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ABSTRACT The method of neutral atom lithography allows one
to transfer to a substrate a 2D intensity modulation of an atomic
beam imposed by an inhomogeneous light field. The complex-
ity of the pattern depends on the properties of the light field
constructed from the superposition of multiple laser beams. For
the design of suitable light fields we present a mathematical
model with a corresponding numerical simulation of the so-
called inverse problem. Furthermore, details of an experiment
carried out with a holographically reconstructed light field are
discussed.

PACS 02.60.Pn; 42.40.My; 42.40.Pa; 42.50.Vk

1 Introduction

Laser cooling [1] and atom optics [2] have opened
the door to manipulating atomic motion at the nanometer
scale. In atomic nanofabrication (ANF) [3] optical dipole
forces are used to steer an atomic beam into a pattern with sub-
micrometer resolution. In this method, the inhomogeneous
intensity distribution of the light field acts as an immaterial
light mask. On impact, the atoms are either accumulated to
directly grow a 2D structure (so-called direct deposition, or
DD), or they modify a resist-covered surface (so-called neu-
tral atom lithography, or NAL), which is then prepared by
chemical processing steps. In the first experiments by Timp
et al. [4] and McClelland et al. [5], simple but extended and
precise arrays of lines were formed in a single-step DD pro-
cess. The pattern represented a one-to-one image of the laser
interference pattern created immediately above the surface.

In order to create more sophisticated 2D structures sev-
eral light beams were superposed with beam-splitters and
mirrors [6, 7]. This arrangement, however, rapidly becomes
clumsy if more than two or three light beams are required.
A beautiful atom holographic fabrication method for complex
structures has been demonstrated by the group of Shimizu em-
ploying both amplitude [8] and phase [9] masks. However, it
requires the application of atomic matter waves, which to this
day exist with very low intensities, causing extremely long
exposure times.
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We have prepared and applied a holographic element
that is capable of simultaneously diffracting an incoming
laser beam into multiple beams that may be very narrowly
spaced [10]. Figure 1 shows the resulting atom pattern pro-
duced with a thermal atomic beam that was transversely laser
cooled. In principle this technique allows any interference pat-
tern that is consistent with Maxwell’s equations to be gener-
ated. Since volume holograms are used, any diffraction angle
up to ±90◦ with respect to the surface normal of the crystal is
possible. This covers 180◦. Thus by using two (or even more)
crystals that are facing each other on both sides of the interfer-
ence region, it will be possible to generate diffracted beams of
any direction.

One essential aspect of image formation is the patterning
contrast. Here we use a transfer function approach to obtain
a simple estimate of contrast to be expected by 1D and 2D
focussing of atoms with light masks. Next, a mathematical
model is introduced for the design of light fields generating
the nanoscale light mask. Based on this model, numerical
forward calculations indicate what types of light intensity pat-
terns are to be expected, if the directions of the beams and their
amplitudes are known. We further investigate the solution of
the inverse problem which serves as a basis for numerical
backward simulations. Here the task is to (approximately)
reconstruct from a given pattern the required directions and
intensities, which are correlated to their expansion coeffi-
cients, of the laser beams. In this paper we specialize to a fixed
set of beam directions. From a mathematical point of view,
the definition of a ‘good’ (approximate) reconstruction is not

FIGURE 1 Atomic nanofabrication with neutral atom lithography (from
[10])
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clear beforehand. Finally, we give a detailed analysis of an
experimental realization of this method reported in [10].

2 Atomic focussing by 1D and 2D light fields

The atom-optical properties of light fields acting on
atomic motion through dipole forces have been studied theor-
etically [11, 12] and have also received detailed experimental
analysis [13]. They fundamentally rely on the force acting on
the atoms travelling in an inhomogeneous light field with in-
tensity distribution I(x) = Imax f(x), where f(x) describes the
normalized spatial variation of the light field:

F(x) = − �

U(x) = − hγ 2

8 ∆ Isat

�

I(x) ≡ Umax

�

f(x) . (1)

U(x) is the potential energy for an atom with a resonance fre-
quency detuned by ∆ from the light mask frequency. Isat ≡
πhc/3λ3τ is the saturation intensity of the atomic transition
with wavelength λ, c is the speed of light, and h is Planck’s
constant. The atomic excited state lifetime is τ .

Trajectory simulations analogous to those in Fig. 2 are
frequently used to describe the atom-optical focussing prop-
erties of standing wave light fields on atoms. For this purpose
the inhomogeneous light field (Fig. 3a) is treated as an array
of microlenses. Deviations from the central narrow feature
caused by the optical lens are interpreted in terms of spherical
and other aberrations.

FIGURE 2 Numerically calculated trajectories in a 1D standing wave. The
maximum of the transverse Gaussian laser beam profile is at the surface of
the substrate at z = 0

FIGURE 3 A 1D standing wave (a) can be treated as a 1D array (with
λ/2-unit cell) of a periodic system of focussing and defocussing lenses (b).
The defocussing lenses very naturally explain the generation of the pedestal
observed when light masks are used

Let us take instead a complementary approach that gives
a novel and more intuitive view of image distortion. For this
purpose we use the transfer function xfoc = xfoc(x) describing
the position xfoc in the focal plane for an atom entering the
standing wave at position x (see Fig. 4a). A useful empirical
approximation is actually given by xfoc = 2x5/(1+ x4), where
x is measured in units of λ/4.

The zero slope of xfoc(x) near x = 0 indicates the focal spot
that is the most prominent and usually very narrow feature
of this method. Atoms entering the field near the antinodes,
x = ±λ/4, however, are defocussed. In this region the trans-
fer function is well approximated by xfoc = 2(x ±λ/4). The
linear relation indicates an even distribution of these atoms ex-
tending in this case uniformly throughout the λ/2 unit cell,
and resulting in a constant pedestal and fundamentally limit-
ing the number of atoms concentrated in the focus. It is this
defect that is elsewhere referred to as “spherical aberration”.

A measure of the contrast C may be defined by C =
H/(H + B), where H and B are the heights of the central peak
(with width W) and the pedestal, respectively (see Fig. 5). In
a simplified model let us assume that the pedestal is domi-
nated by spherical aberrations (i.e. defocussing in our model)
while velocity and beam spread contribute to the width of
the central peak only. Typical contrast values can then be

FIGURE 4 Focussing by a 1D standing wave light field; xfoc: trajectory
coordinate in the focal plane vs. input coordinate x. a xfoc for a perfectly col-
limated beam. The dashed line is 2x5/(1+ x4). b Focussing and defocussing
regions. c Influence of beam spread. d Influence of velocity spread

FIGURE 5 Definition of parameters for atomic nanofabrication
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inferred from the observation that 1/2 of the accumulated
flux of atoms F entering the 1D unit cell of length λ/2 are
evenly redistributed to form the pedestal, and hence B = F/λ,
while the other half is focussed to a height H = F/2W . Con-
sequently we find for the 1D case C1D = λ/(λ+ 2W). It is
straightforward to extend this analysis to the 2D case for
point-like focussing. Now 3/4 of the atoms are redistributed
within (λ/2)2, leading to B2D = 3 F / λ2, and 1/4 is focussed
within the height H2D = F / (2 W)2, resulting in an estimated
contrast C2D = λ2/

[
λ2 +3(2W)2)

]
. Any complex pattern will

consist of a mixture of point-like and line-like structures, and
with a moderate requirement that the focussing is better than
W ≤ λ/8, the simple estimate predicts a contrast that always
exceeds C > 80%.

The width is determined by beam spread and velocity
spread. Their influence is easily understood in terms of the
transfer function approach of Fig. 4: beam spread causes xfoc
to be shifted from the perfectly orthogonal case, i.e. ‘atomic
beam’ ⊥ ‘light mask’ (Fig. 4c); velocity spread bends xfoc
in the focussing region away from the horizontal slope cor-
responding to infinitely sharp focussing (Fig. 4d). The fo-
cussed region is obviously broadened while the defocussed, or
pedestal, fraction experiences little deformation. Thus a very
simple picture arises: roughly half (in 1D, 1/4 in 2D) of the
atoms are focussed while the other half (3/4 in 2D) forms
a pedestal. The width of the focussed feature is limited by
beam spread and velocity spread, and, furthermore, by dif-
fusive processes such as spontaneous emission and surface
migration, which we have omitted here.

In the following two sections, we describe the construc-
tion of light masks. The atomic pattern is assumed to closely
resemble the light intensity distribution.

3 Complex light masks

Any light mask is generated from the interference
of two or more laser beams of a single wavelength. For sim-
plicity we disregard any influence of light polarization on the
interference field, so the intensity distribution I(x) = I(x, y) is
inferred from a superposition of electromagnetic waves

I(x) = I0

∣∣∣∣∣∣
∑

j

cj e−iωt ei(kj ·x)

∣∣∣∣∣∣
2

, (2)

where I0 ≡ c ε0 |E0|2/2, with c being the speed of light. The
coefficients cj are complex, with

∑
j |cj |2 = 1. As a rule of

thumb each laser beam with another wave vector kj con-
tributes a new degree of freedom to the pattern formed by the
light field. In this work, however, we introduce a constraint
using only k-vectors that have identical lengths and are re-
stricted to a single plane.

With relatively few laser beams the pattern and its sym-
metries remain simple and are easily recognized. For instance,
an orthogonal arrangement of two counter propagating pairs
of laser beams creates a square array of dots [6], and a 120◦
configuration of three laser beams causes a honeycomb-type
structure with six-fold symmetry [7].

More complicated structures will, in general, require more
generating laser beams for the construction of the light field.

Using exposure schedules, as they are known from holo-
graphic data storage applications, it is no problem to tailor
the strength of the grating for each individual beam sepa-
rately [14]. By application of beam-coupling with an active
feed-back loop the phase positions of the gratings can also be
controlled [15].

If the required light beams are already known, many (up
to 5000) closely spaced individual laser beams can be pro-
vided by multiplexed volume holograms (or an alternative
diffractive object) with interferometric precision (see [16]).
The successful preparation and application of holograms for
atomic nanofabrication is described in detail in Sects. 5 and
6. However, how complex the structures to be generated with
light masks may be and what types of structures can be gen-
erated remains an open question. In (2) it is straightforward to
predict the intensity pattern from the electromagnetic waves
known and properly arranged in an experiment. The solution
to the so-called inverse problem, for which the task is to es-
tablish for a known and desired pattern I(x) a configuration of
electromagnetic waves that reproduces I(x), or at least gives
an approximation Ĩ(x) to the interference pattern I(x),

Ĩ(x) = I0

∣∣∣∣∣∣
N∑

j=1

c̃j e−iωtei(k̃j ·x)

∣∣∣∣∣∣
2

≈ I(x) (3)

is not known in general. In fact, finding for a given I(x) both
the directions k̃j and the normalized partial waves c̃j , in add-
ition to the optimal number N, is from a mathematical point
of view a highly nonlinear and difficult problem. In approxi-
mation theory, the question of how well such objects can be
approximated at all in terms of (special cases of) so-called
ridge functions ei(kj ·x) is largely unanswered (see e.g. [17]). In
addition, constructive approaches for finding the optimal con-
figuration do not yet exist. Investigations in this direction and
numerical results for the inverse problem for a special case
have been given for the first time in [18].

Since the pattern is delivered in terms of individual beams
with wave vectors kj , it is natural to investigate the pattern
formed in k-space. The pattern is in general composed from all
possible difference vectors

kj,l ≡ kj −kl .

Periodic structures must show translational invariance and
point symmetry. Such crystallographic aspects of interfering
light fields have also been investigated in the related subject
of optical lattices [19] and have also been extended to quasi-
periodic structures [20].

Clearly the maximum vector that can be achieved is 2k,
corresponding to two exactly counterpropagating waves. All
vectors within a circle of radius 2|k| can be realized, but each
additional laser beam generates new difference vectors kj,l

with all other waves, hence making a formal analysis diffi-
cult. A simpler situation occurs if one beam is much stronger
than all others. For simplicity we set c1 ≡ 1 � |cj |, j ≥ 2,
neglecting the small error introduced into the normalization
condition used for (2). Since only the difference vectors with
this beam will then contribute efficiently to pattern formation,
mutual interference of the weaker beams will establish a small
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FIGURE 6 Light mask pattern generation in reciprocal space: The simple
scheme corresponding to [10]. Black full dots mark kj,l -vectors contribut-
ing to the pattern of the light field, and open dots their periodic extension.
The shaded area shows the primitive vectors of the Brillouin zone, which is
2D-rhombohedral in this case. 4-fold symmetries of the structure in Fig. 1
are more easily identified with the hatched cell. Full arrows, k-vectors of the
read-out beam (thick) and diffracted beams (thin); dashed arrows, difference
vectors; full circle, location of reciprocal vectors for weak interference field;
dashed circle, maximum range of possible k-vector differences for a given
wavelength

and negligible fixed noise pattern. This situation is illustrated
for the example from Fig. 1 in Fig. 6.

In general we have for the weak modulation case with one
strong read-out and (N −1) weak diffracted beams

I(x) = I0

∣∣∣∣∣∣e−iωt ei(k·x) +
N∑

j=2

cj e−iωt ei(kj ·x)

∣∣∣∣∣∣
2

= I0


1 +2 Re


 N∑

j=2

c∗
j ei(k−kj )·x




+ O


∑

j, l>1

cj c∗
l





 , (4)

which much resembles a conventional Fourier expansion.
Wave vectors are in this case, however, restricted to the black
full dots in Fig. 6, and the usual Fourier transform can still not
be applied.

The k-space picture helps to straightforwardly understand
the pattern originating from one strong and two weak waves.
However, the primitive vectors of the Brillouin zone form
a 2D-rhombohedral structure, while the four-fold symmetry
apparent in Fig. 1 is more easily identified also in reciprocal
space.

4 Numerical simulations for light mask patterns

As outlined above, for a given intensity pattern, the
mathematical determination of the required interfering light

fields is a difficult task. In contrast to omnipresent optical
image formation normal to the propagation of light fields,
we are concerned here with pattern formation in the plane of
propagation. In [18] a method for numerical backward simu-
lation to compute coefficients for arbitrary laser beam con-
figurations to reproduce a specific target image I(x) has been
described. In this section, we concentrate on a special case for
the inverse problem (see (3)). The number N of laser beams
and the wave vectors kj are fixed a priori.

We will then try to match the target pattern in reciprocal
space, not real space. In addition, the difference vectors kj,l

are chosen in a particular way. The specific inverse problem
is then to determine for a given intensity distribution I(x) the
normalized partial waves cj , j = 1, . . . , N, such that the phys-
ical pattern Ĩ generated as in (3) is ‘close’ to I (in a sense to
be discussed). In the method described here we concentrate on
a quadratic region in 2D.

The first step is to cover this region by a Cartesian grid and
to apply the discrete Fourier transform to I with a certain reso-
lution h. This produces a grid of equal resolution in reciprocal
space. To recover the target pattern I , the most relevant points
on this grid need to be hit by at least one difference vector kj,l.
The easiest way is to choose the wave vectors kj such that the
difference vectors kj,l lie onZ2. A prototypic setup is shown in
Fig. 7 with N = 8 beams.

In this case, these eight beams produce 32 different non-
zero difference vectors kj,l. Due to this choice of wave vec-
tors, all other Fourier coefficients of the target pattern can-
not be reached. Note that the restriction to these particular
kj,l introduces an error for general patterns. As most of the
differences are located near the origin, the method contains
an implicit low-pass filter. This is caused by the setup it-
self. Different beam configurations will yield different fil-
ters, and it may be worthwhile to examine this for a var-
iety of configurations. Here we will restrict ourselves to the
setup described above, which is amenable to experimental
realization.

The optimal result would be achieved if the coefficients
of all 32 difference vectors could be set to the corresponding
values of the Fourier transform. This pattern will be denoted
Ĩopt. However, we have only N = 8 complex degrees of free-

FIGURE 7 A configuration with N = 8 beams. The difference vectors kj,l
end on integer grid points in reciprocal space (For clarity, only odd grid lines
are drawn.)
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dom in this example. By expanding the sum in (2) and apply-
ing the discrete Fourier transform, we obtain

Î(k)=
8∑

j,l=1

cjc
∗
l δk,kj,l . (5)

Here Î denotes the discrete two-dimensional Fourier trans-
form of I after a division by I0. All k-vectors are now
in Z2, and the Fourier transform is built up from Kronecker
δ-symbols that encode the beam differences kj,l.

We can now treat each of the components in (5) separately.
Considering that more than one combination of two beams
kj , kl may produce the same difference vector, we arrive at
the following coupled system of nonlinear equations with the
complex-valued unknowns cj , j = 1, . . . , N:

Î(0) =
N∑

j=1

|cj |2 = 1 , (6a)

Î(2kj) = cjc
∗
j+ N

2
for j = 1, . . . ,

N

2
, (6b)

Î(kj −kj+l) = cjc
∗
j+l + cj+l+ N

2
c∗

j+ N
2

for j = 1, . . . ,
N

2
, l = 1, . . . ,

N

2
−1 . (6c)

This is an extension to [18] and holds for any symmet-
ric configuration with an even number of pair-wise different
beams. The indices are implicitly wrapped around to fit into
the range 1, . . . , N. Note that this set of equations is com-
plete, as Î(−k) is the complex conjugate of Î(k).

In the present setting, we neglect (6a) as it does not con-
tain information about the structure of the pattern. Instead,
we build a quadratic least squares minimization functional
J(c1, . . . , cN ) based on (6b) and (6c):

J(c1, . . . , cN ) =
N/2∑
j=1

(∣∣∣ Î(2kj)− cjc
∗
j+ N

2

∣∣∣2

+
N/2−1∑

l=1

∣∣∣ Î(kj −kj+l)− cj c∗
j+l − cj+l+ N

2
c∗

j+ N
2

∣∣∣2
)

. (7)

Numerically this is solved by applying a coordinate descent
method (see e.g. [21]) that has been adapted to the complex-
valued case [18]. In the first step c2, . . . , cN are held fixed and
J(c1, . . . , cN ) is minimized exactly with respect to c1. Then
the minimum is computed with respect to c2, and so on. This
strategy converges fast up to saturation with a few iterations
for N = 8.

As the underlying problem is invariant under simultan-
eous rotation of all coefficients cj in the complex plane,
we expect the numerical solution for different initial values
to exhibit this symmetry. This can indeed be observed (see
Fig. 8).

Computed reconstructions of images containing the let-
ters ‘N’ and ‘S’ are shown in Figs. 9 and 10, respectively.
We see that the setup of eight laser beams is already ca-
pable of reproducing the significant features of the images.
The low-pass effect is clearly visible. Note also that by the
nature of the method, the images obey periodic boundary
conditions.

FIGURE 8 The computed coefficients cj for different choices of initial
values. The coefficients are identical up to a rotation

FIGURE 9 Example for N = 8, letter ‘N’. Left, original pattern I ; Middle,
Ĩopt; Right, reconstructed Ĩ by applying the coordinate descent method

FIGURE 10 Example for N = 8, letter ‘S’. Left, original pattern I ; Middle,
Ĩopt; Right, reconstructed Ĩ by applying the coordinate descent method

5 Fabrication of a holographic element for atomic
beam lithography

A central aspect of ANF is the use of light masks
generating the complex pattern to be transferred to a sub-
strate. Here we describe the use of a photorefractive crystal
that diffracts one or more light beams to generate a desired
light pattern.

5.1 Recording of the holograms

We use iron-doped photorefractive lithium niobate
for recording and multiplexing of elementary volume holo-
graphic gratings (LiNbO3:Fe). Lithium niobate crystals are
well known as holographic storage media [22, 23]. Iron ap-
pears in LiNbO3 only in two different valence states Fe2+
and Fe3+ [24], where the Fe2+ ions serve as electron sources
and the Fe3+ ions as electron traps. Inhomogeneous light ex-
cites electrons from Fe2+ to the conduction band. The free
electrons are redistributed due to drift, diffusion, and the bulk-
photovoltaic effect [25]. Finally, they are trapped again at
Fe3+ ions, which act as empty charge carrier traps, and hence
space-charge fields build up and modulate the refractive index
of the material via the electro-optical effect.

In our experiments we use a LiNbO3:Fe crystal with a total
iron content of 18 ×1018 cm−3 and a Fe2+/Fe3+ concentra-
tion ratio of 0.1. The dimensions of the sample are 5×5 ×
5 mm3. To suppress effects arising from Fresnel reflectivity at
the surfaces, the two crystal faces perpendicular to the opti-
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cal c axis are anti-reflection coated by means of an evaporated
MgF2 film with thickness 145 nm.

We use s-polarized light of a cw-Ti:Sapphire laser (wave-
length about 852 nm), which is slightly expanded and spa-
tially filtered (1/e2-diameter about 4 mm with a Gaussian-
shaped intensity profile). Two beam-splitter cubes divide the
light into three beams, which are directed onto the crystal by
mirrors. Beam I enters the crystal from the front perpendicu-
lar to the surface; beams II and III illuminate it from the rear
surface symmetrically with an angle Θ = 1◦ between each
beam and the surface normal (see Fig. 11, left part). The in-
tensity of the three beams is adjusted by combinations of
half-wave plates, polarizers, and polarizing beam splitters. All
beams have almost equal intensity of 6.2 W/cm2 (beam I),
5.9 W/cm2 (beam II), and 7.4 W/cm2 (beam III). The c-axis
is parallel to beam I. Thus the beams I and II record a holo-
graphic grating as well as the beams I and III. Although there
is interference of the beams II and III, this combination does
not significantly contribute to charge carrier redistribution,
because the hologram would be perpendicular to the c-axis: In
this configuration, no charge driving bulk-photovoltaic effect
is present [26, 27] and the diffusion current is very small.

To avoid erasure of the recorded holograms during read-
ing, we apply the technique of thermal fixing [28, 29]. The
crystal is heated to 180 ◦C during the recording process. At
this elevated temperature, protons become mobile and com-
pensate for the space-charge field of the electronic charge
redistribution [30]. After recording, the crystal is cooled down
to room temperature. Homogeneous illumination now yields
a development of the holograms that are now stable against
any readout light.

The Bragg condition that has to be fulfilled for reconstruc-
tion of a volume-phase hologram is very pronounced [31, 32];
that is, only reading light of the correct wavelength will recon-
struct the signal wave. In our case, the readout wavelength is

FIGURE 11 Concept of volume holograms stored in a crystal. During the
writing process (left), the crystal is illuminated with the light beams I, II,
and III. For readout (right), the crystal is illuminated with beam I, only. The
beams II and III are reconstructed simultaneously. Directly in front of the en-
trance surface, all three beams are present and thus an interference pattern
composed of all three beams appears

given by the cesium resonance at which we want to use the
volume holograms stored in a crystal; thus the holograms have
to be tailored for this requirement. A wavelength accuracy of
0.02 nm is needed to warrant a sufficient diffraction efficiency
of the hologram. Using thermal fixing leads to a problem:
the thermal expansion of the crystal and its shrinking dur-
ing cooling down after the writing process changes the Bragg
wavelength. To compensate for this effect, we have to increase
the recording wavelength by ∆λ = 0.58 nm with respect to
our desired reading wavelength λread = 852.11 nm. First we
calibrate the Ti:Sapphire laser to the D2 line using a spec-
troscopy cell filled with cesium gas. After that we increase the
wavelength by ∆λ and start the hologram recording. The writ-
ing time is 2 h because the photorefractive effect is relatively
small at near-infrared wavelengths. For shorter wavelengths
much shorter writing times of the order of minutes can be ex-
pected. To maintain the stability of the interference pattern
within the crystal, an active stabilization system is employed
that uses beam-coupling effects to derive an error signal in
the case of mechanical vibrations of the setup [15, 33, 34].
A piezoelectrically supported mirror in the reference beam
can be shifted to realign the correct position of the interference
pattern and to suppress the error signal.

5.2 Properties of the holographic element

Two elementary holograms, that is, holographic
gratings, are multiplexed. The crystal is illuminated with the
reference beam I, and due to diffraction from the two grat-
ings, the beams II and III appear. The diffraction efficiency η

of each elementary hologram is defined as the ratio between
the diffracted power of beam II or beam III and the incom-
ing power of beam I. This characterization is done at room
temperature. We measure η for various turning angles ϕ of
the crystal surface with respect to beam I. The result is shown
in Fig. 12 for both reconstructed beams, II and III. Two main
results are remarkable:

(A) For perpendicular incidence of beam I, both beams II and
III are reconstructed with η ≈ 13%. If these two diffracted
beams interfere with the incident beam I, we obtain an in-

FIGURE 12 Diffraction efficiency η versus angle ϕ between the crystal sur-
face and readout beam I, plotted for both beams II and III
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FIGURE 13 Diffraction efficiency η versus detuning of the readout wave-
length ∆λread for beam III. The markers show measured data; the solid line
indicates a calculated curve

terference pattern directly in front of the crystal surface
(Fig. 11, right part). The pattern that we expect can be cal-
culated; the result is shown in Figs. 15a and 16a. We get
a deeply modulated light pattern with two different period
lengths of about 426 nm and 24 µm.

(B) The angular selectivity of the holographic gratings is
checked by varying the angle ϕ. The diffraction efficiency
η versus angle ϕ is plotted in Fig. 12 for both beams II
and III. Figure 12 shows that the maximum values of η do
not appear at ϕ = 0. It is necessary to change the angle to
obtain the optimum values for η for the two beams. Thus
the grating period length is slightly too small. Increas-
ing the temperature increases the grating periods and can
be utilized to shift the two peaks closer together, but as
Fig. 15a shows, the achieved η at ϕ = 0 is already suffi-
cient for providing a well-modulated light pattern. Heat-
ing the crystal to 35 ◦C shifts the two maxima together
because of thermal expansion of the crystal.

Finally, we vary the reading wavelength λread by ∆λread

and check the diffraction efficiency η. The result is shown in
Fig. 13: The diffraction efficiency η of beam III is plotted ver-
sus changes of the reading wavelength ∆λread. A mismatch of
0.1 nm already yields a significantly decreased η. The theoret-
ical dependence η(∆λread) is additionally shown as the solid
line in Fig. 13. However, this curve is calculated for a per-
fect reflection hologram, and it is reasonable that our data do
not perfectly match the theoretical expectations. Non-perfect
crystal-surface polishing may be a reason for this.

6 Atomic beam lithography experiments

In this chapter we describe our experimental real-
ization of the generation of 2D nanostructures with a light
mask generated by multiplexed volume holograms stored in
a crystal as discussed in Sect. 5. For this purpose we use an
optically collimated, thermal cesium atomic beam.

The atomic beam is produced by thermal evaporation from
a cesium oven at about 140 ◦C (see Fig. 14), leading to a ther-
mal longitudinal velocity distribution with an average atomic
speed of roughly 270 m/s. An arrangement of apertures lim-

FIGURE 14 Experimental setup for atomic nanofabrication with a holo-
graphic mirror. The thermal cesium atomic beam is generated by thermal
evaporation. The 2-dimensional laser cooling reduces the transverse velocity.
The apertures limit the atomic beam to a diameter of 1 mm and direct it 1 mm
off the volume holograms stored in a crystal before the atoms pass the light
mask and cling to the substrate

FIGURE 15 a Numerical forward simulation of the light mask intensity dis-
tribution. b Optical microscope picture of gold structures (bright regions)
after processing

its the diameter of the atomic beam to 1 mm. The atomic flux
density is 5 ×1012 s−1 cm−2, corresponding to a deposition
rate of about one monolayer cesium per 90 s. The transverse
velocity of the atomic beam is reduced by 2-dimensional sub-
Doppler laser cooling to a remaining divergence of less than
1 mrad.

The holographic element stored in a crystal generating the
light mask is mounted above the cooling region. During the
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FIGURE 16 a Numerical forward simulation of the light mask intensity dis-
tribution. b Numerical simulation of the atomic flux density in the substrate
plane. Bright regions indicate a high atomic flux density. c Atomic force
microscope picture of generated gold structures (bright regions)

passage of the cesium atoms through the light mask, optical
dipole forces (see (1)) modify the atomic trajectories, result-
ing in a transverse intensity modulation of the atomic beam
behind the light mask.

The volume holograms stored in a crystal are heated up
to 35 ◦C, which was empirically found to give the maximum
diffraction efficiency for both stored holographic gratings.
The readout laser beam, which propagates from the right side
in Fig. 14, has a power of 18 mW and a positive detuning
∆ = 2π 600 MHz from the cesium D2 line at 852 nm. The
readout beam is diffracted into two laser beams with a power
of 18 and 20%, respectively, relative to the power of the in-
coming beam. A maximum light mask intensity of 3.5 times
the intensity of the readout beam can be calculated from con-
structive interference of the three contributing laser beams.
Destructive interference between the readout beam and the
two other beams leads to a minimum intensity of 1.6% of
the readout beam intensity. Thus the maximum contrast of
the light mask exceeds 99%. As we know from (1), only the
derivative of the light mask intensity distribution affects the
dipole forces. So even a worse contrast in the light mask can
deliver good patterning of the atomic beam. The profiles of
all contributing laser beams are Gaussian, with a diameter
of 2wz ≈ 170 µm in the direction of the atomic beam, and
a diameter of 2w⊥ ≈ 1.6 mm transverse to the atomic beam.
Hence the atomic beam (diameter 1 mm) is fully covered by
all contributing laser beams (see Fig. 14).

The three-beam light mask is slightly modulated by an
additional laser beam (≈ 3%), which arises from an addi-
tional reflection hologram that is written by back reflection of
recording beam I at the rear crystal surface (see Fig. 11a).

During exposure, the substrate is positioned just above the
light mask. Best results were achieved when the substrate cut
the light mask roughly at the upper beam waist, but good re-
sults were even achieved when the substrate position varied
about ±50 µm in the direction of the atomic beam.

In our case permanent structures are created with highly
reactive cesium atoms by applying a resist technique [35, 36]:

The cesium atoms are deposited on a substrate consist-
ing of bulk Si with a 30-nm gold layer, which is covered by
a self-assembled monolayer of nonanthiole. This monolayer
protects the underlying gold surface from the aqueous gold
etching solution. If the cesium dose exceeds a threshold of
approximately one monolayer, the resist is destroyed locally.
So afterwards the underlying gold can be removed by a dilute
etching solution. Therefore this kind of atomic nanofabrica-
tion is also called atom lithography.

Figure 15b shows a 35 µm×22 µm window of a substrate
generated by atom lithography with a holographically pro-
duced light mask. Dark areas in this high-aperture optical
microscope picture indicate substrate regions, where the gold
was removed by wet etching, that is, the resist was destroyed
by the deposited cesium. The generated pattern is according
to the calculated light mask intensity distribution shown in
Fig. 15a.

The 2D structure can be divided into two sub-structures:

(1) Horizontal lines with a spacing of roughly λ/2 = 426 nm,
resulting from interference of the readout beam I and the
two diffracted beams II and III (see Fig. 11).

(2) Vertical breaks of the horizontal lines, which repeat at dis-
tances of roughly 24 µm. In Fig. 15 these breaks appear
as vertical bands superposing the horizontal lines. These
breaks result from destructive interference of beam II and
III. Interference of only three beams would result in a con-
stant spacing of 24 µm between the breaks. But this spac-
ing is slightly modulated by the weak fourth laser beam
mentioned above. The observable dark dots in Fig. 15 are
dust particles.

The atomic force microscope picture in Fig. 16c shows
a 3.6 µm×3.6 µm close-up of the generated nano-structures.
Bright areas indicate the remaining gold structures after the
etching process. This more detailed view reveals that the
break of the horizontal lines is combined with a λ/4 = 213 nm
displacement of these lines in the vertical direction, according
to our expectations obtained from calculations of the multiple-
beam light mask (see (2)).

For comparison of our light mask geometry with the gen-
erated results, numerical atomic trajectory simulations were
carried out. For this purpose the optical dipole force acting
on the atoms passing through the light mask was calculated
classically, taking into account our experimental parameters.
Figure 16b shows the atomic flux density distribution behind
the light mask (see Fig. 16a) in the substrate plane, obtained
from calculation of 107 atomic trajectories, which represent
the position and velocity distribution of our atomic beam.
Bright areas represent a high atomic flux density, where the
threshold for resist destruction is exceeded and the gold is re-
moved subsequently in the etching process. Hence it is evident
that the generated structure (Fig. 16c) is identified as a nega-
tive of Fig. 16b. So our experimental results are in very good
agreement with our theoretical expectations.

7 Conclusions and outlook

Experimental demonstrations have shown that
ANF is a reliable and robust method for producing 1 : 1 struc-
tures of any given light mask used here and elsewhere. Gener-
ation of more complex light masks with interesting structures
is hence an important issue in advancing this method.

In this work we have analyzed the generation of com-
plex light fields by means of multiplexed volume holograms.
While we have used a simplified light mask, it has been shown
in [16] that up to 5000 holograms can be multiplexed in iron-
doped LiNbO3. Thus with this method, enormously complex
light masks can be generated.

It is an interesting and practically relevant problem to find
solutions for the inverse problem of designing a set of light
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beams, and hence a holographic element, generating a target
pattern. We have carried out initial numerical simulations for
this inverse problem by selecting a subset of waves. Our re-
sults demonstrate that it is possible to find reasonable approx-
imations for pre-selected wave vectors. It should be empha-
sized that in order to support sufficient reconstruction quality
of specific images an appropriate “conditioning” of the target
image is advantageous.

Extensions of the hologram method are straightforward,
for example, due to their outstanding angular and wavelength
selectivity: (A) by multiplexing holograms with two differ-
ent read-out waves that have the same wavelength, one may
rapidly switch between two different light masks simply by
rotating the crystal; and (B) by storing two sets of holo-
grams at different wavelengths, it is possible to manipulate
two species of atoms with the same setup and with different
patterns.
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