@article{2012-hambitzer, Abstract = {
This master-thesis investigates a new approach for state-dependent transport of atoms in an optical lattice. It is based on a direct synthesis of light polarization by superimposing two circular polarized beams and employing RF sources integrated with acousto-optic modulators for phase control. An interferometrically stable phase between the two beams is achieved by locking them actively with a heterodyne technique. The influence of polarization crosstalk and erroneous components on the optical lattice and the phase locked loop are investigated and the quality of the phase locked loop is analyzed.
Compared to conventional methods [25] the direct synthesis method avoids the need of an electro-optic modulator, where rotations on the Poincare sphere are limited by the applicable voltage and restrictions on manufacturing and crystal quality exist. Overcoming these limitations it is expected to reach higher polarization purity and larger shift distances in the new design.
}, Author = {Hambitzer, A.}, Journal = {}, Pages = {}, Title = {{Direct Synthesis of Light Polarization for State-Dependent Transport}}, Volume = {}, Year = {2012} }