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CHAPTER 1

Introduction

Experimental research in the field of atomic physics has seen tremendous progress over the past decades
which was triggered by the development of precise lasers [1, 2]. Pre-cooled by magneto-optical
traps [3] and confined by optical dipole potentials [4], ensembles of neutral atoms can be isolated
and their internal state can be manipulated with laser light [5]. Advanced laser cooling techniques,
such as polarization gradient cooling [6] or Raman sideband cooling [7, 8] have in addition enabled
control over the motional degrees of freedom. These techniques have facilitated the study of intriguing
quantum effects such as superposition and entanglement [9, 10].
Nowadays we are not only able to control quantum systems to an unprecedented precision [11],

but also envisage to exploit their fascinating properties for new quantum technologies [12]. Possible
applications range from quantum key distribution [13], over precision measurements and sensing [14]
to quantum simulations of many-body physics [15, 16]. These applications are based on precise and
coherent control over individual quantum states. Using these quantum states in interconnected remote
quantum devices motivates the development of methods for transmitting quantum states in quantum
networks [17]. Here, we consider that different quantum nodes which are able to process [18] and
store [19] quantum states are connected via single-mode optical fibers. In order to transmit quantum
information the nodes exchange single photons which are the ideal information carrier (also called
“flying qubit”), since they interact only weakly with the environment and travel at the speed of light.
However, inevitable losses along the path limit the range of these point-to-point connections, since
direct amplification is prohibited by the No-Cloning theorem [20]. Transmitting quantum states
directly over more than a few hundred kilometres is thus impractical and one has to make use of
quantum teleportation protocols [21]. The latter is based on sets of entangled quantum emitter pairs
being shared between the sending and the receiving nodes. Thus, entanglement can be considered as a
resource required for the operation of a quantum network. Quantum repeater technology can be used
to distribute entanglement over large distances using intermediate nodes [22]. Reliable fiber-based
quantum network operation, therefore, depends on highly efficient light-matter interfaces that allow
for transferring the quantum information from the “stationary qubit” of the quantum memory onto a
single photon and vice-versa.
In our experiment, we employ 87Rb-atoms coupled to an optical high-finesse Fiber Fabry-Pérot

cavity that serves as light-matter interface. When coupled to the resonator mode, the emission
properties of the atoms are modified by the Purcell-effect that enhances the emission into the mode of
the resonator compared to free-space emission [23] and which facilitates the coupling of a neutral
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Chapter 1 Introduction

atom to a fiber-based network. Besides neutral atoms, other platforms such as semiconductor quantum
dots [24, 25], color centers [26] or ions [27] are currently being explored as potential platforms for
quantum repeaters. Different emitter platforms have their own (dis-)advantages and differ considerably
in terms of achievable repetition rate and transition linewidth 2γ of the used emitter. Interconnecting
different emitters to a hybrid network requires matching the spectral width of temporally short photons
with the finite emitter bandwidth. This can be done by shaping the temporal wavefunction of the
generated photons [28] and in addition exploiting the Purcell-enhancement to increase the bandwidth
of the coupled emitter-cavity system [29]. The latter makes use of “open” cavities with linewidth 2κ
exceeding the atomic linewidth (κ � γ). For efficient atom-light interaction it is required that the
atom-cavity coupling strength g exceeds the decay rates of the system (g ≥ κ � γ) [23]. The coupling
strength g ∝ 1√

V
is inversely proportional to the square-root of the mode-volume V which motivates

the use of miniaturized fiber-based cavities that provide a small mode volume. The effective coupling
strength geff =

√
N · g can be increased even further by coupling N identical atoms to the same cavity

mode. Moreover, the collective coupling of small atomic ensembles to one cavity mode can be used to
create multi-particle entangled states [30].

In order to facilitate experiments with more than one atom we would like to count the number of
atoms inside the resonator mode by means of fluorescence imaging. The near-resonant scattering
of imaging light inevitably induces heating of the atoms which has to be compensated by suitable
cooling [31]. Fluorescence imaging of 87Rb has been demonstrated with molasses cooling [32].
However, in our experiment we can not implement three-dimensional molasses cooling, due to the
limited optical access where one direction is blocked by the cavity itself. We therefore implement
Raman imaging which is based on detecting the repumper fluorescence during Raman sideband cooling
and allows for exposure times exceeding 1 s [33, 34]. The (near-)resonant repumper beam induces a
differential light shift onto the ground-states that are coupled via the Raman transfer and shifts the
two-photon resonance. The strength of the differential light shift depends on the repumper intensity
and detuning and hence the two-photon detuning can not be optimized independently. A precision
measurement of repumper-induced differential light shifts is presented in chapter 2. We identify the
optimal cooling parameters and confirm that near ground-state cooling is achieved. Subsequently,
the Raman imaging is described in chapter 3. The improved imaging setup is introduced and the
optimization of the signal-to-noise ratio is discussed. Raman imaging was successfully applied to
image small atomic ensembles inside the resonator mode which is the first step towards exploring the
collective coupling of multiple atoms to the resonator.

Using single-photons as information carriers in quantum networks requires precise control over
their spatio-temporal wavefunction [35]. Exploring the limit of the short temporal single-photon
pulse generation, we theoretically study the atom-cavity dynamics beyond the well explored adiabatic
regime [36] in chapter 4. Here, we compute the photon generation fidelity for pulses of variable
duration and explore the limits of adiabatic photon generation by means of numerical simulations.
Prominent theoretical work on photon generation considers the atom as a Λ-system with two meta-
stable ground-states and one electronic excited state [36–39]. We generalize this result to a Tripod
level configuration [29] that takes into account a second degenerate cavity mode with orthogonal
polarization. It is found that in this case the off-resonant coupling [40] to additional electronically
excited states can be exploited to tune the branching ratio of photon emission into the two polarization
modes. This provides means of maximizing the Bell state projection probability of entanglement
distribution schemes [27, 41]. In addition, we study photon generation with a bichromatic driving field
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Figure 1.1: (a) Top view of the fiber cavity placed at the common focus of four in-vacuum lenses. A small
magneto-optical trap (MOT) is created about 1mm away from the cavity center. Atoms are transported into the
cavity center using an optical conveyor belt. (b) Side view of the setup showing the most important laser beams.
The resonance frequency of the cavity is referenced to a dedicated lock laser (770 nm). The reflection of a
weak probe beam (780 nm) is monitored with a single photon counting module (SPCM). Optical pumping light
(795 nm) is off-resonantly coupled through the lower cavity mirror. The atoms are trapped in a three-dimensional
optical lattice. The vertical confinement is given by the blue-detuned intra-cavity lock laser lattice. Confinement
along the two horizontal axes is provided by red-detuned dipole traps at a wavelength of 868 nm.

and solve the corresponding equations of motion analytically by means of an adiabatic approximation
technique [42]. We find that for certain parameter choices two-tone driving can be used to suppress
spurious phase-chirps originating from a time-dependent light shift induced by the control laser
beam [40].
A more technical introduction to the experiment is given in the following part. The cavity-based

state detection is explained and a brief introduction to the apparatus is given.

1.1 The Experimental Apparatus

Our experiment is based on a high-finesse fiber Fabry-Pérot cavity [23]. Its center is aligned with
the common focus of four high NA (NA=0.5) lenses as sketched in Fig. 1.1(a). An experimental run
starts by loading a small magneto-optical trap [43] that captures a few tens of 87Rb atoms from the
background vapour at a pressure of a few 10−10 mbar. The atoms are pre-cooled via optical molasses
cooling [6] on the D2-line and subsequently transferred into a red-detuned standing wave optical
dipole trap [44] at a wavelength of 868 nm. The optical lattice serves as conveyor belt [45] and is
used to transport the atoms over a distance of about 1mm into the center of the cavity. The atoms are
initially cooled by means of degenerate Raman Sideband cooling (dRSC) inside the cavity [46]. This
technique makes use of Raman transitions driven by the dipole traps themselves and requires a precise
tuning of the Zeeman shift, which has to be equal to the spacing between adjacent motional states [47].
The resonance frequency of the cavity is actively stabilized with the Pound-Drever-Hall (PDH)
technique [48] and is referenced to a dedicated laser (lock laser) operating at 770 nm. The lock laser is
in turn referenced to an optical frequency comb [49, 50] and generates an intra-cavity blue-detuned
lattice along the cavity. Atoms in the cavity center are thus confined in a three-dimensional optical
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Figure 1.2: (a) Simplified level scheme of 87Rb showing the two hyperfine ground states. The cavity is tuned
into resonance with the F = 2→ F ′ = 3 transition of the D2-line. (b) Eigenergies of the coupled atom-cavity
system as function of coupling strength g (blue and yellow). The shaded areas show the linewidth of the
corresponding dressed state. For a coupling strength exceeding a critical point the eigenenergies split which
yields the so called vacuum Rabi splitting. Atoms in the uncoupled F = 1 hyperfine state do not cause a splitting
(grey). The state dependent coupling enables cavity-based state detection. (c) Histogram of the number of
detected photons per bin during state detection. Each bin corresponds to a duration of 200 µs.

lattice. The highly reflective coatings of the two cavity mirrors are chosen to be asymmetric such that
light predominantly leaves the cavity via the upper “high-transmission” (HT) mirror. The reflection of
weak resonant light pulses from the HT mirror is monitored with a single photon counting module
(SPCM) as shown in Fig. 1.1(b). This enables cavity-based state detection which is explained in
Sec. 1.2. Optical pumping light at a wavelength of 795 nm (D1-line) is off-resonantly coupled through
the lower cavity mirror.

1.2 Cavity-Based State Detection

In our experiment we use neutral 87Rb atoms coupled to a high-finesse fiber Fabry-Pérot resonator [51].
The hyperfine level structure of 87Rb contains two meta-stable ground-states with F = 1 and F = 2
quantum number [52] separated by an energy difference of about 6.8GHz [53] as shown in Fig. 1.2(a).
The cavity with a linewidth of about 40MHz is tuned into resonance with the F = 2 → F ′ = 3
transition of the D2-line which leaves the lower F = 1 hyperfine state uncoupled. For an atom being
prepared in the upper F = 2 hyperfine state the system is well described by the Jaynes-Cummings
Hamiltonian [54] shown in Eq. (1.1).

HJC = ~ωa |e〉 〈e| + ~ωca†a + ~g
(
a† |g2〉 〈e| + |e〉 〈g2 | a

)
(1.1)

Here ωa (ωc) denotes the resonance frequencies of the atom (cavity). The operator |e〉 〈g2 | excites the
atom from the ground-state |g2〉 into the excited state |e〉 and the operator a denotes the annihilation
operator of the intra-cavity field. Here the |g2〉 state corresponds to the F = 2 hyperfine ground state
and |e〉 corresponds to the F ′ = 3 excited state of the D2-line of 87Rb. The atom-cavity coupling at
rate g gives rise to new eigenstates called “dressed states” [55]. The eigenenergies of the coupled
atom-cavity system are shifted by the so called vacuum Rabi splitting (VRS) which is shown in
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Fig. 1.2(b) as a function of coupling strength g. The eigenenergies of the atom-like state (blue) and
cavity-like state (yellow) are split in energy by an amount 2g for a resonant cavity (ωc = ωa). This
splitting occurs only if the atom is prepared in the F = 2 ground-state which couples to the cavity
mode. In order to detect the internal state of the atom, we monitor the reflection of a weak resonant
beam impinging onto the cavity input mirror. If the atom is uncoupled (F = 1) the resonant light enters
the cavity. A low count rate is measured with the SPCM, due to internal losses of the cavity. If the
atom couples to the cavity (F = 2) the resonance is shifted by the VRS and the light is predominantly
reflected yielding an enhanced count rate at the SPCM [51]. A histogram of the number of detected
photons per bin is shown in Fig. 1.2(c) for a bin width of 200 µs. The bimodal distribution corresponds
to the two hyperfine states and enables cavity-based non-destructive state detection with high fidelity.
We use this state detection technique in order to carry out experiments and probe the internal state
of an atom in an experimental sequence. In addition to state detection, the same technique is used
to probe the presence of an atom inside the mode of the resonator. This is done by simultaneously
activating an additional repumper that optically pumps the atoms from the uncoupled F = 1 state into
the coupled F = 2 hyperfine state.
The experimental setup and the cavity-based state detection technique allow us to perform

experiments with neutral 87Rb atoms strongly coupled to an optical resonator as will be seen in the
rest of this thesis.
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CHAPTER 2

Differential Light Shifts During Continuous
Raman Sideband Cooling

This chapter gives an introduction to Raman sideband cooling [56]. The optical pumping scheme
is described and Raman spectroscopy is applied to calibrate the trap frequencies of the far-detuned
optical dipole traps [57]. The calibration is used to overlap the trap frequencies of the three spatial
directions [58]. This allows for cooling along all three spatial directions with a single Raman beam.
Efficient three-dimensional Raman cooling facilitates experiments that reuse the same atom for
multiple measurements which greatly increases the data acquisition rate. The optimization of Raman
cooling is discussed and near ground-state cooling is achieved. We find that a differential light
shift induced by the near-resonant optical pumping beam shifts the two-photon resonance. This
hinders the independent optimization of two-photon detuning and repumper parameters. A precise
characterization of the differential light shifts is carried out in order to optimize the cooling efficiency.
We model the differential light shifts with a three-level system that contains the coherent Raman and
repumper couplings and dissipative decay [59]. The detailed characterization is subsequently used to
implement a feed-forward of the two-photon detuning. Thereby, the resonance with the Raman cooling
sideband is maintained when the repumper power or repumper detuning is varied. This simplifies the
optimization of Raman imaging which is discussed in chapter 3.

2.1 Raman Spectroscopy in Optical Dipole Traps

Optical dipole traps are based on the far off-resonant coupling of atomic states with laser fields [44].
The potential Udip induced by an optical dipole trap scales as ∝ ∆−1

DT whereas the scattering rate scales
as ∝ ∆−2

DT with the detuning ∆DT. For large detunings the influence of such a trap is thus well described
by an energy shift with negligible scattering rate [44].

Udip(r) =
3πc2
Γ

2ω3
0

1
∆DT

I(r) (2.1)

Here the constant c denotes the speed of light, Γ denotes the transition linewidth and ∆DT = ω0 −ωDT
denotes the detuning of the dipole trap operating at frequency ωDT from the atomic resonance ω0.
The potential is proportional to the laser intensity I(r) which typically follows a Gaussian envelope
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Figure 2.1: (a) A simplified sketch of the relevant beams used to trap and manipulate the atom is shown. The
atom is trapped in a 3D optical lattice inside the resonator. The running wave Raman beam is shine in from
the side and is phase-locked to the intra-cavity blue detuned lock laser field. Optical pumping light on the
D1 transition is off-resonantly coupled through the lower cavity mirror. (b) Atomic level structure involved
in the Raman process. The two-photon detuning δ is adjusted to drive transitions that lower the number of
motional excitation n. Optical repumping is done with σ− polarized light on the D1-line at 795 nm. (c) The
experimental sequence used for Raman spectroscopy is shown. The atom is “recylced” 200 times for subsequent
measurements.

along the radial direction. In the experiment we make use of two counter-propagating beams that
interfere and form a lattice which yields an axial intensity distribution following a sin-squared shape.
The trapping potential can be approximated with a harmonic potential along the tightly confining axial
direction. The harmonic approximation defines the trap frequency ν that is given by Eq. (2.2). Here,
U0 denotes the potential maximum, m denotes the atomic mass and λDT denotes the wavelength of the
dipole trap [60].

ν = 2π

√
2U0

mλ2
DT

(2.2)

For sufficiently cold atomic ensembles the trapping potential is well approximated by an harmonic
potential and the external degrees of freedom are given by harmonic oscillator states |n〉 (n = 0, 1, 2, . . . )
with a certain number of motional excitations n. Adjacent motional states are separated by the trap
frequency ν which is of the order of a few hundred kHz in our experiment.

In order to calibrate the trap frequencies we carry out Raman spectroscopy. After loading a single
87Rb atom into the cavity as described in Sec. 1.1, we prepare the atom in the state |F = 2,m f = −2〉
via optical pumping. To this end we apply a magnetic field of about 1.8G in order to lift the
degeneracy between different m f states which yields a Zeeman splitting of 1.2MHz between adjacent
m f states [52]. The magnetic field defines the quantization axis along the cavity direction which
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Figure 2.2: (a) Raman spectrum taken after cooling the atoms via Raman sideband cooling. The reduced depth
of the cooling sideband indicates that near ground-state cooling is achieved. (b) Raman spectroscopy is used to
measure the trap frequency along the three directions as function of dipole trap power. The trap frequency is
shown here as function of relative power.

enables optical pumping with σ− polarized light through the cavity mirrors. The atomic level scheme
is sketched in Fig. 2.1(b) where the repumper beam couples the F = 1 → F ′ = 2 transition of the
D1-line. Thereby, atoms are pumped into the F = 2 hyperfine state. In order to prepare the atoms
in the correct m f -state we simultaneously activate a weak polarizer beam on the F = 2 → F ′ = 2
transition. The state |F = 2,m f = −2〉 is dark with respect to the σ− polarized repumper and polarizer
beam and thus the population accumulates in the desired state.

Raman transitions are driven by a linewidth-reduced distributed Bragg-reflector (DBR) laser which
is phase-locked to the intra-cavity lock laser field [58]. The two-photon detuning δ of the Raman
beam is adjusted to match the hyperfine splitting corrected for Zeeman shifts. After optical pumping
into the state |F = 2,m f = −2〉 for 300 µs, a Raman pulse of 100 µs duration transfers the population
into the state |F = 1,m f = −1〉. We carry out Raman spectroscopy by measuring the population
transfer as function of two-photon detuning δ. Restricting the analysis to the first order sidebands,
we find three peaks corresponding to transitions that change the motional quantum by ∆n = 0,±1.
The cooling sideband (∆n = −1) and the heating sideband (∆n = +1) are positioned at a relative
two-photon detuning of δ = ±ν with respect to the carrier transition (∆n = 0) [56, 58]. Note that the
carrier transition is suppressed, since one of the Raman beams also acts as blue detuned intra-cavity
lattice [57]. The Raman beam propagates along the y-direction as shown in Fig. 2.1(a) and hence one
would expect that sidebands corresponding to the orthogonal x-direction do not occur. It has, however,
turned out that we can detect sidebands from the x-direction, because of small angles between the
propagation directions [58].
We calibrate the trap frequency ν as function of dipole trap power by taking Raman spectra for

different powers. The measurement is presented in Fig. 2.2(b) for the three dipole trap directions. The
relative power corresponds to about 70mW for the x- and y-trap and about 3.7 µW for the z-trap. Note
that the intra-cavity field is enhanced by the cavity and thus less power is required in comparison to
the horizontal dipole traps. The fits are of the form ν ∝

√
P similar to Eq. (2.2) and serve as guide to

the eye. An effective trap-depth reduction due to gravitational sag can be neglected due to the deep
trap depth of about 1.2mK originating from focussing the light to a Gaussian waist of roughly 13 µm.
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The gravitational potential of 0.1 µK µm−1 for 87Rb is thus negligible over the spatial extend of the
optical dipole trap. With the trap frequency calibration at hand we overlap all trap frequencies at about
350 kHz. This simplifies the implementation of three-dimensional RSC, since a single Raman beam
is sufficient to cool all spatial directions.

2.2 Resolved Raman Sideband Cooling

Efficient cooling of atoms inside the resonator makes it possible to perform multiple measurements
with the same atom. This greatly reduces the amount of required measurement time, since the lengthy
loading phase has to be performed less often. Raman cooling relies on coherent two-photon transitions
that couple different motional states. In order to sequentially reduce the number of motional excitations
by several quanta optical repumping is required as it is sketched in Fig. 2.1(b). We optimize the
Raman cooling efficiency which depends on the used Raman power, the repumper power as well as the
two-photon detuning and the repumper detuning. With all the three trap frequencies being overlapped
we perform 3D Raman sideband cooling by tuning the two-photon detuning into resonance with the
cooling sideband. We cool a single 87Rb atom and subsequently perform Raman spectroscopy to
evaluate the cooling performance and investigate the motional state distribution. The experimental
sequence is sketched in Fig. 2.1(c). The atom is cooled by means of Raman sideband cooling for
10ms and Raman spectroscopy is performed subsequently. One atom is reused 200 times where the
two-photon detuning δ is varied for each repetition in order to carry out the Raman spectroscopy.
The resulting spectrum is shown in Fig. 2.2(a). As the most dominant feature we identify the heating
sideband separated by about −350 kHz from the carrier. The broad width of the heating sideband is
attributed to an inhomogeneous positioning of atoms in the 3D lattice leading to a distribution of trap
depth and therefore trapping frequencies. The reduced depth of the cooling sideband positioned at
350 kHz with respect to the carrier indicates that near ground-state cooling is achieved.

2.2.1 Continuous versus Pulsed Raman Sideband Cooling

During continuous Raman sideband cooling (cRSC) the optical pumping (OP) beams are activated
simultaneously with the Raman beams. Alternatively, during pulsed Raman sideband cooling (pRSC)
the OP beams and the Raman beams are switched on and off in an alternating manner. In this case one
has to optimize the pulse durations in addition to frequencies and power levels which results in a larger
parameter space. The Raman pulse duration τR = 1

2ΩR
is ideally chosen to yield a π-like transfer on

the cooling sideband. In our experiment we want to cool the atom along all three spatial directions
which have different Lamb-Dicke factors [57, 58]. Therefore, the Raman Rabi frequency ΩR, which is
proportional to the Lamb-Dicke factor, is different for each direction which makes it difficult to find a
suitable pulse duration that yields good population transfer along all directions simultaneously.

In case of cRSC one has to optimize only the powers of Raman and OP beams and the single- and
two-photon detunings. However, the (near-)resonant optical repumper beam induces a light shift onto
the atomic levels. Since the |F = 2,m f = −2〉 is dark with respect to the OP beams this light shift
affects only the |F = 1,m f = −1〉 state and thus the two-photon resonance is shifted. The strength of
this differential light shift depends on the power and detuning of the repumper beam which means
that the parameters are coupled and can not be optimized individually. A detailed characterization is
presented in Sec. 2.3.
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Figure 2.3: (a) Survival probability after 5.8 s using pulsed and continuous Raman sideband cooling. For
continuous cooling the peak position is shifted away from the cooling sideband transition at 350 kHz, because of
repumper-induced differential light shifts. (b) Survival probability as function of time for pulsed and continuous
Raman sideband cooling. The points marked with A (B) are the same in both plots.

A comparison of pulsed and continuous Raman sideband cooling is shown in Fig. 2.3(a). For this
measurement we load a single atom into the resonator and use the cavity-based atom detection to
probe the presence of an atom after fixed cooling duration. We then obtain the probability that an
atom “survives” the probing duration and plot the survival probability as function of two-photon
detuning. One can see that in case of pRSC the survival probability peaks at a two-photon detuning of
about 350 kHz with respect to the carrier which corresponds to a two-photon detuning that equals the
trap frequency (δ ≈ ν). However, in case of cRSC the survival seems to favour a lower two-photon
detuning. This shift is attributed to a differential light shift induced by the repumper beam that shift
the frequency of the carrier and sideband transitions. Note that for this measurement the pulsed
Raman cooling was not fully optimized. The shift of the peak position is nonetheless clearly visible.
The survival as function of time is shown in Fig. 2.3(b). By measuring the survival as function of
probing duration we are able to fit the data with an exponential function and extract the lifetime.
After optimization of continuous Raman sideband cooling we obtain lifetimes of up to 55 s which are
believed to be vacuum-limited [61].

2.3 Light Shifts Induced by the Near-Resonant Optical Pumping Beams

This section describes a systematic characterization of differential light shifts that occur during
continuous Raman sideband cooling. As already mentioned cRSC has a smaller parameter space
that needs to be explored in order to find the optimum cooling condition than pRSC. In case of
continuous cooling there is no need to choose a Raman pulse duration τR which is difficult to optimize
for three-dimensional cooling. We therefore implement continuous Raman sideband cooling which
requires precise knowledge of the induced differential light shifts.
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Figure 2.4: (a) The survival probability is shown as function of two-photon detuning δ for two different powers
of the repumper beam. Because of differential light shifts the center two-photon detuning δc that maximizes the
survival probability depends on the power of the repumper beam. (b) The center two-photon detuning is shown
as function of the power of the repumper beam for three different repumper detunings. See the main text for a
detailed discussion.

2.3.1 Detecting the Light Shifted Sideband Frequency

For the characterization of differential light shifts we investigate the dependence of the survival
probability on the two-photon detuning and repumper power and detuning. The survival probability
is measured after 500ms of continuous Raman sideband cooling. In order to keep the experimental
sequence reasonable short we alternately cool the atom for 1ms and subsequently wait for 24ms in
order to allow for heating effects to take place. That way the atom is heated out of the trap if the
cooling is not efficient enough. We measure the survival probability as function of the two-photon
detuning δ and extract from a Gaussian fit the center two-photon detuning δc which maximizes the
survival (see Fig. 2.4(a)). Repeating the measurement for several repumper powers reveals that the
center two-photon detuning δc depends on the repumper power. We identify the center two-photon
detuning δc as the light shifted sideband frequency and extract the light shift δLS according to Eq. (2.3).

δc = ν + δLS (2.3)

The center two-photon detuning δc is shown in Fig. 2.4(b) as function of the repumper power for three
different repumper detunings. The linear slope clearly shows that the differential light shift δLS is
proportional to the repumper power P as it is well known for dipole potentials [44].

δLS ∝ −
1
∆
· P (2.4)

In addition it can be seen in Fig. 2.4(b) that the sign of the differential light shift depends on the sign
of the repumper detuning with vanishing light shift on resonance1. We want to find the optimum
combination of two-photon detuning, repumper detuning and repumper power and hence introduce a
model to explain the measurements.

1 Note that the atom is trapped in an optical dipole trap and thus the atomic transition frequency is shifted. The detuning
presented in the label of Fig. 2.4(b) is taken with respect to the light shifted resonance frequency. For a detailed discussion
see Sec. 2.3.3.
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2.3.2 Model for Continuous Raman Sideband Cooling

Before we proceed with the systematic experimental characterization we present the model used to fit
the measurement. We model our system following Ref. [59] and show the relevant atomic levels in
Fig. 2.5(a). Here the Raman cooling cycle starts in the state |2,−2, n〉 that describes an atom in the
internal state |F = 2,m f = −2〉 with n motional excitations. The Raman coupling at a Rabi frequency
Ω and a two-photon detuning δ′ transfers the atom into the state |1,−1, n − 1〉 and thereby reduces the
number of motional excitations by one. Note that here the Raman two-photon detuning is denoted
with δ′ instead of δ, since we consider only the Raman cooling sideband and neglegt carrier and
heating transitions. For resonant addressing of the cooling sideband we thus consider δ′ = 0 which
corresponds to δ = ν. In addition to the Raman coupling we consider optical repumping at a Rabi
frequency ω via the excited state |2′,−2, n∗ − 1〉 with a repumper detuning ∆. The number of motional
excitations of the excited state is here labelled with n∗, since this state experiences a different trapping
potential than the ground-states. The excited state decays, either into the state |1,−1, n − 1〉 at a rate
γ1 or into the state |2,−2, n − 1〉 at a rate γ2. In the latter case the cooling cycle is completed and the
atom was cooled from the n-manifold into the (n − 1)-manifold. Following Ref. [59] we note that the
cooling occurs through the scattering mediated via the excited state |2′,−2, n∗ − 1〉. The cooling rate
is therefore proportional to the population of the excited state as long as the system does not reach the
motional ground-state.

Assuming that the population in the motional ground-state is negligible we are interested in finding
a steady-state solution of the excited state population ρee. Note that under steady-state conditions the
population in each n-manifold is constant and the decay into the manifold has to be equal to the decay
rate out of the manifold [59]. This is the case when the decay |2′,−2, n∗〉 → |2,−2, n〉 equals the
decay |2′,−2, n∗ − 1〉 → |2,−2, n − 1〉 shown in Fig. 2.5(a). In this case we can reguide the γ2-decay
and obtain the closed three-level system shown in Fig. 2.5(b). The system dynamic is described via a
Lindblad master equation shown in Eq. (2.5). The equation describes the time evolution of the atomic
density matrix ρ under the combined action of coherent couplings (included via the Hamiltonian Ĥ)
and dissipative decay (included via the collapse operators Ĉl) [62]. A solution of the excited state
population is given by Eq. (2.6) which fulfils ∂ρstee

∂t = 0 and thus describes a steady-state solution [59].

Ûρ = L̂ρ = −
i
~

[
Ĥ, ρ

]
+

∑
l

ĈlρĈ
†

l
−

1
2

(
Ĉ
†

l
Ĉlρ + ρĈ

†

l
Ĉl

)
(2.5)

ρstee =
ω2
Ω

2

2Ω2
(
Γ

2
+Ω

2
+ (1 − α)

(
2δ′2 + ω2

)
+ 4δ̃(∆ − 2αδ′)

)
+ α

(
4Γ2δ′2 +

(
ω2
+ 4δ′δ̃

)2
) (2.6)

Here the relative detuning δ̃ = ∆ − δ′ has been introduced together with the atomic linewidth
Γ = 2

(
γ1 + γ2

)
and the effective repumping efficiency α = γ2

γ1+γ2
. In the limit of Γ � ω � Ω an

approximate solution is given by Eq. (2.7) and shown in Fig. 2.5(c) as function of two-photon detuning
and repumper detuning [59].

ρstee ≈
ω2
Ω

2

2Ω2
(
Γ

2
+ 4∆2

)
+ 4αδ′2Γ2

+ α
(
ω2
+ 4δ′δ̃

)2 (2.7)
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Figure 2.5: (a) Relevant states used to model the Raman cooling process. The Raman coupling with Rabi
frequency Ω reduces the number of motional excitations and the optical repumper with Rabi frequency ω
prepares the atom for another cooling cycle. See Sec. 2.3.2 for details. (b) Closed three-level system used to
find a steady-state solution under Raman cooling conditions. (c) Steady-state excited state population under
Raman cooling conditions as function of two-photon detuning δ′ and repumper detuning ∆. The two-photon
detuning that maximizes the excited state population is shown as dashed line.

In order to relate this three-level model to our measurements we claim that the survival probability is
proportional to the cooling rate which is in turn proportional to the steady-state excited state population
ρstee. We are thus interested in finding the two-photon detuning δ′m that maximizes the excited state
population and model the differential light shift as δLS = δ

′
m. By imposing the condition ∂ρstee

∂δ′
= 0 we

find that δ′m obeys Eq. (2.8). The two-photon detuning δ′m derived from Eq. (2.8) is shown as white
dashed line in Fig. 2.5(c). Note that the solution of Eq. (2.8) depends on the repumper Rabi frequency
ω and the repumper detuning ∆ and serves as model for fitting the differential light shift measurements.

0 =
(
δ′m

)3
−

3
2
∆

(
δ′m

)2
+

[
1
2
∆

2
−

1
4
ω2
+

1
8
Γ

2
]
δ′m +

1
8
∆ω2 (2.8)

In order to gain some more intuitive physical insight we compare the results of the three-level
model to a simpler two-level system that includes only the repumper coupling. To this end, we
consider the ground-state |1,−1〉 that is coupled to the excited state |2′,−2〉 with a repumper Rabi
frequency ω and a detuning ∆ as shown in Fig. 2.6(a). The system is described by the non-Hermitian
Hamiltonian (2.9) where the iγ term has been introduced in order to account for the finite linewidth of
the optical transition [51, 63, 64]. The light shift for this two-level system is obtained by computing
the eigenenergies E that are shown in Eq. (2.10).

H = ~
(
∆ − iγ ω

ω 0

)
(2.9)

E =
~

2
<

(
∆ − iγ ±

√
(2s − 1)γ2

+ ∆
2
− 2iγ∆

)
(2.10)

Here< takes the real part of the expression and 2γ = Γ ≈ 2π · 6 MHz denotes the linewidth of the
transition. Note that the repumper Rabi frequency ω is included via the saturation parameter s = I/Isat
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Figure 2.6: (a) Relevant level scheme of the simpler two-level model used to describe the light shift induced
by the repumper beam. The repumper with Rabi frequency ω and detuning ∆ couples the |1,−1〉 state to the
excited state and thereby induces a light shift. (b) Comparison of the three-level model with the two-level model.
For sufficiently low repumper intensities the predictions are quantitatively similar. (c) Light shift predicted by
the two-level model as function of repumper saturation parameter s and detuning ∆. For intensities exceeding
s = 0.5 the model becomes discontinuous on resonance.

which expresses the intensity I in units of the saturation intensity Isat. Equation (2.11) shows the
relation between Rabi frequency ω and saturation parameter [53].

s = 2
(ω
Γ

)2
(2.11)

A comparison of the three-level model with the simpler two-level model is shown in Fig. 2.6(b)
for a saturation parameter of s = 0.25. Both models make quantitatively similar predictions for the
differential light shift as long as the repumper intensity is sufficiently small. The light shift computed
with the two-level model is shown in Fig. 2.6(c) as function of repumper saturation parameter s and
repumper detuning ∆. Note that for intensities exceeding s = 0.5 the two-level model becomes
discontinuous on resonance, due to an emerging Autler-Townes splitting [65, 66]. The three-level
model however remains continuous even for higher intensities.

2.3.3 Systematic Characterization of Differential Light Shifts

In order to experimentally characterize the light shifts induced by the repumper beam we carry out a
3-dimensional parameter scan that spans 21 repumper detunings, 7 repumper powers and 15 Raman
two-photon detunings and measure the survival probability for each point. Note that the repumper
power is measured in free-space before coupling the light into the fiber of the lower cavity mirror. The
D1-light is off-resonant with the cavity and thus only a small fraction leaks into the cavity. Since the
physically relevant quantity is intensity instead of power we calibrate the intra-cavity intensity at the
position of the atoms by measuring optical pumping rates. To this end, we load a single atom into
the resonator and prepare it in the F = 1 hyperfine state. We then shine optical pumping light on the
F = 1→ F ′ = 2 (D1) transition with a fixed power for variable duration and subsequently perform a
cavity-based state detection. The measurement is shown in Fig. 2.7(a) where the population ρF=2
of the F = 2 hyperfine state is shown as function of optical pumping duration. The fit is based on
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Figure 2.7: (a) Population of the F = 2 state as function of optical pumping (OP) duration. The fit is a stretched
exponential as explained in the main text. (b) The OP time constant extracted from a stretched exponential fit is
shown as function of the repumper detuning ∆. The black dotted line corresponds to a fit of Eq. (2.13). The
solid red line takes fluctuations of the detuning into account and is based on Eq. (2.15). (c) The data from (b) is
presented in terms of optical pumping rates ΓOP = τ

−1
OP. The deviation between the measurement and the fit

(2.13) becomes more noticeable when the data is presented in terms of rates.

a stretched exponential following Eq. (2.12). Here the stretching factor β is introduced to account
for inhomogeneous effects [51, 67]. We measure the optical pumping time constant τOP for various
repumper detunings ∆ and fixed repumper power.

ρF=2 = 1 − exp
(
−(t/τOP)

β
)

(2.12)

The pumping rate ΓOP = τ
−1
OP = α · Γscat is proportional to the scattering rate Γscat and the constant

repumping efficiency α ≈ 0.58. Taking the expression for the scattering rate from Ref. [53] we obtain
Eq. (2.13) that describes the OP time constant as function of repumper detuning ∆.

τOP(∆) =
2
αΓ

1 + 4 (∆/Γ)2 + s
s

(2.13)

A fit of Eq. (2.13) to the measurement is presented in Fig. 2.7(b). Here the optical pumping time
constant τOP is shown as function of repumper detuning ∆. The fit of Eq. (2.13) deviates from the
measurement in the vicinity of the resonance. This deviation becomes more noticeable when the
same data is presented in terms of optical pumping rates ΓOP = τ

−1
OP. We attribute the deviation in

the vicinity of the resonance to a fluctuation of the repumper frequency. The repumper frequency is
referenced by means of polarization spectroscopy to a vapour cell which guarantees good long term
stability [68]. However, due to the finite slope of the error signal we nonetheless observe frequency
fluctuations of the order of a few MHz.
In order to take the fluctuation of the detuning into account we assume that the detuning follows

a Gaussian probability density function (PDF) with a center detuning ∆̄ and a width σ∆. We thus
compute a convolution of τOP in Eq. (2.13) with a Gaussian gPDF shown in Eq. (2.14). The convolution
is presented in Eq. (2.15).
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Figure 2.8: (a) Measurement of survival probability as function of two-photon detuning δ and repumper
detuning ∆ for a fixed repumper power of P = 111 µW. For each repumper detuning ∆ we obtain the center
two-photon detuning δc that maximizes the survival probability (white points). (b) Center two-photon detuning
δc in dependence of the repumper detuning extracted from the 2D-scan shown in (a). It shows the expected
dispersive shape when varying the repumper detuning across the resonance. Note that the amplitude of the
dispersive shape increases with repumper power. The dashed lines are a fit based on the three-level model.

It turns out that the resulting expression is of the same form as Eq. (2.13) with an effective detuning
∆

2
eff = ∆

2
+ σ2

∆.

gPDF(∆, ∆̄, σ∆) =
1

√
2πσ∆

exp

(
−

1
2

(
∆ − ∆̄

σ∆

)2)
(2.14)

τ̄OP(∆) =

∫ ∞

−∞

gPDF(∆
′,∆, σ∆) · τOP(∆

′
) d∆′

=
2
αΓ

1 + 4
(
∆eff/Γ

)2
+ s

s
(2.15)

We fit expression (2.15) to the measurement with the Gaussian width σ∆ as an additional free parameter.
Plotting the measurement in terms of optical pumping rate reveals that Eq. (2.15) describes the data
significantly better than Eq. (2.13). From the fit we extract σ∆ = (3.0 ± 0.5)MHz and calibrate the
intra-cavity repumper intensity as function of repumper power P. We can therefore express the
intensity in terms of the saturation parameters s = cs · P and obtain the proportionality constant
cs = (7.7 ± 0.7) × 10−4 µW−1.

Fitting the Differential Light Shift Measurement

With the intra-cavity intensity calibration at hand we can now compare the measurement of differential
light shifts to the previously introduced model. One subset of the dataset is shown in Fig. 2.8(a) for
a fixed repumper power of P = 111 µW. For each scan of the two-photon detuning we obtain the
center two-photon detuning δc that maximizes the survival probability and present it as function of
repumper detuning ∆ in Fig. 2.8(b). The same dispersive shape as predicted by the theoretical model
emerges (Fig. 2.6(b)) when scanning the repumper detuning ∆ across the resonance. In addition it can
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Figure 2.9: (a) The F = 2 population is shown as function of repumper detuning ∆ with respect to the free-space
transition for a fixed duration of optical pumping in order to characterize the light-shift induced by the dipole
traps. The resonance frequency is extracted from a Gaussian fit. (b) The resonance frequency of the D1
F = 1→ F ′ = 2 transition (circles) and the F = 2→ F ′ = 2 transition (squares) is shown as function of dipole
trap power for the x- and y-direction. The light shifted resonance is extracted by projecting the linear fit onto
the point of operation. (c) The resonance frequency ∆0 is shown that yields vanishing differential light shift for
the different repumper powers. The independent characterization of the light shift induced by the dipole traps is
shown in red with the 95% confidence intervals shown as dashed lines.

be seen that the amplitude of the dispersive shape increases with repumper power. The dashed lines
in Fig. 2.8(b) show a fit based on Eq. (2.3) where the differential light shift δLS is modelled via the
three-level model. In order to fit the three-level model to the measured data we use 4 free parameters:
the resonance frequency ∆0 with respect to the free space transition, the intensity calibration factor cs,
the width σ∆ of the Gaussian distribution for the detuning and a constant offset δc,0 to the differential
light shift which takes the role of the trap frequency ν in Eq. (2.3). The data is fitted as function of
repumper detuning ∆ for each repumper power separately. In order to evaluate the agreement between
the theoretical three-level model and the measured data we analyze the fitting parameters as function
of repumper power.
Note that the repumper detuning ∆ is defined here with respect to the free-space transition as

retrieved by the vapor cell reference. For the following discussion it is useful to distinguish the
free-space detuning ∆ from the detuning with respect to the light shifted transition ∆d. The latter takes
into account the dressing of the optical dipole traps which induces a light shift ∆LS = ∆ − ∆d. In the
following we discuss the results obtained from the fitting.

The resonance frequency ∆0 extracted from the fit of the differential light shift is shown in Fig. 2.9(c).
It coincides with the light shifted transition frequency of the F = 1→ F ′ = 2 D1 transition (∆0 ≈ ∆LS).
For this comparison we characterized the light shift induced by the two red-detuned dipole traps
running at 868 nm separately. To this end we perform spectroscopy by preparing the atoms in the lower
F = 1 hyperfine state. We then shine an optical pumping pulse for fixed duration but variable detuning.
The measurement is presented in Fig. 2.9(a) showing the population of the upper F = 2 hyperfine
state as function of repumper detuning ∆. We repeat the measurement for multiple dipole trap powers
and obtain for each power the resonance position from a Gaussian fit. The resonance frequency is
shown in Fig. 2.9(b) as function of dipole trap power for the F = 1→ F ′ = 2 and F = 2→ F ′ = 2
transition of the D1-line. From a linear fit we obtain the light shift of the F = 1 → F ′ = 2
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Figure 2.10: (a) The intensity calibration factor cs extracted from the fit is shown as function of repumper power.
The independent measurement of the intensity calibration factor is given in red with 95% confidence bounds
shown as dotted lines. (b) The fitted saturation parameter computed from the intensity calibration in (a) is
shown. (c) The center two-photon detuning δc,0 that maximizing the survival probability on resonance is shown.
The interpretation of the residual slope is discussed in the main text.

transition of (0.16 ± 0.01)MHzmW−1 and (0.22 ± 0.04)MHzmW−1 for the dipole trap along the x-
and y-direction, respectively. From this calibration we extract a light shift of ∆LS = (28.4 ± 2.5)MHz
at the point of operation which is shown as a red line (for reference) in Fig. 2.9(c).

In addition to the resonance frequency ∆0 we extract the corresponding center two-photon detuning
δc,0 that maximizes the survival probability on resonance. In accordance with Eq. (2.3) we expect
δc,0 = ν for ∆ = ∆0, i.e. on resonance with the light shifted transition (∆d = 0). The extracted
fitting parameter is shown in Fig. 2.10(c) and shows a systematic dependence on the repumper
power instead of being constant. We consider an additional light shift induced by the polarizer
beam on the F = 2 → F ′ = 2 transition as a possible explanation. However, the lower hyperfine
state |F = 1,m f = −1〉 is about 6.8GHz detuned, such that the light shift induced onto this state is
negligible. The upper hyperfine state |F = 2,m f = −2〉 is a dark state with respect to the polarizer beam
assuming that the polarization is set to be σ−. An additional light shift induced by an imperfection
of the polarization can not explain the residual slope of (−0.18 ± 0.07) kHz µW−1. The effect is only
considerable for a very strong polarization imperfection that would spoil the optical pumping efficiency.
We therefore conclude that an additional light shift can not be the (only) explanation for the systematic
shift of the center two-photon detuning δc,0 as function of repumper power.
The intensity calibration factor cs extracted from each separate fit is shown in Fig. 2.10(a). Since

non-linear absorption effects should not play a role we expect the intensity calibration factor cs to be
constant as function of repumper power. However, we observe a systematic dependence of cs on the
repumper power. Furthermore, we compute the corresponding saturation parameter s = cs · P for
each repumper power P and fit s(P) with a polynomial of first order. Fig. 2.10(b) shows an offset of
s = 0.42 ± 0.26 for vanishing repumper power P = 0. This physically impossible result indicates that
additional effects have to be taken into account that are not captures by the current model.
In Fig. 2.4(b) we present the differential light shift as function of repumper power P instead of

repumper detuning ∆. Since the light shift depends linearly on the repumper power P we fit the
measurement with a polynomial of first order. The extracted slope and offset for the various repumper
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Figure 2.11: (a) The fitting parameter σ∆ used for the convolution is shown as function of repumper power.
(b+c) The differential light shift is fitted as function of repumper power (see Fig. 2.4(b)) for various repumper
detunings separately. The slope (b) and the offset (c) of the fitted first order polynomial is shown as function of
repumper detuning ∆. The slopes (b) are asymmetric for blue- and red-detunings.

detunings are shown in Fig. 2.11(a) and Fig. 2.11(b), respectively. For near-resonant blue repumper
detunings the slopes reach values down to about −1 kHz µW−1. For similar red-detunings the slope is
however consistent with zero and only for higher detunings of about 3 Γ the slope reaches values up
to 0.5 kHz µW−1. Clearly the strength of the differential light shift is asymmetric with respect to the
detuning. Note that the presented fitting model is strictly symmetric with respect to the simultaneous
sign flip ∆ → −∆ and δLS → −δLS, and hence does not include any asymmetric effects. Fitting
the symmetric model to the asymmetric data might explain the observed systematic shift of fitting
parameters (see Fig. 2.10(a-c)). However, a detailed discussion of possible extensions is beyond the
scope of this thesis.
To complete the discussion of extracted fitting parameters we obtain the Gaussian width σ∆ used

to describe an inhomogeneous distribution of detuning. The extracted fitting parameter is shown in
Fig. 2.11(c) as function of repumper power with a mean value of about σ∆/2π ≈ 6 MHz. This value
deviates from the previously found value of (3.0 ± 0.5)MHz used to calibrate the intra-cavity intensity.
However, since the assumption of a Gaussian probability distribution was somewhat arbitrary we do
not give a physical interpretation of the deviation and emphasize instead that the parameter is constant
as function of repumper power.

2.3.4 Cooling Efficiency as Function of Repumper Detuning

The presented analysis in the previous sections describes the differential light shifts induced by the
near-resonant repumper beam and is based on extracting the light shifted sideband frequency. In
addition to the characterization of light shifts we are interested in identifying parameter regimes that are
well suited for cooling. Fig. 2.12(a-c) show the survival probability as function of two-photon detuning
δ and repumper detuning ∆ for three different repumper powers. The survival probability drops when
the repumper is tuned into resonance with the light-shifted optical transition at ∆/2π ≈ 28 MHz. This
drop in survival probability is explained by so called dipole-force fluctuations [31]. At a trapping
wavelength of 868 nm the excited state experiences an anti-trapping potential which is even stronger
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2.3 Light Shifts Induced by the Near-Resonant Optical Pumping Beams

than the trapping potential of the ground state [69]. In order to understand the drop in survival
probability for resonant illumination we model the optical pumping process with a simple two-level
system following Ref. [34]. We consider the dressing of the bare states |G, N〉 and |E, N − 1〉. Here
|G〉 and |E〉 refer to the internal state of the two-level atom and |N〉 refers to the number of repumper
photons being present. Following the notation of Ref. [34] the dressed states |g, N〉 and |e, N〉 are
shown in Eq. (2.16).

|g, N〉 = cos(θ) |G, N〉 − sin(θ) |E, N − 1〉
|e, N〉 = sin(θ) |G, N〉 + cos(θ) |E, N − 1〉 (2.16)

Here the mixing angle θ is defined by tan(2θ) = −ω/∆d and depends on the repumper Rabi
frequency ω and the repumper detuning ∆d with respect to the light-shifted transition. Note that
the dressed state |g, N〉 is ground-state like (for small θ) and experiences a trapping potential.
In contrast the dressed state |e, N〉 experiences an anti-trapping potential. From Eq. (2.16) one
obtains the spontaneous transition rates Γge between dressed states |g, N〉 and |e, N − 1〉 as Γge =
Γ |〈e, N − 1|G, N − 1〉|2 |〈E, N − 1|g, N〉|2. The resulting transition rates between dressed states are
shown in Eq. (2.17).

Γge = Γ sin4
(θ)

Γgg = Γee = Γ sin2
(θ) cos2

(θ)

Γeg = Γ cos4
(θ) (2.17)

In the limit of large detunings
��ω/∆d

�� � 1 we approximate cos2
(θ) ≈ 1 and sin2

(θ) ≈ ε = ω2
/(4∆2

d).
Assuming that the atoms are initially prepared in the trapped state |g, N〉 the ratio of decay into an
anti-trapping state versus the decay into a trapped state is given by Γge/Γgg ≈ ε . For an atom being
prepared in an anti-trapped state |e, N〉 the same consideration yields a decay ratio of Γee/Γeg ≈ ε .
This means that for ε � 1 the atom predominantly decays into dressed states which experience a
trapping potential [34]. The condition ε = ω2

/(4∆2
d) � 1 motivates to use a detuning

��∆d
�� > 0 for the

repumper beam. Note that on resonance (∆d = 0) one obtains cos(θ) = sin(θ) = 1√
2
and thus none

of the dressed states is trapped since the anti-trapping potential of the excited state contributions is
stronger than the trapping potential of the ground-state contribution.

In addition to the the drop in cooling efficiency for resonant repumping we observe an asymmetry
with respect to the repumper detuning. This becomes apparent in Fig. 2.12(a-c) where the survival
probability is shown as function of two-photon detuning δ and repumper detuning ∆ for different
repumper powers. While the survival probability reaches similar values for red- and blue-detunings
at rather low repumper powers (Fig. 2.12(a)) it becomes asymmetric for higher repumper powers
(Fig. 2.12(c)). In this case a higher survival probability is obtained for blue instead of red repumper
detunings. Since both, the presented two-level model and the presented three-level model are
symmetric with respect to the repumper detuning ∆ it remains an open question if the asymmetry has
a physical or a technical cause. An off-resonant coupling to an additional electronically excited state
is an unlikely explanation, since the excited-state hyperfine splitting of the D1-line of 87Rb exceeds
800MHz and is thus much larger than the explored variation of the repumper detuning. On the
technical side an inhomogeneous distribution of atom positions in the optical dipole trap would yield
an inhomogeneous distribution of resonance conditions for the repumper beam. Such a distribution
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Figure 2.12: The survival probability is shown as function of two-photon detuning δ and repumper detuning ∆
for a repumper power of (a) 111 µW, (b) 396 µW and (c) 736 µW. One can see that the survival probability drops
when the repumper is tuned on resonance (∆/2π ≈ 28 MHz) with the light-shifted transition. The colorbar is
the same for all three plots.

might have an asymmetric tail towards red detunings which would not occur for blue-detunings.
However, a detailed modelling of inhomogeneous effects is beyond the scope of this thesis.
In conclusion, we optimize Raman sideband cooling in order to increase the data data acquisition

rate of future measurements. We obtain vacuum-limited lifetimes up to 55 s and confirm that near
ground-state cooling is achieved. A precision measurement of repumper-induced differential light
shifts is discussed. Precise knowledge of this effect is needed in order to simultaneously optimize
the Raman two-photon detuning together with the repumper detuning and repumper power. We
present a model of continuous Raman sideband cooling [59] that takes into account the coherent
Raman and repumper couplings and dissipative decay and obtain qualitative agreement with the
measurement. We observe that dipole-force fluctuations [31] induce heating when the repumper is
tuned into resonance with the light shifted transition. It is therefore beneficial to detune the repumper
beam away from resonance [34]. The precise characterization of differential light shifts is used to
implement a feed-forward of the two-photon detuning. This simplifies the parameter space since the
resonance with the cooling sideband is maintained when the repumper detuning or repumper power
are varied. The following chapter describes the fluorescence imaging of atomic ensembles inside
the resonator by means of Raman imaging. For the measurements presented therein the two-photon
feed-forward is used in order to simplify the optimization.
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CHAPTER 3

Raman Imaging of Atoms in an Optical Cavity

In order to experimentally investigate effects associated to the collective coupling of multiple atoms to
the same cavity mode we aim to prepare atomic ensembles inside the resonator. The optimization of
this process is based on the ability to count the number of atoms inside the resonator. For our cavity
parameters this counting can not be implemented by probing the cavity reflection, since a single atom
is sufficient to induce a vacuum-Rabi splitting. We thus implement the counting of atoms by means of
fluorescence imaging. The scattering of near-resonant imaging light inevitably induces heating of the
atoms which has to be compensated by a cooling mechanism [31]. Fluorescence imaging of 87Rb
with molasses cooling is nowadays a standard technique [32, 70]. However, in our experiment we
can not implement three-dimensional molasses cooling, due to the limited optical access where one
direction is blocked by the cavity itself. A previous attempt to image the atoms during degenerate
Raman sideband cooling [47] did not reach the signal necessary to count atoms, since they were lost
before a sufficient number of photons could be detected. We therefore implement Raman imaging
which is based on detecting the repumper fluorescence during continuous Raman sideband cooling.

Raman imaging is frequently used in the context of quantum gas microscopy, in particular for
the imaging of fermionic 40K and 6Li species [34, 71, 72] and allows for exposure times exceeding
1 s [33]. We detect the fluorescence of the repumper and polarizer beams that are (near-)resonant with
the D1 transition of 87Rb and are coupled off-resonantly to the cavity via the lower cavity mirror (see
Fig. 3.1(a)). Using off-resonant D1 light instead of resonant D2 light is beneficial, because of the
Purcell-effect which channels resonant light predominantly into the cavity mode. This effects makes
an optical cavity an efficient light-matter interface, but at the same time hinders efficient fluorescence
imaging. To overcome this detrimental effect we therefore use light off-resonant with respect to the
cavity for the fluorescence imaging. This chapter starts by introducing the improved imaging setup.
A spatial filter was set up in order to suppress scattered light originating from spurious reflections
at the upper cavity mirror. Furthermore, the optimization of the imaging parameters is described.
The influence of the repumper detuning onto the achievable signal-to-noise ratio is described and a
preliminary analysis of individual atom pictures is presented. Moreover, the influence of the motional
ground-state is discussed, which is dark with respect to the Raman transfer and the optical pumping
beams and thus does not generate fluorescence.
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Figure 3.1: (a) The new imaging setup is sketched. The repumper light is injected through the lower cavity
mirror and off-resonantly coupled into the cavity. In order to remove spuriously scattered light reflected from
the upper cavity mirror, a slit is used to spatially filter the unwanted reflection without blocking most of the
atomic fluorescence. This filter exploits that the spurious scattering focusses at a different axial position than
the light originating from the atoms. (b) Image taken without the newly installed spatial filter showing the
spurious scattering. (c) Image taken after installing the spatial filter. The spurious scattering is suppressed
significantly. The residual light originates from the lock laser light at 770 nm and can be filtered out with a
narrowband frequency filter.

3.1 New Imaging System

The atomic fluorescence is collected by the in-vacuum (NA=0.5) lens and imaged onto an electron
multiplying charged coupled device (EMCCD) camera [73]. Since the fluorescence rate of Raman
imaging is rather low [74] a long exposure time of the order of a second is typically needed [34].
We observed that for an exposure times of 1 s a very strong background is accumulated in the image
(see Fig. 3.1(b)). This background originates from spurious reflections at the upper cavity mirror and
prevented long exposure times without saturating the camera. It furthermore limited the possible
amplification of the signal by the EMCCD camera and thereby prohibited the imaging of atoms. In
order to suppress the spurious light we installed an improved imaging setup that spatially filters out
the unwanted reflection. The new imaging setup is shown in Fig. 3.1(a) and includes an intermediate
imaging plane where we use an iris and a slit to spatially block the light originating from the upper
cavity mirror. The implementation of the spatial filter exploits that the light of the atoms focusses
8mm before the unwanted reflection. By installing a slit at the focal plane of the spurious light we
block it without significantly reducing the amount of detected atomic fluorescence. Fig. 3.1(c) shows
that the spurious reflection is blocked by partially closing the slit. The intermediate image plane is
relayed onto the EMCCD camera with a one-to-one telescope. Acromatic air-spaced doublet lenses
are used in the new imaging system in order to suppress aberrations. The optics of the new imaging
setup are mounted in tubes in order to suppress stray light. The axial position of the lenses can be
adjusted with rotating adjustable lens mounts. This allows to optimize the focussing while looking at
atom pictures. In addition to the spatial filtering we employ narrow frequency band-pass filters used
to suppress any light other than the fluorescence light at 795 nm.
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Figure 3.2: The survival probability (a) measured with the cavity-based atom detection and the fluorescence
detected with the EMCCD camera (b) are shown for a parameter scan of repumper power and Raman power.
(c+d) Two selected pictures are shown corresponding to two different repumper powers. For a repumper power
of 48 µW (c) the atom does not gain brightness in comparison to (d) which was taken for a repumper power of
15 µW. Instead the background increases which limits the signal-to-noise ratio.

3.2 Optimizing the Raman Imaging

For the optimization of the fluorescence we detect the scattered repumper photons in a region of
interest (ROI) of 12 µm × 12 µm. The number of integrated fluorescence counts is computed after
substraction of a corresponding background image. In addition, we detect the presence of an atom
before and after each picture by probing the cavity reflection as explained in Sec. 1.2. We average only
over images for which the atom survived the 1 s exposure. This post-selection enables an independent
characterization of survival probability and fluorescence. For the measurements presented here the
Raman two-photon detuning δ is choosen to maximize the cooling efficiency based on the detailed
characterization presented in chapter 2. A feed-forward is used to maintain the resonance with the
Raman cooling transition when varying other parameters such as repumper power or detuning.
In order to characterize the fluorescence we vary the repumper power and the Raman power.

The measured survival probability and EMCCD counts for a repumper detuning of ∆d = 0 with
respect to the light shifted D1 transition are shown in Fig. 3.2(a) and Fig. 3.2(b), respectively. The
measurement of fluorescence shows that higher powers yield more fluorescence. However, increasing
the fluorescence comes at a price of significantly reducing the survival probability. For a resonant
repumper (∆d = 0) the survival probability does not exceed 70% and is rather sensitive with respect
to variations of repumper power or Raman power. This behaviour is expected for a resonant repumper
from the discussion in Sec. 2.3.4 and confirms that it is beneficial to detune the optical pumping beams
away from resonance.
By visually inspecting individual images we observe that we are able to image single atoms by

means of Raman imaging. Two examples are shown in Fig. 3.2(c,d) for a Raman power of about
3.7mW and two different repumper powers. In both cases one can see a single atom well localized
in the 3D lattice. However, the brightness of the atom does not increase for higher repumper power.
Instead the brightness of the background increases which originates from residual unwanted scattering
that is not blocked by the spatial filtering system. To confirm that the main source of background is
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Figure 3.3: (a) Detected counts in background images (i.e. without an atom being present) as function of
repumper power and Raman power. The background light originates from the D1 beam. Residual scattering
of the Raman beam is suppressed by narrowband frequency filtering. (b) The SNR as defined by Eq. (3.1) is
shown corresponding to the fluorescence measurement shown in Fig. 3.2(b). The SNR serves as figure of merit
for the optimization of the imaging in addition to the survival probability.

given by the D1 light we integrate the ROI of background images where no atom is present. As shown
in Fig. 3.3(a) the number of detected background counts depends linearly on the repumper power
and is independent of the Raman power. This increase of the background entails an increase of the
image noise that reduces the fluorescence signal-to-noise ratio. Consequently, as a figure of merit
for the optimization of the imaging we use the mean signal-to-noise ratio in order to account for the
detrimental effect of spurious background.

3.2.1 Optimization of the Signal-to-Noise Ratio

In order to optimize the physical parameters for imaging we use the signal-to-noise ratio (SNR) as
figure of merit in addition to the survival probability. For each parameter set we take multiple images
and use the cavity-based atom detection to post-select those where the atom survived the exposure
time. We compute the mean integrated fluorescence of the region of interest µFluo averaged over the
post-selected pictures and subtract the corresponding average of background images µBG, i.e. where
no atom is present. The mean background-subtracted fluorescence is then compared to the standard
deviation of the background counts σBG to yield the SNR as defined by Eq. (3.1).

SNR =
µFluo − µBG

σBG
(3.1)

The SNR corresponding to the measurement presented in Fig. 3.2(b) is shown in Fig. 3.3(b). The
maximum is reached for rather low repumper powers in comparison to the maximum of fluorescence
shown in Fig. 3.2(b). Note that the atomic fluorescence starts to saturate for a given repumper power
while the amount of background light increases linearly with repumper power. Thus the SNR is
expected to exhibit a distinct optimum as function of repumper power.
The survival probability corresponding to the maximal SNR reaches only about 40%. Moreover,

in the parameter regime of best survival the SNR reaches only values of about unity. The presented
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Figure 3.4: Survival probability (a) and mean signal-to-noise ratio (b) as function of Raman power and repumper
power for a repumper detuning of ∆ ≈ Γ. The survival probability exceeds 80% and is rather insensitive with
respect to variations of the powers.

parameter regime with resonant repumper is therefore not well suited to image small atomic ensembles.
Since we would like to count atoms based on the detected fluorescence we have to avoid atom loss
during imaging. The case of loss of atoms during the imaging would correspond to an effective
non-integer atom number and would therefore wash out fluorescence histograms.

3.2.2 Resonant versus Off-Resonant Repumping

As explained in Sec. 2.3.4 the survival probability is enhanced when the repumper is tuned away
from resonance. We therefore repeat the characterization of the signal-to-noise ratio as function of
repumper and Raman power for a small repumper detuning of ∆d ≈ 1 Γ with respect to the light-shifted
D1 transition. We obtain the survival probability and mean SNR shown in Fig. 3.4(a) and Fig. 3.4(b),
respectively. The survival probability exceeds 80% and in addition becomes insensitive with respect
to variations of repumper or Raman power. Moreover, we observe that for suitable parameter choices a
survival probability of 80% can be combined with a mean SNR of about 4.5. From this measurement
it becomes clear that the repumper detuning is an important parameter for the implementation of
non-destructive imaging with good signal-to-noise ratio. We therefore proceed to study the influence
of the repumper detuning on the survival probability and signal-to-noise ratio.

In order to find a repumper detuning which combines good signal-to-noise ratio and high survival
probability we experimentally vary the repumper detuning. Since this affects the scattering rate
we also vary the repumper power in order to compensate the reduction of scattering rate for the
detuned case. The obtained survival probability and the mean SNR are shown in Fig. 3.5(a) and
Fig. 3.5(b), respectively. We observe that the survival probability is reduced for a repumper detuning
∆d = ∆ − ∆LS ≈ 0 in the vicinity of the light shifted resonance at ∆LS/2π ≈ 28 MHz, as expected
from the discussion in Sec. 2.3.4. Slices of the survival probability as function of repumper detuning
are shown in Fig. 3.5(f) for three repumper powers. Note that the drop in survival probability on
resonance becomes more severe for increased repumper power. In addition, it seems that the center
of the dip shifts as function of repumper power. However, by comparison with Fig. 3.5(a) it can be
seen that for increasing repumper power the dip extends more towards red-detunings without any
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Figure 3.5: Survival probability (a) and mean signal-to-noise ratio (b) as function of repumper detuning and
repumper power. On resonance the survival probability is reduced significantly. The signal-to-noise ratio
shows an asymmetry and seems to favour blue-detuning of the order of the transition linewidth. (c,d) Two
specific background-substracted images taken during the measurement. (e) Signal-to-noise ratio (SNR) and
survival probability as function of repumper detuning. The SNR shown here corresponds to the maximum
SNR achievable for the given repumper detuning ∆. The trace of the survival probability corresponds to a fixed
repumper power of 121 µW and reaches its minimal value on resonance with the light-shifted D1 transition. In
contrast the SNR is highest for a detuning of (34.8 ± 0.9)MHz which corresponds to a blue detuning of about
1 Γ with respect to the light-shifted transition. The fits have a Lorentzian shape and serve as guide to the eye. (f)
The survival probability is shown as function of repumper detuning for three different powers. The survival
probability drops on resonance with the light-shifted transition.

broadening towards blue detunings. This effect might be caused by an inhomogeneous distribution
of atoms in the optical dipole trap which has a Gaussian envelope. Atoms outside the center region
experience a weaker light shift and therefore the resonance of the light-shifted transition would occur
at smaller repumper detunings ∆ with respect to the free-space transition.
In addition we also find that the highest SNR of about 6 is reached for a repumper detuning of
∆/2π = (34.8 ± 0.9)MHz with respect to the free-space transition which corresponds to a detuning of
about ∆d ≈ 1 Γ with respect to the light-shifted transition. Interestingly no enhancement of the SNR is
observed for a corresponding red detuning. This asymmetry is visualized in Fig. 3.5(e) showing the
maximum SNR obtained for a given repumper detuning. Note that the model for continuous Raman
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sideband cooling (cRSC) presented in Sec. 2.3.2 is symmetric with respect to the repumper detuning
as long as the differential light shifts are taken into account. In particular the model is symmetric
for a detuning ±∆d with respect to the light-shifted transition and the corresponding two-photon
detuning δ = ν ± δLS. Indeed we observe that cooling can be efficiently implemented for red and blue
repumper detunings while the mean SNR is enhanced only for blue detunings. For the measurement
presented in Fig. 3.5 we used a feed-forward of the two-photon detuning δ and hence maintained the
two-photon resonance with the cooling sideband for all settings. The asymmetry of the signal-to-noise
ratio is therefore not caused by differential light shifts. We are currently working on more advanced
models of cRSC that take into account the existence of the dark state and include the harmonic ladder
explicitly. In addition we consider technical explanations such as effects associated to the polarizer
beam. However, so far a comprehensive explanation of the observed behaviour remains elusive.

3.3 Towards Counting of Atoms

In order to exploit the collective coupling of multiple atoms to the resonator mode we would like to
carry out experiments with well known atom number. Therefore, we would like to count the atoms
inside the resonator mode based on the fluorescence images taken via Raman imaging. In some cases
we are able to identify individual atoms that are spatially separated, as shown in Fig. 3.5(c). However,
this technique works only if the atoms are located in sufficiently separated lattice sites. A short
calculation reveals that we do not expect to resolve individual lattice sites separated by λDT

2 . For our
dipole trap wavelength of λDT = 868 nm this corresponds to a lattice spacing of about 434 nm which is
far below the diffraction limited resolution given by the Rayleigh limit dR shown in Eq. (3.2) [75, 76].

dR = 0.61
λFluo
N A

(3.2)

For a fluorescence wavelength of λFluo = 795 nm and a numerical aperture of N A = 0.5 this
corresponds to a limit of dR = 970 nm. Thus we do not resolve individual lattice sites and have to rely
on the integrated fluorescence in order to count atoms. Note that this estimation assumes that the
numerical aperture is limited by the first in-vacuum lens and that further reductions caused by e.g. the
iris or the slit are negligible.
In order to characterize the new imaging system we are interested in finding its point-spread-

function (PSF) which describes how an idealized point-source is imaged by an optical system. A
detailed analysis of the PSF provides insight into aberrations of the imaging system and the achieved
resolution [77]. In order to find the PSF we identify individual atoms that are well localized on a clean
background [78]. We then fit the atomic fluorescence with a two-dimensional gaussian and align
multiple images to a common center given by the peak position of the gaussian fit. In order to align
several images with sub-pixel resolution we perform zero-padding in Fourier space. To this end, we
compute the two-dimensional fourier transform of the image and extend the spectrum towards higher
frequencies by appending zeros. Afterwards the inverse fourier transform yields an upsampled image.
The PSF is then found by averaging over the aligned pictures. We calibrate the magnification of our
imaging system taking two consecutive images and displacing the atom in between by a well known
distance. The cross-correlation of the two images – before and after displacement – reveals the shift
detected with the camera and corresponds to the distance over which the atoms got transported [79].
Using the optical conveyor belt we are able to accurately displace individual atoms and calibrate the
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(b)(a)

Figure 3.6: (a) Histogram of detected counts inside a region of interest (ROI) after background substraction.
The histogram of background-counts centered at zero overlaps with the histogram of counts with at least one
atom present. The datasets corresponding to the two histograms are post-selected via the cavity-based atom
detection. (b) By superimposing 50 images of individual atoms we obtain a preliminary point-spread-function
(PSF). The PSF shown here is upsampled by a factor 7 following the technique described in the main text.

images to a dimension of 0.4 µmpixel−1. That way we obtain the preliminary point-spread-function
shown in Fig. 3.6(b). The PSF has a Gaussian full width at half maximum of about 0.9 µm which
confirms that the lattice spacing lies below the resolution limit of our imaging system. In the following
we present an outlook regarding the next steps needed to optimize the imaging in order to count atoms
by means of Raman imaging.

Fluorescence Histograms

Since we do not spatially resolve neighbouring lattice sites of the 868 nm dipole trap we want to count
atoms by the amount of detected fluorescence. We thus integrate a region of interest and compute
histograms of counts for multiple images after subtracting the mean background. A histogram is
presented in Fig. 3.6(a) showing the distribution of counts for images without and with an atom being
present. Here, we use the cavity-based atom detection to independently probe the presence or absence
atoms. The histogram of background counts (where no atom was present) is centered at zero, since
we substract the mean number of background counts. The histogram of detected fluorescence with
a mean of about 1.2 × 104 counts is taking only images into account where the atom survived the
exposure time of 1 s. Note that the overlap between both histograms is considerable which limits the
atom counting fidelity based on fluorescence detection. This makes evident the need to find ways to
further increase the fluorescence emitted by atoms without increasing the background.

Since we induce the fluorescence by means of Raman cooling we simultaneously reduce the number
of motional excitations until the atom is cooled to its motional ground-state. The motional ground-state
is dark with respect to the Raman cooling transition and also dark with respect to the repumper and
polarizer beam. Thus atoms in the motional ground-state do not yield fluorescence which hinders
the fluorescence-based atom counting. We verified my means of Raman spectroscopy that near
ground-state cooling is achieved. The Raman spectrum presented in Fig. 2.2(a) shows that the depth of
the cooling sideband is reduced compared to the heating sideband, which indicates that a considerable
fraction of the atoms is cooled to the 3D motional ground-state [58]. In order to investigate the effect
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of the motional ground-state we envisage to apply a weak parametric excitation by modulating the
intensity of the optical dipole trap at twice the trapping frequency [74]. That way atoms are expected
to be lifted out of the motional ground-state and yield more fluorescence.
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CHAPTER 4

Photon Generation in an Atom-Cavity System

This chapter gives an introduction to the theoretical description of photon storage and retrieval in an
atom-cavity system. In a typical Λ-scheme of an atom-cavity system, two atomic ground states are
coupled via the cavity interaction and an additional control laser in Raman resonance [28, 80]. Single
photons are generated into the cavity mode via a stimulated Raman adiabatic passage [81]. Control
over the temporal wavefunction is given by tailoring the corresponding control laser pulse [36]. The
derivation of the required control laser pulse is presented in the adiabatic regime for a sufficiently long
temporal width of the single photon wavefunction. Beyond the adiabatic regime analytic solutions are
not available and we compute the photon generation fidelity and photon storage efficiency numerically.

One important concern for photon generation in a cavity is the phase of the generated photon. The
time-dependent control laser pulse induces a dynamical light shift onto the atomic states which in turn
imprints a phase-chirp onto the generated photon [40]. The compensation of this chirp requires a
phase-modulation of the control laser pulse. As an alternative to active phase modulation we present
passive chirp compensation based on a bichromatic driving field. In this case, the suppression of phase
chirps is based on mutual cancellation of the light shift induced by two optical frequency components.
In order to find an analytic solution of the photon generation process, the equations of motion are
typically solved by means of adiabatic elimination of the excited states. However, the standard method
of carrying out the adiabatic elimination – which is commonly used in the literature [36, 40] – fails to
provide a solution under two-tone driving conditions. Two alternative methods are presented based on
an effective operator formalism [82] and based on an adiabatic approximation technique [42].

Extending the commonly considered Λ-system, we study photon generation in a more complex
Tripod-system [29] that includes two degenerate cavity modes with orthogonal polarization. This
level choice is considered for entanglement distribution in quantum networks [83]. The entanglement
distribution rate is proportional to the Bell state projection probability [27] which depends on the
branching ratio of the photon emission into the two polarization modes. For a Tripod system with a
single excited state the branching ratio depends on the relative dipole transition strength and is thus
fixed. We found that the off-resonant coupling to additional electronically excited states can be used to
tune the branching ratio by adapting the single-photon detuning.

Note that the nomenclature used in this chapter is independent of definitions made in previous
chapters, such that variables and definitions used here are consistent only within this chapter and the
appendices A and B.
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Chapter 4 Photon Generation in an Atom-Cavity System

4.1 Photon Generation in the Adiabatic Regime

This section contains an introduction to adiabatic photon generation in an atom-cavity system. The
atom is described as a Λ-system as shown in Fig. 4.1(a) where one transition is coupled by the cavity
and the other transition is driven by a classical light field with time-dependent Rabi frequencyΩ(t) [84].
Such a system can be described with the Hamiltonian in Eq. (4.1).

H = ωe |e〉 〈e| + ωca†a +
[
g a |g2〉 〈e| + H.c.

]
+

1
2

[
Ω(t) e−iωl t |e〉 〈g1 | + H.c.

]
(4.1)

Here, a is the annihilation operator of the intra-cavity field, g denotes the atom-cavity coupling
strength, ωl denotes the angular laser frequency and ωe and ωc denote the energy of the excited state
and intra-cavity field, respectively. Note that we set ~ = 1 throughout this chapter. Assuming that the
atom is initially prepared in the state |g1〉, the number of excitations in the system is limited to 1 and
the Hilbert space can be truncated accordingly [36]. In this case a general state of the Hilbert space
H = Hatom ⊗ Hcavity is given by a superposition of three possible contributions as shown in Eq. (4.2).

|Ψ〉 = S(t) |g1, 0〉 + P(t) |e, 0〉 + E(t) |g2, 1〉 (4.2)

Here |i, n〉 = |i〉 ⊗ |n〉 denotes a state with the atom being in i = g1, g2, e and n = 0, 1 photons in the
cavity mode. A cavity-assisted stimulated Raman adiabatic passage (STIRAP) transfers the system
from its initial state |g1, 0〉 into the final state |g2, 1〉 mediated via the excited state |e, 0〉 [35]. Thereby
a photon with temporal envelope E(t) is generated in the cavity mode. The evolution of the state |Ψ〉
under the combined action of the Hamiltonian as well as dissipative processes can be described by a
set of coupled ordinary linear differential equations [36]. The differential equations for the probability
amplitudes S, P and E are readily found by considering the Schrödinger equation i∂t |Ψ〉 = H |Ψ〉 for
the non-Hermitian Hamiltonian [85] shown in Eq. (4.3) written in a frame co-rotating with the laser
frequency ωl.

H = (∆ − iγ) |e〉 〈e| + (δ − iκ)a†a +
[
g a |g2〉 〈e| + H.c.

]
+

1
2

[
Ω(t) |e〉 〈g1 | + H.c.

]
(4.3)

Here ∆ denotes the single-photon detuning of the control laser beam with respect to the atomic
transition and δ denotes the two-photon detuning of the cavity with respect to the control laser
frequency. In addition, we have introduced complex energies in order to account for decay of the
excited states [63]. Here 2γ denotes the atomic linewidth and 2κ denotes the linewidth of the cavity.

According to prominent theoretical work (Ref. [36–38, 40]) one obtains a maximal photon generation
efficiency of 2C

2C+1 for an atomic Λ-system. Any desired temporal shape can be obtained as long as
the dynamics are adiabatic. A sufficient condition for adiabaticity is given by TcCγ � 1 with the
cooperativity C = g2

2κγ and the characteristic time Tc of the generated photon given by Eq. (4.4) [36,
39].

Tc =

√
〈t〉2 + 〈t2

〉 (4.4)

〈tx〉 =
∫ +∞

−∞

tx |e(t)|2 dt (4.5)

If imperfections of the cavity mirrors are taken into account the photon retrieval efficiency becomes
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Figure 4.1: (a) Atomic level structure used to model cavity-based photon generation. The atom is initially
prepared in the state |g1〉 which is coupled to the excited state |e〉 with time-dependent Rabi frequency Ω(t).
The atom-cavity coupling at strength g enables the generation of single photons inside the mode of the resonator.
The off-resonant couplings to additional excited states (|e′〉 and |e′′〉) modifies the photon generation efficiency.
(b) The photon generation efficiency is shown as function of detuning ∆ with respect to the F = 2→ F ′ = 2
(D2) transition in 87Rb. Because of the off-resonant coupling to multiple excited states the efficiency depends
on the detuning. Here we show the efficiency taking only one excited state (|e〉), two excited states (|e, e′〉) and
all three excited states (|e, e′, e′′〉) into account.

ηR =
κc
κ

2C
2C+1 with κ = κc + κl [39]. Here κc denotes the rate at which photons leak out of the cavity

into the transmission line and κl accounts for parasitic losses due to e.g. scattering at the cavity
mirrors. Note that we distinguish between the photon generation efficiency ηG that describes the
efficiency to generate a photon inside the cavity mode and the retrieval efficiency ηR = ηG · ηesc. The
latter takes the out-coupling of the photon into consideration and accounts for parasitic losses by
multiplying the generation efficiency ηG with the escape efficiency ηesc =

κc
κc+κl

. For the calculations
presented in this chapter we assume the CQED parameters (g, κc, κl, γ)/2π = (50.2, 16, 25, 3)MHz of
our experiment [29]. This corresponds to a cooperativity C = 10.2 and yields an optimum photon
generation efficiency ηR = 91 % and an escape efficiency of ηesc = 39 %.
Most of the available literature describes the atom as a three level Λ-system [36–39]. Ref. [40]

presents a model that includes the off-resonant coupling to additional excited states. This extension
renders the detuning ∆ an important parameter, since a destructive interference occurs for certain
choices of the parameters. The derivation of the maximally achievable photon retrieval efficiency ηR
is presented in appendix A and includes (off-)resonant couplings to three excited states. The result is
shown in Eq. (4.6).

ηG =
|L |2

2<(K)
(4.6)

Here L and K are constants that depend only on the level choice, CQED parameters and the detuning
∆. For a three-level Λ-system with one electronic excited state this expression reduces to the well
known limit of 2C/(2C + 1) that is also obtained in Ref. [36]. In this case the efficiency to generate a
photon inside the cavity mode becomes independent of the detuning as shown in Fig. 4.1(b). However,
if the off-resonant coupling to additional excited states (|e′〉 , |e′′〉 in Fig. 4.1(a)) is taken into account,
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Chapter 4 Photon Generation in an Atom-Cavity System

the generation efficiency depends on the single-photon detuning ∆. It is shown in Fig. 4.1(b) that a
destructive interference occurs when the cavity resonance is tuned between the F = 2→ F ′ = 1 and
F = 2→ F ′ = 2 transition. Furthermore, if the upper excited state |e′′〉 is taken into consideration,
the generation efficiency drops when the cavity becomes resonant with the F = 2→ F ′ = 3 transition.
The F ′ = 3 excited state does not couple to the initial (F = 1) state and therefore does not mediate the
STIRAP process. This result shows that the single-photon detuning ∆ is an important parameter for
cavity-based photon generation. The multi-level character of existing quantum emitters constrains the
parameter choice for efficient photon generation. Quantitative knowledge of the effect is needed in
order to guarantee efficient light-matter interaction.

Control laser pulse

In order to generate single photons with well controlled temporal wavefunction the control laser pulse
with time-dependent Rabi frequency Ω(t) has to be chosen accordingly. In the adiabatic regime for
sufficiently long and smooth photon pulses an analytic solution can be computed that yields a desired
temporal wavefunction e(t). The derivation of the corresponding control laser pulse ΩM (t) introduced
by Morin et. al. is presented in appendix A and shown in Eq. (4.7).

ΩM (t) =
e(t)√

2<(K)
∫ ∞
t

��e(t ′)��2 dt ′
exp

(
−i
=(K)

2<(K)
ln

(∫ ∞

t

��e(t ′)��2 dt ′
))

(4.7)

It can be seen that the magnitude as well as the phase of the control laser has to be modulated. The
amplitude term in Eq. (4.7) determines the shape of the generated photon. In addition, the phase
modulation is required to compensate time-dependent light shifts induced by the control pulse itself.
Without compensation of this effect the generated photon would experience a phase-chirp that reduces
the fidelity with the desired temporal wavefunction [40]. In Sec. 4.3 we present an alternative technique
for compensating phase-chirps based on a bichromatic driving field. The limits of (near-)adiabatic
photon generation for the CQED parameters of our experiment are discussed in Sec. 4.2.

4.2 High-Bandwidth Photon Generation beyond the Adiabatic Regime

In this section we analyze photon generation beyond the adiabatic regime described in Sec. 4.1. Using
the control laser pulse ΩM (t) shown in Eq. (4.7) we compute the photon generation fidelity F as
function of the pulse duration. Note that here we are interested in the generation fidelity F rather than
the efficiency, since we want to quantify the overlap of the generated wavefunction Eout(t) with the
desired wavefunction e(t). The fidelity is thus defined by a standard quantum mechanical overlap
integral in Eq. (4.8).

F =
∫ +∞

−∞

Eout(t) e
∗
(t) dt (4.8)

In order to detect variations from the ideal adiabatic photon generation, the equations of motion
(see appendix A) are solved numerically for 4 different pulse shapes. We proceed by presenting the
required quantities for numerical calculations. This includes the pulse shape e(t) which follows the
normalization condition

∫ +∞
−∞
|e(t)|2 dt = 1 and the pulse integral I[e](t) as shown in Eq. (4.9). It is
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pulse shape e(t) integral I[e](t)

secant hyperbolic 1√
T

sech(2 t−t0
T )

1
2 −

1
2 tanh(2 t−t0

T )

sin-squared
√

8
3T sin(π t−t0+T/2

T )
2 1

2 −
t−t0
T −

2
3π sin

(
2π(t−t0)

T

)
− 1

12π sin
(

4π(t−t0)
T

)
gaussian 1√√

2πT
e−(

t−t0
2T )

2
1
2 −

1
2 erf

(
t−t0√

2T

)
exponential 1√

T
e−
|t−t0|
T 1

2 − sign(t − t0)
1
2

(
1 − e−2 |t−t0|

T

)
characteristic time Tc truncated integral ζ

secant hyperbolic π

4
√

3
T ≈ 0.4535 T tanh(Tζ/T)

sin-squared
√

1
24

(
2 − 15

π2

)
T ≈ 0.1414 T

Tζ
T +

8
6π sin(πTζ/T) +

1
6π sin(2πTζ/T)

gaussian T erf
(

Tζ

2
√

2T

)
exponential 1√

2
T ≈ 0.7071 T 1 − e−

Tζ
T

Table 4.1: Overview over different normalized pulse shapes and their properties. All pulses are time symmetric
and centered at time t0. A plot of the expressions for the integral ζ can be found in Fig. 4.2(b).

beneficial to express the pulse integral I[e](t) analytically in order to minimize numerical errors, since
it is used to compute the time-dependent control laser pulse.

I[e](t) =
∫ +∞

t

��e(t ′)��2 dt ′ (4.9)

In addition, to the photon pulses it is important to define a common time scale that enables a
comparison of different pulse shapes. Note that the parameter T used in the definition of the pulse
shapes in Tab. 4.1 does not define a common time-scale as we will see by considering a truncated
integral of the photon pulse shapes. For a time-symmetric pulse centered at time t0 the corresponding
truncated integral is defined via Eq. (4.10).∫ t0+

Tζ
2

t0−
Tζ
2

|e(t)|2 dt = ζ (4.10)

Here, we consider the integral of the photon pulse shape over a duration Tζ that covers a fraction ζ of
the normalized pulse shape. A comparison of the integral for the different pulse shapes is presented in
Fig. 4.2(a) using the parameter T to define the truncation window (Tζ = T). The parameter T is not a
good measure of pulse duration, because the corresponding truncated integral differs considerably
for the four pulse shapes. In Fig. 4.2(b) the truncated integral is computed using the characteristic
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Figure 4.2: (a) Truncated integral as function of pulse duration parameter T for the four pulse shapes. The
truncated integrals defined in Eq. (4.10) differs considerably which means that the parameter T is not well suited
to define a common time-scale for different pulse shapes. (b) Truncated integral as function of the characteristic
time Tc . The curves (for different pulse shapes) overlap and hence the paramter Tc is a reasonable measure of
duration that enables a comparison of different pulse shapes.

time (Tζ = Tc) defined in Eq. (4.4). The time-scale Tc is a reasonable measure of pulse duration, since
it yields a similar integral ζ for the considered pulse shapes. However, with the expressions for the
truncated integral in Tab. 4.1, we are able to adapt the time scale parameter T such that the truncated
integral takes the exactly same value for each pulse shape. We proceed by comparing the photon
generation fidelity of different pulse shapes as function of the pulse duration.

Computing the generation fidelity as function of pulse duration

For benchmarking the different pulse shapes listed in Tab. 4.1, we compute the photon generation
fidelity as function of pulse duration. We define the pulse duration by Tζ for ζ = 0.99 and use
the expressions shown in Tab. 4.1 in order to compute the parameter T for each pulse shape. We
then solve the system dynamics numerically for the control laser pulse in Eq. (4.7) and compute the
fidelity as defined by Eq. (4.8). The result is presented in Fig. 4.3(a) showing the photon generation
fidelity F as function of pulse duration Tζ . For rather long durations Tζ = 100 ns (Fig. 4.3(c)) the
pulses are centered at t0 = 0. For shorter pulse durations a delay occurs with respect to the desired
pulse shape (Fig. 4.3(d)) until the pulse shaping fails for even shorter pulses than Tζ ≈ 20 ns. The
latter corresponds to characteristic pulse times of about Tc ≈ 4 ns (see Fig. 4.2(b)) which approaches
timescales of the order of the inverse cavity linewidth Tc ≈ κ

−1
= 3.9 ns. In this regime the spectral

extend of the photon pulse approaches the linewidth of the cavity such that the cavity starts to act as a
frequency filter which is the ultimate limit for cavity-assisted photon generation.

The numerical analysis of the system dynamics shown in Fig. 4.3 confirms that for pulse durations
Tc ≈ 1/(Cγ) the adiabatic control pulse is insufficient. The comparison of four different pulse shapes
shows that none of them yields significantly higher fidelities towards short (Tc ≈ 1/(Cγ)) pulse
durations. Instead we observe for all pulses a rather sharp drop in fidelity (and generation efficiency)
that occurs for Tζ < 20 ns which corresponds to Tc C γ . 0.77. This constitutes the limit of efficient
light-matter interaction for our system.
In order to generate single photons with desired temporal envelope the control laser pulse with
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Figure 4.3: (a) Retrieval fidelity as function of pulse duration Tζ . The dotted line shows the fidelity with
respect to the desired shape and without taking any delay into account. The solid line takes the delay into
account. Thereby, the fidelity can be enhanced in the regime of short pulses at Tζ ≈ 20 ns (b) Time-dependent
control pulse Rabi frequency Ω(t) for different pulse shapes. Note that the pulse strength diverges for a
sin-squared shaped pulse, since the pulse has compact support. (c-e) Generated photon shapes for Tζ = 100 ns
(c), Tζ = 30 ns (d) and Tζ = 10 ns (e).

time-dependent Rabi frequency Ω(t) has to be be chosen according to Eq. (4.7). The time-dependent
modulation shown in Fig. 4.3(b) induces a dynamical light shift onto the atomic levels which can
give rise to phase-chirps of the generated photon. We proceed with the discussion of methods for the
compensation of these phase-chirps.

4.3 Chirp Compensation with Polychromatic Driving Fields

The control laser pulseΩM (t) presented in Eq. (4.7) includes an active phase-modulation of the optical
light field expressed by the complex exponential term. This phase modulation is required in order to
compensate time-dependent light shifts induced by the control laser beam itself. Without active phase
modulation a phase-chirp is imprinted onto the temporal wavefunction [40] that can be measured by
means of homodyne detection [86].

In this section, an alternative method is presented based on a bichromatic control laser field having
two optical frequency components called master beam and support beam. The compensation of the
induced light shift is based on tuning the relative power and detuning such that the optical frequency
components mutually cancel each others light shift. To this end, we introduce the time-dependent
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Chapter 4 Photon Generation in an Atom-Cavity System

Rabi frequency of the bichromatic driving fields. The effect of the second frequency component with
relative detuning χ and relative electric field strength ξ is given by the two-tone replacement for the
control laser Rabi frequency

Ω(t) → Ω(t)
[
1 + ξe−i χ t

]
(4.11)

This replacement describes the effective Rabi frequency of the bichromatic driving field in the
co-rotating frame of the master beam. The exponential term in Eq. (4.11) accounts for the relative
detuning χ of the support beam with respect to the master beam [87, 88]. We are interested in finding
a modified expression for the photon generation efficiency. However, reproducing the derivation
presented in appendix A yields an invalid result. The result is independent of the newly introduced
parameters χ and ξ, because it implicitly neglects the time-dependence of the control laser field.
While this is a reasonable approximation for sufficiently smooth pulses, it fails to describe two-tone
driving, since the Rabi frequency Ω(t) is accompanied by the exponential term which describes a
rapidly rotating phase. Neglecting the time-dependence is therefore problematic, because even if the
control pulse envelope varies sufficiently slowly the phase rotation might be considerable [42, 89].
Solving the system dynamics for single-tone and two-tone driving fields is achieved using a more
sophisticated adiabatic approximation technique.

4.3.1 Adiabatic Approximation

In this section we use the methods of adiabatic approximation, presented in Ref. [42], for photon
retrieval in an atom-cavity system. This requires considering the Schrödinger equation i∂t |Ψ〉 = H |Ψ〉
with state vector |Ψ〉 =

(
ψ, ε

)T . Here, ψ denotes the components of the ground-state Hilbert space
and ε denotes the components of the excited state Hilbert subspace. We express the Hamiltonian into
terms of submatrices that describe the evolution inside the ground state subspace (ω), the excited state
subspace (∆) and the coupling between the subspaces (Ω), as shown in Eq. (4.12). The goal is to
find an effective Hamiltonian that describe the time-evolution of the ground states (ψ) upon adiabatic
elimination of the excited states (ε).

H =
(
ω 1

2Ω
1
2Ω† ∆

)
(4.12)

With this definition the Schrödinger equation can be written for the two subspaces separately.

i∂tψ(t) = ωψ(t) +
1
2

Ω ε(t) (4.13)

i∂tε(t) =
1
2

Ω†ψ(t) + ∆ ε(t) (4.14)

An equation for the evolution of the ground state subspace is obtained by formally integrating Eq. (4.14)
and inserting the result into Eq. (4.13). Thereby, the excited Hilbert subspace is eliminated from the
equations of motion and one obtains the integro-differential equation:

i∂tψ(t) = ωψ(t) −
i
4

Ω
∫ t

0
dt ′e−i∆(t−t

′
)Ω†ψ(t ′) (4.15)
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4.3 Chirp Compensation with Polychromatic Driving Fields

This remaining equation can be solved analytically for suitable approximations of the integral. Note
that Eq. (4.15) is equivalent to the Schrödinger equation with the full Hamiltonian. So far we have
only rewritten a first order differential equation (the Schrödinger equation) for two variables (ψ and ε)
into a second order differential equation for one variable (ψ). The adiabatic elimination is carried out
by approximating the integral.

Following Ref. [42] the easiest approximation is given by the zero-th order Markov approximation
which sets ψ(t ′) ≈ ψ(t). Thereby, the integral in Eq. (4.15) can be solved and one obtains a first
order differential equation describing the evolution of the ground state subspace. We neglect the
time-dependence of the control laser Rabi frequency envelope under the approximation that it varies
sufficiently slowly [36]. In order to derive a result for two-tone driving we instead treat the time-
dependence originating from the two-tone replacement explicitly when approximating the integral in
Eq. (4.15). The approximation is shown in Eq. (4.16), where we have used again the zero-th order
Markov approximation in the first step.

i∂tψ = ωψ −
i
4

Ω
[
1 + ξe+iχt

] ∫ t

t0

dt ′e−i∆(t−t
′
)
[
1 + ξe−iχt

′
]

Ω†ψ(t ′)

≈ ωψ −
i
4

Ω
[
1 + ξe+iχt

] [
1 − e−i∆t

i∆
+ ξ

e−iχt − e−i∆t

i(∆ − χ)

]
Ω†ψ(t)

= ωψ −
1
4

Ω

[
1 − e−i∆t

∆
+ ξ

e−iχt − e−i∆t

(∆ − χ)
+ ξ

e+iχt − e−i(∆−χ)t

∆
+ ξ2 1 − e−i(∆−χ)t

(∆ − χ)

]
Ω†ψ(t)

≈ ωψ −
1
4

Ω
[
∆−1
+ ξ2
(∆ − χ)−1

]
Ω†ψ (4.16)

In the last step we have dropped all terms that correspond to quickly oscillating phase terms, because
they average to zero on a time-scale much faster than the system dynamics. Eq. (4.16) gives rise to
an effective Hamiltonian which contains two contributions associated to the two control laser fields
where we have already set the ground state Hamiltonian ω = 0.

Heff = −
1
4

Ω
(
∆−1
+ ξ2
(∆ − χ)−1

)
Ω† (4.17)

i∂tψ = Heffψ (4.18)

These equations can now be applied to our specific system, i.e. photon generation in an atom-cavity
system. We follow the notation of Ref. [40] that was already used in appendix A and define the
Hamiltonian in the basis |Ψ〉 =

(
S, E, P1, P2, P3

)T . The dynamics of the ground state ψ = S are
obtained upon adiabatic elimination of the excited states ε = (E, P1, P2, P3)

T .

H =

©«
0 0 − 1

2Ω
∗
1 − 1

2Ω
∗
2 −1

2Ω
∗
3

0 δ − iκ −g1 −g2 −g3
−1

2Ω1 −g1 ∆1 − iγ 0 0
−1

2Ω2 −g2 0 ∆2 − iγ 0
−1

2Ω3 −g3 0 0 ∆3 − iγ

ª®®®®®¬
=

(
ω 1

2Ω
1
2Ω† ∆

)
(4.19)

The Hamiltonian in Eq. (4.19) is divided into four submatrices and describes the couplings shown in
Fig. 4.1(a). We use the abbreviation Ωi = csiΩ and gi = cgig where csi and cgi are Clebsch-Gordan
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coefficients that are introduced to describe the relative coupling strength of different transitions. We
consider up to three (off-)resonant couplings with detunings ∆i for the control beam and the cavity
coupling and are thus able to describe any available level choice of 87Rb. In order to find the effective
Hamiltonian (4.17) we have to invert the matrix ∆ corresponding to the excited state Hilbert space [42].
The remaining differential equation (4.18) describes the evolution of the ground-state probability
amplitude S and can be casted into the form ÛS = −K ′ |Ω|2 S with the constant K ′ being defined in
Eq. (4.20).

K ′ = iHeff |Ω|
−2
= −i

1
4
®cT

(
∆−1
+ ξ2
(∆ − χ)−1

)
®c (4.20)

®c =
(
0, cs1, cs2, cs3

)T (4.21)

Here ®c is a column vector containing the Clebsch-Gordan coefficients of the atomic levels. A solution
for the time-evolution of the initial ground state is given in Eq. (4.22). The shape of the generated
photon Eout(t) depends on the solution for S and defines the parameter L [40]. The solution for the
constant parameter L is shown in Eq. (4.24) with ®e1

T
= (1, 0, 0, 0).

S = S(t0) exp

(
−K ′

∫ t

t0

dt ′
��Ω(t ′)��2) (4.22)

Eout =
√
ηesc LΩ S (4.23)

L =
√

2κ
1
2
®e1
T∆−1

®c (4.24)

With the parameters K ′ and L at hand we can compute the efficiency following Ref. [40], which takes
the same form as in the case of a single control laser frequency. However, the parameter K ′ is modified
by the second control beam. We obtain the optimal control pulse (4.7) with modified parameter
K → K ′ and the corresponding photon retrieval efficiency ηR from the discussion in appendix A.

ηR =

∫ +∞

−∞

��Eout��2 dt ≈ ηesc
|L |2

2<(K ′)

The photon generation efficiency ηG = |L |
2
/(2<(K ′) is shown in Fig. 4.4(a) as function of the

detuning of the master beam ∆ and relative detuning χ between the support beam and the master
beam. Here, we assume two-photon resonance δ = 0 of the cavity with the master beam and a relative
field strength of the two optical components ξ = 1. For the sake of simplicity we only discuss the
case of coupling to a single excited state. For certain parameter choices we recover an efficiency of
2C/(2C + 1) which is the maximally achievable efficiency for single-tone driving. Furthermore, we
observe that the efficiency is reduced in the vicinity of χ = 0 and ∆ = χ. The latter case corresponds
to a parameter choice sketched in Fig. 4.4(b) where the detuning of the support beam ∆s = ∆ − χ = 0
vanishes. Since we assume two-photon resonance of the cavity with the master beam, this corresponds
to a photon generation attempt that is effective highly two-photon off-resonant, since the resonant
coupling of the support beam dominates the atomic driving. Note that the same result was obtained
from a calculation based on the effective operator formalism presented in appendix B.

The efficiency reduction in the vicinity of χ = 0 is a technical artefact attributed to the adiabatic
approximation technique. In order to derive the effective Hamiltonian in Eq. (4.16) we have dropped
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(a) (b)

Figure 4.4: (a) Photon generation efficiency ηG as function of the detuning of the master beam ∆ and relative
detuning of the support beam with respect to the master beam χ. The maximal value of 2C/(2C + 1) is marked
by the grid. Here, we take only the coupling to a single excited state into account. The level diagram is shown in
(b) with the detunings corresponding to the case ∆ = χ. In this case the photon generation efficiency is reduced.

contributions with rapidly rotating phase terms arguing that they average out on time-scales much
faster than the system dynamics. However, the contributions of the form e±iχ t depend on the relative
detuning χ and are only negligible for sufficiently large relative detunings χ � 0. In the vicinity of
χ ≈ 0 we therefore observe “artificial resonances” that do not have a physical interpretation.
In this section we theoretically investigated photon generation with a bichromatic driving field.

Using an adiabatic approximation technique we overcome technical limits of the commonly used
adiabatic elimination technique. We find that the photon generation efficiency with a bichromatic
driving field approaches the well known limit of 2C/(2C + 1) that is obtained also for single-tone
control fields [36]. In the following we apply two-tone driving to compensate the dynamical light shift
of the control pulse.

4.3.2 Chirp Compensation.

For any non-zero single photon detuning the control laser pulse with time-dependent Rabi frequency
Ω(t) induces a time-dependent light shift [36]. In this section we will show that two-tone driving can
provide build-in chirp compensation by choosing the relative strength ξ and detuning χ such that the
dynamical light shift is suppressed. From Eq. (4.7) it can be seen that the required phase modulation
is proportional to =(K′)

2<(K′) . The chirp is thus compensated whenever the imaginary part of the K ′

parameter vanishes. Our goal is to find an expression for the two-tone control laser parameters ξ and
χ for such a scenario. We impose the condition =(K ′) = 0 and solve the equation for the relative field
strength ξ which describes the relative strength of the support beam compared to the master beam.
The resulting chirp compensation equation (4.25) specifies the relative strength of the support beam
in order to guarantee chirp compensation.

ξ =

√√√√√√ −<

(
®cT ∆−1

®c
)

<

(
®cT (∆ − χ)−1

®c
) (4.25)
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Figure 4.5: (a) Photon generation efficiency achieved under two-tone compensation conditions. For certain
parameter choices the photon generation efficiency approaches the maximal value of ηG = 2C/(2C + 1) marked
by the grid. Here, we assume a three-level Λ-system with a single excited state. Similar results are obtained if
the off-resonant coupling to additional electronically excited states is taken into account. (b-c) Comparison of
two-tone compensation with active phase modulation based on numerically computed solutions of the equations
of motion. The modulus squared (b) of the generated photon is shown for a hyperbolic secant with T = 1 µs.
The shape obtained under two-tone compensation conditions is very similar to the result obtained for active
phase modulation. The phase (c) of the generated photon is chirped in the absence of chirp-compensation. In
contrast the phase is constant over time in case of two-tone compensation or active phase modulation.

We insert Eq. (4.25) into the expression for the efficiency and thereby find the achievable efficiency
under chirp compensation conditions. The corresponding efficiency is shown in Fig. 4.5(a) and reaches
the maximum value of 2C/(2C + 1).

In order to confirm that two-tone driving allows for built-in phase compensation we solve the system
dynamics numerically. The results are presented in Fig 4.5(b-c). The phase of the generated photon
is chirped if the control laser pulse does not include an active phase compensation. However, the
phase of the generated photon remains constant when two-tone driving is used without active phase
modulation of the control laser beam.
The presented two-tone chirp compensation technique provides an alternative to active phase

modulation of the control laser pulse. Controlling the phase evolution of the single-photon temporal
wavefunction is a requirement for efficient light-matter interaction [40]. In particular for the generation
of temporally short photons the phase chirp reduces not only the generation fidelity, but also affects
the spectral overlap with the cavity resonance. This can be seen by considering the Fourier transform
F [e](ωF) for a photon pulse e(t). Any time-dependent phase term of the form e(t) · e−i φ(t) = e(t) ·Φ(t)
affects the Fourier transform as shown in Eq. (4.26) according to the convolution theorem. Here ∗
denotes the convolution.

F [e · Φ] =
√

2π (F [e] ∗ F [Φ]) (ωF) =
√

2π
∫ +∞

−∞

F [e](ωF − ω
′
) F [Φ](ω′) dω′ (4.26)

Considering a time-dependent phase φ(t), we note that the first derivative Ûφ acts as a displacement on
the frequency axis since it yields a Fourier transform of F [Φ](ωF) =

√
2πδ(ωF − Ûφ) if higher order

derivatives are neglected. Here δ(·) denotes the Dirac delta function and one obtains F [e · Φ](ωF) =
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Figure 4.6: (a) The photon generation efficiency ηG is shown as function of the single-photon detuning ∆ for
a cavity with two degenerate polarization modes. The branching ratio of emission into the two degenerate
modes can be tuned by exploiting the off-resonant coupling to three excited states. The total photon generation
efficiency (given by the sum of σ− and σ+ mode) is only weakly affected by the detuning. (b) The atomic level
scheme contains three ground-states that are coupled via the control laser beam and the cavity. Two degenerate
cavity modes with orthogonal polarization are taken into account. The off-resonant coupling to three excited
states allows to tune the ratio of photon emission into the two polarization modes.

F [e](ωF − Ûφ). Therefore, a time-dependent phase modifies to first order the spectral overlap of
the generated photon with the cavity linewidth which can become relevant for short pulses. Chirp-
compensation is thus a requirement for efficient light-matter interaction and can be achieved either via
active phase modulation of the control laser beam or by means of the presented two-tone compensation
technique. The latter, requires only a single amplitude modulator and does not involve a phase
modulation.

In the following we generalize the calculations to a cavity with two degenerate polarization modes.

4.4 Photon Generation in a Two-Mode Cavity with Multilevel Atoms

In this section we consider photon generation using a cavity with two degenerate and orthogonal
polarization modes. Furthermore, we also take into account off-resonant couplings to three electronic
excited states as sketched in Fig. 4.6(b). The presented results are valid for existing atomic levels
in 87Rb where the initial ground state |g1〉 corresponds to the state |F = 1,m f = −1〉. In order
to derive an analytic solution for the photon generation efficiency ηR we follow the adiabatic
approximation technique and start by extending the Hamiltonian (4.19) by a second cavity mode.
Following the notation of Sec. 4.3.1 we obtain the extended Hamiltonian (4.27) written in the basis
|Ψ〉 =

(
S, E+, E−, P1, P2, P3

)T .
H =

©«

0 0 0 − 1
2Ω
∗
1 − 1

2Ω
∗
2 −1

2Ω
∗
3

0 δ − iκ 0 −g+1 −g+2 −g+3
0 0 δ − iκ −g−1 −g−2 −g−3
−1

2Ω1 −g+1 −g−1 ∆1 − iγ 0 0
−1

2Ω2 −g+2 −g−2 0 ∆2 − iγ 0
−1

2Ω3 −g+3 −g−3 0 0 ∆3 − iγ

ª®®®®®®®®¬
=

(
ω 1

2Ω
1
2Ω† ∆

)
(4.27)
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Here, we use again Ωi = csiΩ to describe the coupling strength of the ground state to the exited state
|Pi〉 and g±i = c±gig to describe the coupling strength of state |Pi〉 to the σ± polarized cavity mode.
We carry out adiabatic elimination of the excited Hilbert space and cast the remaining differential
equation into the form ÛS = −K ′′ |Ω|2 S. Here the constant K ′′ depends again on the matrix inverse
∆−1 of the excited state Hilbert subspace and is defined in Eq. (4.28). The probability amplitudes of
the generated photons are given by E±out =

√
ηesc L±Ω S for σ± polarization. The parameters L+ and

L− are defined in Eq. (4.29) and Eq. (4.30), respectively.

K ′′ = −i
1
4
®cT ∆−1

®c (4.28)

L+ =
√

2κ
1
2
®e1
T ∆−1

®c (4.29)

L− =
√

2κ
1
2
®e2
T ∆−1

®c (4.30)

Note that the excited state Hilbert space is 5-dimensional in this case and hence the vectors
®c =

(
0, 0, cs1, cs2, cs3

)T , ®e1 = (1, 0, 0, 0, 0)
T and ®e2 = (0, 1, 0, 0, 0)

T are also 5-dimensional. We
have expressed the relevant terms that are involved in calculating the photon generation efficiency
with simple vector matrix products. This formulation simplifies the calculation of ηG considerably.
The only task left to do is finding the inverse of the excited state Hilbert subspace ∆−1 which is readily
available. Computing the remaining products is straight forward which makes the presented adiabatic
approximation technique an extremely useful and versatile tool.

The photon generation efficiency η±G =
|L± |

2

2<(K′′) for the σ
±-mode is shown in Fig. 4.6(a) as function

of the single-photon detuning ∆ with respect to the F = 2→ F ′ = 2 transition of 87Rb. The emission
efficiency of the two cavity modes depends on the single-photon detuning ∆. For example for a
detuning of ∆/2π ≈ −240 MHz the emission into the σ−-mode is suppressed in favour of emission
into the σ+-mode. Moreover, for suitable parameter choices (e.g. ∆/2π ≈ −80 MHz) the emission
probabilities can be matched in order to generate single photons in a balanced polarization state
|p〉 = 1√

2

(
|σ+〉 + |σ−〉

)
.

The precise control over the branching ratio of σ+ and σ− polarized photon emission can open up
interesting possibilities in the context of quantum networks [17, 22]. For example such an atom-cavity
system at the node of a quantum network can switch between emission into purely σ+ polarized
photons or emission into a balanced polarization superposition. The latter scenario is well known to
create entanglement between the photonic polarization and the atomic spin states [90]. This forms the
basis of entanglement distribution between such emitter systems via an optical Bell measurement [41,
91]. The projection probability onto a maximally entangled emitter-emitter state is given by Eq. (4.31)
and reaches a maximum probability of 50% [27].

PBell = 2
(

r

r2
+ 1

)2
(4.31)

Here r denotes the branching ratio of emission into the σ+ compared to emission into the σ− mode.
Note that the success rate for entanglement distribution is directly proportional to the Bell state
projection probability PBell and hence its beneficial to maximize the later. This can be achieved by
using the off-resonant coupling to additional electronically excited states in order to tune the branching
ratio r(∆) by choosing a suitable single-photon detuning ∆. Thereby a balanced emission into both
cavity modes (r = 1) can be achieved which maximizes the Bell state projection probability.
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Summary and Outlook

In this thesis, I presented fluorescence imaging of 87Rb atoms inside an optical cavity using the Raman
imaging technique. The first part describes precision measurements of differential light shifts that
occur during continuous Raman sideband cooling. The light shifts are caused by the optical repumper
beam and modify the two-photon resonance of the Raman coupling. The cooling process is modelled
by means of a three-level system that takes into account the Raman coupling and the repumping
process [59]. We find qualitative agreement between the estimated and the measured light shifts. In
addition, we identified the optimum cooling parameters and confirmed that near ground-state cooling
is achieved. We also observe that it is beneficial to detune the optical repumping beam away from
resonance in order to suppress detrimental heating due to dipole-force fluctuations [31, 34].
The characterization of differential light shifts is subsequently used to optimize the fluorescence

imaging of atoms inside the resonator. We implement Raman imaging which is based on detecting the
repumper fluorescence during continuous Raman sideband cooling. The complexity of the parameter
space is reduced via a two-photon feed-forward which maintains the resonance with the Raman
cooling sideband when varying the repumper parameters. A new imaging system was installed in
order to suppress spurious background light that was blinding the camera. The optimization of the
fluorescence is discussed and a mean signal-to-noise ratio of about six is obtained for an exposure
time of 1 s. Using the cavity-based atom detection we independently measure the probability that a
single atom survives the exposure time. We obtain survival probabilities exceeding 80% and lifetimes
up to 55 s which are believed to be vacuum-limited. In conclusion, Raman imaging is successfully
applied to image small atomic ensembles inside the resonator. This constitutes the first step towards
photon storage experiments with multiple atoms.
In addition, I presented theoretical calculations regarding photon generation in an atom-cavity

system. The shaping of the single-photon temporal wavefunction is discussed which is based on
tailoring the corresponding control laser pulse. For sufficiently smooth temporal envelopes any pulse
shape can be generated as long as the dynamics are adiabatic [36]. We study the breakdown of the
adiabatic approximation for our cavity parameters by means of numerical simulations and find that the
photon generation fidelity drops when the characteristic pulse time Tc approaches the inverse cavity
linewidth κ−1

≈ 4 ns. The control laser pulse with time-dependent Rabi frequency Ω(t) induces light
shifts on the atomic levels. Thereby, a phase chirp is imprinted onto the generated photon which
reduces the photon generation fidelity if no chirp-compensation is applied [40]. As an alternative to
chirp compensation via active phase modulation of the control laser beam, I presented a mechanism

47



Chapter 5 Summary and Outlook

for passice chirp compensation based on a bichromatic driving field. This scheme makes use of two
optical frequency components that mutually cancel each others light shifts. Implementing the latter
requires only a single amplitude modulator and no additional phase modulator.
Theoretical work mostly describes photon generation by means of an atomic Λ-system with one

electronic excited state [36, 39]. In real atoms there are, however, additional excited states present. The
off-resonant coupling to several excited states can cause a destructive interference which reduces the
photon emission efficiency for certain parameter choices. I presented an extension of the calculations
in Ref. [40] to model photon generation in a Tripod level configuration [29]. This model takes into
account a second degenerate cavity mode with orthogonal polarization and includes off-resonant
couplings to multiple excited states. In this case, the off-resonant couplings can be exploited to tune
the branching ratio of photon emission into the two degenerate orthogonal polarization modes of the
cavity. Thereby, the photon emission can be guided into a balanced polarization superposition state.
This provides means of maximizing the Bell state projection probability of entanglement distribution
schemes [27, 41].

Outlook

In order to facilitate photon storage and retrieval experiments with multiple atoms, we are currently
working on techniques to prepare small atomic ensembles inside the resonator mode. To this end,
we would like to count the number of atoms. Since we do not spatially resolve individual lattice
sites, we rely on the integrated fluorescence for counting. However, the preliminary fluorescence
histogram presented in Sec. 3.3 shows that the detected fluorescence is so far insufficient for counting.
We envisage to investigate the influence of the motional ground state onto fluorescence histograms.
Note that the motional ground state of the |F = 2,m f = −2〉 state is dark with respect to the Raman
coupling and the repumper beam and thus does not generate fluorescence. In order to “brighten” the
dark state we will apply a weak parametric excitation by modulating the dipole trap intensity at twice
its trapping frequency [60, 74]. Thereby, atoms are expected to be heated out of the motional dark
state and are reintroduced into the fluorescence cycle. Fluorescence based atom counting enables
the post-selection of measurement on the size of the atomic ensemble. It thus paves the way towards
exploring the collective coupling of multiple atoms to the same resonator mode. This not only enhances
the effective coupling strength, but also permits the study of entangled multi-particle states [30, 92]
which consequently facilitates many interesting experiments.
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APPENDIX A

Photon Generation in the Adiabatic Regime

In this section we present the derivation of the photon retrieval efficiency for an atom with multiple
excited states using the standard adiabatic elimination method following Ref. [40]. An extension of
the system of differential equations derived in Ref. [36] is presented in order to consider the effect of
off-resonant couplings to multiple excited states. To derive the maximally achievable photon retrieval
efficiency and the shape of the corresponding control laser pulse, we start with the set of coupled
differential equations

ÛE = −κE + ig1P1 + ig2P2 +
√

2ηescκEin (A.1)

ÛP1 = −(γ + i∆1)P1 + ig1E + i
1
2
Ω1S (A.2)

ÛP2 = −(γ + i∆2)P2 + ig2E + i
1
2
Ω2S (A.3)

ÛP3 = −(γ + i∆3)P3 + i
1
2
Ω3S (A.4)

ÛS = i
1
2
Ω
∗
1P1 + i

1
2
Ω
∗
2P2 + i

1
2
Ω
∗
3P3 (A.5)

Upon assuming the bad cavity limit (i.e. κ � g) adiabatic elimination is done by imposing ÛE ≈ 0 and
ÛPi ≈ 0. This simplifies the system of equations to

E =
1
κ

(
ig1P1 + ig2P2 +

√
2ηescκEin

)
(A.6)

P1 =
1

(γ + i∆1)

(
ig1E + i

1
2
Ω1S

)
(A.7)

P2 =
1

(γ + i∆2)

(
ig2E + i

1
2
Ω2S

)
(A.8)

P3 =
1

(γ + i∆3)

(
i
1
2
Ω3S

)
(A.9)

ÛS = i
1
2
Ω
∗
1P1 + i

1
2
Ω
∗
2P2 + i

1
2
Ω
∗
3P3 (A.10)

Assuming photon retrieval (i.e. setting Ein = 0) and inserting Eq. (A.7) and Eq. (A.8) into Eq. (A.6)
yields a relation for the intra-cavity field amplitude E as function of the initial state probability
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Appendix A Photon Generation in the Adiabatic Regime

amplitude S shown in Eq (A.11).

E =
− 1

2

[
g1cs1
(γ+i∆1)

+
g2cs2
(γ+i∆2)

]
κ +

g2
1

(γ+i∆1)
+

g2
2

(γ+i∆2)

Ω S (A.11)

With relation (A.11) at hand we can express Pi = Pi(E, S) = Pi(S) and insert these relations into
Eq. (A.10). Using the definition gi = cgig andΩi = csiΩ one finds a single ordinary linear differential
equation (A.12) describing the evolution of the initial ground state with probability amplitude S.

ÛS = −K |Ω|2 S (A.12)

Here the time-independent prefactor K depends on system parameters and atomic level choices and is
defined in Eq. (A.13).

K =
1
4

[
c2
s1a2 + c2

s2a1 − 2cs2cs1b

a1a2 − b2 +
c2
s3

a3

]
(A.13)

We introduced aj = γ(1 + 2Cj) + i∆j and b = g1g2
κ with Cj =

g2
j

2κγ in order to simplify the expressions.
A solution of the differential equations (A.12) is given by:

S(t) = S(t0) exp

(
−K

∫ t

t0

��Ω(t ′)��2 dt ′
)

(A.14)

Using the input-output relation Eout =
√
ηesc
√

2κE and relation (A.11) we can express the output field
as Eout =

√
ηesc LΩ S. Here the time-independent constant L is given by Eq. (A.15).

L =
√
γC

cg1(cs1a2 − cs2b) + cg2(cs2a1 − cs1b)

b2
− a1a2

(A.15)

With the known analytic solution for adiabatic photon generation we can compute the retrieval
efficiency ηR

ηR =

∫ ∞

t0

��Eout
��2 dt

= ηesc |L |
2
∫ ∞

t0

∂th(t) · e
−2<(K ·h(t))dt (A.16)

= ηesc
− |L |2

2<(K)

[
e−2Kh(t→∞)

− e−2Kh(t0)
]

≈ ηesc
|L |2

2<(K)
(A.17)

Note that according to Ref. [36, 93] photon storage – instead of photon generation that is considered
here – is described by the time-reversed process with the same efficiency.
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Optimal control laser pulse In order to derive an expression for the required control laser pulse
with time-dependent Rabi frequencyΩ(t) we introduce the temporal shape of the outgoing photon [40].

e(t) =
√
ηR
−1
Eout (A.18)

Using Eq. (A.16) we obtain∫ t

0

��e(t ′)��2 dt ′ = 1 − exp(−2<(K)h(t)) (A.19)

|e(t)|2 = 2<(K) |Ω(t)|2 exp (−2<(K)h(t)) (A.20)

Eq. (A.20) provides an expression describing the modulus of the control laser Rabi frequency Ω(t):

|Ω(t)| =
1√

2<(K)
|e(t)|√∫ ∞

t

��e(t ′)��2 dt ′
(A.21)

In order to obtain the phase of the control laser pulse we note that Eout(t) =
√
ηescLΩ(t) exp (−Kh(t))

and obtain

arg
(
Eout

)
= arg(e) = arg(L) + arg(Ω) − =(K)h(t) (A.22)

Here = takes the imaginary part. Note that L is time-independent and thus contributes only a constant
phase that can be omitted. Using Eq. (A.19) we rewrite

h(t) =
−1

2<(K)
ln

(∫ ∞

t

��e(t ′)��2 dt ′
)

(A.23)

and obtain the time-dependent complex valued Rabi frequency Ω(t) that has to be applied on order to
generate a single photon with arbitrary temporal shape in the adiabatic regime.

Ω(t) =
e(t)√

2<(K)
∫ ∞
t

��e(t ′)��2 dt ′
exp

(
−i
=(K)

2<(K)
ln

(∫ ∞

t

��e(t ′)��2 dt ′
))

(A.24)
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APPENDIX B

Describing Photon Generation with an Effective
Operator Formalism

Ref. [82] presents an effective operator formalism that describes the effective dynamics of a ground-
state Hamiltonian upon adiabatic elimination of an excited state Hilbert sub-space. In order to apply
this formalism to photon generation, we consider a combined Hilbert spaceH = Hatom ⊗Hcavity ⊗Ht
that considers the atomic state, the intra-cavity field as well as the transmission line [39]. A general
state |i, nc, nt〉 =: |i〉 ⊗ |nc〉 ⊗ |nt〉 describe an atom in state |i〉 and nc (nt ) photons in the intra-cavity
field (transmission line).
Restricting the number of excitations to one, the dynamics can be described via the five states

as shown in Fig. B.1(a). In order to simplify the notation we define the following abbreviations
|1〉 = |g1, 0, 0〉, |2〉 = |e, 0, 0〉, |3〉 = |g2, 1, 0〉, |4〉 = |g2, 0, 1〉, |5〉 = |g2, 0, 0〉 and present the
Hamiltonian in Eq. (B.1) following the notation of Ref. [82].

H = Hg + He + V+ + V− (B.1)
Hg = 0
He = ∆ |2〉 〈2| + δ |3〉 〈3| + g [|2〉 〈3| + |3〉 〈2|]
V+ = Ω(t) |2〉 〈1|
V− = (V+)

†
= Ω

∗
(t) |1〉 〈2|

In addition to the unitary evolution given by the Hamiltonian the system is subject to decay described
by Lindblad type decay operators [62] shown below.

L5 =
√

2γ/2 |5〉 〈2|
L1 =

√
2γ/2 |1〉 〈2|

Lκc =
√

2κc |4〉 〈3|

Lκl =
√

2κl |5〉 〈3|

Here ∆ denotes the single-photon detuning of the control laser beam from the atomic resonance
and δ denotes the two-photon detuning of the cavity-resonance with respect to the control beam. In
addition Ω(t) denotes the time-dependent control laser Rabi frequency and (g, κc, κl, γ) are the CQED
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Appendix B Describing Photon Generation with an Effective Operator Formalism

(a) (b)

Figure B.1: (a) Relevant level diagram used to describe photon generation via an effective operator formalism.
The solution is obtained by adiabatic elimination of the excited states which yields effective decay rates from
the initial state |g1, 0, 0〉 into the other ground-states. (b) Solution for the photon generation efficiency under
two-tone driving conditions derived using the effective operator formalism. The figure shows a plot of Eq. (B.17)
for two-photon resonance δ = 0 and a relative field strength ξ = 1. The grid shows the maximally achievable
efficiency of 2C/(2C + 1).

parameters. In order to find the effective dynamics via the effective operator formalism we compute
the non-Hermitian Hamiltonian HNH

HNH = He −
i
2

∑
k

L†
k

Lk

= ∆̃ |2〉 〈2| + δ̃ |3〉 〈3| + g [|2〉 〈3| + |3〉 〈2|] (B.2)

Here the complex valued detunings are defined by ∆̃ = ∆ − iγ and δ̃ = δ − iκ. The next step consists
in finding the inverse of the non-Hermitian Hamiltonian H−1

NH:

H−1
NH = δ

′
|2〉 〈2| + ∆′ |3〉 〈3| − g′ [|2〉 〈3| + |3〉 〈2|] (B.3)

Here the primed coefficients are defined as ∆′ = ∆̃

∆̃δ̃−g2 , δ
′
= δ̃

∆̃δ̃−g2 and g′ =
g

∆̃δ̃−g2 and have units of
inverse frequency. Following the effective operator formalism we compute the effective Hamiltonian
according to Eq. (B.4).

Heff = −
1
2

V−
(
H−1
NH + (H

−1
NH)
†
)

V+ + Hg

= − |Ω|
2 Re(δ′) |1〉 〈1| (B.4)

Lk
eff = Lk H−1

NH V+ (B.5)

In addition to the effective unitary evolution that describes a light-shift induced by the control laser
beam the effective evolution includes non-unitary decay channels given by the effective Lindblad
operators defined in Eq. (B.5). The effective decay operators describe the dissipative branching from
the excited state Hilbert space down to the ground state Hilbert space. The processes and their
respective rates are summarized in Tab. B.1. In order to evaluate the expressions presented so far it is
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B.1 Extension to a two-tone driving field

process effective decay operator rate

dephasing L1
eff =
√
γ δ′Ω(t) |1〉 〈1| Γ1 =

���〈1
��� L1

eff

��� 1〉���2 = γ ��δ′��2 |Ω|2
atomic decay L5

eff =
√
γ δ′Ω(t) |5〉 〈1| Γ5 =

���〈5
��� L5

eff

��� 1〉���2 = γ ��δ′��2 |Ω|2
photon loss Lκleff =

√
2κl g

′
Ω(t) |5〉 〈1| Γκl

=
��〈5

�� Lκleff
�� 1〉��2 = 2κl

��g′��2 |Ω|2
photon generation Lκceff =

√
2κc g

′
Ω(t) |4〉 〈1| Γκc

=
��〈4

�� Lκceff
�� 1〉��2 = 2κc

��g′��2 |Ω|2
Table B.1: Effective processes and their respective rates.

useful to note the following properties of the primed variables shown in Tab. B.2. Here the variables
α = ∆δ − κγ − g2 and β = ∆κ + γδ have been introduced in order to simplify the notation. In the

variable Re(·) Im(·) |·|
2

δ′
δα+κβ

α2
+β2

βδ−κα

α2
+β2

δ2
+κ2

α2
+β2

g′
gα

α2
+β2

gβ

α2
+β2

g2

α2
+β2

∆
′ ∆α+γβ

α2
+β2

β∆−γα

α2
+β2

∆
2
+γ2

α2
+β2

Table B.2: Properties of the primed variables.

following we compute the photon generation efficiency as the branching ratio of the wanted decay into
the photon generation channel over all possible decay channels. The expression is shown in Eq. (B.6)
and evaluated for two-photon resonance, i.e. δ = 0. The obtained expression for the photon generation
efficiency is equivalent to the efficiency derived in Ref. [39].

ηR =
Γκc

Γ1 + Γ5 + Γκc + Γκl
=

2κc
��g′��2

γ
��δ′�� + γ ��δ′�� + 2κc

��g′��2 + 2κl
��g′��

=
κc
κ

2
��g′��2

2γ/κ
��δ′��2 + 2

��g′��2 = κc
κ

2C
2C + 1

(B.6)

B.1 Extension to a two-tone driving field

In order to describe photon generation with a bichromatic control laser field we make use of the
two-tone replacement Ω 7→ Ω [1 + ξ exp(−iχt)] introduced in Sec. 4.3. This replacement describes
the Rabi frequency in the co-rotating frame of the master beam and includes the contribution from the
support beam with a relative electric field strength ξ and a relative detuning χ = ω2 −ω1 [87, 88]. For
multiple drivings the perturbation termV is written asV−(t) =

∑
f V ( f )− = Ω

∗
|1〉 〈2|

(
e+iω1t + ξe+iω2t

)
and V+ =

∑
f V f
+ (t) = Ω |2〉 〈1|

(
e−iω1t + ξe−iω2t

)
. The effective Hamiltonian and the effective decay
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operators are modified according to Eq. (B.7) and Eq. (B.8).

Heff = −
1
2

V−
∑
f

(
H( f )NH

)−1
V ( f )+ (t) + H.c.

 + Hg (B.7)

Lk
eff = Lk

∑
f

(
H( f )NH

)−1
V ( f )+ (t) (B.8)

The non-Hermitian Hamiltonian is now given by
(
H( f )NH

)−1
=

(
HNH − ω f

)−1
and takes the same form

as previously but with different coefficients. The primed variables do now depend on the index f = 1, 2
and are shown below. Here the detunings are defined as ∆̃ f = ωe − ω f − iγ and δ̃f = ωc − ω f − iκ.

δ′f =
δ̃ − ω f

(∆̃ − ω f )(δ̃ − ω f ) − g
2 =

δ̃f

∆̃ f δ̃f − g
2 (B.9)

∆
′
f =

∆̃ − ω f

(∆̃ − ω f )(δ̃ − ω f ) − g
2 =

∆̃ f

∆̃ f δ̃f − g
2 (B.10)

g′f =
g

(∆̃ − ω f )(δ̃ − ω f ) − g
2 =

g

∆̃ f δ̃f − g
2 (B.11)

Next we compute the effective Hamiltonian according to the definition in Eq. (B.7).

Heff = −
1
2

[
Ω
∗
|1〉 〈2| (eiω1t + ξeiω2t )

]
×[

δ′1Ωe−iω1t |2〉 〈1| + δ′2Ωξe−iω2t |2〉 〈1| − g′1Ωe−iω1t |3〉 〈1| − g′2Ωξe−iω2t |3〉 〈1|
]
+ H.c.

= −
1
2
|Ω|

2
|1〉 〈1|

[
δ′1(1 + ξei(ω2−ω1)t ) + δ′2ξ(1 + ξe−i(ω2−ω1)t )

]
+ H.c.

= − |Ω|
2
|1〉 〈1| Re

[
δ′1(1 + ξei(ω2−ω1)t ) + δ′2ξ(1 + ξe−i(ω2−ω1)t )

]
(B.12)

Note that as long as the real part in Eq. (B.12) is zero, there is no net light-shift induced by the control
laser beam. This is for example reached for the “symmetric configuration” where ∆1 = −∆2. In this
case one finds α1 = α2 and β1 = −β2. The light shift drops to zero for the case of ξ = 1. The effective
decay operators are found to be

L1
eff =
√
γΩ(t) |1〉 〈1|

[
δ′1e−iω1t + δ′2ξe−iω2t

]
(B.13)

L5
eff =
√
γΩ(t) |5〉 〈1|

[
δ′1e−iω1t + δ′2ξe−iω2t

]
(B.14)

Lκceff =
√

2κc Ω(t) |4〉 〈1|
[
g′1e−iω1t + g′2ξe−iω2t

]
(B.15)

Lκleff =
√

2κl Ω(t) |5〉 〈1|
[
g′1e−iω1t + g′2ξe−iω2t

]
(B.16)

and the effective rates are summarized in Tab. B.3. In order to compute the photon retrieval
efficiency ηR =

Γκc
Γ1+Γ5+Γκc

+Γκl
we have to evaluate the time-dependent expressions for the rates. In

principle one has to constrain the time to a duration T at which the initial population was transfered
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process rate

dephasing Γ1 =
���〈1

��� L1
eff

��� 1〉���2 = γ ���δ′1 + δ′2ξe−i(∆2−∆1)t
���2 |Ω|2

atomic decay Γ5 =
���〈5

��� L5
eff

��� 1〉���2 = γ ���δ′1 + δ′2ξe−i(∆2−∆1)t
���2 |Ω|2

photon loss Γκl
=

��〈5
�� Lκleff

�� 1〉��2 = 2κl
���g′1 + g′2ξe−i(∆2−∆1)t

���2 |Ω|2
photon generation Γκc

=
��〈4

�� Lκceff
�� 1〉��2 = 2κc

���g′1 + g′2ξe−i(∆2−∆1)t
���2 |Ω|2

Table B.3: Effective processes and their respective rates for two tone driving.

completely. However demanding that
∫ T

0 Γ1 + Γ5 + Γκc + Γκldt = 1 yields an expression of the form
A ·T +B cos((∆2−∆1)T)+C sin((∆2−∆1)T)+D = 1. In order to circumvent this problem we perform
a mean rate approximation and drop the oscillating contribution of the rates. This is justified, since
the oscillating contribution averages to zero on a time-scale much faster than the photon generation
process. We then find an expression for the photon retrieval efficiency shown in Eq. (B.17). Here
Γx denotes the mean of Γx . A plot of Eq. (B.17) is provided in Fig. B.1(b) as function of the master
beam detuning ∆1 and the relative detuning χ for a relative field strength of ξ = 1 and two-photon
resonance δ = 0.

ηR ≈
Γκc

Γ1 + Γ5 + Γκc + Γκl

=
2κc

(��g′1��2 + ξ2 ��g′2��2)
2γ

(��δ′1��2 + ξ2 ��δ′2��2) + 2κ
(��g′1��2 + ξ2 ��g′2��2) (B.17)

Photon generation efficiency for two-tone driving In Fig. B.1(b) it is shown that for certain
parameter choices of two-tone driving the photon generation efficiency approaches the limit given
by 2C/(2C + 1), which was also derived for single-tone driving. No enhancement to even higher
efficiencies is observed. However for ∆1 ≈ χ which implies ∆2 ≈ 0 the efficiency is strongly reduced.
This can be understood by noting that we have here assumed two-photon resonance (δ = 0) of the
cavity resonance with the master beam. However for ∆2 = 0 the atom is resonantly driving by
the support beam which is highly two-photon off-resonant with respect to the cavity. The photon
generation efficiency is reduced, since the scattering of the support beam dominated with respect to
the coupling of the master beam. This effect is discussed in more detail in the main text in Sec. 4.3.
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