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Introduction

Physics can be regarded as the general study of nature, including matter, motion and energy
[1]. The research in this field can be characterized by the scientific method, which enables
to test the validity of a physical theory [2]. From that point of view experiments measure
a physical quantity by comparing it with a standard which is considered as a true value[3].
The deviation of the measured value from the true value is denoted as a measurement error.
Further the uncertainty of a measurement is defined as the "dispersion of the values which
could be reasonably attributed to the measurement" [3]. Next to systematic errors which are
biases in measurements, randomly distributed fluctuations of a physical quantity under test
contributed to the uncertainty of a measurement. It is also called noise and can originate
from technical electronical noise due to the measurement devices such as thermal(Johnson)
noise [4]. On the atomic and subatomic level quantum mechanics has to be used for a de-
scription of the processes on these scales. [5]. Consequently, measurements of properties of
quantum states are limited by quantum noise. Quantum noise can be regarded as a conse-
quence of the Heisenberg uncertainty principle [6]. It can occur in the form of amplitude or
phase fluctuations of an oscillating electrical field such as laser light and is called intensity
or phase noise respectively [6]. Referring to the latter phase noise is an issue in communi-
cations, signal processing and quantum systems [7], [4]. It describes randomly distributed
temporal fluctuations in frequency domain and is characterized by a spectral decomposition
of the total power into intervals of noise frequency [8], that is also called the power spec-
tral density [9]. Phase noise can affect quantum states which relay on a well defined phase
relation between the involved states. Thus,laser light, which is described as a coherent stae
and correlated states are sensitive to phase noise [5]. This could destroy the well defined
quantum state and lead to decoherence [10]. In terms of the density matrix description this
is classified as an evolution from a pure state into a statistical mixture [11]. Therefore it has
to be considered in the realization of full control over single quantum systems. Due to the
progress in the development of cooling and trapping techniques of single particles such as
ions([12]) and neutral atoms(i.e [13]) the control and manipulation of single internal parti-
cles states became possible ([14, 15, 16]). One application is to simulate quantum behaviour
using single particles and therefore the next step is the realization of the correlation of two
quantum states [17].

In that sense we are currently working on the realization of a controlled interaction be-
tween two neutral cesium atoms trapped in an state dependent optical lattice ([18]). Later
on, this would allow to measure the degree of indistinguishability of the involved atoms
[19]. It will pave the way for the creation of entanglement with neutral atoms via coher-
ent cold collisions [20]. These systems are promising candidates because they combine the
advantages of neutral atoms such as long coherence times [21] with the high degree of ex-
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1. INTRODUCTION

perimental control of the atoms in an optical lattice [22]. For our experiments the atoms
are prepared in the hyperfine states |F = 4,mF = 4〉 ≡ |↑〉 and |F = 3,mF = 3〉 ≡ |↓〉 of the
D2 line of atomic cesium. We are able to address and manipulate the atoms individually
with single site resolution. Further we can employ state dependent transport to change the
position of the atoms [23, 14, 21].
However, a realization of a controlled interaction requires that the positions of the atoms
can be well resolved and the atoms are prepared in the three dimensional motional ground
state [24]. The atoms can be cooled into the motional ground state along the optical lat-
tice by employing microwave sideband cooling [23]. Due to the required relative phase
shift between state dependent lattice potentials microwave sideband cooling is not possible
in the radial direction [25]. Therefore for cooling into the radial plane a setup for Raman
sideband cooling has been assembled in our group. Considering that the driving source of
the trapping potentials and the Raman sideband cooling techniques are laser beams and the
atoms have to be prepared in well defined, i.e pure states, fluctuations from the beams or
decoherence processes result naturally into phase noise. Therefore I characterized two dif-
ferent sources of phase noise, which can limit the successful preparation of atoms into the
motional ground state. Since Raman sideband transitions couple different motional states
of two ground states with a small energy spacing in a two photon process [16] the frequency
between the Raman lasers has to precisely match the hyperfine energy splitting. Therefore,
the phase has to be stabilized by using an optical phase lock loop(OPLL), which I character-
ized by measureing the phase noise (Section 2.5). Embedded in a description of the Raman
setup the results will be presented in Chapter 2. The successful implementation of this setup
into the experimental apparatus allows now to cool around 56% of the atoms into the three
dimensional ground state.1(Section 2.7). In Chapter 3. I will present a characterization of
the common mode optical phase noise of the optical lattice. As stated above such phase
noise could in principle lead to heating, decoherence or an uncertainty in the determina-
tion of the position [26, 27]. It can be due to mechanical instabilities,for example. Other
sources of noise, such as beam pointing instabilities from the dipole trap lasers have been
already well studied and can be found in Ref.[28] and Ref. [29]. Any noise signal can be
regarded as a beat signal from the undisturbed source with the fluctuation [6]. Accordingly
I assembled an interferometer to measure this noise which will be described in Sec.3.2. The
influence from both the fast(Section.3.5) and the slow (Section.3.6) fluctuating component
was studied. It will be shown that the insertion of a slow feedback loop can be used for a
stabilization of the slow drifts. Chapter 4. covers first considerations regarding a Quadrature
interferometer in order to study further the phase noise of the optical lattice.

1Measurement results shown with kind permission by C. Robens
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2

Setup for Raman Sideband Cooling
with Phase Noise Characterisation

In order to study Bose statistics by fourth order interference effects [18, 30] and a repro-
ducible atom atom interaction the atoms have to be in the motional groundstate in all spatial
dimensions. [24] The technique of Raman sideband cooling relies on a change in the atomic
momentum when an atom interacts with Raman light fields [16]. A general Raman process
is a two photon process which leads to transitions between two states by means of a third,
virtual state, which is far off resonant to the excited state [31]. In a good approximation
atoms which are confined in a standing wave potential of an optical lattice populate quan-
tized energy states; the motional states of a harmonic oszillator. Consequently, Raman
sideband transitions tuned to the first blue sideband (Sec.2.2) induce transitions to lower
motional energy states until the motional ground state is reached. It represents a dark state
for cooling. Along the axial direction the atoms were cooled into the motional ground state
with a probability P0 ≈ 97% by microwave sideband cooling [23]. In the radial direction
microwave sideband cooling is not possible(c.f. [25]). Therefore a setup for employing
Raman sideband transitions to cool to the radial motional ground state is introduced. First
an overview about the general concepts and prerequisites for Raman sideband transitions
will be described. Then the assembly of the Raman setup including a measurement for the
characterization of the phase stability of the Raman transitions is presented in Sec.2.4.2.
Additionally the demonstration of cooling into the three dimensional ground state is dis-
played in Sec.2.7.

2.1 The optical dipole potential

The optical dipole potential arises from the interaction of a far detuned radiation field with
an induced atomic dipole moment. This leads to a conservative dipole force [32]. Depend-
ing on the detuning this results in attractive (∆ < 0) or repulsive(∆ > 0) potentials.
In the semiclassical picture an atom can be described as an effective two level quantum
system which interacts with a classical radiation field. Fig. 2.1 shows the driving frequency
of the light field which is detuned by ∆ from the resonant transition frequency ω0. The
states |g〉 and |e〉 denote the ground and the excited state and represent the basis states of
the system. In the dipole approximation (λfield�x, with x denoting the spatial extension of
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ωω0

Δ
|e>

|g>

Fig. 2.1: Illustration of the atom as a two level quantum system with the groundstate |g〉 and
excited state |e〉. The frequency of the resonant transition is denoted by ω0, the
frequency of the light field by ω and the detuning defined as ∆≡ ω−ω0

the atom, a monochromatic driving field can be written as:

(2.1)

ε̂ : unit polarization vector

E(t) = ε̂E0 cos(ωt) E0 : field amplitude

ω : field angular frequency

A decomposition into the positive and negative oscillation frequencies yields:

E(t) =
ε̂E0

2
(e−iωt + eiωt) (2.2)

= E+(t)+E−(t). (2.3)

The time evolution is given by the Schrödinger Equation:

HΨ(r,t) = ih̄
∂

∂ t
Ψ(r,t) (2.4)

The Hamiltonian H is composed of the unperturbed Hamiltonian H0, describing the free
evolution of the system with energy eigenvalues h̄ω0 and the interaction hamiltionian Hint:

H = H0 +Hint. (2.5)

H0 = h̄ω0 |e〉〈e|
Hint. =−d ·E =−er ·E

The derivation of the dipole potential follows the one from Chapter 5.) of Ref.[33] The
energy of the ground state is set to zero, and the dipole operator expressed in terms of
lowering and rising operators σ = |g〉〈e| and σ† = |e〉〈g|, respectively.

d = 〈g|d |e〉(σ +σ
†), (2.6)

where the phase of the dipole matrix element is assumed to be real.
Since 〈σ〉 = 〈|g〉〈e|〉 ∝ e−iω0t, the dipole operator can be decomposed into two oscillating
parts, as well. An insertion of these decompositions into Eq.?? yields in the rotating wave
approximation (RWA) 1 the interaction Hamiltonian can be written as:

Hint. =
h̄
2
(Ω∗σeiωt +Ωσ

†e−iωt), (2.7)

1Since |∆| ≡ |ω −ω0| � ω +ω0 the fast oscillations are averaged to zero, allowing a focus on the slow
dynamics of the system
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2.1. THE OPTICAL DIPOLE POTENTIAL

where Ω denotes the Rabi frequency. It describes the coupling strength between the ground
and the excited state and is defined as the transition matrix element of the dipole operator:

Ω≡−2
h̄
〈g| ε̂d |e〉E+

0 (2.8)

The atomic state is now a superposition from the ground and the excited state (only dipole
moment for mixed states) , with the time dependence in the coeffients ci.

|Ψ〉= c(t)g |g〉+ c(t)e |e〉 (2.9)

By means of the transformation into a rotating frame we do not consider fast rotations in
the equation of motion. The amplitude of the slowly varying excited state is thus defined as:
c̃e = ce expiωt. In the rotating frame (RF) approximation the Hamiltonian is described by:

HRF = HRF
0 +Hint.RF (2.10)

=−h̄∆ |e〉〈e|+ h̄Ω

2
(σ +σ

†). (2.11)

(2.12)

The solution of the Schrödinger equation results in to a set of equations of motions:

∂tcg =−i
Ω

2
c̃e (2.13)

∂tc̃e = i∆c̃e−−i
Ω

2
cg (2.14)

The solution of these equation describes Rabi flopping [31]. Accordingly, the population
is oscillating between the ground and the excited state with the generalized Rabi frequency
Ω̃ =
√

Ω2 +∆2 [31]. The time evolution of the atom-field dynamics is described by:

cg(t) = e
i∆t
2

[
cg(0)cos(

Ω̃t
2
)− i

Ω̃
[∆cg(0)+Ωce(0)]sin(

Ω̃t
2
)

]
c̃e(t) = e

i∆t
2

[
c̃e(0)cos

(
Ω̃t
2

)
+

i
Ω̃
[∆c̃e(0)−Ωc̃g(0)]sin

(
Ω̃t
2

)]
Now the dipole force can be calculated in a non perturbative analysis. In the Heisenberg
representation [34], the total force is related to the interaction Hamiltonian via:

F = ∂tp =
i
h̄
[H,p] =−∇Hint. (2.15)

With the notation Ω(r) = |Ω(r)|eiφ(r), where r denotes the mean atomic position in the
semiclassical approach the mean force can be written as a sum from two contributions to
the dipole force. The first term in Eq.2.16 corresponds to the dipole and the second to the
radiation pressure force.

〈F〉= 〈Fdip.〉+ 〈Frad.〉 (2.16)

Introducing the saturation parameter s 2 ,

s(r) =
|Ω(r)|2

2|
(

Γ

2

)2
+∆2|

(2.17)

2This expression arises from the density matrix formalism and the steady state solution of the optical Bloch
equations (OBE), which describe the temporal evolution in terms of the density matrix [35]
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CHARACTERISATION

and the relation 〈Fdip.〉=−∇Vdip. yields the solution for the dipole potential [33, 32]:

Udip. =
h̄∆

2
log
(

1+
I/Isat.

1+4(∆/Γ)2

)
(2.18)

In the case off far off resonant interaction this simplifies to:

Udip. =
3πc2

2ω3
0

(
Γ

∆

)
I(r) (2.19)

Hence atoms are attracted into the light field towards the intensity maxima for red detuned
light (∆ < 0) and for blue detuned light (∆ > 0) repelled out of the field towards intensity
minima. In addition, the dipole potential corresponds to an light induced shift of the atomic
energy levels. The energy eigenvalues of the full Hamilitonian including the interaction do
not correspond to H0 |Ψ〉= h̄ω0 |Ψ〉. The new Hamiltonian is represented by:

H =

(
−2∆ Ω

Ω 0

)
. (2.20)

A diagonalization yields the new energy eigenvalues Eg,e =
h̄
2

(
−∆± Ω̃

)
. In the limit Ω�

|∆| and using I
Isat.

= 2 Ω2

Γ2 one obtains:

∆E =±Udip. (2.21)

Therefore the light shifted ground state of a two level atom represents the optical dipole
potential trapping the atoms.

2.1.1 Multilevel atoms

In reality an atom exhibits a multilevel energy struture. The light field couples to various
states, where the coupling strength is characterized by the corresponding Rabi frequency.
By means of the Wigner-Eckhart Theorem [36] the dipole matrix element can be decom-
posed into a product of a reduced matrix element and Clebsch-Gordon coefficients (ci j). The
latter ones take, for instance, polarization and the coupling strengths between sub energy
levels into account.

〈F,mF|d |F’,mF’〉= 〈F‖d‖F’〉 · ci j (2.22)

For the resulting dipole potential all contributions have to be summed and weighted by their
relative coupling strength. [32].

Udip. =
3πc2Γ

2ω3
0

Ix∑
j

c2
i j

∆i j
, (2.23)

where i and j denote the sublevels of electronic ground and excited state.
Alkali atoms are well suited for cooling and trapping experiments. They exhibtit long lived
ground states and closed electronic shells with one electron, which simplifies the description
of the coupling [21]. For the case of cesium atoms in a red detuned trap the dominant
contributions are the D1 and the D2 lines, e.g the transitions from the 62S1/2 doublet to the
state 62P1/2 and 62P3/2 respectively.[37]. This leads to the general result (∆HFS� ∆Di) [32]:

Utrap. =
πc2Γ

2ω3
0

(
2+ξ gFmF

∆D2,F
+

1−ξ gFmF

∆D1,F
I(r)

)
, (2.24)
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2.1. THE OPTICAL DIPOLE POTENTIAL

mF= 0

F=4

F=3

| F= 4, mF= 4 > = |↑ >

|F= 3, mF= 3 >= |↓>

ω0=9.19 GHz62S1/2

62P3/2

D2-line 852 nm

Fig. 2.2: Illustration of the HFS structure of 133 Cs of the 62S1/2 state with the choice of the
two basis states for our experiment which are the outermost Zeeman sublevels
|F = 4,mF = 4〉 ≡ |↑〉 and |F = 3,mF = 3〉 ≡ |↓〉.

where ξ ∈ (0,±1) denote the polarisations (π,σ±) of the light field , gF the Land é factor
and ∆Di,F the corresponding detunings. In the experiment which will be presented in Sec. 2.6
we use the outermost hyperfine groundstates of the cesium D2-line. These states represent
our two qubit states for the description of the atom as a two level quantum( quasi spin 1/2)
system. The corresponding term scheme is illustrated in Fig. 2.2.

2.1.2 Standing wave potential

The optical lattice in our experiment is created by two counterpropagating, Gaussian laser
beams with linear polarization. This leads to a Gaussian intensity profile and yields a dipole
potential of the form [38]. Thus, the optical latice is a periodic pattern of trapping potentials.

Utrap.(r) =−U0
ω2

0
ω(z)2 e

− 2ρ2

ω(z)2 cos2(kz), (2.25)

where U0 denotes the maximum trap depth.[38].

2.1.3 The state dependendent optical lattice

A controlled interaction between two bosonic cesium atoms requires an individual control
of the atoms in different spin states. For a special choice of the detuning from the cesium
D2-line which is given at a wavelength of 865.9nm the optical lattice potential becomes
state dependent. The contributions to the potential cancel for m=±1

2 because the states in
62P

3/2 and 62P
1/2 are equally detuned at that wavelength from resonance but with different

signs of the detuning. The remaining transitions with circular polarization are red detuned,
which leads to an attractive, state dependent potential [38, 23]. As it is also shown in
Fig.2.3 the atoms are depending on their state either exclusively trapped by the σ+ or the
σ− polarized component of the lattice potential. However we use the cesium hyperfine
states |F = 3,mF = 3〉 ≡ |↓〉 and |F = 4,mF = 4〉 ≡ |↑〉 as our qubit states. In this case

7
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mJ= +3/2-3/2

σ+σ-

|↑>|↓>
62S1/2

62P1/2

62P3/2

Fig. 2.3: The ’mixed’ polarization components of the potential cancel by being equally
blue(red) detuned to the ‘magic’ wavelength of 865.9 nm. The remaining dipole
transitons are red detuned and lead to an attractive potential [adapted from [23]]

the atoms in |↑〉 are still only trapped by the σ+ polarized component of the potential, but
the atoms in |↓〉 are now trapped by a potential which also contains a small contribution
from the σ+ polarized component. The relative weights are given by the Clebsch-Gordan
coefficients.

U|↑〉 = Uσ+ (2.26)

U|↓〉 =
1
8

Uσ+ +
7
8

Uσ−

3

2.2 The motional groundstate

As mentioned the motional ground state it crucial for a reproducible atom-atom interac-
tion, for instance. Using a Taylor expansion for the expression of the potential in Eq.2.25
reveals that each potential well of the optical lattice can be approximated by the potential
of a harmonic oscillator. An atom which is bound in such a potential undergoes an os-
cillatory movement with frequency ωmot.. The energy states are quantized with an energy
of Emot. = h̄ωmot. (n+1/2)). These states are the motional states. Without any additional
cooling the motional states are occupied following a thermal Boltzmann distribution and do
not populate all the ground state. Each internal state of an atom is dressed with the motional
states. In the description of an atom as a two level system the motional states can be changed
by inducing transitions between different motional states in |↑〉 and |↓〉 (c.f.Fig.2.2). The
transition on the resonance frequency ω0 between the ground and the excited state does not
change the motional state and is denoted as the carrier transition. If the linewidth Γof the
corresponding transition is much smaller than the motional frequency the sideband transi-
tions can be resolved (Γ�ωmot.). Accordingly sidebands appear in the absorption spectrum
as it is illustrated in Fig.2.4. The sidebands appear at center frequencies ω0±χωmot, where
χ corresponds to the change of the motional state an is called the nth sideband.

3Referring to Eq. 2.25 U0 denotes the maximal depth, ω(z) the beam radius of a Gaussian beam.
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ω
0

Frequency

ω
0 -ω

m
ot

ω
0 +ω

m
ot

ωmot

|1>

|0>

Fig. 2.4: Illustration of sideband transitions coupling different motional states of a two level
atom in a harmonic potential. In the absorption spectrum this results in the
appearence of sidebands at a distance ±ωmot. from the carrier transition with
frequency ω0 [adapted from [39]]

2.2.1 Lamb-Dicke Regime

In order to effectively cool an atom into its motional ground state diffusion to higher orders
of motional states should be avoided. Therefore it is convenient to apply sideband cooling
in the Lamb-Dicke Regime where transitions to higher orders of sidebands are strongly sup-
pressed. In the Lamb-Dicke Regime the spread of the atomic ground state (n=0) wavefunc-
tion is much smaller than the wavelength of the cooling transition [40]. This is characterized
by η � 1, where η represents the Lamb-Dicke parameter. It is defined as:

η = kx0 = k

√
h̄

2mν
, (2.27)

where x0 denotes the spread of the wavefunction depending of the mass m of the atom and
the motional frequency ν . If the sidebands are resolved and the Raman lasers are tuned
such that transitions of the type |b,n+χ〉→ |a,n〉 are in resonance (∆≈ χν) the basis states
and the motional states become coupled. When the motional state undergoes a transition of
the type |b,n+1〉↔ |a,n〉(|b,n−1〉↔ |a,n〉) it is a transition on the first blue(red) sideband.
The Lamb-Dicke parameter is also related to the coupling strength. The corresponding Rabi
frequency yields:

Ωn,n+χ ∝ Ω0η
|χ|, (2.28)

where Ω0 denotes the Rabi frequency of the carrier [41] and χ ∈ Z the order of the side-
band. According to Eq.2.28 higher order sideband transitions are strongly suppressed and
the interaction is dominated by the carrier transition and the first red and blue sideband
respectively. Following Ref. [40] the corresponding Rabi frequencies are:

|e,n〉 ↔ |g,n〉 : Ω0 (2.29)

|e,n〉 ↔ |g,n+1〉 : Ω0
√

n+1η

|e,n〉 ↔ |g,n−1〉 : Ω0
√

nη

9
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∆

Δ|a>,|b>

| i >

|a>

|b>
δ

ωp  ,Ωp
ωS ,ΩS

Fig. 2.5: The application of coherent Raman transitions couples two states |a〉 and |b〉 by
means of an virtual state |i〉 in a two photon process. The virtual state is far detuned
from resonance in order to avoid excitation.

2.2.2 Ground state population

The mean occupation of a motional state is characterized by the mean occupation number
n̄. Following Ref.[42, 40] a comparison of the transition probability to the blue or red
sideband of an atom in |↑,n〉 allows the determination of n̄. The probabilities are probed
by a Raman pulse for instance which is tuned to either χth sideband. One measures the
surviving probability in |↑,n〉 and infers Pbsb

|χ〉 = 1− Pbsb
|↑〉 and Prsb

|χ〉 = 1− Prsb
|↑〉 respectively.

Defining the ratio R between the relative height of the sideband peaks yields for the mean
occupation number:

R =
Pbsb
|χ〉

Prsb
|χ〉

=
n̄

n̄+1
(2.30)

n̄ =
R

1−R
(2.31)

Then the probability that an atom is in the motional ground state after cooling can be calcu-
lated by:

P0 =
1

1+ n̄
(2.32)

2.3 Raman Transitions

General Raman process
Raman transitions couple two atomic states coherently in a two photon process by means
of a virtual state which is detuned from the third, excited state. This configuration is also
known as a Lambda-System. Like it is shown in Fig.2.5 the atom, which is prepared in
state |b〉 is pumped by the Raman pump beam with frequency ωp and Rabi frequency Ωp to
the virtual state. The subsequent application of the Raman stokes beam transfers the atom
into the other basis state denoted by |a〉 by stimulated emission with frequency ωS and Rabi
frequency ΩS. The temporal evolution of the propability amplitudes4 in the corresponding
states can be calculated in a similar manner to the case of the two level system. Accordingly
by using the ‘adiabatic elimination’ approximation the population in the excited stated av-
erages to zero [43]. Hence, this system can be described as an effective two level system

4Following the density matrix formalism, the square of the probability amplitude yields the population in
the resepective state
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2.3. RAMAN TRANSITIONS

∆=2π· 200 GHz

∆HFS=2π · 9.2 GHz

62P3/2

ωp , ΩpωS , ΩS

62S1/2

|n+1>

|n>

Re
pu

m
pe

r
Fig. 2.6: Raman sideband transitions between the basis states of our experiment denoted by

|↑〉 and |↓〉. The Raman pump laser is tuned to the first blue sideband which lowers
the motional state by one when the atom is transferred into |↓〉. For cooling a
repumper and spontaneous emission transfer the atom into the initial state.

with a Rabi frequency Ωeff[37]:

Ωeff. =
ΩRP ·ΩRS

2∆
(2.33)

Change of momentum

The momentum transfer from the interaction of the atom with the radiation field in the
Raman process yields ∆k = kp− ks

5. The Lamb-Dicke parameter is now written as η =
∆kx0. Thus in the Lamb-Dicke regime the momentum of the atom is in good approximation
not changed due to photon recoil but only due to the change of the motional state in sideband
transitions. Therefore resolved Raman sideband cooling allows cooling below the recoil
limit [16].

2.3.1 Raman sideband cooling

The qubit states |↑〉 and |↓〉 are long lived states. This results in the resolution of sidebands
since the condition Γ�ωmot. is fulfilled. The atoms are initially prepared by optical pump-
ing in the |↑,n+1〉 state. (Fig. 2.6). The Raman beams are both far off resonant to the
transition of the cesium D2-line and couple both states coherently with the effective Rabi
frequency. (c.f Fig.2.2). Furthermore the hyperfine energy splitting between both qubit
states corresponds exactly to the frequency difference between the Raman laser beams.

Since the process starts in the energetically higher state this process can be used for cooling
in the motional levels when the frequency difference,that is ∆ω = ωp−ωs, is tuned to the
first blue sideband transition. Then atoms moving with a higher frequency ω +∆ω are in
resonance with this transition. Hence, the atoms are transferred to a lower motional state
in |↓〉 ,n by the corresponding momentum kick ∆k. In order to reach the motional ground

5kp(ks) denotes the recoil the atom experiences from the interction with the Raman pump(stokes) laser
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2. SETUP FOR RAMAN SIDEBAND COOLING WITH PHASE NOISE
CHARACTERISATION

Dipole trap 
        axis

433 nm

Gaussian 
Potential

Standing wave
 Potential

Dipole trap 
        axis

a.) b.)

Fig. 2.7: Graphic illustration of the different confinement in axial and radial direction. b.)
shows the top view for better illustration.

state the atom has to be brought back into the initial state. Referring to Fig.2.6 an additional
repumper transfers the atom into the third, excited state. Via spontaneous emission the atom
decays back to the initial internal state but with a motional state lowerered by one . Since the
Raman sideband transitions are employed in the Lamb-Dicke Regime sideband transitions
to higher orders are strongly suppressed (c.f. Fig.2.4) and the motional state remains unal-
tered. This process continues until the motional ground state is reached since it represents
a dark state for the Raman beams [31]. There, the atoms do not interact any more with the
Raman light fields.

2.3.2 Axial and radial confinement

Each potential well in the optical lattice can be approximated by a cylindrical harmonic
oscillator. As it is illustrated in Fig. 2.7 the confinement along the dipole trap, that is
the axial direction, is much higher than the confinement in radial direction. The trapping
frequencis in the axial and radial respectively direction are:

Ωaxial = 2π

√
2U0

mCs.λ
2 (2.34)

Ωradial =

√
4U0

mCs.ω
2
g0
, (2.35)

where ωg0 denotes the beam waist of the Gaussian laser profile. Accordingly the confine-
ment in the radial direction is only given by the Gaussian profile from the laser beam while
in axial direction the atoms are trapped in the state dependent standing wave potential.
The corresponding Lamb-Dicke parameter can be calculated as well. With a cesium mass
m = 2.2 ·10−25 kg, a beamwaist of ωg0 at the atoms’ position and a photon recoil energy of
ωr = 2π ·2kHz ([39]) yields without any further confinement [25] :

Ωaxial ≈ 2π ·110kHz→ η ≈ 0.13

Ωradial ≈ 2π ·1kHz→ η ≈ 1.41

In order to cool the atoms by resolved Raman sideband transitions effectively an operation
in the Lamb-Dicke Regime (η � 1) has to be realized first. Thus the confinement in the
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2.4. STABILIZATION OF THE PHASE

Dipole trap 
        axis

+ =

DoughnutRadial con�nement:
  Gaussian pro�le

             New 
radial con�nement

Fig. 2.8: Implementation of a doughnut shaped blue detuned laser beam increases the radial
confinement. b.) The confinement has been increased compared to Fig.2.7

radial direction has to be increased.

Doughnut beam
This is achieved by shining in an additional blue detuned hollow beam, called doughnut
beam, along the axis of the dipole trap. As it is displayed in Fig.2.8 the overlap increases
the radial confinement. Following Ref.[44] and [45], where major contributions have been
done, the doughnut beam is generated by the combination of a Gaussian laser beam and a
spiral phase plate (SPP). This special lens imprints a phase pattern depending on the az-
imuthal angle of the Gaussian beam. [44]. According to the Fresnel-Huygens principle [46]
the SPP acts as a disturbing wavefront where every point acts a new point source. These
sources interfere mutually and at a certain distance destructive interference generates a dark
center [45]. The detuning of this beam leads to a repulsive force which drags the atoms
into the region with low intensity, that is the dark center.. This results in a trap frequency
of Ωradial ≈ 2π · 20kHz and a Lamb-Dicke parameter of η ≈ 0.31, which enables efficient
Raman sideband cooling. 6

2.4 Stabilization of the Phase

Phase noise is characterized as the representation of rapid temporal fluctuations in the fre-
quency domain [7]. Therefore an unperturbed oscillatory signal in time domain corresponds
to a delta function at the center frequency in frequency space.

2.4.1 Overview of phase noise

Following Ref.[9], a real radiation field such as a laser beam undergoes random phase (and
amplitude) fluctuations. They can be due to mechanical or thermal fluctuations or of quan-
tum mechanical origin. This is from spontaneous emission of the gain medium into modes
of the resonator [8]. As a random process it is not coherent to the original field and causes

6The formula for the dipole potential and the radial trapping frequency are now slightly modified and can
be found in Ref.[45]
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Fig. 2.9: Raman Setup for the stabilization of the phase (frequency) difference between both
lasers. The phase of the ‘slave’ laser is stabilized to the one of the ‘master’ laser in
the optical phase lock loop (OPLL).
a.) Generation of the optical beat signal b.)Downconversion of beat signal (i.)) and
generation of error signal (ii.)

phase fluctuations, for instance. The monochromatic radiation field with frequency ω0 can
be thus written as:

E(t) = Re(ei(ω0t+φ(t))), (2.36)

where φ(t) indicates the phase fluctuations. Phase noise decreases the power at the central,
carrier frequency of a pure sine wave, because it spreads the ideal delta function. Close to
the carrier the decay of the wings is dominated by 1

f noise and far away by thermal noise.
Therefore parts of the power are stored in ‘noise’powers [6]. It can be measured by record-
ing a power spectral density (PSD) spectrum. The PSD describes the portion of power
stored in a certain frequency interval. (Sec. 3.4)7.

2.4.2 Setup of the Raman OPLL

For coherent Raman transitions on the sidebands between two groundstates with a small
frequency spacing, the difference frequency of the Raman lasers has to precisely match the
hyperfine energy splitting. Thus, it is necessary to stabilize the phase of one Raman (‘slave’)
laser with respect to the second Raman(‘master’) laser running freely. This is accomplished
by means of an optical phase lock loop (OPLL). In an OPLL the phase of a beat signal
between both lasers is compared with the phase of a reference oscillator and the error signal
is fed back to the ‘slave’ laser.

The setup for the Raman lasers as it is pictured schematically in Fig.2.9 consists of the
generation of the optical beat note on the left hand side (a.) and the circuit for the OPLL
on the right (b.). The lasers are temperature controlled interference filter lasers (IFL) which
have been built by Ricardo Gomez. In order to avoid any backreflections of light into the
lasers the outcoupled laser light from master and slave laser passes an optical isolator [46].

7The exact expression of the PSD can be found in Sec.3.4, since the whole chapter is denoted to phase noise
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2.4. STABILIZATION OF THE PHASE

For the OPLL we only need a fraction of the total laser power. Thus, most of it will be
used for driving the Raman transitions. Therefore, the beam is splitted in a polarizing beam
splitter (PBS). By an additional λ

2 plate each the relative powers are controlled. In the third
PBS both beams are overlapped. In order to check single mode operation a fraction of the
beat note is sent to a mirror cavity for monitoring the laser modes. The other part serves as
the input signal of the OPLL. The corresponding intensity of the beat signal can be calcu-
lated by writing the field of a single mode laser as E(t) = E0cos(ωt +φ). For the intensity
it follows:

I(t) =
cε0

2
(Emaster(t)+Eslave(t))

2 (2.37)

Using 2cos(α)cos(β ) = cos(α−β )+cos(α +β ) and neglecting the sum term (Bandwidth
of photodiode is 10GHz) one obtains:

I =
cε0

2
(Emaster

0 Eslave
0 cos(∆ωt +∆φ)), (2.38)

where ∆ω = ωmaster−ωslave and ∆φ = φmaster−φslave.

2.4.3 Optical phase lock loop (OPLL)

The optical beat signal sent to the OPLL is first fibre coupled to ensure a good overlap
of both beams. The optical beat note is converted into an electrical, containing only the
frequency difference of 9.2 GHz between the Raman lasers by a fast photodiode. Refer-
ring to Fig.2.9, the bias tee removes any DC offset from the beat signal. As illustrated in
Fig.2.4.2 this frequency is mixed down to 50 MHz [47]. Accordingly the beat signal at 9.2
GHz is mixed with a signal at 9.15 GHz from a Phase Locked Dielectric Resonator Os-
cillator (PLDRO). It is locked to a 10 MHz 87Rb clock. The down converted signal at 50
MHz is compared with a reference signal from a Marconi signal generator in a phase fre-
quency discriminator (PFD). The PFD generates an error signal Ξ proportional to the phase
(frequency) difference between the down converted beat note and the reference [47].

Ξ ∝ sin(∆φ) (2.39)

The errorsignal is used to stabilize the frequency of the slave laser and is passed back in
two channels. On the one hand the slow feedback with a PID control to the ‘slave’ laser
compensates mechanical vibrations of thermal drifts, for instance. On the other hand the
other feedback loop compensates for fast phase and frequency fluctuations [47]. In order
to maximize the total power stored in the carrier the laser diode current is controlled by
means of a Lead-Lag filter. It increases the feedback bandwidth of the OPLL [48] [47]. The
corresponding circuit diagram with the choice of the optimal parameters for our setup can
be found in the appendix.

2.4.4 Characterisation of OPLL

In order to determine the functionality of the OPLL one has to determine the total power
stored in the carrier and the phase stability with respect to time.
Spectrum of OPLL
For a first characterization the downconverted signal at 50 MHz has been split before en-
tering the PFD and an intensity spectrum around this center frequency recorder. The beat
signal was recorded with different spans and resolution bandwidths and the data stitched
together in Matlab. We obtained the spectrum as it is shown in Fig. 2.10.8 The amplitude

8The corresponding program has been written from my collegue, Ricardo Gomez, who was responsible for
this project when I started my thesis.
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Fig. 2.10: Spectrum of the signal of the OPLL. The x-axis shows the offset from the central
(carrier) frequency of 50MHz. The amplitude ration between the carrier and the
servo bumps is at 90 dB. The characteristic peaks, called servo bumps, are at 1.5
MHz. They determine the working range of the feedback loop and arise from phase
differences that they are not compensated but enhanced by the PFD [47].

of the signal over noise at the carrier frequency at 50 MHz is around 90 dB. The additional
peaks, which are symmetrically at ±1.5 MHz distance from the carrier originate from the
case that the phase difference recorded in the PFD is not compensated any more. The phase
difference is rather enhanced now and thus sets the limit for the bandwidth of the feedback
loop [47]. For this measurement the power on the photodiode was 3.5 mW.

Relative power below the peak

The relative fraction of the total power Prel. stored below the carrier has been calculated by:

Prel. = 1− Pnoise

Ppeak
(2.40)

By dividing the small value of the noise with the comparably high value of the power stored
in the peak, one is less sensitive to small changes in the amplitude of the peaks. . The
power Pnoisewhich is stored outside the carrier is calculated by integrating the area below.
However the power in the peak is directly calculated from the maximum value in a small
interval. This interval is determined by the width of the curve in the corresponding window
of the resolution bandwidth around the carrier. Regarding an estimation of the relative error
of the stored power the main contribution is an uncertainty in the determination of the peak
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2.5. PHASE NOISE BY A QUADRATURE MEASUREMENT

value since it is several orders of magnitude higher than the power loss due to noise. The
amplitude of a peak is determined with an accuracy up to ±0.23 dBm. (c.f datasheet of
the Agilent N9020A spectrum analyzer). Consequently, the changes in the calculation of
the power are at 0.01%. The maximum value of the peak should be independent from the
resolution bandwidth (RBW) of the spectrum analyzer. Referring to Tab. 2.1 this could
be verified by measureing the maximum for a small and a big RBW respectively. The
difference corresponds to the error of the analyzer. According to Tab.2.1 the maximum is

RBW (Hz) Peak Value (dBm)

1 -11.51

2000 -11.28

Difference: 0.23 dBm

Tab. 2.1: Comparison of peak for two different bandwidths

indeed independent from the RBW and reproduces the uncertainty in determining the peak
amplitude. The calculation of the fraction of the total power below the carrier yields then:

Prel. = (99.91±0.01)% (2.41)

In a second measurement the power on the fast photodiode was 155µW. The same calcula-
tion yielded a value of Prel. = (98.95±0.01). Referring to this the accumulated power below
the carrier does not change significantly with different powers of the beat signal recorded
by the fast photodiode. The fractional amount of the total power below the carrier depends
on the stability of the phase difference between both lasers, i.e. maintaining a minimal error
signal at the output of the feedback loop. In order to characterize the OPLL further and to
verify the result from Eq.2.41 I measured the RMS phase noise of the OPLL by means of a
quadrature measurement.

2.5 Phase Noise by a Quadrature Measurement

2.5.1 Experimental realization

In order to perform the quadrature measurement both the down converted beat signal at
50MHz containing the phase noise and a reference signal provided by a Marconi 2032
signal generator at 50MHz(Splitters from Mini Circuits; ZFSC-2-1-S+ (5-500MHz) and
ZSC-2-2+(0.02-60 MHz) respectively) are splitted. The addition of a phase delay of π

2 to
generate the quadrature component corresponds to a length L= 1

4
c
ν

, where ν denotes the
frequency of the down converted beat signal. Thus the addition of a BNC cable with a
length of 1.48m led to the phase delay. The in-phase and the quadrature part are mixed
each with the reference signal, yielding:

I(t) ∝ sin(ωt+δφ(t)) · sin(ωt) =
1
2

cos(δφ(t)) (2.42)

Q(t) ∝ cos(ωt+δφ(t)) · sin(ωt) =
1
2

sin(δφ(t), (2.43)

where the sum term is lowpass filtered 9. A quadrature measurement is a method to record
temporal fluctuations such as phase noise. For this purpose an arbitrary signal is split into

9Mixers: Mini-Circuits Type: ZFM-3+ (0.04-400 MHz) , Lowpass filter: Mini-Circuits Type: SLP-30+,50
Ω,DC-32 MHz for I(t) and BLP-10.7+,50Ω,DC-11 MHz
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Mixer I
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sin(t) sin(t+)

Q(t)sin((t))

I(t) cos((t))

Fig. 2.11: Schematic draft of the experimental setup for the quadrature measurement. The
beat signal is split into two arms. For the creation of the quadrature component an
additional phase delay of ideally π

2 is added. Each arm is then mixed with a
reference signal, forming the In-phase component I(t)∝ cos(δφ(t)) and the
quadrature component Q(t)∝ sin(δφ(t)). Lowpass filters suppress the sum term.

I(t) I(t)

Q(t)Q(t)a.) b.)

Fig. 2.12: Demonstration of the change of the shape for a deviation of the relative phase
difference of π

2 (a.)). b.) In this case there is a deviation of π

4 from the perfect phase
delay, yielding an ellipse.

two parts. One part is not changed on its way to the detection electronics and is called the
in-phase component or abbreviated I(t). The other part is modified such that one adds an
additional phase delay of ideally π

2 . As it is illustrated in Fig.2.11one can achieve that by
lengthening the path length between source and detector. It is called the quadrature compo-
nent Q(t). Thus the signals are equal up to a relative phase difference of π

2 .
Furthermore the temporal evolution of the physical quantity under observation can be

traced when the quadrature signals are plotted simultaneously(c.f Fig.2.13. When Q(t)
is drawn against I(t), a noiseless signal corresponds to a point on a circle with radius
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Q(t)

I(t)

φRMS

Fig. 2.13: a.) shows a sketch of a quadrature signal with noise in the I(t) and Q(t) branch as it
was adjusted for measurement

r =
√
|I(t)|2 + |Q(t)|2. In case the relative phase difference deviates from π

2 the overall
shape becomes elliptical as it is illustrated in Fig.2.12 for the case of an deviation of π

4 . Fig.
2.12 a.) images the ideal case. For instance, these deviations can occur by mechanical in-
stabilities of the involved components or different cable lengths which lead to an additional
delay. However, a signal like the beat note between the Raman lasers contains noise which
broadens the point both in direction of I(t) and Q(t), like it is illustrated in Fig.2.13. It is
convenient to measure at a point where the amplitude of Q(t)(I(t)) is ideally zero and the
other maximal (in a unit circle 1) such that one is on-axis. Furthermore the contribution
from noise is much smaller than the maximal value of the amplitude of I(t)(Q(t)). There-
fore the fluctuations of the quadrature component on axis can be neclected. Additionally
the remaining amplitude of the perpendicular component is purely governed by the (phase)
noise of the signals because it fluctuates around zero. Hence the RMS value of the phase
noise can be obtained directly. From Fig. 2.13 one infers the following expression for the
RMS-value of the (phase) noise with the time averaged amplitude values of Q(t) and I(t) for
small angles.10

φRMS ≈
(
〈Q(t)〉
〈2I(t)〉

)
(2.44)

Moreover, a spectral analysis of the electric field in the presence of noise leads to a useful
expression, which connects the fraction of total power below a signal with the RMS value
of the phase noise. 11

Pcarrier ∝ e�〈φRMS〉2 (2.45)

Comparing the results from the quadrature measurement with the ones from the calculation
of the area below the curve of the signal from the OPLL offers the possibility to verify the
results by independent measurements.

10Since both components possess the same source from which the noise is measured by this method, the
magnitude of fluctuations for Q(t)and I(t) respectively should be akin. Therefore it is a valid approach to infer
the (phase) RMS noise by means of Eg. 2.44.

11A more detailed derivation of this relationship can be found in Appendix. B which follows Ref. [49]
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2.5.2 Result

I measured the RMS values of the amplitudes of Q(t) and I(t) in the way like described
above in units of mV on an oscilloscope. With an amplitude of 〈I(t)〉= 150mV and 〈Q(t)〉=
(10±0.5)mV, a phase noise of was measured.

φrms = (0.033±0.001) rad (2.46)

Using Eg.2.45 the power stored in the carrier could be calculated It yields:

PQuad.
carrier = (99.89±0.01)% (2.47)

This value is in good accordance with the value from Eq.2.41. These characterization mea-
surements demonstrate that the frequency difference between the Raman master and slave
laser is well stabilized. Less than 0.5% of the total power are not concentrated below the
carrier.

2.6 Experimental Setup

With a setup of two Raman lasers whose frequency difference is stabilized by an OPLL an
important prerequisite for the implementation of the Raman setup is fulfilled. In Fig.2.14 the
experimental setup with the components needed for the three dimensional ground state and
its detection is schematically illustrated. The following represents a short overview about
the components. Detailed information can be found in the given references and references
therein.

• Vacuum and glass cell
Collisions between the atoms and particles of the thermal background gas increase
the possibility to heat the atoms out of the optical lattce [38]. Therefore experiments
with cold atoms in optical lattices are performed in ultra high vacuum. The center
of the trapping region, e.g MOT beams and optical lattice, is located within the cen-
tral position of a glass cell which provides almost full optical access and simplifies
alignment of the imaging optics [29].

• Magneto optical trap (MOT)
The atoms are precooled in a magneto optical trap (MOT) by three dimensional
Doppler cooling [29, 38] . The application of a magnetic field gradient corresponds to
a postion dependent repulsive force which traps the atoms in the center of the optical
molasses [35]. As it is also shown in Fig.2.14 the xy plane of the MOT owns a relative
angle of 45◦ to the axis of the otical lattice. The third MOT beam, the z-beam, is sent
from top.

• Optical lattice The trap is generated by a Ti:Sa laser at 865.9 nm, whose light is
splitted into two arms called dipole trap one (DT1) and dipole trap two(DT2). The
quantization axis is along the direction of the counterpropagating beams DT1 and
DT2 forming the optical lattice. DT2 is linearly polarized and DT1 a linear superpo-
sition of a purely σ+ and σ− polarized beams. This is generated by direct polarization
synthesis [50]. Operating at this wavelength leads to a state dependent optical lattice
(2.1.3). As stated before the two basis states for manipulation of the atoms are the
hyperfine states |F=4, mF=4〉 ≡ |↑〉 and |F=3, mF=3〉 ≡ |↓〉.

• Doughnut beam
A standing wave optical lattice provides a strong confinment in the axial direction,
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Fig. 2.14: Experimental apparatus for cooling and trapping the cesium atoms. For simplicity
only the main components are shown. a.) Vaccum chamber with attached glass cell
b.) State dependent optical lattice by dipole trap arm one (DT1) and DT2
respectively c.) Magneto optical trap (MOT) d.) Microwave antenna e.)
Quantization axis by guiding field f.) Imaging optics including objective with
NA=0.29 [29]. g.) EMCCD camera for fluorescence detection. Further references
in text.

enabling the resolution of sidebands. However for the 3D ground state the sidebands
have to be resolvable in radial direction as well and the atoms in the Lamb-Dicke
Regime [40]. Thus additional radial confinement is necessary. See for Sec.2.3.2 and
references therein.

• Imaging system and EMCCD detector
For imaging the fluorescence light from the atoms is collected by a high numerical
aperture (NA) objective with NA=0.29 [29]. The images are taken by an EMCCD
(Electron Multiplying Charge Coupled Device) camera. Further information can be
found in Ref. [29, 38],[26].

• State preparation and detection
An external guiding magnetic field with B0 ≡ Bquant. lifts the degeneracy by the Zee-
man effect and defined the quantization axis. The atoms are initialized in the |↑〉
state by optical pumping with a σ+ polarized laser beam which is resonant to the
F= 4→F’= 4 transition(62P

1/2 state). Atoms which decay by spontaneous emission
to the F= 3 state are brought back to the pumping cycle by an equally polarized re-
pumper. This one is resonant to the F = 3→ F’ = 4 transition. The |↑〉 state is a dark
state. The atomic states are detected by means of the ’push-out’ technique. [26, 38]

• Microwaves
The full control over the qubit states is completed by manipulating the internal states
of the atoms by microwave radiation pulses. The atoms are adressed with single site
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Fig. 2.15: Comparison of the two configurations. For the final cooling the b.) was used.

resolution. For instance, a π pulse transfers the atom from |↑〉 to |↓〉. [38, 26]

2.6.1 Configurations for cooling

The atoms are precooled in the MOT and then transferred into the optical lattice [26] which
is overlapped with the doughnut beam (c.f 2.8). By optical pumping the atoms are prepared
in the initial state |↑〉 for the cooling process. In a first attempt toward cooling the Raman
lasers are both circularily polarized at the position of the atoms and overlapped with the
the z-axis (Raman pump laser) and the MOT x-axis (Raman Stokes laser) in retroreflec-
tion. For the second configuration as shown in Fig.2.15 b.) the polarization of the Raman
stokes(master) has been changed to a purely σ+ polarized beam. Additionally it is now
overlapped with the dipole trap axis.

Configuration of k-Vectors

For cooling the atoms have to undergo a momentum kick in the radial direction, which is
in opposite direction to their velocity [35]. The corresponding momentum kick is shown
for both configurations in Fig.2.16 a.) and b.) respectively. For simplicity the retroreflected
beam is not represented in Fig.2.16 a.) and only two of the four momentum vectors ∆ki are
shown. The others would generate a reflection of the figure with the xy plane. Referring to
Fig. 2.14 the doughnut beam is overlapped with the dipole trap. It was measured that the
doughnut has a slight ellipticity (5�10%) which is tilted by 45◦ to the momentum kick ∆k
in the transversal direction. Therefore, the momentum kick (c.f Fig.2.16 b.)) couples both
transversal directions.
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Fig. 2.16: Illustration of the momentum kick for both configurations. a.) shows the first
attempt. b.) Used Configuration for cooling into the ground state

Hyperfine prefactors

In the presence of a hyperfine splitting the Rabi frequencies have to be modified to take
into account the different coupling strengths of the hyperfine states. These relative weights
are given by the Clebsch-Gordan-coefficients Cij. Therefore the new Rabi frequency can be
written as:

Ω|F,mF〉→|F’,mF’〉 = 〈F,mF| êε0E0 |F’,mF’〉= Cij 〈J| êε0E0 |J’〉 , (2.48)

where the indices ij correspond to i= |F,mF〉 and j= |F’,mF’〉 The coefficients relevant for
both configurations are listed in Tab.2.2.

Label Transition Cij

C44↔4′4′ |F = 4,mF = 4〉 ↔ |F’ = 4,mF’ = 4〉 : π

√
7
30

C33↔4′3′ |F = 3,mF = 3〉 ↔ |F’ = 4,mF’ = 3〉 : π

√
5
96

C33↔3′3′ |F = 3,mF = 3〉 ↔ |F’ = 3,mF’ = 3〉 : π

√
9
32

C44↔4′3′ |F = 4,mF = 4〉 ↔ |F’ = 4,mF’ = 3〉 : σ� �
√

7
120

C44↔3′3′ |F = 4,mF = 4〉 ↔ |F’ = 3,mF’ = 3〉 : σ�
√

7
72

C33↔4′4′ |F = 3,mF = 3〉 ↔ |F’ = 4,mF’ = 4〉 : σ+
√

5
24

Tab. 2.2: Values of the relevant Clebsch�Gordan coefficients for employment of the Raman
beams

Configuration I

Both Raman lasers are circularily polarized which means that according to the relative po-
sition to the quantization field both could in principle drive σ+,σ� andπ transitions. The
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CHARACTERISATION
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Fig. 2.17: Illustration of the Raman sideband cooling in the first attempt. The RP beam is
tuned to the first blue sideband. The Raman pump (RP) and the Raman stokes (RS)
laser are detuned by ∆ from the D2 line of cesium. The atom, initially in |↑,n+1〉 is
pumped to the intermediate state. Then stimulated emission by the RS beam
transfers the atom into |↓,n〉 A repumper transfers the atoms to the |↑,n〉 state.

power is equally distributed over the different polarizations.

Pall =
1
3
(Pσ+ +Pσ�+Pπ) (2.49)

Due to the selection rules from quantum mechanics only the π and σ� polarized fraction
of light from the Raman pump(RP) and the π and σ+ fractions from the Raman stokes(RS)
laser can be exploited for Raman sideband cooling. The states |↑,n+1〉 and |↓,n〉 are
coupled by a combination of either πσ+ or σ�π of the Raman lasers as it is illustrated in
Fig.2.17. The atom is prepared by optical pumping in |↑〉 and the Raman pump laser is tuned
to the first blue sideband. The cooling cycle is closed by a repumper to |F’ = 4,mF’ = 4〉
and spontaneous emission.
This configuration of the laser’s polarizations allows to use 2

3 of the total power of the Ra-
man beams. For the resulting coupling strength all contributions in the hyperfine structure
have to be considered. Referring to Fig.2.17 the σ� polarized light component from the
Raman pump laser can either excite the atom to an intermediate state detuned from the
|F’ = 4,mF’ = 3〉 or to the |F’ = 3,mF’ = 3〉 state with coupling strengths depending on the

Clebsch-Gordan coefficients. The corresponding hyperfine prefactors are �
√

7
120 and

√
7

72
respectively (c.f. Tab. 2.2, [37]).
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Fig. 2.18: Illustration of the polarization gradient.
a.) shows the direction of the both circularily polarized Raman lasers. b.) displays
the resulting spatial gradient of polarization which leads to varying ones at different
lattice sites.

With respect to all contributing transitions and corresponding hyperfine prefactors both pro-
cesses possess the same coupling strength and contribute equally to the cooling:

πσ
+ :

C44→4′4′ ·C4′4′→33 :

√
7

12
σ
�

π :

C44→4′3′ ·C4′3′→33 +C44→3′3′ ·C3′3′→33 =

√
7

12

Problems of configuration I
It was not possible to resolve longitudinal or transversal sidebands with the Raman lasers
by that beam configuration . The following things have been tried to resolve sidebands:

• Raman spectroscopy with ∆ = 50GHz
Observation of spontaneous Raman transitions from at least one laser

• Change of the detuning to ∆ = 200GHz
The sidebands were still not visible. If they were not visible due to power broadening
they should appear, when the beam power is changed

• Decrease of the powers from both Raman lasers in steps from mW to µW range.

One reason could be the alignment of the Raman lasers in retroreflection configuration(c.f.Fig.2.15
a.)) and the circular polarization of the beams at the position of the atoms.

In Fig.2.18 a.) the geometrical configuration and the circular polarization of the beams
is shown. It leads to a polarization gradient along the retroreflected Raman beam (Fig. 2.18
b.)). This results in varying polarizations for atoms in different lattice sites. Hence, the Rabi
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Fig. 2.19: Illustration of the configuration of used transitions for our Raman sideband cooling
scheme.

frequency depends on the position of the atoms. This, for instance, could explain why it
was not possible to record Raman Rabi oscillations. Theoretically one should observe still
sidebands. However, these were probably not visible due to decoherence.
Scheme II
After these attempts is has been decided by the group to change the geometry of the Raman
beams. As it is illustrated in Fig.2.15 the Raman stokes (master) laser is overlapped with
the axis of the dipole trap and purely σ+ polarized. The choice of this geometry avoids
a polarization gradient and as shown in Fig.2.19 allows to use only one combination for
driving Raman transitions. The Raman pump laser remains circularily polarized and can
therefore drive σ+,σ�andπ transitions. Accordingly the combination from a π transition
followed by a σ+ transition induces Raman transitons. Initially the atom is prepared in the
|↑〉 state by optical pumping. The Raman transition remains detuned by 200GHz as before.
As it is also displayed schematically in Fig.2.19 the atom is pumped to the intermediate state
by the fraction of the Raman pump light which is π polarized, from which it is transferred
into the ↓ state by the Raman stokes beam by stimulated emission. Due to the transition on
the blue sideband the motional state number has been lowered by one. The cooling cycle
is closed by a repumper and spontaneous emission to the initial state, but with a motional
number decreased by one. The hyperfine prefactor for the coupling strength is given by:

πσ
+ =

√
7

12
(2.50)
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2.7. COOLING INTO THE GROUND STATE
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Fig. 2.20: Demonstration of cooling into the motional ground state. The whole spectrum is
shown. The transversal sidebands are as expected separated from the carrier
frequency at ±49.85MHz by ≈±20kHz . At 110 kHz from the carrier the first
longitudinal heating sidebands appear.[With kind permission by C. Robens]

2.7 Cooling into the ground state

With the second configuration (Fig.2.15 b.) it is possible sidebands apeear. Thus the atoms
are cooled. Figure 2.20 reveals the complete result of the measurement. The asymmetry
between the number of the relative occurences between the red and blue transversal side-
band respectively displayed in Fig.2.20 indicates that a significant fraction of atoms has
been tranferred into the motional ground state.
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Central Frequency: 49.85 MHz

Carrier

TSB+1

TSB-1

Central Frequency: 49.85 MHz

Fig. 2.21: Illustration of the carrier and the first transversal sidebands for a smaller span.
[With kind permission by C. Robens]

Peak Position Height Width

TSB+1 �(21.71±1.74) (0.34±0.03) (11.19±0.9)

Carrier (6.32±0.5) (0.43±0.03) (6.3±0.5)

TSB-1 (11.74±0.94) (0.15±0.01) (12.05±0.96)

Tab. 2.3: Results of the Gaussian Fit to the data

Analysis

Following the calculation presented in Sec.2.2.2, the ratio and thus the probability to be in
the ground state after cooling can be calculated. In order to calcuated the ratio R, the relative
heights of the blue (TSB-1) and red sideband (TSB+1) have to be determined. For better
visualization of that region Fig.2.21 shows the carrier and the first transversal sidebands.
The relative heights of the sidebands are determined by a Gaussian fit [51] to the data, as it
is illustrated in Fig.2.22. The result from the fit is listed in Tab.2.3 This yielded a ratio of
R= (0.44±0.05) and thus the probability that the atoms have been cooled into the motional
ground state (from the radial sidebands) to be:

P0 = (0.56±0.01) (2.51)

Accordingly approximately 56% of the atom are cooled in the radial sidebands.
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2.8. SUMMARY

−25 −20 −15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4
Re

la
tiv

e 
oc

cu
re

nc
es

RF  frequency (kHz)  

CarrierTSB+1 TSB-1

Fig. 2.22: Result of a Gaussian Fit for the carrier and the first transversal sidebands. The
corresponding values are listed in Tab.2.3.

2.8 Summary

In this chapter I presented the setup to cool the atoms in the radial plane to reach the mo-
tional ground state which is crucial for reproducible atom-atom interactions. The atoms
are cooled by employing Raman transitions which are tuned on the first blue sideband
transition between the basis states denoted by |↑〉and |↓〉, respectively. In order to drive
coherent Raman transitions the phase between both Raman lasers has to be stabilized by
using an optical phase lock loop(OPLL). It has been characterized by recording an intensity
spectrum and calculated the power stored below the carrier at 50MHz by integration to be
(99.91±0.01)%. By an independent measurement of the phase noise in quadratrature con-
figuration I obtained a value of φRMS = (0.033±0.001) rad. I could confirm the value of the
power below the carrier. The result is that (99.89±0.01)% of the total power are stored be-
low the carrier. This is in good accordance with the result from integration. Thus the phase
is well stabilized. In the present setup the Raman transitions are driven by a πtransition to
the intermediate state which is followed from a σ+ transition. With this configuration it is
possible to cool atoms into the motional ground state with a probability of (56±1)%
Combining this with the progress with respect to the position control of single atoms to
transport them to the same lattice site enables us now in principle to conduct the Huong-
Mandel experiment with massive bosonic particles [18, 19]. Of course this comes along
with the great progess in the control and manipulation of the qubit states of the atoms which
has been developed over the past years also in our group.
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3

Common Mode OpticalPhase Noise
of the Optical Lattice

As pointed out in the introduction a good knowledge about the limiting factors, i.e. noise, is
also important for the successful conduction of an experiment with reliable results. This is
also called the ‘errorbudget’ of an experimental apparatus. In our experiment several contri-
butions to the ‘errorbudget’ such as identifiying beam pointing instabilities as one source of
decoherence [28] or heating of the atoms have been already well studied and characterized
[29]. However, the impact of a phase noise induced by the optical lattice, has not been stud-
ied yet. The state dependent optical lattice, which consists of two standing wavepotentials
denoted by Uσ+ = U↑ and Uσ− ≈U↓ represents the centerpiece of the experimental appara-
tus. Hence, it is of importance to find out whether such noise leads to heating of the atoms
or a decrease in the single-site resolution. Such a phase noise can either be due to a differ-
ential movement or to a common mode movement of the relative phase between the lattice
potentials U↑ and U↓. The differential movement can in principle result in an addional rel-
ative phase between the atoms which makes them distinguishable although they are in the
motional ground state. However, for the clear demonstration of the Huong-Mandel effect
with atoms [19] the atoms should be indistinguishable. The common mode optical phase
noise corresponds via ∆φ = k ·∆s to a spatial shift. This could lead to uncertainties in the
determination positions of the atoms. Since both atoms have to be brought to the same lat-
tice site this phase noise could decrease the fidelity of such a process. In the following I will
focus on the examination of the common mode phase noise of the optical lattice. In order
to measure the common mode phase noise the two dipole trap beams DT1 and DT2 (c.f
Fig.3.1) have to be overlapped. Therefore I assembled an interferometer. In order to mini-
mize additional phase noise from itself the interferometer was built in a small, monolithic
cube (Fig. 3.2 a.). In the following both the fast oscillating and slowly drifting contribu-
tion will be considered. In Section 3.5 first the power spectral density(PSD) spectrum will
be examined, which represents the fractional amount of total power in a certain frequency
interval [9]. Regarding the slow drifts (Section 3.6) a possible influence on the position
reconstruction of the atoms will be analyzed.

3.1 Experimental Setup

A linearly polarized Titanium-Sapphire laser [Coherent MBR−110,abbrev. TiSa,[38]] with
an maximum output power of 2.2 W at 865.9 nm wavelength serves a the source of the state
dependent optical lattice. The first polarizing beam splitter (PBS) creates the two arms of
the interferometer, denominated in the following with dipole trap arm one(DT1) and dipole
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Fig. 3.1: Schematic of the experimental apparatus including the new interferometer to measure
the common mode optical phase noise. A PBS splits the light from a titan sapphire
laser(Ti:Sa, a.)) into two dipole trap arms (DT1 and DT2). The beam of DT2 is
passing an AOM (b.)) for power control. The piezo mirror(c.)) allows to control the
relative phase between both arms. At the interferometer (d.)) 10% of the light are
picked up to measure the global phase noise. The rest passes the vacuum chamber
with attached glass cell (e.) to the formation of the optical lattice (f.). The imaging
apparatus collects the fluorescence light for analysis ((g.),[38]). DT1 is split into two
arms for the polarization synthesis(h.)) leading to our state dependent optical lattice
[50].The linear polarized light is converted into circularily polarized light i.).

trap arm two(DT2). While the acousto optical modulator (AOM) in the beam path of DT2
is only used for intensity stabilization the AOM’s in the path of DT1 are also used to adjust
the optical phase for the polarization synthesis. Acousto optical modulators for a further
control of the laser power and the detuning of the frequency are inserted. The AOMs are
driven by a 80 MHz RF source. For the polarization synthesis the light of DT1 is divided
again by a second PBS. These are then DT1R and DT1L respectively. It is used to realize
state dependent transport [50]. The arm DT1 is linearly polarized and reaches the position
of the interferometer after passing the vacuum chamber. The other arm, (DT2) passes first
the interferometer and reaches then the glass cell, as it is illustrated in Fig.3.1. There 10%
of the light is picked up for the beat signal and the rest is transmitted to the atoms as well
(c.f Sec.3.2). These counterpropagating beams then form operating at a ‘magic’ wavelength
of 866nm the state dependent optical lattic (c.f Chap.2.1.3).

3.2 The Interferometer

As one can also depict from Fig. 3.3 a.) the interferometer is similar to a classical Michelson-
Morley interferometer[52]. Two counterpropagating beams, the lattice beams DT1 and
DT2, are superimposed using a wedged glass plate. The resulting beat signal provides a
direct measurement of the common mode phase noise. Both arms are from the same laser
source, the Ti:Sa laser, as illustrated in Fig.3.1. The fields of each contribution are defined
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3.3. GENERATION OF THE BEAT SIGNAL

as:

EDT1 = E01 · ei(ωt−kx1), (3.1)

EDT2 = E02 · ei(ωt−kx2), (3.2)

where k is the wavenumber, x1 and x2 respectively denotes the total path length to the point
where these partial waves are superimposed. The resulting total intensity can be calculated
as where ∆x = x2− x1 represents the relative path length difference between both arms of
the interferometer [53].

Iall = I1 + I2 +2
√

I1I2 · cos(k∆x) (3.3)

This result represents the ideal case without any time dependent fluctuations. In our timescales
a real measurement device as a spectrum analyzer always detects the temporal mean value
of this observables, therefore it measures:

〈Iall〉= 〈I1〉+ 〈I2〉+2
√
〈I1〉〈I2〉 · 〈cos(k∆x)〉 (3.4)

Changes in the relative pathlength as the common mode movement of our optical lattice
correspond via ∆φ = k∆x to a change in the optical phase. The cosinusodial interference
pattern becomes visible when ∆φ ≥ 2π (∆x = n

λ
,n ∈ Z). When the averaged intensities

〈I1〉 and 〈I2〉 are known, one can estimate how well both beams are overlapped from the
interference constrast. Thus by measureing and increasing the contrast the overlap can be
optimized. For the case of equal intensities values the maximal theoretical contrast has a
value of one. The general expression yields [53]:

V =
2
√

I1I2

I1 + I2
(3.5)

Experimentally, the contrast can be determined by changing the optical phase ∆φ and
recording the minimal and maximal intensity of the beat signal.

V =
Imax− Imin

Imax + Imin
(3.6)

,where Imax denotes the case of an optical phase such that cos(k∆x)= 1 and Imin for cos(k∆x)=
−1 in Eq.3.3 [54]. The contrast takes values between 0 and 1 and this expression also rea-
sons why it is necessary to match the level of both intensities.

3.3 Generation of the Beat Signal

All components of the interferometer are placed in a quadratic, monolithic cube with side-
lengths of five centimeters each as it is shown in Fig.3.2 a.). This compact design ensures
that the interferometer does not add phase noise by itself. A wedged glass plate serves as a
beam splitter as displayed in Fig. 3.2b.) and c.) Referring to Fig. 3.3 a.) the wedged glas
(NBK-7) plate has got an antireflection coating(AR) on the side of the arm coming from the
atoms. The glass plate is wedged to both interference with the AR coated side. Addition-
ally the wedge is inserted such that the reflection from the mirror does not reach the vacuum
chamber, i.e the atoms. For a perpendicular incidence of light to the fixed mirror the wedged
glas plate is tilted by 45◦ relatively to the light of DT2. It reflects 10% and transmits 90%
of the light. The arm of DT2 with a power P2 hits the glas plate under an angle of 45◦, is
reflected to the fixed mirror and then transmitted back through the glas plate towards a pho-
todiode. The other arm, DT1, is first transmitted due to the antireflection coating and then
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Fig. 3.2: Illustration of the interferometer built as a compact cube which can be mounted
stable such that no additional noise is added. a.)shows an image of the cube, b.) and
c.) illustrate how the wedged glass plate used for overlapping DT1 and DT2 is
inserted in this cube.

reflected upwards to the same photodiode by the reflecting side. Accordingly the power P in
the output of the cube is P = 0.09Pin per beam. Both beams are superimposed and generate
a beat signal. This beat signal is recorded by a Thorlabs PM-400 photodiode. The expected
amplitude is according to the relative phase difference between both arms. Referring to Eq.
3.4 the intensitiy of the beat signal is I ∝ Vcos(∆φ). Given the relation

∆φ =
2π

λ
∆x (3.7)

any jitter in the common mode phase corresponds to a spatial jitter of the optical lattice.
This changes the relative phase of both arms at the point where they are superimposed.
Therefore, the contribution from common mode noise of our one dimensional optical lattice
can be measured.

Interference Constrast and Sensitivity

The quality of the overlap of the beams can be determined by the interference contrast or
fringe visibility V. In case the intensities are equal(I1 = I2) the amplitude of the beat signal

34



3.3. GENERATION OF THE BEAT SIGNAL

AR
R=10%

0.01P1

0.1 PDT1

PDT2

0.9 PDT1
PDT1

Mirror

PD

Fig. 3.3: Schematic of the interferometer cube showing the beam path and the corresponding
fractions of the beam powers creating the beat signal
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Fig. 3.4: a.) Illustration of the position of the piezo mirror, which is driven by a high voltage
amplifier. Fibre coupling and intensitiy stabilization ensure that changes of the beam
path yb the piezo mirror does not affect the overlap of the beams b.)This figure shows
the cosinusodial interference pattern one can see on an oscilloscope when the relative
position(phase) between both arms is scanned for 2πn by driving the piezo miror. It
illustrates the condition of the relative phase for a measurement with highest
sensitivity as well.

would reach the numerical limit of 1 for the contrast for a maximal overlap. Therefore, we
measured the power of the arms by blocking the other one. For DT1 and DT2 we measured

DT1 : (1.53±0.01)mW

DT2 : (1.56±0.01)mW

From these values one would theoretically expect a constrast of

Vtheo. = (0.999±0.015) (3.8)

In order to determine the visibility experimentally, we scanned the relative optical phase
∆φ e.g the path length of one arms (Eq.3.7) by varying the voltage applied at the piezo
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Fig. 3.5: a.) Schematic of the setup to measure temporal drifts. The piezo mirror controls the
optical phase of DT2. The interference signal is recorded by a photodiode and
displayed by an oscilloscope b.) Observation of temporal drifts in a time interval
(8min) much shorter than the data aquisition time for later measurements (45min)

mirror. The minimum and maximum voltage measured during that scan was recorded by a
photodiode. We obtained UPD

max = (4.37±0.01)V and UPD
max = (0.01±0.01)V. According

to Eq.3.6 the interference contrast yields:

Vexp. = (0.995±0.011) (3.9)

This value is in good agreement with theoretical maximum from before. In order to measure
the common mode optical phase noise as precise as possible the interferometer is supposed
to operate at a point where the sensitivity to changes in the relative phase is maximal and
(ideally) linear for small changes. According to Eq.3.3 this is the case for,

∂ Iall

∂∆φ
=�2

√
I1I2 sin(∆φ). (3.10)

which means for Iall = 0. Therefore the piezo mirror was used to find an appropriate position
which fulfilled that condition before the first measurement of the relative phase noise had
been done.

3.3.1 Supression of temporal drifts

For a reliable measurement of the phase noise the interferometer is supposed to operate
during the whole data aquisition time with a constant, maximal sensitivity. Therefore we
studied first the temporal behaviour of the beat signal using an oscilloscope. The measure-
ment setup and the corresponding result is illustrated in Fig.3.5. The piezo mirror had been
adjusted such that the beat signal meets the point with maximal slope before. Without any
common mode phase drifts one would expect a constant signal around U0 ≈ 2.2V.

However the temporal trace of the intensity reveals fluctuations between the minimal and
maximal values UPD

min = (0.01±0.01)V and UPD
max = (4.37±0.01)V respectively. This mea-

surement shows that we have common mode optical phase drifts on the order of 2π on a
timescale of minutes. The photodiode we used saturates at 9 V. According to the voltages
in Fig.3.5 we can be sure that we are using the photodiode within the correct power input
range. This measurement reveals that it is necessary to extend the setup with an additional
control loop to suppress the recorded slow drifts of the optical phase. As it is illustrated in
Fig. 3.6 this has been realized by dividing the signal behind the photodiode. One is used for
the measurement of the phase noise and the other for the feedback loop of the piezo mirror.
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3.4. POWER SPECTRAL DENSITY (PSD)
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Fig. 3.6: Setup of the addition of the system for compensation of the temporal drifts shown in
Fig.3.5. It consists of a low pass filter to generate a slow loop and the corresponding
PI control. The signal from the photodiode serves as an error signal. The output of
the PI control is the input of the piezo mirror.

The beat signal with these intensity fluctuations serves as the input of a PI controller. The
PI controller generates a correction signal which is fed back to the driving input of the piezo
mirror. The piezo mirror is driven by a high voltage. This serves as the actuating variable
of the loop because that voltage is used to modulate the position of the piezo. Accordingly
the optical phase delay of DT2 is modulated.

This stabilization loop should only compensate the slow drifts of the optical phase and
also keep the optical phase at the point of the highest sensitivity. This is for the same reason
the ideal lock point as well.

Therefore an additional low pass filter with a cut off frequency of νc = 15Hz has been
inserted before the signal enters the PI controller. Thus long term drifts are compensated
and the AC component can be measured.
It is expected that the amplitude of the phase noise between the measurement without the
loop and the loop differs by 3dBm, because the averaged intensity of the interferometer has
an factor of 2 which corresponds to 3dBm (c.f Fig.3.4 b.)).

3.4 Power Spectral Density (PSD)

The common mode optical phase noise leads to a fluctuating intensity of the beat signal.
Thus, it is measured as a temporariliy fluctuating voltage on the photo diode in Fig3.6. This
signal was transmitted to a network analyzer, which rather recorded the power spectral den-
sity spectrum. In order to connect both quantities I will derive an expression for the power
spectral density and partly following the derivations in [54],[9]. A noise value of a quantity
cannot be predicted deterministically but is rather described by the corresponding probabil-
ity distribution. In case of randomly distributed events, the distribution is determined by
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the mean and the variance.1 In addition the Fresnel-Huygens principe states that a signal
can be regarded as a superposition of all single spectral components of a variable in time
space [46]. That corresponds to the Fourirer decomposition of the voltage into ist spectral
components. Expressed as the Fourier transform yields:

V (ω) =
1

2π

∞∫
−∞

V (t)eiωtdt (3.11)

For a finite measurement of duration T this can be written as:

V (ω) =
1

2π

T/2∫
−T/2

V (t)eiωtdt (3.12)

However a device as a spectrum analyzer rather measures the averqage transmitted power
in discrete steps of certain bandwidths, i.e frequency intervals, than the voltage . [54].
This results in a power spectral density spectrum, which delivers the information about the
fractional amount of total power per frequency interval by the power spectral density. The
average generalized power in one interval can therefore be written as:

〈P〉T = 〈V 2〉T =
2π

T

T
2∫

− T
2

|V (t)|2dt, (3.13)

since VT (t) is a real valued quantity, the spectrum an even function. Referring to Parseval’s
theorem [56] the energy of a signal in time domain is equal to the one in frequency domain.
In mathematical terms this means that the L2-norm of the Fourier transform of the modulus
squared is the same [56].

∞∫
−∞

|V (t)|2dt =
∞∫
−∞

|V (ω)|2dω (3.14)

and VT (ω) =V *
T (−ω). Therefore utilizing Eq.?? and 3.14 the expression for the total power

can be written in the limit for T → ∞ as:

< Pall >=

∞∫
0

Sν(ω)dω (3.15)

with the portion of the total power spectral density(PSD) function defined as [9]:

Sν(ω) = lim
T→∞

4π

T
< |VT(ω)|2 > (3.16)

Therefore Sν(ω) corresponds to the portion of average power of the signal V (t) in a fre-
quency interval dω

3.5 Measurements and Results

Using a networkanalyzer (NWA) we measured the power spectral density sprectrum over
six frequency decades from 1Hz to 1MHz. One measurement took approximately 45 min-
utes and all results are displayed as Bode-Plots in semilogarithmic scale. In the following
the results are presented and discussed
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Fig. 3.7: PSD of the common mode phase noise in loop due to the common mode movement
of the optical lattice. Moreover the corresponding noise floor the networkanalyzer
and of the photodiode, which also contains the NWA noise floor was measured.
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In order to know the limit of our measurement, that is the noise floor, we first recorded the
PSD of the NWA itself and then with a blocked photodiode. The latter contains both the
background noise from the NWA and the photodiode.
As one can see in Fig.3.7 the noise floor from the NWA and the photodiode differs in-
significantly. Thus only the signal from the photodiode is used as a noise floor in further
plots. The noise floor dominates the spectrum up to 1 kHz. Referring to this one can see
in the frequency range of up to 1kHz that the noise amplitude from the photodiode and the
networkanalyzer is on the same level. Towards higher frequencies the noise level of the
networkanalyzer is even below the photodiode’s level. However, since the curves are quite
similar, far below the amplitude of the measurement of the common mode phase noise and
the photodiode contains the noise floor from the photodiode as well, only the signal from
the photodiode will be used as a noise floor in further plots.
In the low frequency region to tens of Hertz 1

f noise is dominating and for the photodiode
it is the ruling term up to 100 Hz [6]. In the region between 1kHz and 106 Hz they reach a
constant noise level(white noise). In the graph of the common mode optical phase noise of
the optical lattice the peak and its harmonice around 50Hz is caused by the power grid. The
distribution is broadly peaked between 500 and 1500 Hz with values up to −65dBm/Hz.
Towards higher frequencies the general level decreases to amplitudes between -100 and
−120dBm/Hz. The mean value of the background noise is at −127dBm/Hz and the one of
the phase noise in loop at −97dBm/Hz This phase noise which has its main contribution in
the acoustic range can be, for instance, due to mechanical vibrations of the optical table and
corresponding optics.

3.5.1 Phase and Intensity noise contributions

It is not possible to distinguish (from the result shown in Fig.3.7) between pure phase noise
and contributions due to intensity noise. Therefore we recorded the power spectral density
spectrum for the intensity noise of DT1 and DT2 individually on the network analyzer. As
is is shown in Fig.3.8 the contribution from the measurement with the interference signal
in loop dominates the spectrum over the whole frequency range since the PSD values from
DT1 and DT2 respectively are much lower. Since the lattice arms are both generated by the
same source, the Ti:Sa, the general noise is as expected similar.

From Fig.3.8 we can conclude that the main contribution of the noise is indeed due to
the common mode phase noise of the optical lattice.

3.5.2 Comparison of phase noise in loop and out of loop

Fig.3.9 compares the measurement of the relative phase noise once measured while the
optical phase noise is kept constant as desribed in Sec.3.3.1 and once without the loop .
Comparing the mean values of the phase noise for both cases yields that as expected the
sensitivity is increased. The mean value of the measurement out of loop is −100dBm/Hz
and displayed in Tab.3.1 as well. As expected the amplitude is generally increased by
3dBm/Hz for the in loop measurement of the phase noise. Thus the interferometer is oper-
ated at maximum sensitivity without adding noise by the feedback loop and due to the slow
lock we measure the AC component of the phase noise.

40



3.5. MEASUREMENTS AND RESULTS

100 101 102 103 104 105 106
−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

Frequency (Hz)

P
S

D
 (d

B
m

/H
z)

Noise−Locked
Photodiode
DT1
DT2

Fig. 3.8: The noise signal is plotted together with the PSD spectrum from DT1 and DT2. The
amplitude of the measurement with the inteferometer is well above the contribution
from DT1 and DT2. For low frequencies (<1 kHz) the amplitude from DT1 and DT2
is on the background noise level. Both arms own a very similar noise behaviour over
the whole frequency range

3.5.3 common mode phase noise in units of lattice sites

As it is illustrated in Fig.3.5 the phase scan revealed a maximum voltage of Vmax. = (4.37±
0.01)V. This corresponds to a phase of π

2 or a distance of half a lattice site d = λ

2 . Referring
to Fig. 3.10 the phase noise ∆phi can be expressed from the ratio:

∆φ =
V RMS

jitter

(Vmax/2)
(3.17)

Further, using Eq.3.7 yields the following expression for the stabilized optical phase noise
in spatial units:

x =
d

π(Vmax./2)
Vjitter (3.18)

In addtion the power spectral density Sν(ω)is proportional to the power and using Eq. 3.13
the relation to the measured quantity is then:

x2 = (
d

π(Vmax./2)
)2 ·Sν(ω) (3.19)

1Assuming a gaussian normal distribution and using probability theory, that a probability distribution is
determined by the (ruling) stochastic moments. [55]
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Fig. 3.9: Noise from the light field of the dipole trap in the unlocked and the locked case.
Since the lock increases the sensitivity for the noise the amplitude from the
measurement with a lock is increased by 3 dBm/Hz (c.f. Tab 3.1).

Therefore we obtain the RMS values of the common mode optical phase noise in nanome-
ters for the stabilized case. An estimation for the case with the feedback loop cannot rely
on a mean value but has been rather weigthted with respect to the single contributions.

In loop : xRMS = (44±5)pm (3.20)

Ratio to lattice site :
(1.02±0.12) ·10−4

d
(3.21)

The contribution of the AC component of the common mode phase noise of the optical
lattice is four orders of magnitude smaller than one lattice spacing of d = 433nm on the
timescale of one hour since one measurement of the PSD lasted approximately 45 min.
All in all the contribution of the AC component of the the common mode phase noise from

Mean amplitude (dBm/Hz)

In loop -97

Out of loop -100

Background noise -127

Difference : 3 dBm/Hz

Tab. 3.1: Mean values of for the case with and without the feedback loop

42



3.6. ANALYSIS OF DISPLACEMENTS OF ATOMS

ΔVmax

Voltage (V)

z  [nm]

λ/2 ≡ d= 433 nm

x

Vjitter

x0

4.37

Fig. 3.10: Illustration for the derivation of the RMS value of the common mode phase noise in
units of lattice sites a.
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Fig. 3.11: Schematic representation of one experimental sqeuence for obtaining the images.
Each sequence produced 9 images, was repeated 1000 times. Thus it resulted in a
total of 9000 images. This was done with and without lock. In order to have only
few Atoms, atoms are loaded into the MOT for 500ms, then transferred into the
dipole trap, and then the first image is taken. Referring to this taking an image and
the break in between tooks 2s each.

the optical lattice has been characterized so far. In the following I will focus more on the
slow drifts and how these may affect the position reconstruction.
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3.6 Analysis of Displacements of Atoms

Experimental Sequence

In order to analyze the influence of the common mode movement of the optical lattice on
the imaging of the atoms position we took a series of images with the CCD camera. Using
an analysis software which has been previously written in our group in Matlab by Andrea
Alberti I analyzed the displacements of the atoms’ positions between different images, i.e
lattice drifts.
As it is also demonstrated schematically in Fig.3.11 one sequence is divided into several
steps. First we loaded for a time of 500ms atoms into our Magneto-Optical-Trap (MOT).
As a result, only few atoms were loaded into the dipole trap, which allows to trace the
position of individual atoms over time. In the next step the atoms are transferred into the
dipole trap [26, 21]. There the atoms can be detected and counted by using fluorescence
light impinging on an EMCCD camera creating the images [38]. For further analysis,e.g.
extracting the atoms’ positions the raw data is processed to the computer. As soon this step
is finished the first image is taken within 2s. Then we wait for 2s and take the next image. In
total within one sequence nine images are taken. The molasses is set on the camera options
during the time of taking an image in order to maximize the fluorescence detection and in
the break between on cooling parameters to reduce effects from heating. For more statistics
that sequence was iterated for 1000 times which resulted in a total of 9000 images for the
case with and without the feedback loop for stabilization and removing the DC component
of the phase noise turned on.
Fig.3.12 a.) shows expemplarily one image from the measurement. Over the total image

width of 313 binned pixels one can identify two atoms. In b.) the distribution of photoelec-
tron counts, the detection threshold and the single regions of interest (ROI) are displayed.

Software Analysis Steps for Obtaining the Positions of the Atoms
For each image the software first substracts an offset and generates the ROIs when the pho-
toelectron counts exceed a threshold. For the imaging time which is used her, the threshold
is set at 50 photoelectron counts [38]. Referring to Fig.3.12 20 additional pixels have been
added to the ROI. If one integrates over the ROI in all images and bins the result in a his-
togram one obtains a rate of 1000 photolectrons per atom per second. The number of atoms
in each ROI is determined by integrating the binned intensitiy distributions. [38]. The data
was taken with slightly worse illumination settings than usual. Usually one obtains around
2000 photoelectrons per atom per second. Nevertheless the analysis of the displacement is
not affected by that.

The following description is based on the work of M. Karski described in his PhD-
thesis. Thus further information can be found in Ref.[38]. All the data is extracted from
fluorescence images of the atoms using a EMCCD camera. If the atoms would be described
as an ideal, pointlike object and no imperfections such as dicrete sampling and noise of
the imaging optics present, the response of the imaging apparatus would simply described
by the point spread function (PSF). In case of purely diffraction limited optical system the
form of the PSF corresponds to the Airy, disc [53]. However, with finite resolution powers,
discrete sampling of EMCCD camera and atoms rather represented as a thermal wavepacket,
the recorded image is blurred.

The line spread function (LSF)

We are rather interested in determining the response function of the atoms in one dimension
along the optical lattice. Further the atom is smaller than the provided resolution in the one
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Fig. 3.12: a.) This is an example for all the images we obtained with the scaling in pixels. One
can two strong fluorescence signals corresponding to detected atoms b.) That plot
shows the integrated number of photoelectrons per ROI of a width of 20 additional
pixels with a detection threshold for at least one atom of 50 CCD counts. c.)
Histogram of the integrated number of photoelectrons per ROI for all images. Here
we constrained the detection to one atom per ROI for the analysis of the
displacements. Successful detection takes place at 1000 photoelectrons per atom
per second.

dimensional case. Therefore we rather consider the line spread function (LSF) L(x), which
is defined as the convolution of a delta function with the two dimensional PSF:

L(x) = δ (x)?P2D (3.22)
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In mathematical terms, the recorded image is a convolution of the ideal PSF with an initial,
unblurred intensity distribution.

I(x) = L(x)? I0(x) (3.23)

Thus, the initial image has to be reconstructed from the recorded one which is known as
a deconvolution process. [57] Following Ref.[38] the positions of the atoms is determined
by means of parametric deconvolution.2. However, the corresponding LSF has to be well
determined. Therefore the accurate reconstruction of the LSF is an important prerequisite
for the determination of the position of the atoms. Without going to much into detail it is
determined in the following steps. [38]:

1 Consider N single isolated atoms with axially binned discretly sampled intensity dis-
tributions IN

2 Assume initial model function L(x) roughly approximated by gaussian shaped inten-
sity distribution

3 Determine position by minimizing difference between quantities from 1 and 2

4 Approximate discrete intensity distribution by a continuous one and sum all N inten-
sity distributions

5 Continue untilset convergence criterium is reached

6 Increase accuracy by ‘self-consistency’ loop of LSF, i.e replace modeled LSF by new,
refined LSF L̃(x)

The LSF is then used to analyze the position of the atoms in a Gaussian fit. The accuracy of
the determination of the LSF and thus the parametric deconvolution is influenced by drifts
of the optical lattice relative to the imaging optics. The common mode optical phase noise
corresponds to such a drift. Therefore the LSF is extracted from the data for both the stabi-
lized and unstabilized case. In the unstabilized case we expect thath the phase can drift up
to one lattice site during an illumination time of 2 seconds without the feedback loop. (c.f
Fig.3.5) However this corresponds to a change of d = 433nm which is still smaller than the
resolution [38]. Therefore we expect, that the LSF generated with the feedback loop differs
marginally from the case without the feedback loop.

Result
The images were analyzed by using the analysis software in matlab code as described above.
As it is illustrated in Fig.3.13 the result conincides with our expectations. It is not possi-
ble to see a difference with bare eyey and the full width at half maximum(FWHM) of the
corresponding fit yields:

This histogram is shown in Fig.3.12 c.). The exact positions of the atoms in one ROI
image are determined by fitting gaussians curves with the position represented by the center
of that gaussian. In the course of this 1.471 pixels correspond to one lattice site. At this
point it is now possible to analyze the displacements between different images.

As it is shown in Fig.3.13 the LSF’s are up to small broadening for the case with the
feedback loop very similar. From the analysis we obtained information about the full width
at half maximum (FWHM).

FWHMLockOFF = 7.713px (3.24)

2For more information see reference therin, as well
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Fig. 3.13: This graph displays the normalized LSF both when the feedback was turned on and
off. For the case out of loop the FWHM was at 7.713 px [2.234 microns] with a
strehl ratio of 0.771. In case with the feedback loop we obtained for the FWHM
7.778px[2.252 microns] and a strehl ratio of 0.772. The FWHM for the case in loop
is slightly higher since the sensitivity to the phase noise is higher. %

FWHMLockON = 7.778px (3.25)

In Abbe units these values correspond to 2.23 and 2.25 micrometer respectively. This result
is in accordance with our expectations.

Taking the previous discussion into account there still remain some questions. Does that
common mode movement of the optical lattice lead to some drifts of the position of the
atom regarding its initial position over time? And if there is a drift, on which order is the
drift.
These questions will be tackled in the following by looking at the reconstructed atoms po-
sition comparing the first image to the second and the first to the ninth image. The results
will be then binned into histograms of the displacements in units of the initial position.

3.6.1 Displacements of the atoms’ positions

In the analysis I concentrated on two cases since they represent the most distinct ones. First
I determined the displacement between two successive images, i.e the displacement be-
tween the second and the first of one sequence, as described in Fig. 3.11. This represents
the minimal time distance. Then I also considered the maximum time difference, that is
the displacement between the last(ninth) and first image. Including the pause the minimal
time between two images is ∆tmin = 4s and the maximum time ∆tmax = 36s. All histograms
which are shown in the following are normalized to the total number of images.
In order to reveal also small shifts in the position with respect to a previous image the his-
tograms are binned in steps of 0.25 lattice sites.
The displacement was calculated assuming that during the time between the considered im-
ages the same atom was recorded in the initial position. Therefore, if the displacement was
bigger than two pixels, it was assumed, that the compared positions belong to two different
atoms. 3

3The LSF and thus the position is determined with sub pixel precision, therefore this assumption is valid.
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Fig. 3.14: Histogram and a gaussian fit for the displacement of an atoms position from the first
to the second image without a.) and with the feedback loop. The time difference
between the compared images was 4 s. The distributions are clearly peaked at zero
(Tab.3.2).

Fitparameter LoopOFF LoopON LoopOFF LoopON

2nd to 1st 9th to 1st

µ (0±0.01) (0±0.01) −(0.02±0.01) (0±0.01)

FWHM (0.63±0.01) (0.64±0.01) (1.05±0.02) (0.76±0.02)

Tab. 3.2: Mean and FWHM of the Gaussian distributions in the histograms for the analysis of
the displacements

The displacement is expressed in units of lattice sites to achieve a better measure for the in-
fluence of this fluctuations to the single site resolution. In addition all histograms are plotted
together with a fit of gaussian function to the distribution. The corresponding mean values
and widths are displayed in tab.3.2. Fig.3.14 shows the distribution of the displacements
with and without the feedback loop for the comparison of the second with the first image of
one sequence. A comparison of the distribution of the displacements with (Fig.3.14a.) and
without the feedback loop reveals that the slow drifts the loop stabilizes for do not influence
the distribution. Thus, these drifts do not affect the single site resolution on a time scale of 4
s. The Gaussian form of the distribution corresponds with what we would expect from our
resolution from the imaging optics [29, 38] and the statistical fluctuations along one lattice
site. This can be clearly seen in the FWHMs of the corresponding fits. (c.f. Tab.3.2). For
this case the spread of the positions of the atoms has within the errorbars the same value.
The situation changes when the displacements between the ninth and the first images are
considerd. The result is presented in Fig. 3.15 a.) without and b.) with the feedback loop
turned on. Compared to before the distribution in case of being out of loop is much broader.
Referring to Tab.3.2 the mean of µ = −(0.02± 0.01) indicates now a drift of the center
position of the distribution to the left with a FWHM of (1.05±0.02). Thus, the slow drift
of the common mode optical phase affects the reconstruction of the positions of the atoms
on the timescale of 36 seconds. The influence of the slow drift is verified by the plot of
the measurement with the stabilization loop. (c.f Fig. 3.15) b.). Using the feedbck loop
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Fig. 3.15: Histogram and gaussian fit for the displacement from atoms from the first and the
last (ninth) image in one sequence without (a.)) and with(b.)) the loop turned on.
The time between these images was 36s which is the largest time distance. One can
see that the lock minimized the spatial drift of the optical lattice (≈ 30%) A similar
distribution to the first case is recovered by the loop.

reproduces the distributions shown in Fig. 3.14 a.) and b.).4

3.6.2 Summary

In this chapter I characterized the optical phase noise due to a common mode movement of
the optical lattice. This noise contains a fast and a slow component. The fast one could lead
in principle to heating or decoherence of the atoms, while the slow can affect the accuracy
of the position reconstruction [28, 6]. The fast component corresponds to a spatial jitter as
well and has been measured by recording a power spectral density spectrum. Accordingly
a slow feedback loop (15 Hz cutoff frequency) was added, which supressed the slow drifts.
From the power spectral density spectrum with the feedback loop the RMS value was cal-
culated in units of lattice sites It is x = (1 ·0.1±10−4)d. The jitter is thus several orders of
magnitude smaller than one lattice spacing. In order to study the influence of the slow drift
on the position reconstruction of the atoms a series of images has been taken. The compar-
ison of the linespread function showed no difference between the case with and without the
loop. This agrees well with the expectation, since the phase could drift up to one lattice site
during the illumination time of 2 seconds.(Fig.3.5) This is in the order of 433 nm and thus it
cannot be seen in the LSF. Additionally the displacements between two images for times of
t = 4(36)s have been analyzed to find the timescale when the drift influences the position
reconstruction. As it is illustrated in Fig.3.15 and Tab.3.2 the drift changed the distribution
of displacements on a timescale of 36 seconds. The usage of the feedback loop removed the
contribution of the drift and the distribution is comparable to the ones for a time difference
of 4 seconds. Atom operations and state dependent transport are much smaller than this
time, which means that the slow component is not affecting the analysis on that timescales.
In the scope of this thesis all aspects of this phase noise could not be covered but to obtain
a complete understanding of the effects from the differential movement of the phases of the
standing wave potentials should be considered as well in the future.
However a stabilization of the fast fluctuating component could increase the situation and

4Since the time interval was increased the distribution is still broader due to the statistical spread than the
figure from the analysis of subsequent images.
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stabilize both components from the common mode phase noise of the optical lattice. This
would require an independent control and tracing of the temporal evolution for both lat-
tice potentials individually. Therefore the next chapter presents first considerations into an
extension of the phase noise interferometer to a quadrature interferometer.
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4

Quadrature Interferometer

Referring to Sec.3.6 the feedback loop stabilized the slow drifts of the optical lattice. As a
long-term goal the fast component of the optical phase noise should be stabilized as well.
However, it requires a different setup, because it should not influence the state dependent
transport. The slow feedback loop can not follow on the timescale of the transport. The state
dependent transport is realized by controlling the relative phase between an optical conveyor
belt each for the σ+ and σ− lattice potentials. [50].By means of an conveyor belt atoms are
transported over several lattice sites. It has been demonstrated first in 2001 by Stefan Kuhr.
[28]. The corresponding phase stability is achieved by direct polarization synthesis[50].
Therefore it is necessary to control both components and measure the temporal evolution of
the phase noise individually for the σ+ and σ− polarized lattice. A possibility is to extend
the phase noise interferometer from Chapter 3 to a quadrature interferometer. In contrast
to the quadrature measurement presented in Sec.2.5, the in-phase component I(t) and the
delayed quadrature component Q(t) are both interference signals from the corresponding
beams. The phase noise interferometer has to be modified to produce two interference
signals with a relative phase difference of π

2 . Thus, I will explain the general idea of this
quadrature interferometer. Further I will show first considerations regarding stability and
implementation into the experiment.

4.1 Experimental test apparatus

For that setup a littrow laser at 852 nm served as the light source(Fig.4.1). An uncoated
glass plate (N-BK7, ∅= 25mm with a thickness of 5mm is inserted instead of the wedged
glas plate in case of the phase noise interferometer. Therefore the light is reflected and
transmitted both from the front and the back side of the glass plate. As it is shown in
Fig.4.2 this creates two beams with a relative phase delay. As it is illustrated in Fig.4.1
the interference of the front and the back pair is generated by two mirrors. One mirror
is fixed and the other one is a piezoelectric-actuated mirror. This allows to scan over a
complete phase period of 2π . According to Sec.2.5, when I(t) and Q(t) are in quadrature it
is possible to visualize the phase evolution on a circle. The signals are separated by means
of a D-shaped mirror. Both signals are focussed by lenses with focal length of f=60 and
f=50 mm respectively. Then they are recorded by a photodiode. In this setup two different
photodiodes were used. For the quadrature signal Q(t) we used a photo diode which has
been built in the institute. For the in phase signal we used a commercially available Thorlabs
PM-400 photodiode. The photodiodes are calibrated differently. In order to match the
power levels an additional polarizer and a λ

2 plate are inserted in the path of the quadrature
components
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Littrow Laser 
852nm

5mm glass plate

D-shaped mirror

f=60mm

f=50mm

λ/2 plate
polarizer

Q(t)

I(t)

Piezo mirror

�xed mirror

Fig. 4.1: Experimental Test Setup for first characterizations. For simplicity the additional
reflected beams from the glas plate are not drawn. The glas plate both splits the laser
beam into two interference arms and generates by reflection on the front and the back
side the in phase and the quadrature component. A D-shaped mirror separates both
components. The signals are both recorded by a photodiode. In order to ensure the
same voltage level on the two different types of photodiodes (I(t):Thorlabs
PM-400,Q(t): Selfmade) the power is matched by the waveplate and the polarizer.

The path length difference ∆l which corresponds to the phase delay of m· π4 (c.f. Fig.4.2),where
m denotes an integer number. If this length difference is already fluctuating in the same or-
der, i.e in the nanometer scale,the quadrature signal would be highly unstable. Such fluctua-
tions can occur due to mechanical vibrations or thermal flucutations, for instance. Therefore
the glass plate has to be mounted with high stability and the tilt of the glass plate precisely
adjusted. According to this the glass plate is mounted on a high precision mirror mount with
differential adjusters (Thorlabs KS1D). The resolution by the differential adjusters is at 660
µ rad per revolution (rev). A theoretical calculation, which is in detail in the appendix yields
the following expression, for the necessary sensitivity:

d∆l
dδα

=
2h
n2

(
1� 1

n

)
(4.1)

With h=5 mm this results in (4.2)

0.74
nm

µ rad
(4.3)

where ∆α corresponds to small fluctuations of the incidence angle, h the thickness and n the
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III l1

l2

I +II: ∆φ= π/4 

Mirror

PDs

h

I +II: ∆φ= -π/4 

A. B.

Measurement

Fig. 4.2: Generation of the quadrature components I(t) and Q(t). A glass plate serves as a
beam splitter. The phase delay ∆x corresponds to a delay of π

4 . Both beams
accumulate this delay. Since they are counterpropagating the relative phase delay
results in π

2 .

refractive index of the glass plate n= 1.5 A change of π

2 would correspond to approximately
290 µ rad and therefore this mount can be used for adjustment.
As illustrated in Fig.4.2 the phase delay is generated by a glass plate of thickness h. Since

the beams are counterpropagating the relative phase difference of the interference signal on
each side at A. and B. in Fig.4.2 of the glas plate has the same value. This phase difference
is generated by the varying lengths from the overlap of a transmitted and reflected beam in
A. and B. However, the sign is different. Thus, a quadrature signal can be recorded if the
pathlength difference in A. and B. between both beams corresponds to π

4 as it is illustrated
in Fig. 4.2

4.2 Stability and temporal drifts

Measurements, which are based on a quadrature signal, require that the overall phase Φ(t)
between both signals is kept constant and the quadrature condition of a phase delay of π

2
is fulfilled. In order to test the stability of the signal from the setup presented in Fig.4.1 I
recorded the temporal evolution of the quadrature signal for a time interval of eight minutes.
At the beginning of the measurement I aligned the signals such that they were in quadrature.
Thus, if the overall phase is changing, the temporal evolution should be traced along the
circumference of a circle (c.f. Fig.2.5). For the following considerations I(t) and Q(t)are
expressed in terms of the interference contrast V. This yields,

I(t) = I1 + I2(1+Vcos(Φ(t))) (4.4)

Q(t) = I’1 + I’2(1+V’sin(Φ(t)+ z(t))),

where the prime indicates that the interference constrast and the intensities of each interfer-
ometer arm with intensity I1 and I2) can differ between both quadrature components. The
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I(t)

Q
(t)

Fit of an ellipse to temporal drifts of quadrature signal

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

I(t)

Q(t)

Fig. 4.3: Measurement of the temporal drifts of the quadrature signal. The signal is drifting
along an elliptical trajectory. Fluctuations in the amplitude of I(t) (Q(t)) lead to the
broadening of the line in both directions. The signals are not in quadrature which
leads to the elliptcal shape and the offset from the zero line.

sum of the intensities determines an total offset for the center position of the circle (ellipse)
as one can see in Fig.4.3. Therefore, the center position is shifted. Two kinds of fluctuations
which can be also seen in Fig. 4.3 contribute. They lead to a deviation from the ideal circu-
lar shape and to drifts of the quadrature signal along the circular (elliptical) trajectory. First,
the path length difference ∆s = s2− s1 (Fig.2.14) can change by mechanical vibrations of
the optical mounts or table for instance. This affects both components equally and leads to a
drift along the trajectory. It is denoted by Φ(t) in Eq.4.4 In addition the relative phase delay
between both quadrature components could be modulated by modulations of the tilts of the
glas plate. This is denoted by z(t) and leads to an elliptical shape since it adds an additional
phase delay. In Fig.4.3 the corresponding measurement of temporal drifts is shown. The
piezo mirror was fixed at one position. In this time interval the total phase of the quadra-
ture components, as it is denoted by Φ(t) in Eq.4.4, was drifting almost by a whole period
. The offset for Q and I differs because the intensities of Q(t) are lower due to additional
transmission losses in the glass plate (c.f Fig.2.14.). This is underlined by fitting an ellipse
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to the measured data. The fitted values yielded:

Center values
I0 = (0.23±0.01)

Q0 = (0.20±0.01)

Imax = (0.19±0.01)

Imax = (0.16±0.01)

This measurement shows that the quadrature signal is sensible to fluctuations such as me-
chanical vibrations. Thus, the phase of each quadrature component should be stabilized
further. The stability of the relative phase delay could be increased by replacing more
mounts of the involved optics to high stability mounts and using a monolithic cube for the
interferometer(c.f Sec.3.3). The temperature dependence of the phase delay by thermally
induced changes of the path length difference ∆l should be examined as well in the future.

4.3 Considerations for experimental realization in SDT

Referring to the experimental apparatus in Fig. 4.1. one has to consider several aspects:

• Both the σ+ and a σ− polarized components of the state dependent optical lattice
have to be controlled individually. This means that the circular polarization compo-
nents of DT1 (DT1R and DT1L, [50]) have to be adjusted by a waveplate such that
they can be overlapped with the linear polarized arm of DT2.

• Distortions of the polarization purity by transmission and reflection at the glass plate
have to be compensated by an additional correction waveplate

• The quadrature signals from the σ+ and the σ− polarized optical lattice should be
independent from each other.

• The space is limited. Hence the setup should be designed as compact as possible.

4.4 Outlook

As shown in Fig.4.3 a quadrature signal, where the components I(t) and Q(t) represent
an interference signal, is rather sensitive to fluctuations. Therefore first the stability of
the quadrature signal has to be increased. Then, referring to the conditions listed above,
the presented setup(Fig.4.1) can be extended in order to test the creation of a quadrature
signal for different circular polarizations. Accordingly the laser beam from the Littrow
laser should be divided by a beam splitter to realize two counterpropagating arms which are
superimposed at both sides of the glass plate (c.f. Fig.4.2). Adjusting the polarisations and
inserting the waveplate as suggested the realization of a quadrature interferometer in our
experiment can be tested.
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5

Conclusion and Outlook

The preparation of atoms in the three dimensional motional ground state is a prerequisite
for the realization of a controlled interaction between two massive, bososnic particles. The
interaction phase the atoms accumulate is well defined and reproducible in this case. Mi-
crowave sideband cooling is not possible in the radial plane of the optical trapping poten-
tial since it requires a relative spatial displacement between the state dependent potentials.
[25, 23] Therefore a setup for cooling into the radial plane using Raman transitions on
the first blue sideband has been assembled which I presented in chapter 2. I contributed
by characterizing the phase noise from the optical phase lock loop (OPLL) of the Raman
setup. Raman sidebands transitions between two hyperfine ground states require a stable
phase relation between the two driving lasers. Therefore the OPLL was used to stabilize
the phase between the Raman lasers. For the characterization the intensity spectrum of the
OPLL was measured. An integration yielded that (99.91± 0.01)% of the total power are
stored below the carrier. The signal-to-noise amplitude is 90 dB (c.f Sec.2.4.4). In addition,
the phase noise was directly measured in a quadrature measurement. I obtained a value of
φRMS = (0.033±0.001) rad. A calculation of the portion of the total power below the carrier
from that value(Eq.2.47) showed a good accordance to the value calculated from integra-
tion. It is PQuadr. = (99.89± 0.01)%. By means of this Raman setup it is possible to cool
the atoms into the motional ground state with a probability of P0 = (50±6)% , now.
In order to gain more knowledge about the ‘errorbudget’, which means limitating factors
such as differnt sources of noise ([29, 28] ) of our experimental apparatus I focused on the
characterization of the common mode optical phase noise from the optical lattice in the
second part. However, next to the realization of the three dimensional ground state, that is
to reduce heating from noise as well, a high accuracy in the reconstruction of the positions
from the fluorescence images is necessary. The planned controlled interaction has to take
place in the same lattice site. For the fast fluctuations we supressed the slow drifts by a
feedback loop and took a power spectral density spectrum. From that spectrum the RMS
phase noise of the fast fluctuating component could be determined. It is (44± 5)pm and
thus four orders of magnitude smaller than one lattice site of d = 433nm. However, consid-
ering diplacements for times of 4s and 36s respectively showed that without the feedback
loop the slow drifts influence the position reconstruction for the longer time interval. Ac-
cordingly the feedback loop stabilized the optical lattice for this drift. The distribution of
the displacements is then comparable to the case of 4s(c.f Fig.3.15). An extension of the
phase noise interferometer to a quadrature interferometer could allow to monitor directly
the temporal evolution of the phase noise of both lattice potentials independently and in a
long term goal used for a stabilization of the fast fluctuating component. Therefore in Ch.4
a first test was shown. It revealed that a measurement of two interference signals in quadra-
ture configuration is rather sensitive to mechanical fluctuations for example.
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5. CONCLUSION AND OUTLOOK

The characterization of two different kinds of phase noise for the preparation of atoms in
the motional ground state shows that it is of importance to consider all aspects of an experi-
ment. That is assembling the general experimental apparatus for the realization of physical
processes such as a phase lock loop to sucessfully drive Raman sideband transitions and
to gain knowledge about the limitations of our measurement. Then, the combination of an
experimental apparatus with a control over limiting effects such as noise improves the ac-
curacy of a measurement of a physical quantity.
By preparing 56% of the atoms in the ground state an important barrier for the demonstra-
tion of the Huong-Ou-Mandel effect with indistinguishable, bosonic atoms, has been broken
down. The combination of that with the progress which has been made by other members
of our group regarding the transport of two atoms to the same lattice site made conduction
of this experiment in principle possible. Further we came closer to the realization of entan-
gled states of neutral atoms via cold collisison as it has been first proposed theoretically in
1999 [20]. Entangled states are essential on the route of simulating physics with quantum
computers as it has been proposed by Richard Feynman in 1982 [17].
According to the huge progress since 1982 further progress may be made in the following
years. Hopefully, it will give us a deeper insight into the very nature of quantum mechanics
and the ability to use the control in the microscopic regime for the macroscopic world.

58



6

Appendix

6.1 Schematic of Lead-Lag Filter in OPLL

Fig. 6.1: Schematics of the Lead Lag Filter which increases the bandwidth of the OPLL, i.e
compensates signals which are up to 1.5MHz away. This is indicated by the
servobumps at this freqency(c.f Fig.??. Schematics are after [47, 48]

The optimal values have been found by my collegue Ricardo Gomez and are the follow-
ing.

C1 22pF

C2 22pF

C3 1 µF

R1 (P) ≈ 10kΩ

R2(P) 334Ω

R3 150Ω

R4-R5 (P) (354Ω,68Ω)

Potentiometer≡ P

Tab. 6.1: Values of the Lead Lag Filter, which has been used in the OPLL in Ch.2, Sec.2.4.2
By means of this the bandwidth of the OPLL is increased, such that the servo bumps occur
at a frequency of 1.5MHz now.
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6.2 Relation between fraction of total power below carrier and
RMS phase noise

Here I am following the approach presented from Ref.[49] and references therein. The
electric field of a single mode laser in the presence of phase and amplitude noise can be
described by:

E(t) = ε(t)e−iω0t−iφNt, (6.1)

where ε(t) denotes the field amplitude and φN the (phase) noise. Generally the autocorrela-
tion function is defined as:

Cχ(τ) = 〈χ(t)χ∗(t+ τ)〉 (6.2)

One can express ε(t) in terms of the noise amplitude VN(t) ,

ε(t) =

{
E0[1+VN(t)] VN(t)≥−1
0 VN(t)≤−1

and use the Wiener-Khintchine theorem which states that the Fouriertransform of the power
spectral density, e.g the fraction of total power per frequency interval corresponds to the
autocorrelation functin [9]. The assumption that there exist no correlations between the
noise due to amplitude and phase fluctuations and Var(VN(t)� 1) leads to a simplified
expression of the autocorrelation function.

CE(τ) = E2
0eiω0τ{1+ 〈VN(t)VN(t+ τ)〉} · 〈ei(φN(t+τ)−φN(t)〉 (6.3)

The autocorrelation function of the different noise sources is defined as Cφ (τ) for the phase
and CV(τ) for the amplitude noise respectively. According to the Gaussian moment theorem
[58] one can write,

〈ei(φN(t+τ)−φN(t)〉= e−Ωφ (τ), (6.4)

with

Ωφ (τ) = Cφ (τ)−Cφ (0),

which yields:

CE(τ) = E2
0eiω0τe−Ωφ (τ){1+CV} (6.5)

The total power is calculated by integration of the power spectral density over the whole
spectrum and exploiting the linearity of the Fourier transform yields:

P =
∫

∞

−∞

SE(ω)dω =CE(0) = E2
0{1+CV} (6.6)

In the limit of τ → ∞ the power which remains in a certain frequency interval corresponds
to the fraction of total power and assuming the amplitude fluctuations vanishes as well the
phase noise, attributed by Ωφ (τ), is the dominating contribution.

In this limit the autocorrelation function of the phase corresponds to the one of the noise
and one obtains:

lim
τ→∞

CE(τ) = E2
0e−Cφ (0)eiω0τ (6.7)

= E2
0e−〈φ

2
RMS〉eiω0τ

Thus the fractional power in a certain frequency interval,e.g below the carrier, can be ob-
tained from:

P
Ptotal

= SE(ω) = e−〈φ
2
RMS〉 (6.8)
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6.3 Required sensitivity for quadrature interferometer

α

β
β

x/2

x
l1

l2/2
h

α

Fig. 6.2: Illustration for the relations used below. There α denotes the incidence angle, h the
thickness of the glassplate, β the angle in the glassplate, l1 and l2 the different path
lengths.

In order to calculate the sensitivity, we will derive an expression for the relative change
in ∆ł = l2� l1 with respect to the incidence angle. That is ∂∆l

∂α
. Therefore taking small tilts

into accound the incidence angle is

γ =
π

4
+δα (6.9)

Using Snell’s law [53] the path lengths and thus ∆l be expressed as:

l1 = 2h
tan(β )
sin(γ)

=
2h

ncosβ

l2 =
2hn

sin(γ)
tan(β )

For small fluctuations we can use:

cos(β ) =

√
1� sin2(α)

n2 ≈
√

1� 1
n2 (1+2δα)

1√
1� x

≈ 1+
1
2

x+O(x2)

This yields for the path length difference in first order of the small fluctuation:

∆l = 2h
(

1� 1
n

)(
1+

1
2n2

(
1
2
(1+2δα)

))

Consequently derivating that expression yields:

∂∆l
∂δα

=
2h
n2

(
1� 1

n

)
(6.10)
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