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We study the relation between the global topology of the Hofstadter butterfly of a multiband insulator
and the topological invariants of the underlying Hamiltonian. The global topology of the butterfly, i.e., the
displacement of the energy gaps as the magnetic field is varied by one flux quantum, is determined by the
spectral flow of energy eigenstates crossing gaps as the field is tuned. We find that for each gap this spectral
flow is equal to the topological invariant of the gap, i.e., the net number of edge modes traversing the gap.
For periodically driven systems, our results apply to the spectrum of quasienergies. In this case, the spectral
flow of the sum of all the quasienergies gives directly the Rudner-Lindner-Berg-Levin invariant that
characterizes the topological phases of a periodically driven system.
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The Hofstadter butterfly is the self-similar structure of
subgaps in the energy spectrumof a charged particle hopping
on a two-dimensional lattice, as a function of a perpendicular
magnetic field. Its fractal structure becomes apparent when
themagnetic flux on each plaquette,Φ, is a sizable fraction of
the magnetic flux quantum, Φ0 ¼ h=Q; i.e., the normalized
flux ϕ ¼ Φ=Φ0 is of the order of 1 (Q is the charge and h is
the Planck constant). This is shown in Fig. 1(a). Since it was
first numerically computed [1], the Hofstadter butterfly has
played an instrumental role in understanding the quantum
Hall effect [2,3], it has made connections between number
theory and physics [4,5], and it has inspired numerous other
works (see, e.g., Ref. [6]). Observation of the butterfly using
traditional solid-state materials would require prohibitively
strong magnetic fields (thousands of Tesla). Alternative
approaches focus on enlarging the plaquette size using
superlattices, or substituting the magnetic field with a
synthetic implementation of a vector potential (e.g., by
rotation [7] or laser-assisted tunneling [8,9]). There has
recently been a renewed interest in this problem because
after so many years both approaches have come close to
“netting” the Hofstadter butterfly, using heterostructure
superlattices [10–12] or moiré superlattices made of gra-
phene on a substrate [13], and using ultracold atoms in
“shaken” optical lattices [14,15].
The Hofstadter butterfly is known to be periodic: the

spectrum is invariant under a shift of ϕ by 1. This also
applies to multiband insulators, e.g., if the particle has
several internal states [18]. In such a multiband Hofstadter
butterfly, the periodicity is trivially obeyed if each band
develops its own set of minigaps, as shown with an example
in Fig. 1(b). However, there exist more ways in which this
constraint can be obeyed: bands can also flow into each
other as ϕ is tuned from 0 to 1, as shown in Fig. 1(c). We
call this pattern of bands flowing into each other the global
topology of the Hofstadter butterfly. An even wider variety

of nontrivial global topologies can occur in a periodically
driven system (Floquet system), where quasienergy repla-
ces energy—much like quasimomentum takes the place of
momentum in a lattice system. In this case, bands can even
wind in quasienergy, as shown in Fig. 1(d).

(c) (d)

(a) (b)

FIG. 1. Examples of Hofstadter butterfly spectra for (a) a
simple charged particle on an infinite square lattice (Harper
model), (b) a topologically trivial multiband insulator (Qi-Wu-
Zhang model with u ¼ 3 of Ref. [16]), (c) a topological multi-
band insulator (same Qi-Wu-Zhang model with u ¼ −1.2), and
(d) a topological Floquet insulator [Rudner model of Ref. [17]
with δAB ¼ 0 and JT=5 chosen for the first four segments as
ð3=8; 3=8; 5=8; 5=8Þπ]. The topological indices of a few repre-
sentative band gaps are shown in the figure.
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In this Letter, we establish a connection between the
global topology of a multiband Hofstadter butterfly and the
topological invariants of the underlying Hamiltonians.
For periodically driven systems, in particular, we find that
the winding of the Hofstadter butterfly is determined by
the Rudner-Lindner-Berg-Levin (RLBL) invariant [17].
We give a direct formula for this invariant in terms of
the sum of quasienergy eigenvalues.
All our results hinge on the fact that in a lattice of fixed

widthNy, tuning the magnetic flux from one commensurate
value to the next (by an increase in ϕ of 1=Ny) induces a
spectral flow of energy eigenvalues. We will prove that the
spectral flow across each gap, in the limit of Ny → ∞, is
equal to the topological invariant ν of the gap, i.e., the net
number of edge modes traversing this gap at an edge.
Figure 2 presents four different examples of Hofstadter
butterfly spectra computed for a lattice of finite width,
which show the spectral flow of eigenvalues across gaps
with nonzero ν. Our result is consistent with the Streda
formula [3] and Wannier’s Diophantine equation [4].
However, it also applies to periodically driven systems,
where the spectral flow of quasienergy (rather than energy)
eigenvalues is considered.
Time-independent Hamiltonians.—We consider a two-

dimensional band insulator on a square lattice, where each
site can host N internal states. A perpendicular magnetic
field B couples to the particle via Peierls phases, with the
vector potential A ¼ ðBy; 0; 0Þ chosen in a Landau gauge.
The normalized flux per plaquette is thus ϕ ¼ B=Φ0.

The magnetic field is initially set to produce a flux with
a rational value, ϕ ¼ p=q, with p and q relative prime.
We restrict our lattice to a strip that is infinite along the

x axis and of finite width Ny along the y axis with open
boundary conditions. The sites are labeled by position
indices nxny ∈ N, with 1 ≤ ny ≤ Ny. We choose Ny ¼ mq
for some m ∈ N. This makes the initial value of the flux
commensurate with the system size, in the sense that the
width Ny incorporates an integer number of magnetic unit
cells, each of width q. Because of translational invariance
along x, the system is described by a single-particle
Hamiltonian ĤðkxÞ that is periodic in kx with period 2π.
Its eigenvalues are Ejðkx;ϕÞ, with j ¼ 1;…; NNy.
We shall focus on an energy gap of the bulk Hamiltonian,

which we label by an energy value ~E well inside the gap.
Eigenstates at ~E, if they exist, are edge states, with wave
functions exponentially decaying towards the bulk; the
maximum decay length of these states is denoted by λ.
By choosing m sufficiently large, we assume Ny ≫ λ, so
that these states can be assigned to either the upper or lower
edge. Thus, edge modes, which are sections of the
dispersion relation of ĤðkxÞ which intersect ~E, can corre-
spondingly be assigned to either the upper or lower edge.
We denote the edge mode energies by Eup

r ðkx;ϕÞ and
Elow
s ðkx;ϕÞ, for the upper and lower edge, respectively

(s and r designate the indices of the edge modes). The
topological invariant ν of the gap is the net number of
edge modes at the upper edge, with the right- and left-
propagating edge modes counted with opposite signs.
We study how the spectrum of the edge states depends on

the magnetic flux, as this flux is tuned from one commen-
surate value to the next. We parametrize this process by β as

ϕ ¼ p
q
þ β

Ny
; β ∈ ½0; 1�: ð1Þ

At the bottom edge, in a region of width λ, the change in ϕ
induces a change in the vector potential A, which with the
chosenLandaugauge is of theorder ofβλ=Ny and vanishes in
the limit Ny → ∞. Thus, bottom edge states are essentially
unaffected. At the top edge, in a region of width λ, however,
Ax is increased approximately uniformly by βΦ0, up to
corrections of the order of λ=Ny. As a result, the upper edge
modes are cycled across the whole Brillouin zone:

Eup
r ðkx;ϕÞ ≈ Eup

r ðkx − 2πβ; p=qÞ: ð2Þ

We define the spectral flow across the gap as the net
number of times the energy eigenvalues of ĤðkxÞ cross the
value ~E, as ϕ is tuned from ϕ ¼ p=q to ϕ ¼ p=qþ 1=Ny,
for sufficiently large Ny (so the bulk gap remains open).

Using the notation F
p=qþ1=Ny

p=q ð ~E; fEjðkx;ϕÞg;ϕÞ for this
spectral flow, we have

(c) (d)

(a) (b)

FIG. 2. Examples of Hofstadter spectra analogous to those
shown in Fig. 1, but computed for a lattice of finite width along y
(24 sites with periodic boundary conditions), and still infinite
along x. For better visibility of the spectral flow, the spectra are
shown for a given quasimomentum only (kx ¼ 0).
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F
p=qþ1=Ny

p=q ð ~E; fEjðkx;ϕÞg;ϕÞ

¼
Z

p=qþ1=Ny

p=q
dϕ

X
j

∂Ejðkx;ϕÞ
∂ϕ δ(Ejðkx;ϕÞ − ~E): ð3Þ

For a generic kx, edge states at the lower edge give no
contribution to this spectral flow since their spectrum is
only changed by Oð1=NyÞ. Bulk states also do not
contribute, since the bulk gap remains open. Hence, the
spectral flow is given by the flow of the upper edge states:

F
p=qþ1=Ny

p=q ð ~E; fEjðkx;ϕÞg;ϕÞ
¼ F

p=qþ1=Ny

p=q ð ~E; fEup
j ðkx;ϕÞg;ϕÞ: ð4Þ

A nonzero spectral flow across a gap indicates that, as the
flux is tuned according to Eq. (1), some bulk states are
transformed into upper edge states, are shifted in energy
across the gap, and eventually become bulk states again at
the end of the cycle.
Hence, we obtain our first result: the spectral flow across

a gap is equal to the topological invariant ν of the gap.
This follows from Eqs. (2) and (4), which together give

F
p=qþ1=Ny

p=q ð ~E; fEjðkx;ϕÞg;ϕÞ
¼ F 2π

0 ð ~E; fEup
j ðkx;ϕÞg; kxÞ; ð5Þ

where the right-hand side of the equation follows the
definition in Eq. (3) with the integration variable kx in
lieu of ϕ. This quantity is the net number of edge states
Eup
r ðkx;ϕÞ crossing the midgap energy ~E, as a function of

kx. The latter is by definition the topological invariant ν of
the gap. This also proves that the spectral flow is inde-
pendent of the choice of the generic quasimomentum kx.
We next show that the spectral flow is equal to ν also in a

system with periodic boundaries along the y axis. We
therefore introduce an extra hopping amplitude γ connecting
opposite edges of the strip directly, with 0 ≤ γ ≤ 1: This
results in a single defect along the stitching line, instead of
two separate edges. Moreover, at γ ¼ 1 and commensurate
values ofϕ, this defect line entirely disappears, since the strip
contains an integer number of magnetic unit cells, and thus
the spectrum is completely gapped around ~E for all kx.
Regardless of the value of γ, the spectral flow is always an
integer, since it counts the number of states crossing ~E. Bulk
states do not contribute to it since their spectrum is inde-
pendent of γ, and the bulk gap stays open. The only
contribution is thus from states localized near the defect
line. For small γ, these can be seen as hybridized edge states,
as shown with an example in Fig. 3.
Global topology of the Hofstadter butterfly.— We now

use Eq. (5) to study the global topological features of
multiband Hofstadter butterflies. To begin with, we address
the case of time-independent Hamiltonians. Consider one

of the bulk gaps of the Hofstadter butterfly among those
that stay open for all values of the magnetic flux ϕ. At
ϕ ¼ 0, this corresponds to the n0th gap, meaning that there
are n0 bands with energy below it. As ϕ is continuously
tuned from 0 to 1, the gap must flow into one of the gaps of
the spectrum at ϕ ¼ 1, say, the n1th gap. We shall prove
that the shift of the gap n1 − n0 is given by its topological
invariant:

n1 − n0 ¼ ν: ð6Þ

Note that while the spectral flow in Eq. (4) relies on the
Landau gauge, the result in Eq. (6) is gauge independent.
To prove Eq. (6), we keep the same setting as above with

boundary conditions along the y axis freely chosen and Ny
sufficiently large to guarantee a bulk for all ϕ. As ϕ is
varied, we keep track of the gap by introducing a continu-
ous function ~EðϕÞ taking midgap energies. We proceed by
showing that the number of states in the spectrum at ϕ ¼ 1,
in the energy interval bounded by ~Eð0Þ and ~Eð1Þ, is given
by ν. This number is equal to the net spectral flow of
eigenvalues into the energy region bounded by ~EðϕÞ on one
side and by the constant value ~Eð0Þ on the other side, as
indicated by the highlighted region in the example in
Fig. 2(c). The net flow across the constant ~Eð0Þ is zero,
since the total spectral flow across any fixed energy value Ē
must always vanish,

F 1
0ðĒ; fEjg;ϕÞ ¼ 0; ð7Þ

a direct consequence of the periodicity of the spectrum in
the variable ϕ. The net flow across ~EðϕÞ, however, can be
nonzero, as is the case for a gap with a nontrivial
topological invariant ν. In fact, decomposing the shift in
ϕ from 0 to 1 into Ny small steps, Eq. (5) shows that Nyν

eigenvalues flow across ~EðϕÞ. Thus, at ϕ ¼ 1, the interval
between ~Eð0Þ and ~Eð1Þ contains jνj energy bands; more-
over, the sign of the spectral flow ν of the band tells us

FIG. 3. Spectra of the Qi-Wu-Zhang model as a function of the
magnetic flux (two cycles shown), computed on a lattice of finite
width (36 sites) along y and for a fixed quasimomentum (kx ¼ 0).
γ indicates the hopping amplitude at the edge (γ ¼ 0 for open and
γ ¼ 1 for periodic boundary conditions). States with more than
30% weight in the first two rows at the top (bottom) edge are
marked by thick red (blue) lines.
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whether ~Eð1Þ is larger or smaller than ~Eð0Þ, thus conclud-
ing the proof of Eq. (6).
Floquet insulators.—We next study the spectral flow and

the Hofstadter butterfly in periodically driven (i.e., Floquet)
multiband insulators. The Floquet insulator is a lattice
Hamiltonian, with some of its parameters depending explic-
itly on time, periodically with period T. To define the
Hofstadter butterfly, we include a time-independent mag-
netic field through Peierls phases, as for static Hamiltonians
above. Hence, the time-dependent Hamiltonian Ĥðϕ; τÞ is
periodic both in time and in the magnetic flux,

Ĥðϕ; τÞ ¼ Ĥðϕ; τ þ 1Þ ¼ Ĥðϕþ 1; τÞ; ð8Þ
where τ ¼ t=T represents time t in rescaled dimensionless
units. The time evolution over one period of the drive is given
by the Floquet operator, ÛðϕÞ¼T exp½−iT=ℏR 1

0 Ĥðϕ;τÞdτ�,
where T denotes time ordering. The eigenvalues of the
Floquet operator Û read exp ð−iϵjÞ, with the quasienergies
ϵ playing the role of the energy in a static Hamiltonian. They
are defined in the interval ½−π; π�, with the end point ϵ ¼ −π
identifiedwith ϵ ¼ π.We call this interval theFloquet zone of
quasienergies, in analogy to the Brillouin zone of quasimo-
menta. As an example of the Floquet Hofstadter butterfly,
Fig. 1(d) shows the spectrum of quasienergies as a function of
the flux ϕ in the case of the model introduced in Ref. [17].
Next, we show how to adapt our results on time-inde-

pendent Hamiltonians to Floquet systems. (i) Equation (5)
directly carries over to the quasienergies of a Floquet system:
The topological invariant of each gap is equal to the spectral
flow of quasienergies across it. (ii) The global topology
of a Floquet Hofstadter butterfly can also be related to the
topological invariants of the gaps as in Eq. (6). Concerning
(ii), however, some remarks are in order.
First, we need to show that the total spectral flow of

quasienergies across a constant ϵ̄ vanishes; see Eq. (7).
To prove this, we deform ÛðϕÞ continuously to 1̂ (the unity
operator) by replacing Ĥðϕ; tÞ with ηĤðϕ; tÞ, where
η ∈ ½0; 1�. Since the total spectral flow across a fixed
quasienergy ϵ̄ is an integer-valued, continuous function
of η, its value must be independent of η. At η ¼ 0, the total
spectral flow vanishes because ÛðϕÞ ¼ 1̂; thus, it also
vanishes at η ¼ 1.
Second, it is convenient to describe the spectral flow of

quasienergies in a scheme of repeated Floquet zones (in
analogy to the repeated Brillouin zones of quasimomen-
tum). Quasienergies can flow from one Floquet zone into a
neighboring one, as ϕ is tuned. However, since the total
spectral flow vanishes, they must return to the original zone
at ϕ ¼ 1. Hence, the same arguments used to prove Eq. (6)
apply: gaps that stay open for all values of ϕmust be shifted
by ν energy bands as ϕ is tuned from 0 to 1. Note that the
difference n1 − n0 is well defined in the repeated Floquet
zone scheme, although n0 and n1 individually are not. Once
quasienergies are “folded back” into the first zone, the flow

of quasienergy gaps into neighboring Floquet zones can
result in the Floquet Hofstadter butterfly winding in
quasienergy, as shown by the example in Fig. 2(d).
Physical approach to the RLBL topological invariant.—

The net number of edge states traversing the quasienergy
gap at the edge of the Floquet zone is the RLBL topological
invariant R, which is unique to periodically driven systems.
It modifies the bulk-edge correspondence of the effective
Hamiltonian [17]: The net number of edge states traversing
the nth quasienergy gap is given by νn ¼ RþP

m<nCm,
where Cm is the Chern number of the mth quasienergy
band. Unlike the Chern numbers, R cannot be obtained
from the bulk Floquet operator Ûðkx; kyÞ as a function of
the quasimomenta kx, ky, but instead was identified by
Rudner et al. [17] with a winding number,

R ¼
Z

1

0

dτ
Z
BZ

d2ktrfV̂†∂τV̂½V̂†∂kx V̂; V̂
†∂ky V̂�g; ð9Þ

where V̂ is the “periodized” operator

V̂ðτ; kx; kyÞ ¼ eiĤeffτT e−i
R

τ

0
Ĥðτ0;kx;kyÞdτ0 ð10Þ

and Ĥeff ¼ i log Û is the effective Hamiltonian, with the
branch cut of the logarithm along the negative real axis.
Note that Ĥeff is time independent, unlike Ĥ, and its
spectrum consists of the quasienergies ϵj.
Based on the spectral flow, we take a direct physical

approach to the RLBL invariant, and obtain a simple
formula for it. To show this, we consider the determinant
of ÛðϕÞ, which can be expressed as

det ÛðϕÞ ¼ lim
M→∞

YM
j¼1

exp½−itrĤðϕ; j=MÞ=M�: ð11Þ

Each factor in the product is independent of ϕ, since the
Peierls substitution only modifies off-diagonal matrix
elements of the instantaneous Hamiltonian. Thus,
det ÛðϕÞ itself is independent of ϕ, and the sum of
quasienergies

P
jϵjðϕÞ can only increase or decrease as

a function of ϕ in steps of 2π. A step change in this sum
happens whenever a quasienergy value flows across the
boundary of the first Floquet zone, ϵ ¼ �π, in the positive
or negative direction. Using the relation between spectral
flow and the topological invariant of the gap, Eq. (5), the
net number of such crossings as ϕ is tuned from one
commensurate value to the next is given by the topological
invariant of the quasienergy gap comprising ε ¼ π. Thus,
we obtain the RLBL invariant as

R ¼ 1

2π

�X
j

ϵjðkx;ϕþ 1=NyÞ −
X
j

ϵjðkx;ϕÞ
�
; ð12Þ

where ϕ ¼ n=Ny with n ∈ N, and kx is chosen arbitrary.
Equation (12) might also be more efficient to compute than
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Eq. (9), as its computation does not require numerical
derivation.
Discussion and conclusions.—We introduced spectral

flow as the change of the (quasi)energy eigenvalues of a
charged particle on a two-dimensional finite-width lattice
strip in response to an increment in a homogeneous
magnetic field perpendicular to the strip. Our definition
of spectral flow differs from that used in Laughlin’s
argument [19,20], where the strip is rolled into a cylinder,
and the increment is in an additional magnetic field
threading the whole cylinder. In our case, the spectral flow
is well defined only in the limit of largeNy (i.e., wide strip),
when it becomes a powerful tool, allowing us to connect the
topological invariants of the gaps to the global topology
(connectedness) of the Hofstadter butterfly.
In periodically driven systems, our concept of spectral

flow has led us to a physically intuitive and direct expression,
Eq. (12), for the RLBL topological invariant. Our formula
shows that, although the bulk Floquet operator is not
sufficient to obtain the Rudner invariant, its evaluation at
two commensurate values of themagnetic flux is. A caveat is
that this formula relies on the spectral flow computed for a
fixed quasimomentum kx, as in Eq. (3), which is ensured to
be independent of kx only in the Landau gauge we have
chosen. Gauge invariant formulas for the spectral flow as
well as for the RLBL invariant can be obtained by averaging
over all values of kx. We remark, finally, that our theoretical
results could find application in artificial matter experiments
aiming to explore the Hofstadter butterfly and Floquet
topological phases using periodic driving [21] (where
gauge-dependent quantities can be directly accessed [22]).
Recently, we became aware of related work [23].
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