the same time by exerting light
forces on the atoms. Since the atom acquires the momenta of the photons
it absorbs, these forces can be thought of as “light pressure” acting on the

5
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Figure 1.1: Doppler cooling. (a) The moving atom preferentially absorbs
photons in the opposite direction of motion, whereas the spontaneous emis-
sion is random. (b) Light force versus velocity for a detuning of −Γ/2. Each
laser beam gives rise to a Lorentzian force dependency (dashed curves) with
maxima at v = ±Γ/(2k). The cooling force is the sum of both forces (solid
line).

atom. Cooling is achieved through a velocity-dependent light force, which
results in a friction-like slow down. The confinement is due to a position
dependent light force which pushes the atom towards the trap center.

Doppler cooling

To explain the doppler cooling mechanism, we use a two-level atom with
only two energy eigenstates, a stable ground state | g 〉 and an excited state
| e 〉 of energy h̄ω0 and lifetime τ = 1/Γ, coupled by a radiative transition.
This atom is illuminated by a monochromatic laser beam of frequency ω
and intensity I.

The atom absorbs photons from the beam and spontaneously re-emits
them randomly. The scattering rate Rs is given by

Rs(I,∆) =
Γ
2

I

I0

[
1 +

I

I0
+

(
2∆
Γ

)2
]−1

, (1.1)

where ∆ = ω − ω0 is the detuning of the laser from the atomic transition,
and I0 is the saturation intensity of the transition. In the limit of low
intensity eq. (1.1) is a Lorentzian line shape centered at ω0 with a full
width at half maximum of Γ.

Two counterpropagating laser beams, which are slightly red detuned
with respect to the atomic resonance (∆ < 0), can be used to slow down the
atom in one dimension (see fig. 1.1(a)): When the atom moves to the right,
the laser beam from the right is blue shifted into resonance by the Doppler
effect, and thus its scattering rate increases. In the same way, the laser from
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the left is shifted out of resonance and its scattering rate decreases. As a
consequence, the atom receives more momentum kicks from the right than
from the left and is therefore slowed down. The recoil momenta from the
spontaneous emission events average out to zero. The average force on the
atom then becomes

F (v) = h̄k [Rs(I, ∆− kv)−Rs(I,∆ + kv)] (1.2)

and is shown in fig. 1.1(b) for ∆ = −Γ/2. For small velocities this function
can be approximated by a linear dependence F ∼ v, which resembles a
viscous drag.

Optical molasses

The Doppler cooling scheme can be extended to three dimensions by using
three mutually orthogonal sets of counterpropagating laser beams. This
configuration is called optical molasses, since it provides a viscous friction
force for atoms moving in arbitrary directions.

Doppler cooling does not permit cooling to zero temperature (v = 0),
since the stochastic nature of the momentum kicks due to absorption and
spontaneous emission leads to a fluctuation of the atomic momentum around
its steady state value 〈p〉 = 0. This “random walk” or diffusion process
in momentum space heats up the atom and leads to a non-zero equilib-
rium temperature called “Doppler limit” or “Doppler temperature” of about
kBTD = h̄Γ/2 [18, 19].

The simple two-level atom model of Doppler cooling presented here ne-
glects the multilevel structure of real atoms, the polarizations of the light
fields, and the dipole force (see section 1.2). A more complete theory
which includes these phenomena shows several “sub-Doppler” cooling mech-
anisms [20], which can lead to temperatures two orders of magnitude below
the standard Doppler limit. For the laser beam parameters in our MOT,
however, sub-Doppler cooling plays no important role and is not discussed
here.

In our experiment we use the D2-transition of cesium atoms at λ =
852 nm for cooling (see appendix A). The natural linewidth of Γ =
2π × 5.2 MHz leads to a Doppler temperature of TD = 125 µK. The
one-dimensional atomic rms velocity at the Doppler temperature is vD =√

kBTD/m = 0.09 m/s. According to fig. 1.1(b), the cooling force extends
only up to velocities which produce Doppler shifts in the order of Γ, result-
ing in a capture velocity of a few m/s. Thus, from thermal cesium atoms
(vrms = 240 m/s) only the very low velocity tail of the Boltzmann distri-
bution can be captured. The maximum acceleration due to resonant light
pressure is produced by the maximum possible scattering rate of Γ/2 and
equals ares = Γh̄k/(2m) = 5.8× 104 m/s2. This large value permits a rapid
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Figure 1.2: One-dimensional picture of the MOT. (a) When exciting
an atom from J = 0 to J = 1, transitions with ∆mJ = −1, 0, +1 can
only be excited by σ−-, π- and σ+-polarized radiation, respectively. (b) A
magnetic quadrupole field shifts the Zeeman sublevels such that the laser
beam, which pushes the atom back to z = 0, is absorbed preferentially.

cooling process, such that the Doppler limit is reached within less than a
millisecond.

Position dependent force

A position dependent restoring force, which always points towards the trap
center, turns an optical molasses into a trap. Without this force, an atom
usually leaves the molasses region in less than a second due to its diffusive
motion. In a MOT, the restoring force is produced by the same laser beams
which constitute the optical molasses. The atomic absorption is spatially
modulated by a magnetic quadrupole field in conjunction with polarizations
of the laser beams.

The working principle can be understood in a simplified one-dimensional
model where the atomic states are characterized by the angular momentum
quantum numbers J and mJ . A single J = 0 ground state is coupled to a
degenerate J = 1 -manifold, see fig. 1.2(a). A magnetic field B splits the
excited state according to the linear Zeeman effect, where the level | J,mJ 〉
is shifted by the energy

∆E = mJgJµBB, (1.3)

where gJ is the Landé g-factor and µB is Bohr’s magneton.
In one dimension, the magnetic field has the form

B(z) =
dB

dz
z, (1.4)

where dB/dz is the field gradient in z-direction. We assume dB/dz > 0
and gJ > 0. Then, as shown in fig. 1.2(b), to the right of the zero point
of the magnetic field, the | J = 1,mJ = −1 〉 level is shifted downwards,
into resonance with the red detuned cooling laser. If the laser beam, which
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Figure 1.3: Three-dimensional schematic of the MOT. Two magnetic
coils in anti-Helmholtz configuration produce the quadrupole field, and 6
circularly polarized laser beams exert cooling and trapping forces.

comes from the right, is σ−-polarized, it will strongly excite the red-shifted
| J = 1,mJ = −1 〉 level, pushing the atom to the left. Conversely, the
σ+-polarized beam from the left will only weakly excite the blue-shifted
| J = 1,mJ = +1 〉 level. Altogether, an atom located to the right of the
magnetic zero point experiences a force to the left, i. e. towards the trap
center. In a similar fashion, an atom left of the trap center is pushed to the
right.

This scheme can be extended to three dimensions, by using two magnetic
coils in anti-Helmholtz configuration to produce a quadrupole field of the
form

B(x) =
dB

dz

(
−x

2
,−y

2
, z

)
, (1.5)

and shining in two circularly polarized beams of right-handed helicity (z)
plus four circularly polarized beams of left-handed helicity (x, y), see fig. 1.3.

Although the MOT forces do not form a conservative potential, a “trap
depth” can be defined via the minimum velocity an atom needs to escape
from the trap. An estimation of the potential barrier is the resonant scatter-
ing force times the radial distance over which it extends. The restoring force
ceases to work at a radius where the Zeeman detuning of the relevant atomic
transition exceeds the detuning of the MOT lasers. A high magnetic field
gradient dB/dz yields a small radius and therefore a shallow trap [21, 22].

The rate Rc at which the MOT captures atoms from a thermal back-
ground gas also depends strongly on the field gradient. A simplified classical
model [23] yields

Rc ∼
(

dB

dz

)−14/3

. (1.6)

This dependence is used to control the loading rate of the MOT, see
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sec. 1.3.1.

Typical magnetic field gradients are 10−300 G/cm (0.1−3 T/m), which
result in trap depths on the order of 0.1 − 1 K. The temperature of the
trapped atoms is at least three orders of magnitude lower such that thermal
“evaporation” of atoms can be neglected. In the case of a single trapped
atom, atom loss occurs by collisions with thermal background gas atoms.
At higher atom numbers, trapped atoms collide inelastically with one an-
other. In these so called “cold collisions”, internal energy is converted into
kinetic energy by various mechanisms [22, 24, 25], which usually expels both
involved atoms from the trap.

Parameters for trapping single atoms

The magneto-optical trap works remarkably well in collecting and trapping
atoms, standard MOTs usually trap 103 − 1011 atoms. In order to reduce
this number down to a single trapped atom, we have to drastically lower
the loading rate. For this purpose, we first use a very low cesium partial
pressure in the background gas of about 10−14 mbar [4] instead of the com-
mon 10−9 mbar used in large MOTs. Second, we operate the MOT at a
high magnetic field gradient of about 300 G/cm (3 T/m), which decreases
the loading rate, according to eq. (1.6), by four to five orders of magnitude
compared to common gradients of < 30 G/cm. Our high field gradient also
decreases the diameter of the trapping volume to about 30 µm. This im-
provement of the localization facilitates the observation of single atoms and
their transfer into the dipole trap.

1.1.2 Vacuum system

All our experiments on cold trapped atoms have to be performed in an
ultra-high vacuum (UHV) environment, since a collision with a thermal
background gas atom or molecule can easily remove a cold atom from our
comparatively shallow traps. The residual gas pressure thus ultimately lim-
its the lifetime of the atoms in our trap. A pressure of about 10−10 mbar
(10−8 Pa) corresponds to a lifetime of tens of seconds [4].

The previous experiments in our group [26] used a stainless steel cham-
ber with many windows for optical access. The present experiments require
several more laser beams from different directions. Since adding more win-
dows would have made the apparatus large and complex, we use a glass cell,
which itself is attached to a conventional stainless steel vacuum apparatus.
The glass cell offers maximum optical access in combination with a compact
setup. This in turn allows us to place all imaging optics and magnetic coils
outside the vacuum, yet close to the trapped atoms. The center of the glass
cell is located 5 cm above the optical table, while the vacuum pumps extend
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Figure 1.5: Cross section through the glass cell and flange components as
viewed from above.

through a cut-out below the optical table, see fig. 1.4.

Glass cell

The glass cell (Hellma, 111.093-VY) consists of a cuboid part of outer di-
mensions 30 × 30 × 125 mm3, which is attached to a thick glass disc, see
fig. 1.5. It is made of Vycor glass (Corning, VYCOR 7913), which consists
of 96% silica. The 5 mm thick windows are optically polished, and anti-
reflection coated at the outside (780-850 nm, 0°). The different parts are
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diffusion-bonded to create air-tight seals without melting the glass which
would distort the surface.

The glass disc of the cell is sealed to a modified Conflat flange using a
Helicoflex seal (Garlock, HNV-200), which is a bakeable metallic equivalent
to an O-ring. An outer jacket made of a soft metal (aluminum) is compressed
into the mating surfaces. In our case, a tight seal was achieved only after
re-grinding the sealing surface of the glass disc with fine sand paper.

The glass cell is attached to a central stainless steel cube (Kimball
Physics, MCF450-SC60008-A) offering six Conflat CF63 flanges. The flange
opposite to the glass cell holds a window, the bottom flange connects to the
vacuum pumps, and the top flange connects to the cesium reservoir and the
pressure gauge.

Vacuum pumps

The central cube is connected to a titanium sublimation pump, which con-
sists of a vacuum chamber with cold shield and baffles (Varian) and a Ti-
tanium cartridge (Varian, model 916-0017). An ion getter pump (Varian,
VacIon Plus 300 StarCell) connects to the sublimation pump. The apparatus
was evacuated initially with a turbo-molecular pump through an auxiliary
valve and baked for one week. Due to the delicate Helicoflex seal we limited
the bake-out temperature to 90� at the cube and about 200� at the ion
pump. The ion pump operates continuously to maintain the UHV, while
the sublimation pump was used only a few times to reduce excessively high
cesium gas levels.

Cesium reservoir

The cesium reservoir consists of a T-junction (CF35), a linear motion feed-
through and a valve. A sealed glass ampule containing 99% pure ce-
sium metal was fixed inside before bake-out and was broken after bake-out
by actuating the mechanical feed-through. The valve isolates the room-
temperature cesium vapor pressure of 10−6 mbar [27] from the much lower
pressures in the main part of the apparatus. The valve is opened for a few
minutes only when we want to increase the MOT loading rate.

A UHV pressure gauge (Varian,UHV–24), which is also connected to
the top of the central cube, was damaged probably by an over-exposure to
cesium vapor.

1.1.3 Magnetic coils

In order to obtain a small number of well-localized atoms in our MOT, we
use a magnetic field gradient of dB/dz = 340 G/cm (3.4 T/m). In previous
experiments these fields were produced by permanent magnets [4]. However,
present experiments such as Raman cooling and quantum state preparation
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Figure 1.6: Water-cooled magnetic coils supply the quadrupole field for
the MOT.

require zero or small homogeneous fields. Therefore, the MOT quadrupole
field has to be produced by coils, without the use of ferromagnetic materials.

At the necessary current densities of about 10 A/mm2, heat dissipation
is a major problem. Therefore, the coils are wound on a copper mandril
against a water-cooled copper plate. Each coil has about 340 turns of high-
temperature enamelled copper wire of 1.4 mm diameter. During the wind-
ing process, high quality heat conducting paste (Electrolube HTCP) was
spread onto each layer. Additional copper rings enhance heat conduction,
see fig. 1.6. The cooling plate and the copper rings are slit to interrupt eddy
currents.

From the winding geometry, the magnetic field gradient in z-direction
was calculated to be 21.7 G/(cmÖA). A later experiment, which measured
the magnetic shift of a microwave transition of transported atoms, gave
21.9 G/(cmÖA). The coils sustain continuous currents up to 20 A (dB/dz =
440 G/cm) and even higher currents for short times.

The power supply (F. u. G. GmbH, NTN 2800–65) and the coils are
connected via an electronic control circuit, which switches between “high
current” (15.4 A), “low current” (1.5 A) or “off”. It is controlled by a
computer via TTL inputs, see appendix C.1 and section 1.3.1. The switching
time of the magnetic field is limited by eddy currents within the copper
cooling plate, which take about 50 ms to decay.
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1.1.4 Laser system

We need several laser sources at the cesium D2 transition (852 nm) for our
experiments. The cooling laser operates on the F = 4 → F ′ = 5 -transition
of the D2 line, see fig. 1.7. There is a small probability of off-resonantly
exciting an atom to the F ′ = 4 -level, from where it can decay to the F = 3
ground state. Due to the large hyperfine splitting of 9.2 GHz the cooling
laser does not excite this level. To return these atoms into the cooling cycle,
a repumping laser excites the F = 3 → F ′ = 4 -transition, which quickly
puts the atoms back to the F = 4 ground state.

For state-selective detection of atoms we employ a push-out laser, which
operates on the F = 4 → F ′ = 5 -transition. For optical pumping to a
specific mF -state we use a laser beam on the F = 4 → F ′ = 4 -transition.
All lasers are electronically frequency stabilized onto an atomic transition
using polarization spectroscopy of cesium vapor cells.

Diode lasers

Because they are comparatively cheap and versatile solid state laser sources,
our experiment uses diode lasers except for the dipole trap. Near 852 nm,
low and medium power laser diodes (10–150 mW) are readily available,
which is also one reason why our experiment uses cesium atoms. The fre-
quency stability and tunability of the bare laser diode are much improved
by frequency-selective optical feedback [28]. We use diode lasers with an
external cavity in Littrow configuration, where a grating feeds its first order
diffracted beam back into the laser diode, whereas the direct (zeroth order)
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reflection constitutes the output beam. The mechanical design originates
from the group of T. Hänsch in Garching [29]. The temperature and cur-
rent controllers were built by our electronic workshop from schematics which
also originate from the Hänsch group. Each laser is protected from optical
feedback by a 60 dB optical isolator (Gsänger, model FR850TS1).

Polarization spectroscopy

The lasers used to excite specific atomic transitions should have a fre-
quency stability better than the natural linewidths of the transitions, which
is 5.2 MHz in our case. Since the frequency of our free-running diode
lasers fluctuates over a few MHz within seconds and drifts over hundreds of
MHz within hours, an active frequency stabilization onto a stable reference
is required. For this purpose, we perform doppler-free polarization spec-
troscopy [30, 31] in a cesium vapor cell to obtain a dispersive signal on each
atomic transition. The polarization spectroscopy itself is a modification of
the saturation spectroscopy [32]. It provides a resolution in the order of the
natural linewidth, despite a thermal Doppler broadening which is two orders
of magnitude larger.

For the stabilization of the repumping laser and the push-out laser we
use the compact setup of fig. 1.8 (a). The circularly polarized pump beam
is passed through the cesium cell, re-polarized linearly at 45° with respect
to the optical table, retro-reflected, and reused as a probe beam. After
passing through the cell again, it is coupled out by a 50% non-polarizing
beam splitter cube and is directed onto a polarizing beam splitter cube. Its
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two outputs are monitored by photodiodes, whose signals are substracted to
yield the dispersive signal.

This simple setup has two disadvantages. Because the beam passes the
cesium cell twice, the laser power on the photodiodes is reduced in the center
of the absorption profile, which decreases the signal height. Additionally,
due to reflections off the many surfaces in the beam path, the photodiode
signal always shows optical interferences. They convert vibrations and drifts
of the optical elements (in the µm range) into sinusoidal fluctuations of the
signal offset. Although all optical elements, except the cesium cell, are anti-
reflection coated, and we slightly tilt all surfaces with respect to the laser
beam axis (to avoid direct back-reflections), the interferences are still visible
above the noise floor of the signal.

We found that the more traditional setup of fig. 1.8 (b) with independent
probe beam avoids these difficulties and gives a cleaner signal. The small
angle between pump and probe beam axis of about 2° only causes a small
residual doppler broadening. This is, however, in the same order of mag-
nitude as the power broadening, which we accept in exchange for a larger
signal amplitude.

Magnetic shielding of the cesium cell is important, since the polarization
spectroscopy relies on optically pumping the atoms. We use several layers
of µ-metal sheet wrapped around the cell. The magnetic shield is then
carefully demagnetized. This treatment increases the signal amplitude and
decreases the apparent width of the lines.

When the diode laser is locked to an atomic transition, the dispersive
spectroscopic signal serves as error-signal. It is fed into a servo amplifier,
which is a proportional-integral amplifier with adjustable gain and input
offset. The output of the servo amplifier is connected to the piezoelectric
actuator which moves the grating of the diode laser, and thus controls the
laser frequency.

The mechanical action of the piezoelectric actuator limits the servo band-
width to a few hundred Hertz. A more stable lock is achieved by additionally
feeding the error signal through a fast integrator onto the current of the laser
diode. The current acts as a fast control of the laser frequency and allows
servo bandwidths on the order of 1 MHz. This system is used for the cooling
laser, and an emission linewidth of the locked laser of 100 kHz was measured
in a beat signal with a very stable Hollberg laser [33].

Laser setup

The four diode lasers are located on a separate optical table to save space
on the main table. Electronically controlled mechanical shutters (Vincent
Associates, Uniblitz LS2 T2) are used to switch on and off each laser beam
with a switching time of < 100 µs. The light is then transferred by single
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mode, polarization maintaining optical fibers (3M, FS PM 4621) to the
experiment. Most lasers fulfill several tasks in the experiment:

Cooling laser: The cooling laser is locked to the crossover signal of the
F = 4 → F ′ = 3 and the F = 4 → F ′ = 5 transitions, such that it
emits about 225 MHz below the cooling transition (F = 4 → F ′ = 5).
We use an acousto-optical modulator (AOM) in double pass configu-
ration to shift the frequency of the laser light upwards by almost that
amount. The use of an AOM allows us to control the detuning and the
intensity of the cooling laser beams electronically. On the main exper-
iment table, the laser beam exiting the fiber output coupler is split up,
circularly polarized and shined in along three orthogonal directions for
the MOT. Behind the vacuum cell, the polarization of each beam is
changed by passing twice through a λ/4-plate as it is retro-reflected
and used as counter-propagating beam.

For optical pumping on the F = 4 → F ′ = 4 transition, a part of the
unshifted cooling laser radiation is used, since the F ′ = 3 − F ′ = 5
crossover is located only 25 MHz to the blue of that transition. The
small residual detuning is approximately compensated by the light
shift of the atomic transitions in the dipole trap, see sec. 1.2.2.

The cooling laser is also used as a frequency reference in the high
finesse cavity setup, see section 3.

Repumping laser: The repumping laser is locked to the F = 3 → F ′ = 4
transition. It is either overlapped onto the vertical MOT cooling beam,
or it is shined in along another axis onto the MOT. Due to the low
scattering rate of the repumping laser in the MOT, compared to the
cooling laser, its polarization is irrelevant for the MOT operation, and
can be chosen to aid specific optical pumping tasks.

Push-out laser This laser is locked to the F = 4 → F ′ = 5 transition, and
is used for state-selective detection. It is sent to the experiment either
through its own optical fiber, or through the fiber used for the optical
pumping beam.

1.1.5 Fluorescence imaging and detection

The presence of a single atom in a MOT can be detected by its fluorescence
light, as was experimentally demonstrated by several groups [34, 35, 4] in
the mid-90’s. The keys to success are efficient collection of fluorescence,
suppression of stray light and sensitive detectors.
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Imaging optics

Since the atomic fluorescence is emitted isotropically, it is advantageous to
collect the fluorescence light from a solid angle as large as possible. For this
purpose we use an objective lens outside the vacuum, placed close to the glass
cell, see fig. 1.9. The design, test and implementation of the objective lens
system is described in detail in appendix B, and is published in [36]. In order
to maximize the solid angle covered, the numerical aperture of the objective
is chosen as high as possible, given the tight spatial constraints imposed
by the MOT laser beams, the magnetic coils and the glass cell. Although
placing a lens inside the vacuum close to the MOT could in principle cover
a larger solid angle, mounting a lens within the small glass cell is at least
cumbersome, and it would not admit the movable detection axis described
below.

The working distance of the objective was designed such that the re-
flections of the four MOT laser beams, which intersect the glass cell at a
45° angle, off the inner cell surface just misses the entrance aperture. The
reflection off the outer surface is blocked by tubes which enclose the MOT
beams.

In order to guide the collected fluorescence light to the detector while
keeping stray light away, the fluorescence light is spatially filtered. The
MOT is imaged onto a small aperture of 150 µm diameter, which essentially
blocks rays not originating from a region of 67 µm diameter around the
MOT, about twice the visible MOT size. Effective filtering of stray light is
of utmost importance, since a single atom, illuminated by six laser beams
with a total power of ∼ 1 mW, scatters only 3 pW, of which typically 60 fW
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reach the detector. A good spatial separation of stray light requires high
quality optical imaging. Therefore, the whole imaging system is optimized
for diffraction limited resolution.

The actual detection of the fluorescence photons takes place in two
avalanche photodiodes (APD) and an intensified CCD camera. Interference
filters (Dr. Hugo Anders) in front of the detectors transmit 80% at 852 nm,
but attenuates ambient laboratory light and straylight of the dipole trap
laser (1064 nm) by 10−4. One of the APD detection assemblies can be
moved by a linear translation stage together with the imaging optics. This
feature is used to demonstrate the operation of the optical conveyor belt
(section 1.3.3).

Detection with avalanche photodiodes

For high-speed single photon detection we use integrated single photon
counting modules (EG&G Canada, SPCM200 CD2027). They contain a
temperature stabilized silicon APD in a passively quenched circuit together
with a high voltage module. A photon of λ = 852 nm, which hits the
sensitive area of 150 µm diameter, produces an output pulse with a proba-
bility (= quantum efficiency) of about 50%. The low dark count rate of only
30 counts/s allows sensitive measurements, and via the sub-nanosecond time
resolution even fast atomic dynamics can be decoded from the fluorescence
radiation [37].

The signal from the APD is processed by a multi-channel scaler (EG&G
Ortec, Turbo-MCS 914), which is used to count the number of pulses
within 100 ms time intervals. This information is recorded and continuously
displayed by a computer for visual inspection of the MOT operation. Addi-
tionally, the arrival time of each single photon pulse is recorded with 50 ns
resolution by a custom-built timer card (Silicon Solutions, TimerCard 3.0).
Controlled by a TTL gate input, this data is directly written into a file
on another computer. After the experiment, these files are then processed
by a software which is able to bin the counts into arbitrary time intervals
and to automatically extract essential information such as atom numbers
or fluorescence rates [5].

We primarily use the fluorescence to determine the exact number of
atoms in the MOT. Fig. 1.10 shows a typical record of the APD count rate
versus time, integrated over intervals of 100 ms. After switching on the trap
at t = 0, only stray light of the MOT lasers (2 · 104 counts/s) is visible.
At t = 2 s one cesium atom is captured from the background gas, and its
fluorescence increases the count rate by 6 · 104 counts/s. Since each atom
contributes the same amount of fluorescence, the number of atoms in the
trap can be inferred directly from the discrete levels of the count rate. A
simultaneous loss of two atoms indicates inelastic cold collisions [25, 22].
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Figure 1.10: Count rate of the APD detecting the fluorescence the MOT.
Each trapped atom contributes the same amount of fluorescence to the
signal. When an atom enters or leaves the trap, the count rate suddenly
increases or decrease accordingly. The number of trapped atoms can thus
be determined from the fluorescence count rate.

Efficiency of fluorescence collection

The upper limit of the fluorescence count rate of a single atom can be es-
timated from equation (1.1) in the limit of strong saturation. In this limit,
the atom scatters Γ/2 = 1.6 · 107 photons/s into 4π solid angle, of which
the objective lens covers ηobj = 2.1%. Together with the quantum efficiency
ηAPD = 50% of the APD we find a maximum count rate of

R = ηobjηAPD
Γ
2

= 1.7 · 105. (1.7)

Experimentally, a maximum rate per atom of about 8 · 104 counts/s was
observed with high cooling laser intensity (I/I0 ≈ 80) and small detuning
(∆ ≈ Γ). The missing factor of two is probably due to several reasons. In
the optical path there are a total of 16 optical surfaces, 15 of which are anti-
reflection coated. Assuming losses of 0.5% and 4% for coated and uncoated
surfaces, respectively, the total transmission is 89% (the interference filters
were not installed at that time). In a MOT, the 6 circularly polarized laser
beams create complex interference patterns with various local polarizations
and possibly dark spots [38]. This can reduce the fluorescence rate from
equation (1.1) by a factor of 0.7 [39].

Atom counting

The exact number of atoms can only be determined from the fluorescence
within a given time interval ∆t: One additional atom has to increase the
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number of fluorescence counts by more than the statistical fluctuations. This
limit can be estimated under the assumption that the fluctuations of the
number of counts are only due to the statistical nature of the photon scat-
tering process, and not due to variations of external parameters such as laser
intensities or detunings. In this case the actual number of counts N in the
interval ∆t is distributed around the mean valueN according to Poissonian
statistics. For N À 1 this can be approximated by a Gaussian distribution
of standard deviation ∆N =

√
N .

The average number of countsN(n) for n atoms in the MOT in the time
interval ∆t is given by

N(n) = (Rs + nRa)∆t, (1.8)

where Rs and Ra are the count rates produced by stray light and one atom,
respectively. To decide whether a measured N corresponds to n or to n + 1
atoms, we place the cut halfway betweenN(n) andN(n+1). The decision is
correct with 95% probability (confidence), if the cut is 2∆N (two standard
deviations) away, i. e. ifN(n + 1)−N(n) = 4∆N , which yields

n =
R2

a∆t− 16Rs

16Ra
. (1.9)

Using the values given above for Rs and Ra, we find that the atoms can
be counted up to n = 3 within ∆t = 1 ms and theoretically to n > 300
within ∆t = 100 ms. The maximum count rate of the APD of 106 counts/s,
however, limits the maximum observable number of atoms to about 15 in
our case.

We initially observed slow fluctuations of the single atom fluorescence
rate of ±10% over a few seconds, which impaired our atom counting abili-
ties and disturbed the dipole trap alignment procedure (sec. 1.2.3). These
fluctuations were caused by changes of the optical path length of the three
axes of the MOT cooling laser in the order of the optical wavelength. Their
influence on the atoms can be explained by two mechanisms. First, the three
MOT laser beam paths act as (very low finesse) Fabry-Perot resonators, be-
cause the light is retroreflected at the far end of each axis, and a small
amount (∼ 4%) is reflected again at the output end face of the optical fiber
which delivers the laser beam to the experiment. Indeed, we found that
a photodiode signal monitoring the cooling laser power at the fiber output
showed fluctuations correlated with the fluorescence count rate. A second
mechanism is the change in the complex interference pattern due to fluc-
tuations of the relative phase of the beams, which could also influence the
fluorescence rate [38].

A simple solution to this problem is to continuously modulate all optical
path lengths, such that an average over all different interference phases is
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obtained within the integration time of typically 100 ms. Initially this was
achieved by exciting an eigenresonance of the optical table by a mechanical
shaker. Now, the three retroreflecting mirrors of the MOT are mounted
on piezoelectric actuators and are dithered with a few hundred Hertz. The
remaining count rate fluctuations are purely Poissonian [5].

Detection with ICCD camera

For imaging single atoms in the MOT as well as in the dipole trap we use
an intensified CCD (ICCD) camera. Half of the fluorescence light collected
by the fixed objective lens is split off by a polarizing beam splitting cube
and focused onto the image intensifier, see fig. 1.9.

Although a single atom in a MOT emits enough fluorescence to be ob-
served directly by a low noise CCD chip [4], an exposure time of several sec-
onds is required. The fluorescence rate is even lower inside the dipole trap.
For this reason we use an image intensifier (Roper Scientific, GEN III HQ).
This intensifier incorporates a special GaAs photocathode, which is specified
to have a quantum efficiency of about 30% at 852 nm. At full amplification,
each photoelectron is amplified by the multi-channel electron multiplier to a
bunch of ∼ 106 electrons. The light they produce on the phosphorous screen
is guided by a bundle of optical fibers to the CCD chip. In this way, a single
incoming photon can be detected far above the noise floor of our low noise,
high resolution CCD camera (Roper Scientific, PI-MAX:1K, 1024 × 1024
pixel).

The magnification of our imaging optics of about 14 was chosen to have
1 µm at the MOT correspond roughly to one pixel (13 µm squared) of the
camera. The diffraction-limited spot size of 1.8 µm (airy disk radius at
the object plane) is thus distributed over several pixels. This should allow
us to determine the position of a point source with sub diffraction-limited
precision by fitting the intensity distribution of its image.

The exact value of the total magnification, including the image inten-
sifier, was determined experimentally by observing an atom in the dipole
trap (see sec. 2.5.2) while transporting it over a precisely known distance
of 60 µm (see sec. 1.3.3). The experimental value of the magnification is
14.0± 0.1, or 0.929± 0.007 µm per pixel [40].

An image of two atoms in the MOT as well as in the dipole trap is shown
in chapter 2 in fig. 2.17.

1.2 Dipole trap

The optical dipole trap constitutes a versatile tool for the manipulation of
cold neutral atoms. It is based on the attraction of the induced electric
dipole moment of a polarizable particle into regions of high electric field
strength. It was thus proposed by Letokhov in 1968 [41], that the electric
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field of a laser beam can attract atoms into regions of high intensity. A
similar trap for small dielectric particles using laser beams was proposed
by Ashkin [42]. This method is used in e. g. biological experiments as
“optical tweezers” [43]. After the first demonstration of trapped sodium
atoms in 1986 [44], dipole traps became a valuable, widely used tool for the
manipulation of neutral atoms [45]. Their laser frequency can be detuned
very far from all atomic resonances, so that it is possible to store atoms
without continuous excitation, in contrast to radiation pressure traps such
as the MOT. Long-lived internal states can thus be preserved and used for
spectroscopic experiments or as quantum memories.

A great variety of trap shapes can be produced, according to the many
possible light configurations which can be attained with laser beams and
interference patterns. We use a standing wave dipole trap to perform con-
trolled transportation of our atoms. The dipole trap furthermore allows us
to prepare, manipulate and read out the internal states of the atoms, and
to directly observe individual atoms spatially resolved.

1.2.1 Classical model of the dipole force

The classical model provides a basic, intuitive description of the origin of
the dipole force [45]. Nevertheless, its predictions are good approximations
to the quantum-mechanical treatment.

Lorentz model

The electric component of a monochromatic light field E(t) = E0 exp(iωt)+
c.c. induces an electric dipole moment d = αE in the atom, where α is the
(complex) atomic polarizability. The atom is considered here as an electron
(mass me, electric charge −e), elastically bound to the core (mass M À me,
charge +e) by an harmonic potential, and damped with an energy decay
rate Γ due to dipole radiation (Lorentz’s model).

The electric component of the light field drives the electron according to
the equation of motion

ẍ + Γωẋ + ω2
0x = −eE(t). (1.10)

Here,

Γω =
e2ω2

6πε0mec3
(1.11)

is the energy damping rate due to classical dipole radiation of the oscillating
electron [46]. The stationary solution of (1.10) yields the polarizability via
d(t) = −ex(t) = αE(t) as

α =
e2

me

1
ω2

0 − ω2 + iΓωω
. (1.12)
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By substituting e2/me = 6πε0c
3Γω/ω2 and introducing the on-resonance

damping rate Γ ≡ Γω0 = (ω0/ω)2Γω we obtain

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 + iω3

ω2
0
Γ

. (1.13)

Potential depth

The dipole potential U is the interaction potential of the induced dipole
moment d in the electric field E

U = −1
2
d ·E. (1.14)

The factor 1/2 reflects the fact that d is an induced dipole moment which
builds up as the atom moves into regions of higher field strength.

Since the electric field is time dependent, the effective potential depth is
the time average over one oscillation period (denoted by 〈· · ·〉)

U = −1
2
〈d ·E〉 = −|E0|2Re(α). (1.15)

With the intensity I = 2ε0c|E0|2 the potential depth can be expressed as

U(x) = −I(x)
2ε0c

Re(α). (1.16)

The dipole trap depth is thus proportional to the intensity I and to the real
part of the polarizability α, which describes the in-phase component of the
atomic dipole moment. The gradient of the potential yields the dipole force
F(x) = −∇U(x).

Scattering rate

Due to the damping rate Γ, the atom absorbs energy from the dipole trap
laser. The average absorbed power is

P = 〈ḋ ·E〉 = −I(x)ω
ε0c

Im(α). (1.17)

It is proportional to the intensity I and to the imaginary part of the polariz-
ability α, which describes the out-of-phase component of the atomic dipole
moment. Whereas classically the power is reradiated continuously, in the
corresponding quantum mechanical process, photons are emitted at the rate

Rs =
P

h̄ω
= − I

h̄ε0c
Im(α). (1.18)

Photon scattering heats up the atoms (sec. 2.4) and limits the lifetime of
internal states [26].
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For the practical case of a detuning much larger than the natural
linewidth (|ω0 − ω| À Γ) we can derive expressions for the trap depth and
the scattering rate:

U =
−3πc2

2
IΓ
ω3

0

(
1

ω0 − ω
+

1
ω0 + ω

)
(1.19a)

Rs =
3πc2IΓ2

2h̄ω3
0

ω3

ω3
0

(
1

ω0 − ω
+

1
ω0 + ω

)2

. (1.19b)

If the detuning ∆ ≡ ω − ω0 is still small compared to the optical frequency
ω0 these expressions are further simplified by the so called rotating wave
approximation to

U =
3πc2

2
I

ω3
0

Γ
∆

(1.20a)

Rs =
3πc2I

2h̄ω3
0

Γ2

∆2
(1.20b)

=
Γ

h̄∆
U. (1.20c)

We see from eq. (1.20a) that the sign of the dipole potential depends on
the sign of the detuning ∆. For a laser tuned below the resonance frequency
(∆ < 0, red detuning) the dipole potential is negative, and the atom is
attracted into the high intensity regions. This is analogous to the static
case, where polarizable dielectric particles are always pulled into the regions
of high electric fields. In contrast, a blue detuned laser beam (∆ > 0) pushes
the atom away from regions of high intensity, because above resonance, the
atomic dipole oscillates nearly 180° out of phase. The expression (1.20c)
for Rs shows that, for a given potential depth, a low scattering rate can
be obtained by using a large detuning. Of course, the intensity has to be
increased proportionally to maintain the trap depth.

Multi-level atoms

For cesium atoms, the multitude of resonance transitions to different ex-
cited states poses a problem to the direct application of the classical model
(see fig. 1.12). However, they can be approximately taken into account by
applying equations (1.19) to each transition separately and adding up the
results weighted with each transition’s oscillator strength fosc. The oscillator
strength of a transition is a measure for the fraction of “classical” harmon-
ically bound electrons needed to explain the transition rate and absorption
cross-section. Theoretical oscillator strengths can be obtained from approxi-
mated electron wavefunctions [47]. For the cesium D-lines, however, they
can be calculated more precisely from the experimentally known linewidths,
because in these cases the excited 6P states decay only to a single level, the
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6S1/2 ground state. In this case, the relation which connects decay rates to
oscillator strengths reads [47]

Γ =
e2ω2

2πε0mec3

gg

ge
fosc, (1.21)

where ge and gg are the degeneracies of the excited and ground state, re-
spectively. With ΓD1 and ΓD2 from appendix A we obtain fosc,D1 = 0.344
and fosc,D2 = 0.714.

In a Nd:YAG laser trap (λ = 1064 nm), only the D1- and the D2-
transition contribute significantly to the dipole force; the relative contribu-
tion of the next strongest transition (to the 7P3/2 level) is only 3 · 10−5. We
thus have

U =
−3πc2I

2

[
fosc,D1

ΓD1

ω3
D1

(
1

ωD1 − ω
+

1
ωD1 + ω

)
+ (1.22a)

+fosc,D2
ΓD2

ω3
D2

(
1

ωD2 − ω
+

1
ωD2 + ω

)]
(1.22b)

Rs =
3πc2I

2h̄

[
fosc,D1

Γ2
D1ω

3

ω6
D1

(
1

ωD1 − ω
+

1
ωD1 + ω

)2

+ (1.22c)

+fosc,D2
Γ2

D2ω
3

ω6
D2

(
1

ωD2 − ω
+

1
ωD2 + ω

)2]
. (1.22d)

The above equations are often approximated in various ways, e. g. by ap-
plying the rotating-wave approximation and by combining the D1- and the
D2-transition into a single transition with an “effective detuning”. This ap-
proach yields simpler formulas in the form of (1.20) as used in [48], which,
however, underestimate the trap depth by 14% and, at the same time, over-
estimate the scattering rate by 60%.

1.2.2 Quantum-mechanical description

A useful quantum-mechanical description of the dipole force originates from
the “dressed-state” picture of the atom-light interaction [49]. In this ap-
proach, the energy eigenstates of the atom are replaced by combined states
of the atom and the quantized dipole trap laser field. The combined states
are then coupled, and the resulting new energy eigenstates (dressed states)
are shifted in energy by the interaction. The dipole trapping potential re-
sults from this light shift (AC Stark shift). Finally, the dressed states are
coupled to the empty modes of the electromagnetic field so that they can be
assigned individual transition rates, lifetimes etc., as in the case of ordinary
atomic levels.
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Hamilton operator

As a simple case we consider a two-level atom at rest, interacting with the
dipole trap laser beam. The Hamilton operator of the combined system
consists of three parts:

Ĥ = ĤA + ĤL + V̂ . (1.23)

The atomic Hamiltonian ĤA describes a two-level system with ground and
excited states, | g 〉 and | e 〉, with energy spacing h̄ω0,

ĤA = h̄ω0| e 〉〈 e |. (1.24)

The dipole trap laser is modeled as a single mode of the electromagnetic
field containing n photons of energy h̄ω. Following the book of C. Cohen-
Tannoudji [50], one can imagine this as a beam circulating around between
ideal mirrors in a closed loop. For the atom, this situation is equivalent to
the continuous stream of new photons from an actual laser, as long as n is
reasonably constant. The Hamiltonian of the light field ĤL thus reads

ĤL = h̄ωâ+â, (1.25)

where â+ and â are creation and annihilation operators of a photon in the
mode.

The energy eigenstates of ĤA + ĤL are denoted by | g, n 〉 and | e, n 〉.
They form a ladder of level pairs separated by h̄ω, where the states within
a pair are separated by the detuning h̄∆ = h̄(ω − ω0), see fig. 1.11.

Let E(x) be the mode distribution of the recirculating laser beam, such
that the electric field operator Ê(x) of the laser mode reads

Ê(x) = E(x)â + E∗(x)â+, (1.26)

which implies the normalization

ε0

∫∫∫

V

(
E(x)2 + E∗(x)2

)
d3x = h̄ω0. (1.27)

The atomic dipole moment is

d = 〈 e | d̂ | g 〉
d∗ = 〈 g | d̂ | e 〉. (1.28)

Here, d̂ is the dipole moment operator, which can be written as

d̂ = d| e 〉〈 g |+ d∗| g 〉〈 e |. (1.29)

The coupling Hamiltonian V̂ = −d̂ · Ê then reads

V̂ = −(d · E â| e 〉〈 g |+ d · E∗ â+| e 〉〈 g |+
+d∗ · E â| g 〉〈 e |+ d∗ · E∗ â+| g 〉〈 e |). (1.30)
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Figure 1.11: Dressed states of a two-level atom in a strong red-detuned
laser field. When the atom enters the laser beam of Gaussian intensity
profile (top curve), the interaction mixes and shifts the levels, which results
in a position dependent dipole potential.

The first and last term of operator (1.30) couple the states | g, n 〉 and | e, n−
1 〉 which are separated by ∆, whereas the other two terms couple the states
| g, n 〉 and | e, n + 1 〉, which are separated by ω0 + ω À ∆, i. e. much
further (see fig. 1.11). Since this large separation reduces the effect of the
coupling, the corresponding terms are neglected. This so called rotating
wave approximation greatly simplifies the following calculation.

The interaction now couples only the states within each pair by

〈 e, n− 1 | V̂ | g, n 〉 = −d · E√n . (1.31)

Although the coupling strength actually depends on the number of photons
n, we assume here that the light field is in a coherent state |αeiωt 〉 which
contains 〈n〉 = |α|2 photons, and that 〈n〉 À ∆n À 1 can be regarded as
constant, despite the poissonian uncertainty ∆n =

√〈n〉 and the absorption
of photons by the atom. The expectation value of the electric field operator,

E = 〈αeiωt | Ê |αeiωt 〉
=

(Eeiωt + E∗e−iωt
)√

n,
(1.32)

acts like a classical field on the atomic dipole moment d, which is why we
introduce the Rabi frequency ΩR in analogy to the Bloch vector model as

h̄ΩR = (d · E + d∗ · E∗)√n. (1.33)
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For the case of linear polarization of the laser light, we can choose d and E
to be real, and thus

h̄ΩR = 2d · E√n. (1.34)

The new eigenstates

To find the new eigenstates, we diagonalize the total Hamiltonian Ĥ on the
subspace spanned by the states {| g, n 〉, | e, n − 1 〉} which are coupled by
the atom-field-interaction. In this basis

Ĥ = h̄

(
nω 1

2ΩR
1
2ΩR nω −∆

)
. (1.35)

The eigenvalues of Ĥ are

E1

h̄
= nω − ∆

2
− 1

2

√
Ω2

R + ∆2 (1.36a)

E2

h̄
= nω − ∆

2
+

1
2

√
Ω2

R + ∆2, (1.36b)

i. e. the states are repelled by the interaction. In the case of negative detun-
ing ∆ < 0, the lower state, which connects to the atomic ground state, is
shifted downwards by U1 = −(∆ +

√
Ω2

R + ∆2)/2 when the atom in moved
into the laser beam, whereas the excited (upper) state is shifted upwards
by the same amount, see fig. 1.11. The dipole trap potential for an atomic
level is thus its light shift (AC Stark shift). In the limit of far detuning
|∆| À ΩR, an approximation to first order of ΩR/∆ yields simple formulas
for the energy shifts

U1 = −Ω2
R

4∆
(1.37a)

U2 =
Ω2

R

4∆
(1.37b)

and the for new eigenstates

| 1, n 〉 =

(
1− Ω2

R

8∆2

)
| g, n 〉+

ΩR

2∆
| e, n− 1 〉 (1.38a)

| 2, n 〉 = −ΩR

2∆
| g, n 〉+

(
1− Ω2

R

8∆2

)
| e, n− 1 〉. (1.38b)
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Scattering rates

Since only the excited state of the atom can decay by spontaneous emission,
the photon scattering rate is determined by the decay of the excited state
component of the dressed state. An atom in the state | 1, n 〉 can thus decay
either to | 1, n−1 〉 or to | 2, n−1 〉, and the same holds for an atom in | 2, n 〉.
The decay rates can be calculated from the transition dipole moments, be-
cause the decay rate is proportional to the square of the dipole moment, and
the full atomic dipole moment d = 〈 e | d̂ | g 〉 just corresponds to the decay
rate Γ of the free atom. In the limit of far detuning |∆| À ΩR, we keep only
the lowest orders of ΩR/∆ in the calculation of the dipole moments

d11 = 〈 1, n | d̂ | 1, n− 1 〉 = ΩR
2∆d

d12 = 〈 1, n | d̂ | 2, n− 1 〉 = − Ω2
R

4∆2 d

d21 = 〈 2, n | d̂ | 1, n− 1 〉 =
(

1− Ω2
R

4∆2

)
d

d22 = 〈 2, n | d̂ | 2, n− 1 〉 = −ΩR
2∆d

(1.39)

and the decay rates

Γ11 = Γ22 =
Ω2

R

4∆2
Γ (1.40a)

Γ12 =
Ω4

R

16∆4
Γ (1.40b)

Γ21 = Γ. (1.40c)

Due to the large Γ21 the atom will almost always stay in state | 1, n 〉, and
the scattering rate Rs is dominated by Γ11. Identifying

Ω2
R =

6πc2Γ
h̄ω3

0

I (1.41)

we reproduce the potential depth and scattering rate (1.20) of the classical
model.

Multi-level atoms

When the atom possesses more than two levels, one could proceed as above,
i. e. construct the total Hamiltonian including all possible interactions and
diagonalize it. In our case the energy shifts U are very small compared to
the detunings ∆. Therefore it is a very good approximation to take the
energy shift due to each allowed transition into account separately, because
one transition shifts the levels so little that they can be regarded as unshifted
for calculating the influence of the next transition. The total shift of a level
is then obtained as the sum of the shifts due to all transitions connecting to
that level, weighted by the transitions’ oscillator strengths. The individual
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Figure 1.12: Some of the transitions used in calculating the shift of the
6P3/2 state. With respect to some of the transitions, the dipole trap laser
is red detuned, for some others, it is blue detuned.

shifts can be calculated using either the dressed state equations (1.37) or
the classical equations (1.19). The main result of the dressed state model
is that the excited state is shifted by the same amount as the ground state,
but in the opposite direction. This enables us to obtain the shifts of excited
states, which cannot be obtained from the classical model.

The shift of the 6P3/2 state of cesium in a linearly polarized Nd:YAG
laser dipole trap (λ = 1064 nm) has been computed by D. Schrader [51],
taking into account transitions to several higher lying states, see fig. 1.12. It
turns out that, for the excited state, the light shift strongly depends on the
F and mF quantum numbers; it even changes sign. In contrast, the shift of
the 6S1/2 ground state does not depend on mF and the dependence on F is
only 10−4 of the absolute shift.

1.2.3 Experimental Setup

Trap parameters

Our dipole trap consists of two counterpropagating Gaussian laser beams
with wavelength λ, waist radius w0, and the same waist position, power,
and polarization. They are overlapped to create a standing wave interference
pattern. Neglecting the Guoy phase of the Gaussian beams as well as the
curvature of the wavefronts, the intensity distribution can be written as

I(z, ρ) = IP
w2

0

w2(z)
e
− 2ρ2

w2(z) cos2(kz) (1.42a)
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Figure 1.13: Three-dimensional view of the standing wave dipole poten-
tial in the (ρ,z)-plane. In z-direction, the wavelength has been stretched
by a factor 1500 to show the individual potential wells.

w2(z) = w2
0

(
1 + z2/z2

0

)
(1.42b)

z0 = πw2
0/λ (1.42c)

IP =
4P

πw2
0

. (1.42d)

Here, w(z) is the beam radius with waist w0 and Rayleigh length z0. The
peak intensity IP for a total power P is twice that of a single beam of power
P due to the constructive interference. In the experiments we use the values

λ = 1064 nm (1.43a)
w0 = 30 µm (1.43b)
z0 = 2.7 mm (1.43c)
P = 4 W (1.43d)
IP = 5.6 · 109 W/m2. (1.43e)

unless otherwise noted. Using equations (1.22) we obtain a trap depth U0

and scattering rate Rs of

U0 = −1.5 mK · kB

Rs = 9.6 s−1.
(1.44)

Fig. 1.13 gives an impression of the dipole potential.
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The oscillation frequencies of an atom in the center of the trap are given,
in harmonic approximation, by

Ωz = 2π

√
2U0

mλ2
(1.45)

Ωrad =

√
4U0

mw2
0

(1.46)

in axial and radial directions, respectively. In our case of cesium atoms,
Ωz/2π = 410 kHz and Ωrad/2π = 3.3 kHz.

Laser

Our dipole trap laser is a Nd:YAG laser (Quantronix, model 116EF–OCW–
10), which is an arc-lamp pumped, high power cw industrial laser. Its
resonator contains two mode-filtering apertures and two brewster windows
to force operation in the fundamental Gaussian (TEM00) transverse mode
with linear polarization. Additionally, an uncoated plane-parallel glass plate
serves as an etalon to reduce the number of simultaneously lasing longitu-
dinal modes from > 30 to about 4. This increases the coherence length to
> 10 cm and therefore ensures a good interference contrast of the two beams
which form the standing wave. In this configuration the maximum output
power is 10 watts.

A schematic overview of the dipole trap setup is presented in fig. 1.14.
The output beam first passes a thin film polarizer (not shown) to increase
the purity of the polarization to > 104 : 1. A mechanical shutter switches on
and off the dipole trap within 10 ms, and a variable attenuator, consisting
of a λ/2 waveplate and a polarizing beam splitter cube (PBS), is used to
manually set the power level. An optical isolator (Gsänger Optoelektronik,
model FR 800/1200–8, 30 dB) protects the laser from optical feedback.

Acousto-optical modulators

Next, the laser beam is divided by a polarizing beam splitter into two sepa-
rate beams which will create the standing wave. Each beam passes through
an acousto-optical modulator (AOM) of high efficiency (Crystal Technology,
model 3110-125). The AOMs are used for fast control of the laser power and
for detuning the laser frequency (see section 1.3.3). To maintain a stable
beam direction while scanning the frequency, the AOMs are set up in double
pass configuration [52] (not shown in fig. 1.14) by retro-reflecting the first
order diffracted beam back into the AOM. This setup also allows us to op-
erate the dipole trap with the AOMs switched off simply by retro-reflecting
the zeroth diffraction order. An aberration-compensated telescope enlarges
the beam diameter, such that it can be focused down to a waist radius of
30 µm by a f = 300 mm lens.
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Figure 1.14: Schematic overview of the dipole trap laser setup. PBS:
polarizing beam splitter, AOM: acousto-optical modulator, λ/2: half wave-
plate for polarization rotation.

Alignment

Each beam of the dipole trap is carefully aligned onto the MOT position. For
this purpose we shine the dipole trap laser beam on the MOT and observe
the fluorescence of the atoms. When the beam hits the atoms, it induces a
light shift of the atomic levels (see sec. 1.2.2) such that the cooling transition
is effectively blue detuned, further away from the MOT cooling laser. The
fluorescence rate per atom thus decreases typically by more than a factor of
3, which we therefore use as a sensitive alignment criterion. To aid in the
alignment, the last two mirrors, which steer the two dipole trap beams into
the vacuum chamber, are equipped with piezoelectric actuators (Thorlabs,
model KC1-PZ/M).

1.3 Experimental methods

The experiments described later in this thesis rely on the basic experimental
techniques of loading and counting atoms in MOT and dipole trap, and
transportation of atoms.

1.3.1 Forced loading of atoms

In the beginning of each experimental sequence, atoms are loaded into the
MOT from the cesium background vapor. Once the number of atoms is
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Figure 1.15: Lifetime of atoms in the dipole trap. The fit function is
p(t) = p0 exp(−t/τ) with p0 = 0.99± 0.04 and τ = 25± 3 s.

determined from the fluorescence, it should not change due to spontaneous
loading events during the rest of the sequence, which requires a rather low
cesium vapor pressure. In order to still load a required average number
of atoms within a short time, we lower the magnetic field gradient of the
MOT from 300 G/cm to about 30 G/cm during the loading time. Accord-
ing to equation (1.6), the low gradient enhances the loading rate by up to
four orders of magnitude. This “magnetic umbrella” [5] allows us to load
a mean number of 1–50 atoms within 5–500 ms, while the probability to
spontaneously load an additional atom during the rest of the experimental
sequence is typically 1%.

1.3.2 Transfer efficiency and lifetime

Almost all our experiments rely on counting the number of atoms in the
MOT before and after their manipulation in the dipole trap. Thus, a crucial
step is the highly efficient transfer of the atoms between the two traps. The
most simple experiment is the measurement of the lifetime of the atoms in
the dipole trap. After loading a few atoms into the MOT and counting them
by means of their fluorescence rate, we switch on the dipole trap and operate
MOT and dipole trap simultaneously for about 50 ms. Then we switch off
the MOT lasers and leave the atoms in the dipole trap. After a waiting
time the remaining atoms are transferred back into the MOT, using again a
temporal overlap of the two traps. The MOT, finally, allows us to count the
number of atoms that survived. This sequence was repeated 100 times with
about two atoms (in average) per repetition to obtain the probability for an
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atom to survive. Since each atom initially counted in the MOT can either
survive or get lost, the experiment is of the Bernoulli type and the statistical
error of the probability estimate is calculated accordingly, see sec. 2.2.2.

In fig. 1.15 the probability p to survive a storage time t within the dipole
trap is shown together with an exponential fit, p(t) = p0 exp(−t/τ). The
time constant τ is the lifetime of the atoms in the dipole trap, while the
survival probability p0 yields the transfer efficiency from the MOT into the
dipole trap and back. For t = 500 ms we measured a transfer efficiency
of 97 ± 1%, and the fit yields p0 = 99 ± 4%. In a preceding experiment a
similar result was obtained with a running wave dipole trap [26]. This high
transfer efficiency means that we can place a known number of atoms into
the dipole trap after preparing and counting them in the MOT. Similarly
we count the atoms in the dipole trap by loading them back into the MOT.

We attribute the lifetime of 25 s in the dipole trap to collisions with
thermal background gas atoms, which can easily remove cold atoms from
the dipole trap. Other possible loss mechanisms are heating effects and cold
collisions between trapped atoms. Heating mechanisms are described in de-
tail in section 2.4, but they turn out not to limit the lifetime in this case,
where the AOMs were turned off. Collisions between trapped atoms are very
improbable, because the atoms are distributed over about 50 individual po-
tential wells of the dipole trap. Additionally, the preceding experiment [26]
showed equal lifetimes in the dipole trap and in a magnetic quadrupole
trap, which points to a universal loss mechanism such as background gas
collisions.

1.3.3 Optical conveyor belt

The standing wave geometry was chosen for our dipole trap because it en-
ables us to move trapped atoms along the dipole trap axis in a precise,
electronically controlled way. The standing wave interference pattern can
be set into motion by slightly mutually detuning the frequencies of the two
counterpropagating laser beams. This effect can easily be understood in a
moving frame of reference, see fig. 1.16. Because the velocity is proportional
to the frequency difference between the two beams, the interference pattern
can be uniformly accelerated and decelerated by the application of linear fre-
quency ramps to one of the dipole trap beams. As long as the acceleration
is not too high, atoms trapped in individual potential minima (anti-nodes)
of the standing wave are carried along in this optical conveyor belt [6, 53].

In the experiment, the AOMs are used to shift the optical frequencies of
the two dipole trap beams (fig. 1.14). A custom-built dual digital frequency
synthesizer (APE Berlin, model DFD 100) supplies both AOMs with the
same frequency (i. e. constant phase difference) as long as the conveyor belt
is at rest. For the transport of an atom, one frequency is ramped up and
down in a phase-continuous way to accelerate and decelerate the conveyor
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quency ramp to one of the dipole trap beams. The atom is accelerated and
decelerated uniformly, velocity and position as function of time are shown
below.
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belt, see fig. 1.17. The full digital control of the frequency ramps allows us
to set the total phase difference ∆φopt between the two counterpropagating
laser beams, accumulated during the frequency sweep, with an accuracy
of a fraction of 2π. The transportation distance is thus determined with
sub-micrometer precision to d = ∆φoptλ/(4π).

When the atom has stopped at its new position it can be resonantly
illuminated inside the dipole trap with a probe laser and observed by the
movable detection assembly of fig. 1.9. This detector previously was trans-
lated by the transportation distance along the dipole trap axis. In this way
we found that the optical conveyor belt transports single atoms over a macro-
scopic distance of 1 mm with an efficiency of 92%. With another detection
method, transportation efficiencies of 80% over 10 mm were obtained [6].

Typical accelerations of a = 104 m/s2 bring the atoms to velocities of
5.5 m/s (optical detunings of 10 MHz) within 0.6 ms. These values are
for a transportation distance of 3 mm. A detailed description of the optical
conveyor belt and its properties can be found in the thesis of Stefan Kuhr [5]
and in [6, 53, 5].



Chapter 2

Temperature measurements
in the dipole trap

For the application of neutral atoms in quantum information processing,
control over all degrees of freedom is required. This is obvious for the internal
state, in which the quantum information is encoded. But also the external
degrees, such as position, velocity and temperature, play an important role.
A high temperature of the atoms in the dipole trap, for example, leads to an
inhomogeneous broadening of their transition frequencies due the light shift.
This effect has been shown to limit the coherence time in our experiment [7].
As another example, the temperature-dependent localization of an atom
determines its coupling to the mode of an optical resonator. A prerequisite
for the control of the temperature is its measurement. For this purpose,
methods compatible with the small number of atoms in our trap have to be
used.

The temperature is determined by cooling and heating mechanisms.
Therefore, the implementation and evaluation of cooling methods is an im-
portant goal of our experiment in the near future. Uncontrolled heating can
prevent successful cooling and even limit the lifetime of atoms in the trap.
Hence, the classification of heating effects of fundamental and technical ori-
gin is of prime interest.

2.1 Methods

Since the temperature of a sample of trapped atoms cannot be measured by
directly contacting it, one usually measures the position, velocity or energy
distribution of the cold trapped atoms, from which their temperature is then
deduced.

39
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2.1.1 Velocity distribution (Time-of-flight)

The time-of-flight method measures the velocity distribution to determine
the temperature of trapped atoms. For this purpose the trapping potential
is switched off quickly, such that each atom continues to travel freely with
its instantaneous velocity. After an expansion time, the atomic cloud is
imaged onto a CCD camera by illuminating it for a short duration. If the
atoms do not interact during the expansion, and the size of the cloud after
the expansion is large compared to its initial size in the trap, the spatial
distribution of the expanded cloud directly maps out the initial velocity
distribution within the trap.

In an harmonic trapping potential, the virial theorem states that the
average potential energy is equal to the average kinetic energy. In this way,
the mean total energy 〈E〉 can be calculated from the distribution of the
kinetic energy which in turn follows from the measured velocity distribution.
In the case of thermal equilibrium, the temperature T follows from

〈E〉 = 3kBT. (2.1)

An advantage of the time-of-flight method is that it yields the complete
energy distribution in a single shot. Additionally, the size of the expanded
cloud is easily adapted to the density or resolution requirements of the imag-
ing system by varying the expansion time. A disadvantage is that it requires
a large number of atoms to work properly, since a single atom within a large
detection area together with a short exposure time yields a small amount
of fluorescence only. While adding up a large number of images would help
in principle, background noise adds up as well, which further increases the
required number of images.

2.1.2 Spatial imaging

Direct imaging of the trap yields the spatial distribution of the atoms in the
trapping potential. If the potential is known, the distribution of energies in
the sample can be obtained. This method is applied to our dipole trap in
section 2.5.

A prerequisite for spatial imaging is that the atoms can be illuminated
in the trap without changing the temperature. This is certainly the case in a
MOT, where equilibrium temperatures have been measured this way [54, 55].
In our dipole trap, we have to illuminate the atoms with near-resonant light
for observation. Heating due to photon scattering must be counteracted by
laser cooling (sec. 2.5.2).

Temperature measurement by spatial imaging is ideally suited for small
numbers of atoms, since high atomic densities could lead to heating by light-
induced inelastic collisions or to optically thick samples. Additionally, even
for a single atom in the trap, its equilibrium temperature can be obtained
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from a single image by integrating the fluorescence long enough to average
over many heating and cooling cycles. A disadvantage is that for small, steep
traps or low temperatures, this method requires higher resolution imaging
as compared to the time-of-flight method.

2.1.3 Release-recapture

In the release-recapture method [16, 56], the trapping potential is switched
off non-adiabatically to release the atoms into free expansion. After a short
waiting time the potential is switched back on, and those atoms which still
roam the trap volume are recaptured. During the expansion, hot atoms will
on average leave the trapping region with a higher velocity than cold atoms.
The time it takes for a substantial fraction of the atoms to leave the trap
volume can therefore be used to estimate their temperature in the trap.

A more precise determination of the temperature requires good knowl-
edge of the capture volume of the trap and numeric modelling of the expan-
sion process using an estimated energy distribution. An advantage of the
release-recapture method is that it does not require any imaging of atomic
clouds. It can therefore be used on very small atomic ensembles, which can
be detected only either inside the trapping potential or by transferring the
atoms into a different type of trap, e. g. a MOT. In this way the temper-
ature of single atoms in a dipole trap has been measured in P. Grangier’s
group [57].

2.1.4 Adiabatic lowering

I have devised a technique to obtain the complete energy distribution of an
atomic ensemble while using only a single atom at a time. The basic idea is
to slowly reduce the depth of the trapping potential from U0 to a nonzero
value Ulow such that a fraction of the atoms escapes. The surviving fraction
is then detected.

When the potential is changed adiabatically, exactly those atoms survive
which initially had a thermal energy E0 less than a certain threshold energy
E. Furthermore, this threshold depends only on the depth Ulow to which
the potential was reduced. Thus, by properly choosing Ulow, we vary the
energy threshold E and record the fraction of atoms below that energy. This
measurement yields the cumulative energy distribution of the atoms, from
which the temperature can be extracted.

Since this method relies on merely detecting a loss of atoms, it is rather
simple to implement in our experiment. Another advantage is that we do not
have to assume an energy distribution in order to extract the temperature,
but we get the entire distribution from the measurement. For these reasons,
this method was chosen to measure the temperature of the atoms in our
dipole trap.
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2.2 Theory and simulations of adiabatic processes

To understand why and how the method of adiabatic lowering works it is
illustrated with a one-dimensional model. Here, the quantities of interest
can be calculated easily, and an approximate but clear description of the
experiment is obtained. A more realistic model of our experiment using
the three-dimensional dipole potential and including deviations from strict
adiabaticity is analyzed by numeric simulation of atomic trajectories in the
trap. In both models, the motion in our trap is treated classically, since
the mean oscillatory quantum numbers of our atoms are n ≈ 5 axially and
n ≈ 600 radially at a temperature of 7% of the trap depth (see sec. 2.3.2).

2.2.1 Adiabatic manipulation of a one-dimensional potential

Action integral

Consider a classical particle oscillating in a conservative one-dimensional
potential V (x). When the potential is changed while the particle is moving,
the energy of the particle is not conserved any more. There is, however, a
result of classical mechanics stating that in the limit of infinitesimally slow
(adiabatic) changes, the action integral over one oscillation period,

S =
∮

p dx, (2.2)

is conserved [58].
As an illustration, a particle oscillating in an harmonic potential with

frequency ν and energy E has an action of S = E/ν. When the spring
constant and thus ν is changed adiabatically, E/ν remains constant. This
result is familiar from quantum mechanics, where E/ν = nh and the quan-
tum number n does not change when the wavefunction can follow the change
of the potential adiabatically.

Our method of temperature measurement is modeled as an atom oscil-
lating with energy E0 in the (anharmonic) dipole potential of finite depth
U0,

V (x,U0) = U0Ṽ (x), (2.3)

where Ṽ (x) is a normalized shape function ranging from 0 to 1. If the
potential is symmetric, V (x,U) = V (−x,U), the action can be written as

S(E, U) = 4
∫ xmax

0

√
2m[E − V (x,U)] dx, (2.4)

where xmax is the turning point of the oscillatory motion given by
V (xmax, U) = E. When the potential depth U is adiabatically reduced,
the energy E of the atom decreases due to “adiabatic cooling”, but less
than proportionally to U , see fig. 2.1. Thus, at some depth Uesc, its energy
E equals Uesc and the atom escapes.
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Figure 2.1: An atom with initial energy E0 in a potential of depth U0 (a)
is cooled adiabatically to energy E when the potential depth is reduced to
U (b). Since E decreases more slowly than U , the atom escapes at some
point (c), at which the energy of the atom Eesc equals the potential depth
Uesc.
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Figure 2.2: Relation between the escape depth Uesc and the initial energy
E0 of an atom in a one-dimensional potential. Solid line: V (x,U) = U
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cos2(kx)
)

(axial potential of our dipole trap); dashed line: V (x,U) = U
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exp(−2x2/w2
0)

)
(radial potential of the dipole trap).
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Since the action S is conserved, we numerically solve

S(E0, U0) = S(Uesc, Uesc) (2.5)

to obtain the relation between the initial energy E0 and the escape depth
Uesc shown in fig. 2.2. As an example, a typical atom with E0 = 0.1U0

escapes (axially) when the trap depth is lowered to 0.9%.

Adiabaticity criteria

In reality the changes of the potential are never infinitesimally slow. A
practicable criterion for adiabaticity is that the potential should not change
significantly during one oscillation period [58]. Since in our case changing
the potential depth means changing the oscillation frequency ν, the relative
change ∆ν/ν = (ν̇T )/ν within one oscillation period T = 1/ν should be
small, i. e. ∣∣∣∣

ν̇

ν2

∣∣∣∣ ¿ 1. (2.6)

An optimal way to to lower the potential depth U within a given time should
avoid large values of |ν̇/ν2| and therefore keep ν̇/ν2 = const. . Solving
this differential equation for ν(t) together with the harmonic approximation
ν ∼ √

U yields the result U(t) ∼ 1/t2.
The energy of an atom after a non-adiabatic reduction of the potential

depth depends on its phase of oscillation, and not only on its initial energy
E0. This becomes obvious for an instantaneous change of the depth, where
the potential energy of an atom changes proportionally to the trap depth,
whereas its kinetic energy remains unchanged.

Because the anharmonicity of our potential makes the oscillation fre-
quency ν approach zero as E approaches U , the adiabaticity condition is
always violated right before the atom leaves the trap. This energy region,
however, can be made small by decreasing the potential depth more slowly
than what would be required for an harmonic potential.

For a quantitative analysis, trajectories of atoms in a one-dimensional
Gaussian potential were simulated by numerically integrating the classi-
cal equations of motion. As an example, the potential depth is ramped
down from U0 to Ulow = 0.01U0. According to the relation of fig. 2.2, all
atoms with an initial energy E0 of less than 0.155U0 should remain trapped,
whereas all more energetic atoms should be lost. In the simulation, there is
a span ∆E0 of energies E0 over which the loss rate rises from 10% to 90%.
This span determines the energy selectivity and increases with decreasing
ramping duration, indicating a loss of adiabaticity.

The simulation revealed that a smooth transition from the constant
U(t) = U0 to the decreasing part U(t) ∼ 1/t2 considerably improves the
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Figure 2.3: Optimized function U(t) of eq. (2.7) used to adiabatically
ramp down the potential depth.

adiabaticity, which is also expected theoretically [58]. Therefore, the poten-
tial depth is ramped down according to

U(t) =





U0 for t ≤ 0

U0

(
1− t2

4T 2
c

)
for 0 < t ≤ Tc

√
2

U0
T 2

c

t2
for t > Tc

√
2

, (2.7)

see fig. 2.3. The characteristic time scale Tc determines the ramp duration
and the adiabaticity. A value of Tc = 9.3/ν keeps |ν̇/ν2| < 0.11 and results
in an energy selectivity ∆E0 of about 2–5% of U0. With the radial oscillation
frequency νrad = 3.1 kHz, Tc becomes 3 ms, and lowering the trap depth to
1% takes 30 ms.

2.2.2 Simulation of trajectories in a realistic 3-D potential

Motivation

The one-dimensional analysis of the adiabatic lowering has several short-
comings. In our three-dimensional dipole potential, the axial motion of an
atom does not exchange energy with the radial motion, because their oscil-
lation frequencies differ by two orders of magnitude. The two radial degrees
of freedom, however, are mutually coupled by the anharmonicity of the ra-
dial potential combined with an inevitable slight ellipticity of the dipole
trap. Additionally, the effect of gravity offsets the zero point of the poten-
tial and thus breaks the remaining symmetries. Numerical simulations of
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the motion in the radial plane indicate that the radial oscillatory motion
can therefore completely change its orientation and ellipticity over several
oscillation periods on a rosetta-like trajectory. Since this precession period
strongly depends on the oscillation amplitude of the atom and the depth
and the ellipticity of the trap, it remains unknown in praxis. Therefore, the
reduction of the trap depth can well be adiabatic with respect to all oscil-
lation frequencies, but still be non-adiabatic with respect to the precession
period of the oscillation.

At trap depths below a few percent, an atom escapes the potential most
easily along the axis of gravity. The escape depth therefore depends on
whether the atom oscillates horizontally or vertically in the radial plane.
Together with the non-adiabaticity with respect to the precession period, a
reduction of the energy selectivity can therefore not be excluded.

As a second point, the escape depths of fig. 2.2 indicate that the atoms
leave the trap in axial rather than in radial direction. An atom which os-
cillates in axial direction with near maximum amplitude spends most of
its time near the node of the standing wave, due to the anharmonicity of
the potential. There, however, the radial force is very weak since the three-
dimensional potential is a product of a Gaussian and a cos2 function. There-
fore, the radial potential depth averaged over the fast axial motion goes to
zero as the atom tries to escape axially. Similarly, a large radial excur-
sion weakens the axial confinement. Is is therefore not evident whether the
three-dimensional escape depths would follow the axial or the radial curve
of fig. 2.2, or a different relationship.

I did a full simulation of the atomic trajectories in our three-dimensional
dipole potential to answer these questions and to be able to quantitatively
analyze our experimental results. The simulation includes the effect of grav-
ity, the finite duration of the ramp and the waiting time used in the exper-
iment (sec. 2.3).

Overview

The simulation places an atom with a certain initial energy E0, but other-
wise randomly distributed initial position and velocity, into the dipole trap
potential

V (x, y, z, t) = U(t) cos2(kz) e−2(x2+y2)/w2
0 + mgy. (2.8)

The potential depth U(t) is then ramped down according to eq. (2.7) to a
value Ulow, while the motion of the atom in the potential is calculated. The
potential depth is held at Ulow for 15 ms to make sure that escaping atoms
leave the trap region. The atom is counted as lost if it has departed more
than 100 µm from the origin, which approximates the capture radius of our
MOT.
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Figure 2.4: The system homogeneously populates the hatched triangular
surface Ex + Ey + Ez = E0. Its projection onto the Ex-axis yields the
probability distribution of Ex. After fixing Ex, the system homogeneously
populates the line AB.

This calculation is repeated many times to obtain the probability
p(E0, Ulow) of an atom remaining trapped for a specific E0 and Ulow. When
Ulow is decreased, the survival probability p changes from unity to zero. The
escape depth is defined by p(E0, Uesc) = 0.5, and the span ∆Uesc it takes p
to decrease from near unity to near zero indicates the energy resolution.

Choosing the starting coordinates

The starting position and velocity of the atom should be randomly dis-
tributed over the phase space of the system, however with a fixed total
energy E0. For this purpose, the energy E0 is divided onto the three degrees
of freedom {x, y, z} with

Ex + Ey + Ez = E0 (2.9)
0 ≤ Ei ≤ E0

i = x, y, z .

We assume that initially the atoms are thermally distributed with a
temperature T . Then the probability of a certain energy configuration only
depends on the total energy E0, and not on the individual energies Ei. The
triangular surface in the space {Ex, Ey, Ez} defined by eq. (2.9) is thus as-
sumed to be homogeneously populated, see fig. 2.4. My algorithm therefore
first chooses a random Ex with a probability distribution which decreases
linearly from Ex = 0 to Ex = E0,

p(Ex) =
2

E2
0

(E0 −Ex). (2.10)
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Once Ex is fixed, the remaining energies {Ey, Ez} are homogeneously dis-
tributed on the line Ey + Ez = E0 −Ex. Thus Ey is chosen randomly from
the interval [0, E0 − Ex], and Ez = E0 − Ex −Ey.

The position and velocity are chosen such that the energy in each degree
of freedom i is Ei, but the phase of oscillation is homogeneously distributed
in the interval [0, 2π]. For this purpose, the algorithm starts with an atom
at the bottom of the one-dimensional potential V (xi) with a velocity cor-
responding to a kinetic energy of Ei. Then the oscillation period in this
anharmonic potential is determined for the energy Ei. The one-dimensional
equations of motion are then solved numerically for a random fraction of
this oscillation period to obtain the position and velocity at a random phase
of the oscillation.

The three independently determined positions {x, y, z}, however, cannot
directly be combined to a starting coordinate for the three-dimensional simu-
lation, because of the anharmonicity of the potential, V (x, 0, 0)+V (0, y, 0)+
V (0, 0, z) 6= V (x, y, z). The distance of the atom from the origin is therefore
slightly adjusted until the total energy equals E0.

Calculation of the trajectories

The three-dimensional equations of motion in the time-varying potential
(2.8) are solved numerically by a fourth-order Runge-Kutta algorithm. Af-
ter careful evaluation of the numerical accuracy a fixed step time of 3 ns was
used. For speed reasons I used an optimized version of the C-implementation
from Numerical Recipes [59]. The C-program is interfaced to a Mathemat-
ica program which chooses the starting coordinates and does the statistical
bookkeeping.

Statistical evaluation

For each set of parameters E0 and Ulow, the probability for an atom to
survive, p(E0, Ulow), has to be determined with some reasonably small sta-
tistical error using the least possible number N of trajectories. When k
atoms out of N survive, the estimate for the true survival probability p is
k/N according to Bernoulli statistics.

The 1σ confidence interval [p−, p+] around p denotes the range within
which k/N falls with 68% probability. This range is a measure for the
expected discrepancy between the probability p and its estimate k/N due
to the limited size of the sample N . The confidence interval can be calculated
from [60]

k∑

l=0

P (p+, N, l) = (1− 0.68)/2 (2.11a)
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N∑

l=k

P (p−, N, l) = (1− 0.68)/2, (2.11b)

with the binomial probability

P (p,N, k) =

(
N

k

)
pk (1− p)N−k. (2.12)

After each trajectory simulation, equation (2.11) is evaluated and another
trajectory is simulated until the width of the confidence interval p+ − p−
is less than 0.1. While about N = 120 trajectories are needed for p ≈ 0.5,
a much lower number of simulations (down to N = 18) is required for the
same statistical accuracy when p is near unity or near zero.

For each E0 the corresponding Uesc is found by looking at the survival
probability p(E0, Ulow) for different values of Ulow. The Ulow are chosen by
a recursive interval halving algorithm such that neighboring values of the
survival probability p differ by less than 0.2. This ensures that the critical
transition from p(E0, Ulow) ≈ 1 to p(E0, Ulow) ≈ 0 is found quickly and is
sampled just sufficiently dense.

I finally fit an error-function erf((Ulow − Uesc)/∆Uesc) to the survival
probability. From this fit the escape depth Uesc as well as the escape range
∆Uesc are obtained.

Results

For different values of the initial atomic energy E0 the escape depth Uesc

is shown in fig. 2.5. The three-dimensional trajectory simulation mostly
follows the one-dimensional predictions of sec. 2.2.1. The deviation at low
energies is probably due to the influence of gravity. In order to evaluate
the experimental results in sec. 2.3.2, an analytic function was fitted to the
data points. The squareroot-like functional form is suggested by the one-
dimensional model.

2.3 Experiment

2.3.1 Measurement procedure

In the beginning of the experimental sequence, about five atoms are loaded
into the MOT by means of the forced loading technique (sec. 1.3.1). This
number still ensures that the probability of collisions remains very small,
because these atoms are distributed over about 50 separate potential wells
of the dipole trap. On the other hand, the measurement time is reduced by
a factor of five compared to the use of a single atom at a time.

The atoms are then transferred into the dipole trap and the quadrupole
magnetic field is switched off to prevent magnetic trapping. The dipole trap
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Figure 2.5: Initial atomic energy versus escape depth for the adiabatic
lowering in (a) linear scale, (b) logarithmic scale. The data points are the
results of the three-dimensional trajectory simulation, the bars indicate the
escape range. The solid curve is a fit to the data points with the function
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2 − a3x
3). The dotted lines are the

one-dimensional predictions of fig. 2.2.
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Figure 2.6: Experimental sequence used for the temperature measure-
ment. An atom is transferred from the MOT into the dipole trap, which is
then adiabatically lowered. After the dipole trap is ramped up, any atom
that remained trapped is transferred back to the MOT. Initial and final
number of atoms are extracted from their fluorescence rate.

depth is adiabatically lowered down to Ulow according to eq. (2.7). The
lowering takes between 10 ms and 51 ms for values of Ulow between 0.082U0

and 0.0036U0, respectively. The trap depth is kept low for 15 ms to allow
escaping atoms to leave the capture region of the MOT, before the dipole
trap is ramped up again and remaining atoms are transferred back to the
MOT, see fig. 2.6. The upward ramp does not have to follow the adiabatic
form of eq. (2.7), since no atoms are lost on increasing the trap depth. For
each value of Ulow the experimental sequence was repeated 100 times to keep
the statistical error below 3%.

The change of the dipole trap depth was realized by variation of the RF
power of the AOM drivers via an analog control voltage. Due to the PIN-
diode RF attenuator inside the AOM driver in combination with the double-
pass setup, the relation between the power of the dipole trap laser and the
control voltage is highly nonlinear. We measured this transfer function by
linearly sweeping the control voltage and monitoring the laser powers by
calibrated photodiodes. After digitization with a storage oscilloscope, the
data was fitted with a suitable function, the inverse of which was applied to
U(t) to precompensate the nonlinearity.
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Figure 2.7: Measured survival probability p versus reduced trap depth
Ulow.

2.3.2 Results

The measured survival probability versus Ulow is shown in fig. 2.7. Due to
the adiabatic cooling, the trap depth can be reduced down to a few percent
before a significant number of atoms is lost.

The experimental trap depths Ulow are then converted into initial atomic
energies E0 using the fit function from fig. 2.5. The result, shown in fig. 2.8,
is the cumulative energy distribution, i. e. the fraction of atoms with an
energy below E0. In order to extract a temperature we assume a Boltzmann-
distribution of the atomic energy

p(E) ∼ g(E)e−
E

kBT . (2.13)

In a three-dimensional harmonic trap, the density of states g(E) is propor-
tional to E2 [61] and thus

p(E) =
1

2(kBT )3
E2e

− E
kBT . (2.14)

By integration we obtain the cumulative energy distribution

P (E) = 1−
(

1 +
E

kBT
+

E2

2(kBT )2

)
e
− E

kBT . (2.15)

A fit to the measured data with the temperature and the maximum sur-
vival probability Ptot as free parameters yields kBT = (0.034 ± 0.001)U0



2.4. HEATING MECHANISMS IN THE DIPOLE TRAP 53

E /U0 0

fr
a

c
ti
o

n
 o

f 
a

to
m

s
w

it
h

 e
n

e
rg

y
 b

e
lo

w
 E

0

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

[a
rb

. 
u

n
it
s
]

0.0 0.1 0.2 0.3

0.0

0.2

0.4

0.6

0.8

1.0

0

2

4

6

8

10

Figure 2.8: Cumulative energy distribution of the atoms in the dipole
trap. Solid line: fit of a cumulative three-dimensional Boltzmann dis-
tribution (eq. (2.15)) with kBT = 0.034 U0. Dashed line: corresponding
(non-cumulative) energy distribution.

and Ptot = 96 ± 1%, see fig. 2.8. Using the theoretical U0 = 1.5 mK, the
temperature of the atoms is T = 51 µK, less than the Doppler temperature
of 125 µK. When the trap depth of U0 ≈ 1.0 mK determined from the mea-
sured axial oscillation frequency (section 2.4.5) is used, a correspondingly
lower temperature of T = 34 µK is obtained.

These temperatures of the atoms in the dipole trap are similar to the
temperatures in our high gradient MOT. Values down to 80 µK have been
obtained in [55], in a somewhat lower gradient of 90 G/cm. The high mag-
netic field gradient and the high cooling laser intensity of I/I0 ≈ 40 seem to
impede most of the sub-doppler cooling in the MOT. However, we can con-
clude from the measured temperatures that the cooling action of the MOT
continues even with the dipole trap laser superimposed.

2.4 Heating mechanisms in the dipole trap

In the absence of background gas collisions, the lifetime of atoms in the
dipole trap is ultimately limited by heating. Besides fundamental heating
mechanisms, which turn out to play no role in our experiment, we observe
several technical sources of heating. The characterization of the most im-
portant heating mechanisms will prove very useful to evaluate techniques
for further cooling of the atoms in the dipole trap.



54 CHAPTER 2. TEMPERATURE MEAS. IN THE DIPOLE TRAP

E

F
1

F
2

x

| ñ1

| ñ2

Figure 2.9: Model of the heating by dipole force fluctuations. When the
atom is excited from state | 1 〉 to | 2 〉, the dipole force changes from F1 to
F2.

2.4.1 Recoil heating

A fundamental source of heating in dipole traps is spontaneous scattering of
dipole trap laser photons. Each photon imparts on average the recoil energy

Er =
(h̄k)2

2m
(2.16)

to the atom on absorption and on spontaneous emission (here, k denotes
the wavenumber of the dipole trap laser). A spontaneous scattering rate Rs

therefore increases the average energy of an atom in the dipole trap by [45]

〈Ė〉 = 2RsEr. (2.17)

This result remains valid whether the oscillatory motion of the atom is
treated classically or quantum-mechanically, and whether the spacing of the
motional quantum states is small or large compared to the recoil energy [18].

With our scattering rate of 10 s−1 (1.44), the heating rate is only about
0.6 µK/s, which is negligible in our experiment.

2.4.2 Dipole force fluctuations

The dipole potential for a two-level atom has opposite sign for the two
dressed states, see sec. 1.2.2. When the atom is excited, it experiences a
repellant instead of an attractive potential during the lifetime of the excited
state. Averaged over many excitations the stochastically fluctuating dipole
force leads to a heating of the atomic motion.

Model

While the heating rate can be calculated via momentum diffusion coeffi-
cients [49], we will estimate the effect based on a simple physical model [62].
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When an atom in dressed state | 1 〉 of fig. 2.9 is excited to state | 2 〉, the
dipole force changes by an amount ∆F = F2(x) − F1(x) for the lifetime
τ = 1/Γ of the excited state | 2 〉. This force can be interpreted as a mo-
mentary momentum transfer ∆p = ∆Fτ as long as the atom does not move
significantly during the time τ , i. e. τ is small compared to the oscillation
period Tosc of the atom in the potential. In our case, this approximation is
clearly fulfilled with τ = 30 ns and Tosc > 2 µs.

These momentum kicks drive a random walk in momentum space, in
analogy to recoil heating. Hence the energies

Ekick =
(∆p)2

2m
(2.18)

on average add up, and the heating rate becomes

〈Ė〉 = RexcEkick. (2.19)

Intrinsic excitation rate

The excitation rate Rexc is not equal to the scattering rate Rs of the dipole
trap laser, because the latter is dominated by the decay Γ11 from the state
| 1, n 〉 to | 1, n − 1 〉, which does not change the dipole potential (fig. 1.11).
Only the rate Γ12 describes “excitations” which change the dipole potential
and thus contribute to Rexc. From equations (1.40) and (1.41) we have

Rexc = Γ12 (2.20a)

=
Ω4

R

16∆4
Γ (2.20b)

=
9π2c4Γ3I2

4h̄2ω6
0∆4

(2.20c)

=
R2

s

Γ
(2.20d)

≈ 5 · 10−6 s−1, (2.20e)

which is completely negligible, since the corresponding heating rate is less
than 10−8 mK/s.

External excitation

Heating by dipole force fluctuations can be severe when the atom is excited
by near-resonant light, for example during optical pumping, (sub-)Doppler
cooling or fluorescence detection in the dipole trap. In these cases, the
excitation leads from dressed state | 1, n−1 〉 to | 2, n 〉 and thus the relevant
state-changing excitation rate Rexc is equal to the scattering rate of the
near-resonant radiation.
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For a quantitative estimation of the heating rate averaged over an os-
cillation period of the atom, let us assume that the atom with an energy
E = U0/2 oscillates in the trap. The turning points ±xmax then coincide
with the steepest slope of the dipole potential, exactly for a cos2 and ap-
proximately for a Gaussian potential shape. Additionally, the part of the
potential over which the oscillation extends can be well approximated as
harmonic. The amplitude of the dipole force fluctuations ∆F then linearly
depends on x as

∆F (x) =
x

xmax
∆Fmax. (2.21)

Since the energy Ekick depends quadratically on the force ∆F , we calculate
the mean square force, averaged over one cycle of oscillation

〈(∆F )2〉 =
(∆Fmax)2

2
. (2.22)

The time t the atom spends in the excited state also enters quadratically
in Ekick. Therefore, the average squared time 〈t2〉 is calculated from the
exponential distribution of the times t, P (t) = exp(−t/τ)/τ

〈t2〉 =
∫ ∞

0
t2P (t) dt (2.23a)

= 2τ2. (2.23b)

The average energy then becomes

〈Ekick〉 =
(∆Fmax)2τ2

2m
. (2.24)

When the typical energy E of the atom is much less than half the trap
depth, the maximum dipole force which the atom experiences at its turning
points reduces to ∆Fmax

√
2E/U0. The heating rate thus finally becomes

〈Ė〉 = Rexc
E (∆Fmax)2τ2

mU0
. (2.25)

To further interpret eq. (2.25), we compare it to the unavoidable recoil
heating (2.17),

〈Ė〉fluctuation

〈Ė〉recoil

=
E

U

(
∆Fmax

Fres

)2

, (2.26)

where
Fres =

h̄k

2τ
(2.27)

is the maximum resonant light pressure force that a strongly saturating reso-
nant laser beam can exert on the atom. Heating by dipole force fluctuations
can thus only contribute significantly if the maximum dipole force exceeds
the maximum resonant light force.
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In our trap we have

axial: ∆Fmax = kU0 (2.28a)
= 9Fres,

radial: ∆Fmax =
U0

w0

√
2
e

(2.28b)

= 0.05Fres.

(2.28c)

For atoms under near-resonant illumination with E = 0.5U0, eq. 2.26 yields
a heating rate due to dipole force fluctuations which in axial direction is
40-times as strong as recoil heating, but is negligible in radial direction.
Thus the axial temperatures could be larger than radial temperatures during
continuous illumination (sec. 2.5.2) and during the transfer from the MOT
into the dipole trap. Since the magnitude of this heating effect depends
on the temperature of the atoms and the equilibration rate of axial and
radial temperature is unknown, a simulation of the relevant heating and
(sub-)Doppler cooling mechanisms could provide additional insight into the
cooling dynamics in our trap.

2.4.3 Trap depth and position fluctuations

Technical noise on the intensity and the position of the dipole trap laser
beam causes the trap depth and the trap position to fluctuate in time.
While individual fluctuations can increase or decrease the oscillatory energy
of a trapped atom, in the long run stochastic fluctuations always lead to
heating. It turns out that neither intensity noise nor pointing instability
cause noticeable heating in our experiment. However, the lifetime of atoms
in our dipole trap is severely limited by electronic phase noise transferred
by the AOMs onto the trapping laser beams.

Laser intensity noise

The heating effect depends on the amplitude and on the spectral distribution
of the intensity fluctuations ∆I = I(t) − 〈I〉 around the average intensity
〈I〉. The fluctuations are characterized by the spectral density of the relative
intensity noise S(ν), which is defined such that the normalized variance of
the intensity due to fluctuations in a spectral band dν around the frequency
ν is

〈(∆I)2〉dν

〈I〉2 = SI(ν)dν, (2.29)

and thus
〈(∆I)2〉
〈I〉2 =

∫ ∞

0
SI(ν) dν. (2.30)
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Since the trap depth U is directly proportional to the trapping laser intensity
I, the relative intensity fluctuations equal the relative fluctuations of the
spring constant of the trap.

When their magnitude is small, ∆I ¿ 〈I〉, the oscillation amplitude
changes only slightly within one period of oscillation. Under this assumption
and in harmonic approximation, the average heating rate can be calculated
either classically [63], or quantum-mechanically using time-dependent per-
turbation theory [64]. The energy of an atom with an oscillation frequency
ν0 grows exponentially as

〈Ė〉 = π2ν2
0SI(2ν0)〈E〉. (2.31)

Only fluctuations at twice the oscillation frequency contribute to the heating
as it is expected for parametric excitation (see sec. 2.4.4). Due to the factor
ν2
0 , high oscillation frequencies are more critical than low frequencies.

The relative intensity noise of our Nd:YAG laser beam was measured
with an amplified photodiode. Within its bandwidth of DC to 3 MHz,
the spectral voltage noise density was determined with a spectrum analyzer
(Hewlett Packard, model 3589A). By dividing by the DC voltage we obtain
the relative intensity noise shown in fig. 2.10(a). At low frequencies, 1/f -
noise and the power line frequency and its harmonics dominate. Peaks at
intermediate frequencies are probably due to the switch mode power supply
of the Nd:YAG laser, or due to relaxation oscillations. At high frequencies
the noise becomes flat and reaches the theoretical shot noise of the pho-
tocurrent determined from the DC output voltage. This does not mean
that the laser operates shot noise limited at these frequencies, because only
a tiny fraction (about 15 µW) of the total beam power was used for this
measurement. Since the relative shot noise scales with the measured power
P as 1/

√
P , the sensitivity could be improved by using photodiodes which

respond linearly up to higher powers P .
From the exponential energy growth of equation (2.31) the energy e-

folding time τ can be obtained as a characteristic heating time constant,
see fig. 2.10(b). If an oscillation frequency of the atom in the dipole trap
would coincide with one of the large peaks of the noise spectrum, a worst
case heating time constant of about 10 s would result. The corresponding
maximum (E = U0/2) heating rate is 〈Ė〉 = 150 µK/s.

Pointing stability

A shift of the center of a harmonic trap is equivalent to a constant force
acting on the atom in the unshifted potential. Fluctuations of the position
of the trap therefore effectively exert a stochastic force which can heat a
trapped atom by inducing a random walk in phase space. Position fluctua-
tions of the dipole trap can be caused by acoustical vibrations of the optical
elements or by pointing instabilities of the laser source.
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Figure 2.10: (a) Spectral density of the relative intensity noise of our
dipole trap laser, SI (continuous line). The dashed line is the noise of
the photodiode amplifier (laser beam blocked), and the dotted line shows
the input and ambient noise of the spectrum analyzer alone (amplifier
switched off). The straight horizontal line indicates the theoretical shot
noise level. (b) Continuous line: Corresponding e-folding time of the en-
ergy of a trapped atom versus its oscillation frequency, calculated after
eq. (2.31). For ν0 > 100 kHz, detection shot noise masks the true intensity
fluctuations (see text). The corresponding e-folding times are therefore
merely lower bounds. Dashed line: Heating times according to intensity
fluctuations deduced from beat signal measurement described on the fol-
lowing pages.
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Figure 2.11: For the measurement of the beam pointing stability, the two
laser beams of the dipole trap are mutually detuned with the AOMs and
are overlapped on a photodiode. The amplitude of the resulting beat signal
is recorded by a spectrum analyzer.

The fluctuations of the trap position ∆x(t) are characterized by the
spectral density of their variance S∆x(ν) in analogy to eq. (2.29), such that

〈(∆x)2〉 =
∫ ∞

0
S∆x(ν) dν. (2.32)

For fluctuation amplitudes which are small compared to the oscillation am-
plitude of the atom, the average heating rate can be derived using the same
methods as for the intensity fluctuations [63, 64]

〈Ė〉 = π3mν4
0S∆x(ν0). (2.33)

Only fluctuations at the oscillation frequency ν0 contribute to the heating
as it is expected for resonant excitation (see sec. 2.4.4).

The spatial stability of the standing wave dipole trap inside the vac-
uum cell is not known. The relative position fluctuations between the two
counter-propagating laser beams, however, have been measured by inter-
fering them on a photodiode [5, 7]. Under the assumption of uncorrelated
fluctuation of the two beams, the position fluctuation of the trap center
can be deduced. As shown in fig. 2.11, the frequencies of the beams were
mutually detuned by 10 MHz using the AOMs. The beams were then over-
lapped and focused down to the same waist which is used in the dipole trap
(w0 = 30 µm). The fast photodiode was connected to a spectrum analyzer
(Hewlett Packard, model 3589A), which was used in “zero span” mode such
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that the amplitude A of the resulting 10 MHz beat signal was obtained as a
time series with a bandwidth equal to the maximum filter (resolution) band-
width of 10 kHz. From a fourier transform of this time series a frequency
spectrum of the relative variance 〈(∆A)2〉/〈A〉2 is obtained.

The amplitude of the 10 MHz beat signal is directly proportional to the
spatial overlap of the two Gaussian beams and to the total beam power.
To distinguish between these two parameters, the measurement was per-
formed first with well overlapped beams, where the influence of position
fluctuations is suppressed, since they produce only a second order effect on
the beat amplitude. A second measurement was performed with only par-
tially overlapped beams to obtain a strong, first order response. As shown
in fig. 2.12(a), the two corresponding spectra differ significantly only for
frequencies below 30 Hz. This would lead to the conclusion that the fluc-
tuations of the beat signal were dominated by pointing instabilities below
that frequency, and by intensity noise above. The directly measured inten-
sity fluctuations of fig. 2.10 are, however, two orders of magnitude smaller.
A possible reason for the larger amplitude of the beat signal is that in this
case the beams were brought to interference after passing the complete opti-
cal setup consisting of the AOMs, telescopes and many mirrors. The optical
elements could, in principle, also convert fluctuations of the beam position
into intensity fluctuations, for example via interference effects or due to dirt
causing position-dependent transmission. In contrast, the intensity fluctua-
tions of fig. 2.10 were recorded in a much simpler measurement by coupling
out a part of the beam close to the laser output.

To calculate the fluctuation of the relative position ∆x of the two laser
beams from the beat signal amplitude A, we write A as interference term or
“overlap integral” of two Gaussian electric field distributions

A(∆x) = E2
0

∫∫
e
−x2+y2

w2
0 e

− (x−∆x)2+y2

w2
0 dx dy (2.34a)

= E2
0

πw2
0

2
e
− (∆x)2

2w2
0 . (2.34b)

For the partial overlap, one beam was displaced by ∆x0 such that the am-
plitude A dropped in half, which corresponds to

∆x0 = w0

√
2 ln 2. (2.35)

By linearization of A(∆x) around ∆x0 and normalization to A(∆x0) we
obtain the position fluctuations δ∆x from the relative amplitude fluctuations
as

δ∆x =
w0√
2 ln 2

δA

A(∆x0)
. (2.36)

By measuring relative fluctuations, we are, for example, insensitive to an
intensity mismatch of the two interfering beams.
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Figure 2.12: (a) Spectral variance of the relative beat signal amplitude
for well overlapped (black curve) and partially overlapped (gray curve)
dipole laser beams. For comparison, the influence of the intensity noise
of fig. 2.10 is shown as dashed curve. (b) Heating rate of trapped atoms
versus oscillation frequency due to the position fluctuations estimated from
(a).
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When we assume that the measured fluctuations of the relative beam
positions are caused by uncorrelated position fluctuations {δ∆x1, δ∆x2} of
the individual beams of equal magnitude, we can estimate these as

δ∆x1,2 = δ∆x/
√

2. (2.37)

The position fluctuations of the trap center the follow as

δ∆xc = (δ∆x1 + δ∆x2)/2 = δ∆x/2. (2.38)

When all fluctuations of the beat signal amplitude are interpreted
as position fluctuations, eq. (2.33) can be used to calculate the corre-
sponding heating rates shown in fig. 2.12(b). For typical radial oscillation
frequencies of ν0 = 1 − 3 kHz, heating rates of 0.2–5 mK/s are predicted.
These values are probably too high, since the storage time of τ = 25 s
(sec. 1.3.2) indicates an upper limit of the heating rate on the order of
U0/τ ≈ 0.05 mK/s. However, the anharmonicity of the radial potential
causes a decrease of the oscillation frequency and the heating rate with
increasing energy of the atom. Therefore it cannot be excluded that the
heating rate in the harmonic part of the potential exceeds the value of U0/τ .

For a more systematic investigation of the pointing stability, one could
obtain an independent measurement of the pointing stability by focusing
one laser beam down to the same waist used in the dipole trap and blocking
half of the beam by a knife edge. The transmitted power is then sensitive
to position fluctuations, and its spectrum could be directly compared to the
pure intensity noise spectrum measured without the knife edge.

The laser itself is probably not the dominating source of the relative beam
pointing instabilities. By analyzing the optical setup, we found that a tilt of
the beam at the output of the laser shifts both interfering dipole trapping
beams into the same direction, producing no relative shift. A possible cause
for the fluctuations are wavefront distortions due to convection and turbulent
mixing of air currents of different temperatures. Such wavefront aberrations
are easily observed in our lab when an expanded, collimated laser beam is
analyzed with a shear plate interferometer (app. B.2) while turbulence is
created by blowing air into the beam.

The fluctuations of the amplitude of the measured beat signal of fig. 2.12
(a) for the case of well-overlapped beams can be interpreted as intensity
fluctuations of the trapping beams. The corresponding fluctuations of the
trap depth would then cause parametric heating. This interpretation yields
the energy e-folding times shown in fig. 2.10 (b) as dashed curve. These
rather short heating times are still compatible with the lifetime of τ = 25 s
as long as the radial oscillation frequency does not coincide with a strong
noise peak of the laser, and the anharmonicity is taken into account.



64 CHAPTER 2. TEMPERATURE MEAS. IN THE DIPOLE TRAP

Optical phase noise

For the operation of the optical conveyor belt, the two counter-propagating
laser beams of our dipole trap are mutually shifted in frequency using AOMs
to move the standing wave pattern (sec. 1.3.3). Any fluctuation of the
relative phase ∆φ of the two driving frequencies therefore directly translates
into a fluctuation of the axial position ∆z of the potential wells, possibly
heating up the atoms.

We measured the differential phase noise of our dual frequency synthe-
sizer that we use to drive the AOMs by heterodyning its suitably attenuated
outputs on a phase detector (Mini-Circuits RPD1). The output voltage of
a phase detector depends on the phase difference between its inputs as

Uout(∆φ) = Upeak cos(∆φ). (2.39)

By setting the synthesizers to slightly different frequencies, Upeak is measured
and the waveform is checked to be sinusoidal. When the synthesizers run at
the same frequency and with a phase difference of 90° such that Uout ≈ 0,
the rms phase noise is

∆φrms =
Uout,rms

Upeak
. (2.40)

Due to the double-pass setup of the AOMs, the optical phase noise is twice
the electronic phase noise, and the position shift of the trap is

∆zrms =
∆φrms

k
. (2.41)

We measured a phase noise of ∆φrms ≈ 10−3 rad with an essentially flat
spectrum from 100 kHz to 1MHz. For an axial oscillation frequency of
ν0 = 380 kHz equation (2.33) predicts a heating rate of 〈Ė〉 ≈ 4 mK/s.

A heating rate of this magnitude is indeed indicated by a comparison of
the lifetime of trapped atoms measured with and without using the AOMs
at otherwise similar trap parameters, see fig. 2.13. When the phase noise
is present, the lifetime drops to a few seconds and the decay becomes non-
exponential. The low initial loss rate is probably due to the low initial
energy of the atoms, which have to be heated up by nearly the full trap
depth U0 before they begin to escape [64]. The lifetime is still longer than
U0/〈Ė〉 ≈ 0.4 s by an order of magnitude. This can be explained by the fact
that once the atom is heated to near U0, its oscillation frequency ν0 drops to
zero due to the anharmonicity of the trapping potential. Since the heating
rate is proportional to ν4

0 , already a moderate reduction of the oscillation
frequency can slow down the heating process by an order of magnitude.

A more quantitative estimate of the heating time is obtained from a
numerical trajectory simulation of the heating process [52]. The equations
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Figure 2.13: Lifetime measurement with (filled circles) and without (hol-
low circles) phase noise at otherwise identical conditions. The full lifetime
data without phase noise is shown in fig. 1.15.

of motion of an atom in the one-dimensional potential

U(z, t) = U0 cos2(k(z −∆z(t))) (2.42)

are solved numerically with the Runge-Kutta method. The position fluc-
tuations of the trap ∆z(t) are modeled as white noise with a bandwidth
of 0–1 MHz. This noise is generated by choosing random numbers which
are Gaussian distributed with an rms amplitude corresponding to the mea-
sured rms phase noise. To fill the required bandwidth, two million random
numbers are drawn for one second of simulated time, and interpolated with
a spline function. According to the sampling theorem, the spectrum then
extends to 1 MHz. The average time it takes the atom to leave its po-
tential well is proportional to 1/∆z2

rms and reaches about one second for
the experimental fluctuation amplitude, in reasonable agreement with the
lifetime.

2.4.4 Heating during transportation

Another technical source of heating is observed when atoms are transported
at certain speeds using the optical conveyor belt [53]. It turns out that the
potential slightly “wobbles” and resonantly or parametrically excites the
atoms.

One of the dipole trap beams leaves the vacuum chamber through the
front face of the glass cell. As this facet is not anti-reflection coated, about
4% of the power per surface is reflected back into the trapping region, see
fig. 2.14. After divergent expansion, this third beam interferes with the two
main laser beams and slightly changes the amplitude and phase of their
interference pattern. When atoms are transported by mutually detuning
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Figure 2.14: A partial reflection of the trapping beam at one of the
vacuum cell windows interferes with the dipole trap. The frequencies are
shown in the laboratory frame of reference.

the trapping beams by ∆ω, both phase and amplitude are modulated at
that frequency. The other vacuum window is much further away from the
trapping region and is anti-reflection coated, therefore the second reflection
is neglected.

In the atomic frame of reference moving with a velocity v = ∆ω/(2k),
the total electric field is the sum of the main standing wave and the weak
third beam,

E(z, t) ∼ 2 cos(ωt) cos(kz) + β cos[(ω −∆ω)t− k′z], (2.43)

where β ¿ 1 denotes the amplitude of the reflected beam in units of the
incident beam amplitude. The trapping potential is obtained as the average
of E(z, t)2 over one optical cycle. With k′ ≈ k and to first order in β we
have

U(z, t) = −U0

(
cos2(kz)[1 + β cos(∆ωt)]− β cos(kz) sin(kz) sin(∆ωt)

)
.

(2.44)
Setting

Ω2
z =

2U0k
2

m
(2.45)

the equation of motion becomes

z̈ + Ω2
z[1 + β cos(∆ωt)]z = −β

Ω2
z

2k
sin(∆ωt). (2.46)

It shows resonant excitation for ∆ω = Ωz due to the driving force on the
right hand side, as well as parametric excitation for ∆ω = 2Ωz due to the
modulation of the spring constant on the left hand side.
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Resonant heating rate

For ∆ω = Ωz, the modulation of the spring constant has no significant effect
for β ¿ 1 and is therefore neglected. A solution of the resonant equation of
motion

z̈ + Ω2
zz =

βΩ2
z

2k
sin(Ωzt) (2.47)

with z(0) = 0 is

z(t) = −βΩz

4k
t cos(Ωzt). (2.48)

Since the amplitude of oscillation grows linearly with time, the energy in-
creases quadratically and the heating rate is not constant. We define a
characteristic resonant heating time tres as the time needed to increase the
atomic energy from zero to U0,

tres =
4

βΩz
. (2.49)

Parametric heating rate

For ∆ω = 2Ωz, the driving force of eq. (2.46) is neglected. To estimate
the energy gain of the oscillating atom, we write the parametric equation of
motion

z̈ + Ω2
z[1 + β sin(2Ωzt)]z = 0 (2.50)

such that the modulation appears as an external force,

mz̈ + mΩ2
zz = −mΩ2

zβz sin(2Ωzt) (2.51a)
= Fext. (2.51b)

For small β, the oscillatory motion is nearly sinusoidal and its amplitude
grows so slowly that it is approximately constant over one oscillation period,

z(t) = z0 cos(Ωzt). (2.52)

The heating rate is calculated as the power P (t) = Fext(t)ż(t) delivered by
the external force, averaged over one oscillation period,

Ė =
βΩz

2
E. (2.53)

Since in this case the energy grows exponentially, we define the characteristic
timescale by the e-folding time

tpara =
2

βΩz
. (2.54)
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To estimate the relative amplitude β of the third beam, its expanded ra-
dius wexp at the trap position is calculated from the known beam parameters
(1.43). Note that the reflections off both surfaces of the glass cell interfere,
such that the total reflected power can range from zero to 16% and equals
8% only in average. We therefore have

β =
w0

wexp

√
0.08 (2.55a)

≈ 0.012. (2.55b)

The characteristic heating times

tres = 180 µs (2.56a)
tpara = 90 µs (2.56b)

result in maximum heating rates on the order of

Ėres ≈ U0

tres
≈ 8 K/s (2.57a)

Ėpara ≈ U0

tpara
≈ 16 K/s. (2.57b)

These heating rates occur only as long as the excitation is exactly resonant
with the oscillatory motion. Any frequency deviation will dephase the oscil-
lation and stop the heating process, be it due to the anharmonicity of the
potential or due to the reduction of the trap depth as the atom is transported
further away from the focus of the dipole trap.

2.4.5 Measurement of the axial oscillation frequency

We used this heating mechanisms to measure the axial oscillation frequency
by transporting the atoms for some time with fixed mutual detuning ∆ω
of the two dipole trap beams, and observing an increase of the oscillation
amplitude. For this purpose, we accelerate the atoms by a suitable short
frequency ramp to a velocity v = ∆ω/(2k) and transport them over 2 mm
with constant velocity. After deceleration, the atoms are brought back to
the position of the MOT by a similar transport in the opposite direction.
As we transport the atom away from the focus of the dipole trap, the trap
depth, and thus the oscillation frequency, decreases. We therefore fix the
transportation distance to 2 mm to limit the reduction of the oscillation
frequency to 20%. Further, this sweep of the oscillation frequency during
the excitation smears out the resonance linewidth and thus prevents us from
missing the possibly very narrow resonances when sampling the excitation
frequency ∆ω.

The measurement procedure is shown in fig. 2.15. After transferring a
known number of atoms into the dipole trap, they are transported using
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Figure 2.15: Measurement procedure for the axial oscillation frequency.
A single atom is loaded from the MOT into the dipole trap. It is then
transported forth and back using trapezoidal frequency ramps. After a
temporary reduction of the trap depth (not shown), the survival of the
atom is detected by recapturing it back into the MOT.

trapezoidal frequency ramps to expose them to the resonant and parametric
heating at ∆ω. Because of the anharmonicity of the trapping potential, this
excitation does not necessarily lead to a loss of atoms, because they shift
out of resonance before leaving the trap. To decide whether an atom has
been resonantly heated or not, we reduce the depth of the dipole trap within
10 ms adiabatically to 10% of its initial value U0. This threshold has been
optimized to keep most of the atoms trapped in the absence of resonant
heating, but to lose a substantial fraction of heated atoms. Any remaining
atom is recaptured into the MOT and counted via its fluorescence.

The survival probability is obtained from about 100 repetitions with on
average one atom per repetition. Fig. 2.16 shows the survival probability
versus the detuning ∆ω. The clearly visible dips at ∆ω/(2π) = 330± 5 kHz
and ∆ω/(2π) = 660± 15 kHz correspond to the direct and parametric reso-
nance. Since Ωz decreases already by 20% over the transportation distance
of 2 mm, the measured resonance frequency could be systematically too low
by about 10%. In this view it agrees reasonably well with the theoretical ex-
pectation of Ωz = 410 kHz. The remaining discrepancy could be caused by
any loss of trapping laser intensity at the focus, e. g. due to wavefront aber-
rations, or by reduced interference contrast, e. g. due to imperfect overlap
of the two counterpropagating beams or imperfectly matched polarizations.
For example, a lateral shift of one trapping beam by 20 µm reduces the trap
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Figure 2.16: Measured survival probability as a function of the detuning
∆ω used for transportation. The curve is a fitted sum of two Gaussians.

depth from 1.5 mK to 1.2 mK. When we assume 100% interference contrast,
the trap depth at the focus would be estimated to be around 1.0–1.2 mK,
depending on the systematic deviation of the measured resonance frequency.

Alternative methods to measure the (axial) oscillation frequency include
parametric excitation by modulating the dipole trap depth at 2Ωz using the
AOMs, and detection of motional sidebands using Raman spectroscopy [65].

We can estimate the average heating rate during the resonant excitation
from the energy gain of the atoms. During the adiabatic lowering of the trap
depth to 0.1U0 all atoms with E0 > 0.35U0 are lost, see fig. 2.5. This leads
to a survival probability of about 90% off resonance. From the cumulative
energy distribution (fig. 2.8) we see that the survival probability of 60%
observed on resonance corresponds to a loss of atoms with E0 > 0.1U0.
These atoms must have gained an energy of 0.25U0 during the resonant
excitation period of 20 ms to reach the escape energy of 0.35U0. From these
values, a time-averaged heating rate of about 16 mK/s is obtained. In the
same way a parametric heating rate of about 13 mK/s is found. These
heating rates are much smaller than the maximum theoretical heating rates
(2.57), which supports the conjecture that the exact resonance condition is
fulfilled only for a short time before the oscillation dephases.

2.4.6 Comparison of heating rates

The various heating rates are summarized in table 2.1. The fundamental
heating rates, i. e. recoil and dipole force fluctuation heating, are negligible.
When transportation is not used, the most severe sources of heating are
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Heating effect Heating rate Comments
recoil heating 6× 10−4 mK/s calc.
dipole force fluct. (axial) 10−8 mK/s calc.
laser intensity fluct. (radial) up to 0.07 mK/s calc. depends strongly

on Ωrad

laser intensity fluct. (axial) up to 0.15 mK/s calc. depends strongly
on Ωz

laser pointing stability (radial) up to 5 mK/s calc. interpretation of
pointing stability
measurement unclear

< 0.05 mK/s obs. from lifetime
(in harmonic
approximation)

optical phase noise (axial) 4 mK/s calc. in harmonic
approximation

1 mK/s calc. average, from
numerical simulation

0.4 mK/s obs. average, from lifetime
resonant excitation (axial) 8000 mK/s calc. only in
during transportation exact resonance

10 mK/s obs. averaged value
parametric excitation (axial) 16000 mK/s calc. only in
during transportation exact resonance

10 mK/s obs. averaged value

Table 2.1: Summary of the heating mechanisms in the dipole trap and
the corresponding heating rates.

laser intensity noise and pointing instabilities. We hope that this technical
noise is significantly reduced when our old arc-lamp pumped Nd:YAG laser
is replaced with a newly bought, diode-pumped Yb:YAG laser.

When the optical conveyor belt is used to transport atoms, the strong
resonant and parametric heating is usually avoided by choosing the
transportation parameters such that the excitation frequency ∆ω always
stays below the axial oscillation frequency Ωz. The heating by optical
phase noise has not, up to the present stage of the experiment, impaired
our measurements, since all our measurement procedures take less than
one second. It might, however, become important when we want to cool
the atom to the oscillatory ground state, because at Ωz/(2π) = 380 kHz
it increases the oscillatory quantum number by 0.5/ms. The phase noise
could be reduced by replacing the dual frequency synthesizer with two low
phase noise frequency generators.

Additional heating occurs when the optical conveyor belt accelerates and
decelerates the atoms because the full acceleration is applied suddenly. This
heating effect has been analyzed in detail by S. Kuhr [5], and it can be
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significant already at medium accelerations. The obvious remedy is to start
the acceleration slowly enough to keep the transport adiabatic with respect
to the axial oscillation frequency of the atoms. This could be achieved e. g.
by using frequency generators with an analogue frequency modulation input.

2.5 Temperature measurement by optical imaging

The high-resolution optical imaging system and the intensified CCD camera
(sec. 1.1.5) enable us to determine the temperature of the atoms in the dipole
trap from their spatial distribution. Since the photon scattering rate in the
dipole trap is very low, the atoms have to be illuminated with near-resonant
light for observation. The strong heating due to scattering of photons has to
be counteracted by simultaneous near-resonant laser cooling. Hence, using
this method, we do not measure the temperature of the atoms before illu-
mination but rather the equilibrium temperature for laser cooling of atoms
in the dipole trap. While the method of adiabatic lowering can measure
arbitrary temperatures and allows to observe for example external heating
effects, the measurement by optical imaging could be especially useful to
evaluate and optimize laser cooling in the dipole trap. It could help us to
achieve a lower initial temperature of the atoms after the transfer from the
MOT into the dipole trap and therefore facilitate further cooling (sec. 4.1.1).
Furthermore atomic coherence times would be improved.

2.5.1 Theory

The atoms in our dipole trap are modeled as an ensemble in thermal equi-
librium at a temperature T in a three-dimensional harmonic potential. In
this approximation, the three degrees of freedom decouple, and the energy of
each one-dimensional motion is Boltzmann-distributed with the same tem-
perature T ,

pB(E) =
1

kBT
e−E/(kBT ). (2.58)

For a fixed energy E, the probability to find an atom at position x in a
potential U(x) = mΩ2x2/2 is given by

pE(x) =
1

π
√

x2
0 − x2

(2.59a)

x0 =

√
2E

mΩ2
(turning point), (2.59b)

|x| ≤ x0.
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The spatial distribution of a thermal atom pth(x) is the integral of pE(x)
over all energies E weighted with the Boltzmann factor,

pth(x) =
∫ ∞

0
pE(x)pB(E) dE (2.60a)

=

√
mΩ2

2πkBT
e−mΩ2x2/(2kBT ). (2.60b)

The temperature is thus obtained from the width of the spatial distribution
∼ exp(−x2/(2σ2)) and the oscillation frequency as

T =
mΩ2σ2

kB
. (2.61)

2.5.2 Continuous illumination

While a near-resonant illumination already occurs when MOT and dipole
trap are operated simultaneously to transfer atoms between the two traps,
first attempts to take images in this configuration were only partly suc-
cessful. During the exposure time of at least 100 ms required to obtain
useful images, the atoms tend to jump between different potential wells of
the standing wave such that a single atom appears on several locations or
is smeared out completely. Good illumination parameters have been found
only after several technical improvements:

The MOT laser beams were carefully centered onto the MOT. For this
purpose, each pair of counterpropagating cooling beams was scanned in the
transverse plane to maximize the single atom fluorescence rate.

The intensity of counterpropagating cooling beams was made equal to
about 10% in order to balance the radiation pressure on the atoms. This
was achieved by keeping the cooling laser beam slightly convergent, such
that after its retroreflection eventual power losses due to the glass cell and
optical components are compensated by a smaller beam diameter.

The polarization of the cooling beams was checked to contain at least
99.5% of their power in the correct circularity to guarantee a pure σ+ − σ−

configuration.
The atoms are illuminated without the MOT quadrupole magnetic field

present, and residual fields are compensated to 1 µT (10 mG). Intensity
and detuning of the cooling laser as well as the depth of the dipole trap
are optimized to prevent the atom from hopping between different potential
wells or leaving the trap. Typical illumination parameters are: detuning of
the cooling laser: ∆ = −2π 5 MHz, intensity of the cooling laser: 2 I0 per
beam, dipole trap depth: U0/kB = 0.7 mK.

In this way, individual atoms have been continuously observed in the
dipole trap over one minute, probably limited only by collisions with the
background gas [40]. With an exposure time of 1 s, images with good signal-
to-noise ratio can be obtained, see fig. 2.17.
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Figure 2.17: (a) CCD image of two atoms in the MOT. (b) CCD image
of two atoms in the dipole trap, illuminated by the cooling and repumping
beams of the MOT, but without magnetic field. In the horizontal direction,
each atom is confined to one potential well (λ/2) of the dipole potential
and thus appears as a vertically elongated spot. One photon detected by
the image intensifier corresponds on average to about 350 counts.

2.5.3 Extracting the spatial distribution

To extract the spatial distribution of the atoms from the images, we have to
ensure that the visible fluorescence intensity is proportional to the density of
the atomic cloud, i. e. that the fluorescence rate of the atom is independent
of its position. In principle, the light shift of the transitions in the dipole
trap changes the effective detuning of the illuminating laser, and thus the
scattering rate of the atom, depending on its position in the trap. Simi-
larly, the Doppler shift influences the scattering rate depending on the local
velocity. Yet, the temperature of our atoms is on the order of the Doppler
temperature TD. Here, the Doppler shift is on the order of vD/λ = 0.1 MHz,
which is small compared to the natural linewidth Γ and can be neglected.
Sub-Doppler cooling effects, however, could lead to a larger sensitivity of the
scattering rate on the atomic velocity than calculated from the Lorentzian
lineshape, which is valid only for the two-level case. The systematic error
caused by this effect could be quantified only by a full quantum-mechanical
treatment of the sub-doppler cooling mechanisms in the dipole trap [66].

The light shift of the ground state blue-detunes the cooling transition
and thus adds to the red-detuning of the cooling laser. The effective total
detuning is about −13 Γ in the trap center. At the turning point of the
atomic motion, the light shift is reduced by about Γ for an atom at about
Doppler temperature. In the low-intensity limit, this change in light shift
increases the scattering rate by about 20% in the outer regions of the atomic
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Figure 2.18: Line spread functions in terms of object-plane coordinates.
Solid line: Gaussian line spread function with a width of σx = 1.51 µm
extracted from the images. Dashed line: Theoretical line spread function
of an aberration-free imaging system with a NA of 0.29

cloud, which leads to an increase of its apparent size. The temperature of
the cloud might therefore be slightly over-estimated by this method.

Spatial resolution of the image

For the extraction of the spatial distribution, the blur due to the finite res-
olution of the imaging system has to be taken into account. The action of
the imaging process on the spatial distribution can be modeled as a convolu-
tion with the point spread function of the optical system. The point spread
function is defined as the intensity distribution at the image plane obtained
for an ideal point source at the object plane.

The point spread function can be calculated from the numerical aperture
(NA) and the aberrations of the optical system. In the absence of aberrations
and for a circular, homogeneously illuminated aperture, the point spread
function is given by the Airy-disc [67]

p(r) =
(

2J1(u)
u

)2

(2.62)

u =
2πrNA

λ
,

r =
√

x2 + y2,

where J1 is the first order Bessel function. When the object side NA is used
in eq. 2.62, p(r) is directly obtained in terms of object plane coordinates
{x, y} and determines the theoretical resolution.
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Figure 2.19: Image of one atom in the dipole trap with horizontally
and vertically integrated intensity distributions and with Gaussian fits.
The horizontal width of the image is determined by the resolution of the
imaging system. From the vertical direction information about the radial
distribution of the atoms in the dipole trap can be obtained.

The actual resolution can be extracted from the images of single atoms
in the dipole trap, since in axial direction the atom is confined to a small
fraction of the width of a potential well (λ/2), which is much below our
optical resolution. The horizontal width of the image in fig. 2.19 is therefore
determined by the so called line spread function. The line spread function is
the intensity distribution at the image plane obtained for an ideal straight
line source at the object plane. It is given by the integral of the point spread
function along the axis of the line. The theoretical line spread function terms
of object plane coordinates is shown in fig. 2.18.

To obtain the intensity distribution along the dipole trap axis, we ver-
tically integrate the intensity in fig. 2.19 after suitably clipping the image
to exclude background noise (without losing fluorescence counts). The hor-
izontal intensity distribution is fitted with a Gaussian function

I(x) = e
− (x−x0)2

2σ2
x , (2.63)

and from 32 images an average width of σx = 1.51± 0.02 µm is obtained.
Compared to the theoretical line spread function, this function is broader

by a factor of 2.6, see fig. 2.18. There are several reasons for this discrepancy:
The image intensifier has a finite resolution determined by its own point

spread function. A single photoelectron from the photocathode produces
a light spot on the CCD chip with an intensity distribution which is ap-
proximately a Gaussian function with σ ≈ 1 pixel ≈ 1 µm at the object
plane [68]. The relative importance of the blur due to the image intensi-
fier can be reduced by increasing the optical magnification. In this way,
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the effective resolution of our imaging system could probably be enhanced
significantly.

The optical system easily introduces some aberrations due to a slight dis-
placement or tilt of the components. The diffraction-limited performance of
the objective lens tested in appendix B was only achieved after disassembling
and reassembling the lens system several times and carefully adjusting its
position on an xyz-stage for minimum wavefront distortion. This procedure
was not performed with the objective used for the CCD camera.

Finally, the radial extent of the atomic cloud is comparable to the
depth of focus of about 6 µm, which could prevent focussing the entire cloud.

When we assume that the actual point spread function is rotationally
symmetric, we can use this function to deconvolute the vertical intensity
distribution. In the case of aberrations such as astigmatism or coma, this
assumption may not be valid, but presently we have no means to check this
issue experimentally. When the second, vertical dipole trap (see sec. 4.2.3)
will be installed, however, the atoms can be confined to a small fraction of
λ/2 in the two dimensions of the object plane. This effective point source
could then be used to obtain the full, two-dimensional point spread function.

The vertical (radial) intensity distribution of the images also fits well
to a Gaussian function with an average width of σy = 3.32 ± 0.04 µm.
The deconvolution with the one-dimensional point spread function is quite
simple, since the convolution of one Gaussian function with another Gaus-
sian function results again in a Gaussian function, and the widths σi add
quadratically,

∫ ∞

−∞
e
− (x−x′)2

2σ2
1 e

− x′2
2σ2

2 dx′ = e
− x2

2(σ2
1
+σ2

2
) . (2.64)

The radial distribution of the atoms is thus a Gaussian with a width of

σrad =
√

σ2
y − σ2

x (2.65)

= 2.96± 0.05 µm. (2.66)

Radial oscillation frequency

The above images were taken with different dipole trap parameters than
those of equation (1.43), since the focus of the trapping beams has been
reduced to about 19 µm. To find the precise value of the radial oscillation
frequency, an excitation spectrum of the radial motion was recorded by
modulating the trap depth and observing an increase of the temperature of
the atoms.

The procedure is similar to the one used in sec. 2.4.5. After loading
the atoms into the dipole trap, we sinusoidally modulate the power of the
trapping beams with a frequency ωexc using the AOMs. A modulation depth
of ±10% of the trap depth over 350 ms ensures a significant parametric
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Figure 2.20: Determination of the radial oscillation frequency. Shown is
the measured survival probability after parametric excitation at ωexc and
adiabatic lowering.

excitation. This heating is detected as an increased loss of atoms after
adiabatically lowering the trap depth to 5%.

The spectrum is shown in fig. 2.20. A large fraction of atoms is heated
out of the trap around ωexc = 2π 7.2 kHz. The asymmetric line shape
consisting of two individual resonances was reproduced in three more mea-
surements, and can be explained by an ellipticity of the radial potential of
the dipole trap. Since we found that the frequencies of the two resonances
slowly decreases and their separation increases with time after an alignment
of the dipole trap, we believe that drifts of the positions of the two counter-
propagating laser beams lead to a mutual lateral displacement. An initial
ellipticity could also be caused by elliptic or astigmatic laser beams.

Since the orientation of this possible ellipticity relative to the direction
of observation is not known, I use a mean resonant excitation frequency of
ωexc = 2π (7.2 ± 0.4) kHz, leading to Ωrad = 2π (3.6 ± 0.2) kHz. In order
to reduce the uncertainty and temporal variation of this value, one could
improve the mechanical stability of the optical setup, or use an active beam
stabilization technique.

2.5.4 Results

From the width of the radial distribution and the radial oscillation frequency,
a temperature of 71 ± 8 µK is obtained using equation (2.61). The quoted
statistical error is mainly due to the uncertainty of the oscillation frequency.
The magnitude of the systematic errors is unknown at the moment, but
could be experimentally or theoretically quantified in further investigations,
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as indicated in this section.
The temperature itself agrees well with the result from the method of

adiabatic lowering of section 2.3. Its value slightly below the Doppler tem-
perature of 125 µK indicates weak sub-Doppler cooling effects during the
continuous illumination in the dipole trap. In the future, the temperature
measurement by optical imaging can hopefully be employed in the optimiza-
tion of polarization-gradient cooling in the dipole trap, see section 4.1.
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Chapter 3

High finesse cavity setup

A controlled coherent interaction between neutral atoms can be realized
by simultaneously coupling them to one mode of the electromagnetic field.
When the distance between the atoms is larger than the wavelength, the
direct dipole-dipole interaction leads only to a very weak coupling. There-
fore, the electromagnetic field must be confined and resonantly enhanced in
a cavity. An excited atom deposits its energy as a photon in the cavity mode
and reabsorbs the photon at a coupling rate g, similar to the exchange of
energy between two coupled pendula. In the same picture, damping occurs
due to losses by leakage and absorption of energy from the cavity field (rate
κ), as well as due to spontaneous emission of the atom into other modes of
the electromagnetic field (rate Γ). In the so called “strong coupling” regime,
the coupling rate dominates the loss rates, g2 À κΓ.

By placing two atoms into the cavity mode, the cavity field emitted by
the first atom can change the state of the second atom depending on the
state of the first atom. Only in the strong coupling regime this process
works reliably enough to use this conditional process for quantum gates.
Using microwave transitions in Rydberg atoms, the strong coupling regime
has been reached with superconducting cavities [69, 70], and fundamental
quantum gates have been demonstrated [10]. In the optical region, the
strong coupling regime has been reached [12, 13], but the controlled delivery
of two atoms into the very small mode cavity volumes has yet to be attained.

We want to use our dipole trap to transport atoms into an optical cavity,
since the preparation of a desired number of atoms as well as their trans-
portation by the optical conveyor belt have already been demonstrated. A
simple quantum gate could be operated by loading two atoms from the MOT
into the dipole trap, preparing them in suitable quantum states (see sec. 4.2)
and transporting them into the cavity. After the quantum gate is performed
using their simultaneous coupling to the cavity mode, the atoms are trans-
ported back into the observation region and their final quantum states are
read out.

81
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To reach the regime of strong coupling for a given atomic transition, the
coupling rate g is maximized while the loss rate κ is kept to a minimum.
Since g can be viewed as the single-photon Rabi frequency, it is proportional
to the electric field strength which a single photon in the cavity mode cre-
ates at the position of the atom. Only by reducing the mode volume V ,
the electromagnetic energy density and thus g can be increased. For this
purpose, small optical resonators with very short lengths of 10 − 100 µm
are commonly used. The cavity loss rate κ is kept small by using highly re-
flective mirrors. The mathematical relations between g, κ and all the other
cavity parameters can be found, for example, in [71].

3.1 Mechanical design

Our cavity consists of two small mirrors mounted onto an aluminum holder,
see fig. 3.1. The dipole trap laser beams passing between the mirrors re-
quire a certain minimum mirror distance. In order to avoid heating of the
cavity mirrors, this spacing should be significantly larger than the waist of
the dipole trap laser beam. If too much laser power hits the mirrors, they
thermally expand as the dipole trap is switched on, causing the highly sen-
sitive cavity stabilization to unlock. The cavity will be placed as closely as
possible to the MOT to limit the transportation distance to about 5 mm.
The cylindric-conical form of the mirrors was chosen to allow the MOT laser
beams to pass close to the cavity mode.

3.1.1 Mirrors

The mirrors consist of BK7 glass substrates, which have been superpolished
and coated with a special, ultrahigh reflectivity coating (Research Electro
Optics, Boulder). The reflectivity R is specified to greater than 99.997% at
852 nm, leading to a finesse of F = π

√
R/(1 − R) > 105. The radius of

curvature of 1 cm and a cavity length l of 92 µm sustain a cavity TEM00

mode with a waist radius of w0 = 13.55 µm, and a radius of w = 13.58 µm
at the mirror surface. Diffraction losses are kept below 10−6 as long as the
Gaussian mode is located more than 2.63 w = 36 µm away from the edge of
the mirror. In practice, the mirrors are often chipped and scratched close to
the edge, which is why we chose a diameter of the mirror surface of 1 mm.
Due to the curvature of the surface, the mirror distance at the edges of the
two mirrors is 25 µm smaller than the cavity length measured between the
mirror centers.

When assembling a cavity, the mirrors are visually inspected under a
microscope and cleaned by various methods. The reflectivity of the mirrors
is characterized by measuring the optical ring-down time in a test cavity.
Two selected mirrors are then glued onto the shear piezoelectric actuators
on the aluminum holder by means of an alignment groove. Details of these
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Figure 3.1: Schematic view of the cavity inside the vacuum cell.
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Figure 3.2: Design of the adjustable cavity holder. Part A is made of an
UHV-compatible aluminum alloy (AlZnMgCu0.5), the components of the
cardan joint B, C and D are made of stainless steel.

procedures are described in [14, 72]. The present cavity has the following
parameters:

length: l = 92 µm,
finesse: F = 118000,
free spectral range FSR = 1.6 THz,
linewidth ∆νFWHM = 14 MHz.

3.1.2 Holder

Since the position of the dipole trapping beams is fixed by the MOT and
apertures outside of the vacuum chamber, the cavity mode and thus the
whole cavity has to be aligned onto the dipole trap. For this purpose,
the holder is made adjustable with a three-axis motional vacuum feed-
through, which consists of a linear manipulator (Thermionics Northwest,
model FLMM133) held in an xy-stage (model XY-B450/T275-1.39). It con-
nects via a cardan joint to the cavity holder, which rests inside the glass cell
on a short bellows, see fig. 3.2. The bellows serves as a pivot to reduce the
motion of the cavity and thus to increase the precision of the position ad-
justment in the sensitive directions perpendicular to the dipole trap. Coarse
control of the position along the trap axis is possible by sliding the bellows on
its support plate. Additionally, the bellows acts as a UHV-compatible spring
for vibration isolation of the cavity. When the cardan joint is slightly lu-
bricated with UHV grease (Fomblin), the adjustment is smooth and reaches
the required precision of a few µm.

The cavity holder is designed to provide mechanical rigidity and high
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Figure 3.3: Photograph of the assembled cavity and holder in the glass
cell. This picture was taken with a spare glass cell in an auxiliary vacuum
chamber, which is a copy of our main experimental chamber.

self-resonance frequencies, while at the same time leaving maximum space
for MOT and dipole laser beams. Additionally, it guides the wires from the
piezoelectric actuators through the narrow glass cell to an electrical feed-
through. Fig. 3.3 shows an assembled cavity in the glass cell.

3.2 Cavity stabilization setup

The planned experiments on atom-cavity interactions require the resonance
frequency of the cavity to be stabilized on, or near to, an atomic transition
frequency. Due to the high finesse of F ≈ 105, this task is quite demanding:
Since a shift of one free spectral range in frequency corresponds to a change
in the length l of the resonator of λ/2, a frequency stability of one tenth of
the resonance width requires a stabilization of l to ±200 fm.

For this purpose, the cavity is designed for highest passive stability by
mounting small, light weight mirrors on a stiff support, by applying means
for vibration isolation and by utilizing the acoustic isolation provided by the
ultra-high vacuum. Reaching the required short- and long-term stability,
however, requires an additional active stabilization by an electronic servo
loop (“lock”). The resonance frequency of the cavity is compared against a
stable laser source, and the piezoelectric actuators are used to compensate
fluctuations in the length l in order to keep the cavity resonant with the
laser light.

3.2.1 Lock scheme

The incident power of the lock laser is enhanced in the cavity by a factor
in the order of the finesse. Thus even the smallest usable lock laser power
of 10-100 nW results in an intra-cavity circulating power which completely
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Figure 3.4: Scheme used for frequency stabilization of the high-finesse cav-
ity. LO: local oscillator, EOM: electro-optic phase modulator, PD: photo-
diode, PS: RF power splitter, APD: avalanche photodiode, AOM: acousto-
optic modulator. The actual double-pass configuration of the AOMs is not
shown.

saturates a resonant atomic transition. Therefore we operate a lock laser
at 836 nm, which is detuned far enough to keep the spontaneous scattering
rate of an atom in the cavity at about 10/s, comparable to the scattering
rate from the dipole trap laser. Yet, the coating of the cavity mirrors still
provides the same high finesse necessary for stabilization at this wavelength.

The far detuned lock laser, however, must itself be stabilized relative
to the atomic transition. The residual fluctuations and drifts of the fre-
quency difference should be small compared to the linewidth of the cavity
of typically a few MHz. Since there is no easily accessible absolute (atomic)
frequency standard at the wavelength of the lock laser, we use an auxiliary
cavity of moderate finesse to transfer the frequency stability of our cooling
laser at 852 nm to 836 nm. As shown in fig. 3.4, the transfer cavity is locked
to the cooling laser, and the lock laser is simultaneously stabilized onto a
different longitudinal mode of the transfer cavity. For the detection of an
atom in the cavity, a resonant probe laser at 852 nm is needed. This beam is
derived from the cooling laser. AOM 2 allows us to fine-tune the resonance
of the high-finesse cavity over the probe laser, whereas AOM 1 tunes the
probe laser frequency and the high-finesse cavity simultaneously over the
atomic resonance. This scheme for cavity stabilization is similar to the one
described by H. J. Kimble et al. in [73].
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Figure 3.5: Pound-Drever-Hall method of generating an error signal of
the frequency deviation of a laser beam from a cavity resonance.

3.2.2 Pound-Drever-Hall locking method

The electronic servo circuits of fig. 3.4 derive their error signals by the
Pound-Drever-Hall method [74]. The light reflected from the cavity input
is analyzed for its phase, which varies dispersively when the laser frequency
crosses the cavity resonance. The optical phase of the main (carrier) fre-
quency is compared to the pase of two sidebands, which are produced by
phase modulation of the incident laser beam with a local oscillator, see
fig. 3.5. As long as the sidebands stay off resonance, they serve as a stable
phase reference for the carrier, since the phase difference is insensitive to
fluctuations of the optical path length between laser, cavity and photodiode.

The error signal is obtained by interfering carrier and sidebands on a fast
photodiode and extracting the frequency component at the local oscillator
frequency with a mixer. A servo amplifier then feeds back the error signal
either to the cavity or to the laser, depending on which part should be
stabilized to the other.

Implementation

For the stabilization of the transfer cavity to the cooling laser, the laser beam
is phase modulated with an EOM (Linos Photonics, model LM0202PHAS).
For this purpose, the signal from a 20 MHz local oscillator (see app. C.2.1)
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is amplified to 1 W and is fed into a resonance circuit consisting of the EOM
as capacitor and a small coil as inductor. The beam reflected off the transfer
cavity is detected with a fast photodiode (Newport, model 818-BB-21A). A
mixer circuit (see app. C.2.2) extracts the error signal, which is amplified
and fed back to the piezoelectric actuator of the transfer cavity.

The lock laser is a diode laser similar to our other diode lasers (see
sec. 1.1.4). It is phase modulated by a modulation of the laser diode current.
The current modulation actually produces a mixture of phase and amplitude
modulation of the laser beam, which shows up as a slight difference in the
powers of the two sidebands. The parasitic amplitude modulation results in
an offset of the error signal after it is demodulated by the mixer. This offset
voltage is compensated by an adjustable offset voltage at the proportional-
integral servo amplifier. Stabilization of the lock laser onto the transfer
cavity proceeds by feeding the amplified error signal back to the grating and
the current of the diode laser.

The stabilization of the high-finesse cavity onto the lock laser should
use the least possible amount of laser power. Therefore, the reflection off
the cavity is detected with an avalanche photodiode and amplified with a
resonant amplifier circuit, see app. C.2.3. Since our very short high finesse
cavity can have rather large resonance linewidths of a few tens of megahertz,
a high modulation frequency of 86 MHz was chosen to keep the sidebands
off-resonance and to obtain a large capture range of the lock. The error
signal is integrated with a proportional-integral servo amplifier and further
amplified by a fast high-voltage amplifier (FLC Electronics, model A800)
for driving the piezo-electric actuators. A passive notch filter compensates
a strong mechanical resonance of the cavity assembly at 40 kHz [14].

3.2.3 Transfer cavity

When the high-finesse cavity is resonant with the atomic transition, the lock
laser frequency coincides with one of its other longitudinal modes, which are
spaced in frequency by the free spectral range (FSR) of about 1.5 THz.
After the lock laser is coarsely tuned to one of these resonances, it is locked
to the nearest resonance of the transfer cavity. The remaining frequency
gap is bridged with AOM 2 of fig. 3.4. Since the continuous tuning range
of this AOM is about 50 MHz, the free spectral range of the transfer cavity
has to be on the order of 100 MHz such that its modes lie sufficiently dense.
The length of this cavity must therefore be on the order of 1 m.

Our transfer cavity consists of two standard laser mirrors with a radius
of curvature of 2 m at a distance of 1.23 m. The exact length was chosen
such that the frequencies of low order transverse modes does not coincide
with the TEM00 mode. The mirrors are mounted on a quartz tube of low
thermal expansion and insulated from vibrations by insulating foam and
a brass tube. The finesse of the cavity is about 250, the linewidth about
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Figure 3.6: Transmission of the probe laser at 852 nm (photodiode volt-
age) through the high-finesse cavity, which is scanned using AOM 2 of
fig. 3.4. The visible deviation from a Lorentzian lineshape is probably due
to the averaging of 64 tracks in combination with residual frequency jitter.

480 kHz [72].

3.2.4 Present performance and future optimizations

The whole stabilization setup is able to lock the high-finesse cavity to the
atomic resonance over a timescale of one hour, using 200 nW of lock laser
power. In fig. 3.6 the cavity is scanned while in lock by ramping the fre-
quency of AOM 2 of fig. 3.4. The lock is stable against minor disturbances
like ambient noise and slight vibration of the optical table. Residual rela-
tive frequency fluctuations have been estimated from the rms-amplitudes of
the error signals when the system is locked. While the fluctuations of the
transfer cavity relative to the cooling laser and the lock laser relative to the
transfer cavity are both below 50 kHz, the residual frequency fluctuation of
the high-finesse cavity is about 2 MHz or 13% of the linewidth.

The present performance of the cavity might be sufficient to detect single
atoms within the mode volume by observing a change in probe laser trans-
mission. Numerical simulation of a scheme to entangle two atoms via the
cavity [8] indicate that at least a finesse on the order of 106 is required [75].
The main task is of course to obtain suitable mirrors, but also some aspects
of the stabilization have to be addressed due to the increased finesse.

The residual length fluctuations of the high-finesse cavity have to be
reduced inversely proportional to the finesse. An increase in gain of the
feedback loop would require a higher unity gain frequency, which is however
limited by a number of mechanical resonances at 60−100 kHz. At the same
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time, the tolerable lock laser power is reduced due to the higher resonant
enhancement within the cavity. With an accordingly low signal-to-noise
ratio of the error signal, an increased loop gain could even be detrimental.
A good approach would be to improve the passive stability by avoiding
vibrations as well as by reducing the electronic interference which presently
couples somewhere into our feedback loop.

Preliminary tests have further shown that the dipole trap laser passing
between the mirrors unlocks the high-finesse cavity servo. Probably, a tiny
fraction of the laser beam hits the mirrors and induces a thermal change
of the cavity resonance of about 104 linewidths. Possible solutions are to
ramp the dipole trap power slowly enough that the servo loop can track
the drift, or to add a suitable “feed-forward” signal to the servo voltage to
precompensate the expected frequency shift.



Chapter 4

Outlook

4.1 Cooling trapped atoms

Further cooling of the atoms in our dipole trap would be beneficial for fu-
ture experiments in may aspects. Cooling counteracts heating effects and
thus enables prolonged storage times, more complicated transportation se-
quences and higher transportation efficiencies. Shallower dipole traps can
be used, with reduced scattering rates and light shifts. Cooling also im-
proves the radial localization of the atoms, which is important when they
are addressed via magnetic field gradients, and when they are inserted into
a cavity (sec. 4.3).

4.1.1 Raman cooling

Cooling far below the Doppler temperature is possible by the use of Raman
transitions between the hyperfine ground states of cesium. For this pur-
pose, we have built up a laser system which provides the required Raman
beams [76]. Raman spectra easily resolve the motional sidebands due to
the axial oscillation of the atoms in our dipole trap [65, 77]. Hence, Raman
sideband cooling of the axial motion to the oscillatory ground state should
be possible [78, 79].

We have not been able to resolve the sidebands caused by the slow radial
oscillation. Raman cooling is still possible in this case [80], but does not
reach the ground state.

4.1.2 Other cooling methods

A variant of the Raman cooling method is the degenerate Raman sideband
cooling. It does not need special Raman beams, but uses a magnetic field
and the dipole trap laser itself to provide the Raman transitions. It has been
applied for ground state cooling in optical lattices [81, 82, 83]. A different
cooling method, which uses a pair of blue-detuned Raman beams, works by
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electromagnetically induced transparency [84]. It has been demonstrated to
cool ions to the vibrational ground state of a Paul trap [85].

Polarization gradient cooling in near-resonant optical molasses reaches
substantial sub-Doppler temperatures down to 1 µK [86, 87], but the state-
dependent light shifts in our dipole trap could lead to greatly reduced cool-
ing efficiencies [66]. A difference between the light shifts of the hyperfine
ground states could be used to obtain cooling by a Sisyphus-like cycle using
microwave transitions [88]. This differential light shift is very small in our
linearly-polarized dipole trap, but it is much larger in a circularly polarized
trap.

Finally there are proposals to use the coupling to a high-finesse cavity to
cool atoms below the Doppler limit [89, 90]. A first experimental demonstra-
tion used single Rubidium atoms in a strongly coupled optical high-finesse
cavity [91].

4.2 Quantum register

The observation of chains of optically resolved atoms in the dipole trap [40]
suggests that they could be used as a quantum register for the implementa-
tion of quantum logic gates. Elementary quantum gates have been demon-
strated with strings of ions in Paul traps [2, 3].

4.2.1 Atoms as qubits

The hyperfine ground states of a cesium atom can be used to store one bit of
quantum information. A logic zero, | 0 〉, could for example be coded as F =
4 and a logic one, | 1 〉, as F = 3. Arbitrary superposition states α| 0 〉+β| 1 〉
are then conveniently produced by microwave pulses acting on the 9.2 GHz
hyperfine transition, as was demonstrated in our experiment [7]. Coherence
times in the order of 10 ms were observed, limited by the temperature of
the atoms in the dipole trap via the differential light shift. Using spin echo
techniques to cancel this inhomogeneous dephasing effect, coherence times
of up to 300 ms have been obtained.

4.2.2 Addressing individual atoms

Individual atoms which are trapped in potential wells a few micrometer
apart can be addressed with microwave pulses by applying a magnetic field
gradient along the dipole trap axis. Using a hyperfine transition which is
Zeeman-shifted by the magnetic field, each atom has a different resonance
frequency and can be selected in frequency space. In the near future we will
explore the possibility of preparing arbitrary register states of the form

(α1| 0 〉1 + β1| 1 〉1)(α2| 0 〉2 + β2| 1 〉2) . . . , (4.1)
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i. e. states that can be prepared without interaction between the atoms.
The register can be read out by projection onto the basis states

{| 0 〉, | 1 〉} and detecting the state of each atom. For this purpose, a strong
push-out laser resonant with the F = 4 → F ′ = 5 -transition removes all
atoms in F = 4 (state | 0 〉) from the trap [7]. The remaining atoms are then
observed with the CCD camera and indicate the digits in state | 1 〉.

4.2.3 Rearranging atoms with a second conveyor belt

As soon as more than two or three atoms are used, their random placement
into the dipole trap should be rearranged into a regularly spaced chain to
avoid unduely small or large separations. One idea is to “pick up” one atom,
to move the remaining atoms along the trap axis using the transportation
capability of our dipole trap, and to put back the separate atom at a suit-
able position. The microscopic tweezers could be realized by an auxiliary
standing wave dipole trap intersecting the main trap at a right angle and
transporting atoms in the vertical direction. At the crossing region, the
strong axial dipole force of one trap overcomes the radial force of the other.
In this way, one atom could be displaced vertically, while other atoms are
moved horizontally through the crossing region.

Technically, the laser beam for the auxiliary trap could be shined in at
a small angle to the vertical MOT beam. Below the vacuum cell, it could
be simply retroreflected to obtain the standing wave structure, which could
be turned into an conveyor belt by translating the retroreflecting mirror.
As a laser source, the newly bought Yb:YAG laser could be used advanta-
geously, since its output at 1030 nm will produce interference fringes with
the Nd:YAG beam at 1064 nm only at a frequency of about 1013 Hz which
won’t disturb trapped atoms.

4.2.4 Quantum shift register

Recently, we have transported single atoms in coherent superposition states
in our optical conveyor belt over millimeter distances while preserving most
of the coherence [7]. The decoherence mechanisms are well described by
analytical models and are mostly of technical origin such as trap fluctuations.
For a true “quantum shift register”, which transports arbitrary quantum
states, the transportation of entangled states remains to be demonstrated.

4.3 High-finesse cavity

To generate entangled quantum register states or to perform quantum logic
operations, a controlled coherent interaction is required. Our goal is to
use an optical high finesse cavity as a means for coupling two atoms via
the cavity mode. For this purpose, two neighboring atoms of a previously
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prepared quantum register state are transported into the cavity mode. After
one or several quantum operations the register is transported back to be read
out by the CCD-camera.

Once a cavity with improved finesse has been inserted into our apparatus,
the first task is to detect atoms inside the cavity. A single atom trapped
within the mode volume can drastically change the transmission of a probe
laser through the cavity [92]. The transport of atoms with the dipole trap
into the mode volume can thus be observed [93].

Since the radial motion of the atom in the dipole trap covers several nodes
and anti-nodes of the cavity field, the coupling of the atom to the cavity field
fluctuates between its maximum value and zero. For advanced experiments,
a constant, high coupling has to be ensured. One possible solution would
be a reduction of the radial temperature to improve the radial localization
to below λ/2. At the same time, drifts of the relative position of cavity and
dipole trap would have to be kept below λ/4. A more realistic suggestion
uses the dipole force exerted by the cavity lock laser to confine the atoms
to the anti-nodes of the 852 nm cavity field. This mechanism works at the
center between the cavity mirrors if the lock laser is blue-detuned by an odd
multiple of the free spectral range, or red-detuned by an even multiple.

Two suitably prepared atoms can be entangled by a simultaneous cou-
pling to the cavity mode [8], or even by transporting them through the cav-
ity [94]. As soon as the entanglement can be detected, the demonstration
of a simple two-qubit quantum gate should be possible.



Appendix A

Cesium data

Important physical data of the cesium atom are presented in table A.1, and
a level scheme of the first excited states including the hyperfine splitting is
shown in fig. A.1.

Mass m 2.21 · 10−25 kg

Vapor pressure (20°C) 10−6 mbar (10−4 Pa)

Natural lifetime 6P3/2 (D2-transition) τD2 30.5 ns

Decay rate (D2-transition) ΓD2 2π · 5.22 MHz

Natural lifetime 6P1/2 (D1-transition) τD1 34.9 ns

Decay rate (D1-transition) ΓD1 2π · 4.56 MHz

Saturation intensity (D2-transition) I0 11 W/m2

|F = 4,mF = 4 〉 �|F ′ = 5,mF ′ = 5 〉
Doppler temperature (D2-transition) TD 125 µK
Recoil energy (D2-transition) Er/kB 99 nK

Table A.1: Some physical properties of the 133Cs atom, from [27].
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Figure A.1: Level scheme of 133Cs.



Appendix B

Imaging system

During my thesis I developed a new imaging system, which allowed us to ob-
serve single atoms in the MOT as well as in the dipole trap with good signal
to noise ratio. Its main part is a diffraction limited, long working distance
lens system for the efficient collection of fluorescence [36]. The fluorescence
count rate was improved by a factor of five, compared to the previously
used optical system [95] which was limited by aberrations. The diffraction
limited performance of the present system permits efficient discrimination
of straylight without loss of fluorescence, as well as high resolution imaging.

B.1 Design

Our basic experimental requirement is the efficient collection of fluorescence
light from single atoms in the MOT. The experimental geometry is shown
in fig. B.1. The objective lens must reside outside the vacuum, because a
lens inside the vacuum would be difficult to mount and align, and it would

MOT laser beams

lens
system

magnetic
coils

vacuum
cell

z

x

y

x
50 mm

Figure B.1: Experimental Geometry: The lens system is placed close to
the glass cell between the magnetic coils of the MOT.
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Surface No.
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Figure B.2: Layout of the lens system. Surfaces 1 to 8 represent the
objective itself, surfaces 9 and 10 belong to the silica wall of the glass cell.

interfere with the planned high finesse cavity setup inside the glass cell. The
movable detection axis (sec. 1.3.3) would not have been possible neither.

B.1.1 Requirements

An important parameter of imaging systems is the numerical aperture (NA),
which is defined as the sine of the calf cone angle α in fig. B.2. The sum-
marized requirements for our objective lens are:

1. Collimation of the radiation of a point source at a wavelength of 852 nm
with a large numerical aperture (NA). Once the light is collimated it
can easily be imaged with low NA optics.

2. A minimum working distance of 36 mm. This is determined by our
laser setup, because laser beams reflected off the glass cell must not
enter the objective.

3. Near diffraction limited spot size, to enable high resolution imaging
and spatial filtering of the fluorescence light. Retaining diffraction
limited performance gets exceedingly difficult with increasing NA, be-
cause the n-th order aberrations (n ≥ 3) grow like (NA)n.

4. A field of view covering the MOT position uncertainty of about 1 mm.

5. Imaging through a plane silica window of 5 mm thickness, which in-
troduces spherical aberrations for a NA>0.2.

6. Limitation of the outer diameter of the assembled lens system to
30 mm by the magnetic coils of the MOT, see fig. B.1.

Commercially available solutions for this application are either long work-
ing distance microscope objectives, which are relatively expensive, molded
aspheric lenses, which usually have a short working distance, or achromats,
which have larger spot sizes. None of these is meant to image through a
thick window.
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B.1.2 Design procedure

Single spherical lenses exhibit a reduction of their resolution above NA ≈ 0.1
due to their predominant spherical aberration. The main idea of a multi-lens
system is therefore to compensate the aberrations of one surface with the
aberrations of other ones. In our case, positive spherical aberration from
convex surfaces is the primary fault to eliminate. It needs to be balanced
by negative spherical aberrations of concave surfaces. To keep the design
reasonably simple and cheap, we restricted ourselves to spherical surfaces
and BK7 glass only.

I designed the objective using the program Oslo LT (Sinclair Optics,
Oslo LT Version 5 Rev. 5.40, free download from http://www.sinopt.com/).
It evaluates a lens system by tracing a bundle of rays through the lenses,
calculating the refraction at each surface. For reasons of numerical stability,
the simulated rays propagate backwards through the objective towards the
MOT. There, the program computes the aberrations and the wavefront
error, which is a measure for the deviation of the actual wavefront from the
ideal sphere around the focal point. An automatic optimization routine,
which varies the radii of curvature of the lens surfaces and the the distances
between the lenses, can be used to minimize the aberrations until a local
optimum is reached. The NA is kept constant during the optimization by
fixing the entrance beam diameter and the effective focal length, which
itself can be fixed by setting the radius of curvature of one surface to such
a value that the prescribed focal length is attained.

Different starting configurations were used in search for a global opti-
mum. The program was set up to minimize the squared sum of the spherical
aberrations up to 7th order and third order coma and astigmatism. Accept-
able performance could not be achieved with three lenses, with four lenses,
however, good designs were possible. The radii of curvature of the lens sur-
faces were subsequently fixed to catalog values of our vendor (Lens-Optics
GmbH), each time re-optimizing the remaining variables. In this way, most
of the error introduced by the discretization is compensated. The resulting
design is shown in Table B.1 and fig. B.2. It consists of three standard
catalog lenses and one (non-standard) meniscus lens, but with catalog radii
of curvature. It has got an effective focal length of 36 mm, a working dis-
tance of 36.5 mm, and a NA of 0.29. Moreover, it exactly compensates the
aberrations introduced by the 5 mm silica window.

B.1.3 Theoretical performance

The fraction of fluorescence that can be collected is given by the ratio of the
solid angle Ω covered by the objective (as viewed from the point source) to
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Table B.1: Specifications of the lens system.
Surface No. Radius of curvature Distance to Material

[mm] next surface [mm]
1 ∞ 3.08 BK7
2 39.08 8.20 air
3 103.29 4.97 BK7
4 −103.29 0.40 air
5 39.08 5.12 BK7
6 ∞ 0.40 air
7 26.00 5.07 BK7
8 78.16 21.55 air
9 ∞ 5.00 silica
10 ∞ 10.00 vacuum

the total solid angle of 4π,

Ω
4π

=
1
2

(
1−

√
1− (NA)2

)
, (B.1)

which amounts to 2.1% in our case.
The design has a calculated wavefront aberration of λ/1000 rms on axis,

resulting in a diffraction limited spot size of 1.8 µm (airy disc radius). Pro-
vided that the curvature of the image surface is taken into account, the
wavefront error at a distance of 0.5 mm off axis is λ/13 rms. 1 mm off
axis the spot size radius increases to 3 µm rms. The depth of focus can
be estimated approximating the cone of light entering the lens system by a
Gaussian beam with a divergence θ = w0/z0 equal to the NA and calculating
the confocal parameter 2z0:

2z0 =
2λ

πθ2
(B.2)

= 6.4 µm. (B.3)

The performance of the objective is not limited to the exact situation
of our experimental setup. Changing the distance between surfaces 2 and
3 in fig. B.2 from 8.2 mm to 6.6 mm (and refocusing) allows the system
to work even without the 5 mm silica window, with negligible performance
degradation. Adaption to any window thickness up to 10 mm is possible.
Although the design is optimized for 852 nm, it retains its diffraction limited
performance from 1064 nm to 400 nm if the chromatic focus shift is taken
into account.
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glass platelens system

screen

pinhole

Figure B.3: Measuring wavefront deformations with a shear plate interfer-
ometer. A pinhole of 1 µm diameter acts as a point source. Its transmission
is collimated by the lens system under test. A part of the beam is split off
and is brought to interference with a displaced copy of itself on a screen.

Figure B.4: Shear plate interferograms of the collimated beam beam
produced by the objective lens. The shear is applied in two orthogonal
directions, straight equidistant interference fringes correspond to a plane
wavefront.

B.2 Assembly and experimental tests

All lenses have a diameter of 1”, a surface quality (over 90 % of the clear
aperture) of λ/4, a scratch-dig characteristic of 20-10, a centration to better
than 5 minutes of arc and an anti-reflection coating for 650-1000 nm. They
are stacked into an aluminum tube of 1” inner and 30 mm outer diameter
and held in place by a threaded retainer ring. The distances between the
lenses are determined by thin aluminum spacer rings. The mechanical parts
have been manufactured to a tolerance of 0.1 mm. All aluminum surfaces
are painted black to suppress straylight. The total cost of the objective
including lenses and mechanical parts is about ¿ 500 only.

An experimental test of the wave front aberration was performed by
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Figure B.5: Layout of the optical elements for APD and camera detection.

focusing an 852 nm laser beam onto a 1 µm diameter pinhole (Coherent,
model 43-5172) serving as a high NA point source. The transmitted light
was collimated by the objective under test and analyzed by means of a
shear plate interferometer (Melles Griot, Model 09 SPM 001). It contains a
thick glass plate with with two plane (λ/10) surfaces at 45° in the optical
path, see fig. B.3. The reflections off the the front and the back surface
interfere on a screen. They only partially overlap because of the relative
shift (“shear”) due to the thickness of the glass plate. The plate is also
slightly wedged, such that a plane wavefront produces regular interference
fringes. Any curvature of the incident wavefront results in a relative tilt
of the overlapping wavefronts on the screen, which causes tilted or bent
interference fringes. From the bending of the resulting interference fringes
(fig. B.4) we estimate a peak-valley wavefront distortion of less than λ/4
over 90% of the clear aperture.

In our MOT setup the optical axis of the objective was carefully aligned
onto the trap center using a Helium-Neon laser beam. The collimated flu-
orescence light from the MOT is focused by an f = 80 mm doublet lens
(Melles Griot, 06LAI009, wavefront distortion specified < λ/5) onto a pin-
hole of 150 µm diameter for spatial filtering, see fig. B.5. Since the optical
magnification from the MOT to the pinhole equals 2.2, an area of 67 µm di-
ameter is thus selected at the MOT position. Using two more lenses (Melles
Griot, 06LAI005, f = 40 mm), the pinhole is imaged 1:1 onto the APD.

For imaging onto the ICCD-camera, a higher magnification of about 14
is realized by focusing the collimated beam with a f = 500 mm plano-convex
lens onto the image intensifier. At this focal length, a singlet lens suffices to
reach diffraction-limited performance.



Appendix C

Electronics

C.1 Magnetic coil control

For our experiments, the magnetic quadrupole field must be switched be-
tween “high field” (normal MOT operation), “low field” (MOT loading)
and “off”, see sec. 1.3.1. The switching time should be no more than a few
milliseconds.

Although our power supply (F. u. G. GmbH, NTN 2800–65, 0–65 V, 0–
40 A) permits the control of the output voltage by an analog programming
input, it is not well suited for fast switching. First, it contains a thyristor pre-
regulation stage, therefore it takes several hundred milliseconds to charge
internal capacitors before the output voltage can rise. Second, when the
current is set to zero by the external programming voltage, there is still a
50 Hz AC current leaking out of the supply, which produces magnetic fields
in the order of 1 µT in the coils.

I have therefore designed the external control circuit shown in fig. C.1,
which is placed between the power supply and the MOT coils. Two power
MOSFETs (Q1, Q2), in series with the coils (L1, L2), are used as switches.
When Q1 is switched on, the coil current is equal to the current limit setting
of the power supply (typically 15.4 A), which then operates in constant
current mode. When only Q2 is switched on, the coil current is equal to the
voltage limit setting of the power supply, divided by R9, to typically 1.4 A.
With both Q1 and Q2 switched off, the power supply voltage stays maximal,
keeping all internal capacitors charged. The residual current through the
coils in this state is negligible, since Q1 and Q2 have got leakage currents in
the order of 10 nA. When the high coil current is switched off, the energy
stored in the coils (about 2 Joules) is transferred to C14 within 4 ms and
then safely dissipated in R11.

The MOSFETs Q1 and Q2 are controlled by a computer via TTL signals.
The TTL inputs are fully isolated by optocouplers to protect the computer as
well as the circuit. Additionally, keeping the power supply floating tolerates
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Figure C.1: Schematic of the magnetic coil control circuit.
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Figure C.2: Block diagrams of the VCO and mixer circuits used in the
Pound-Drever-Hall stabilization of the high-finesse cavity.

one short circuit to ground anywhere within the water-cooled coils. A fan
cools the MOSFETs and in particular R9, which dissipates 50 W during the
low current state.

C.2 Components for cavity stabilization

The transfer cavity, the lock laser and the high-finesse cavity are frequency
stabilized by the Pound-Drever-Hall method as described in section3.2.
Therefore I designed two small, cheap circuits: The VCO box produces the
modulation and local oscillator (LO) signals at the required power levels,
and the mixer circuit includes a filter and an amplifier, see fig. C.2.

C.2.1 VCO and laser modulation

The VCO circuit of fig. C.3 contains a commercial VCO (Voltage-Controlled
Oscillator, Mini-Circuits, model POS-150). A combination of a 3 dB attenu-
ator and an RF amplifier (Mini-Circuits, model MAV-11) provides sufficient
reverse isolation to prevent frequency pulling by reflected RF power. The
amplified signal of +17 dBm is split by a 4-fold power splitter (Mini-Circuits,
model PSC-4-1) to generate three fixed-level LO outputs (+10 dBm) for
driving mixers. The fourth signal passes a voltage-controlled attenuator
(Mini-Circuits, model TFAS-1) and is used for phase-modulation of the lock
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laser.
The modulation frequency is chosen to avoid radio-frequency interference

and to optimize the Pound-Drever-Hall signal. The amplitude of the phase-
modulation sidebands on the laser beam is set via the amplitude adjust of
the modulation output.

C.2.2 Mixer

In the mixer circuit (fig. C.4), the LO and the photodiode (RF) signal are
combined in a double-balanced mixer (Mini-Circuits, model SRA-1). The
3 dB attenuator brings the output of the VCO circuit down to the specified
+7 dBm of the mixer and damps reflected and spurious signals. It can be
omitted if an equivalent cable loss is present. The IF output of the mixer is
followed by a diplexer-type low-pass filter [96], which presents an impedance
of 50 Ω to the mixer for all frequencies. Signals below the cut-off frequency
of 5 MHz (for the high-finesse cavity: 100 kHz) are pre-amplified by an op-
erational amplifier (e. g. OP37). The amplification of the error signal within
the mixer circuit reduces the relative influence of electromagnetic hum and
noise which usually adds to the signal on its way to the proportional-integral
servo amplifier.

C.2.3 Resonant avalanche photodiode detector

The resonant avalanche photodiode (APD) circuit of fig. C.5 is designed for
low-noise detection of a high-frequency intensity modulation on a weak laser
beam. The APD (PerkinElmer Optoelectronics, model C30902E) converts
the light into a photocurrent while providing an internal avalanche gain of
typically 10–100. The negative bias voltage of the APD of up to −250 V
is controlled by a protection circuit (T2, T3) which limits the photocurrent
to about 70 µA. Hence the APD will survive optical powers up to the mW
range even at high gain.

The photocurrent feeds a parallel resonance circuit consisting of L1 and
the capacity of the APD, T1 and stray capacitance. The resonance is
tuned to the modulation frequency of our Pound-Drever-Hall stabilization
of 86 MHz. The resonance circuit can be thought of as an impedance match
of the purely capacitive APD to the capacitive input of T1, where L1 cancels
the total capacity at the resonance frequency. The dual-gate MOSFET T1
(Infineon, BF998) has been chosen for the first amplification stage due to
its low noise figure of 0.6 dB (at 200 MHz) and its high gain (> 20 dB). At
its drain, the output impedance is approximately matched to 50 Ω by L2,
which works as a resonance transformer together with C2. It was found,
however, that the two resonance circuits around T1 easily self-oscillate by
coupling back from L2 to L1. Therefore, we plan to replace L2 will by a
small, broadband, ferrite-core transformer. The signal is further amplified
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Figure C.3: Schematic of the VCO circuit.
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Figure C.4: Schematic of the mixer circuit.
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Figure C.5: Schematic of the resonant avalanche photodiode detector.
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by two low-noise, 50 Ω, 20 dB MMIC gain blocks (IC1 and IC2). A similar
circuit is described by H. Baldauf [97] and used for heterodyne detection of
resonance fluorescence [98].

The high total gain was selected to make the output noise of the APD
circuit visible at the output of the mixer circuit. Thus the overall noise of the
mixer and the APD is dominated by the first amplification stage ensuring a
maximum total signal-to-noise ratio.
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[55] A. Höpe, D. Haubrich, G. Müller, W. G. Kaenders, and D. Meschede,
Neutral Cesium Atoms in Strong Magnetic-Quadrupole Fields at Sub-
Doppler Temperatures, Europhys. Lett. 22, 669 (1993)

[56] M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Wei-
demüller, Sympathetic Cooling with Two Atomic Species in an Optical
Trap, Phys. Rev. Lett. 88, 253001 (2002)

[57] G. Reymond, N. Schlosser, and P. Grangier, Single Atom Manipulation
in a Microscopic Dipole Trap, in H. R. Sadeghpour, E. J. Heller, and
D. E. Pritchard, eds., Proceedings of the XVIII International Confer-
ence on Atomic Physics, World Scientific (2002)

[58] L. D. Landau and E. M. Lifschitz, Mechanics, Pergamon, New York
(1976)

[59] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C, Cambridge University Press, New York, 2nd
edition (1992)

[60] R. Barlow, Statistics, Wiley, New York (1989)

[61] V. Bagnato, D. E. Pritchard, and D. Kleppner, Bose-Einstein conden-
sation in an external potential, Phys. Rev. A 35, 4354 (1987)

[62] V. Gomer, personal communication

[63] T. A. Savard, K. M. O’Hara, and J. E. Thomas, Laser-noise-induced
heating in far-off resonance optical traps, Phys. Rev. A 56, R1095
(1997)

[64] M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas, Dynamics
of noise-induced heating in atom traps, Phys. Rev. A 58, 3914 (1998)

[65] I. Dotsenko, W. Alt, S. Kuhr, D. Schrader, M. Müller, Y. Miroshny-
chenko, V. Gomer, A. Rauschenbeutel, and D. Meschede, Application of
electro-optically generated light fields for Raman spectroscopy of trapped
cesium atoms, Appl. Phys. B 78, 711 (2004)



116 BIBLIOGRAPHY

[66] Marc Cheneau, Laser cooling of single atoms in a standing-wave dipole
trap, Internship report (2003)

[67] D. Meschede, Optik, Licht und Laser, Teubner, Stuttgart (1999)

[68] M. Khudaverdyan, Addressing of individual atoms in an optical dipole
trap, Diplomarbeit, Universität Bonn (2003)

[69] G. Rempe, H. Walther, and N. Klein, Observation of Quantum Collapse
and Revival in a One-Atom Maser, Phys. Rev. Lett. 58, 353 (1987)

[70] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M.
Raimond, and S. Haroche, Quantum Rabi Oscillation: A Direct Test of
Field Quantization in a Cavity, Phys. Rev. Lett. 76, 1800 (1996)

[71] P. R. Berman, ed., Cavity Quantum Electrodynamics, Advances in
atomic, molecular, and optical physics, Academic Press, San Diego
(1994)

[72] Y. Miroshnychenko, Design and test of a high finesse resonator for
single atom experiments, Diplomarbeit, Universität Bonn (2002)

[73] H. Mabuchi, J. Ye, and H. J. Kimble, Full observation of single-atom
dynamics in cavity QED, Appl. Phys. B 68, 1095 (1999)

[74] R. Drever and J. Hall, Laser phase and frequency stabilization using an
optical resonator, Appl. Phys. B 31, 97 (1983)

[75] D. Schrader, personal communication (2003)
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