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1 INTRODUCTION

1.1 Motivation

Quantum information is arguably one of the most promising fields of physics which
could affect everyday life fundamentally in the future. The introductory quantum
mechanic course’s postulate that a measurement always changes the quantum mech-
anical state has been exploited in the emerging industrial method of quantum
cryptography[1]. Algorithms like Shor’s discrete logarithm and integer factorisa-
tion [2] on the other hand may due to exploiting quantum mechanical interference
effects be implemented on a quantum computer outperforming classical algorithms
performed on classical computers in efficiency.
Our group’s 2D Discrete Quantum Simulator (DQSIM) experiment is dedicated to
the idea of a discrete time quantum walk. A quantum walk is the quantum mech-
anical analogue of a classical random walk[3]. Discrete refers here to the timing
in which evolution operators are applied to two quantum systems, a walker and a
coin. It not only exhibits different statistics than the classical counterpart but may
be employed in a multitude of ways. For example the experimental simulation of a
perfect conductor in which Bloch oscillations are performed [4] or the simulation of
topological systems that are otherwise inaccessible in solid state physical scales[5].

1.2 Outline

The next chapter reviews the DQSIM setup and necessary concepts to assess the
place the content of the thesis is going to take within the experimental effort of our
group. Then this thesis deals with two additions to the DQSIM experiment. The
first part concerns a specifically designed photodiode amplifier circuit to improve
the intensity stabilisation of the lattice beams.
Improving it would ensure that the coherence time of the atoms isn’t limited by
intensity noise any more.
The second part introduces a scheme to realise compression of atomic ensembles
trapped in our optical lattice. Furthermore it is a first step in achieving an efficient
single plane selection and addressing in our experiment opening the door to many-
particle quantum walks like [6]. The thesis concludes with a discussion about initial
experimental attempts on compression and a summary of the results.
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2 DQSIM EXPERIMENTAL SETUP

In this chapter, an overview of the experimental main apparatus and techniques
will be presented. This is followed by a description of the trapping and cooling
techniques and then will conclude in an overview of the limitations this thesis aims
to address.

2.1 DQSIM setup

State-dependent transport of neutral atoms is realised in our experiment by a
polarisation-synthesized two dimensional optical lattice potential. Its potential is
nearly independently acting on 137Cs atoms prepared in one of two spin states.
The state preparation is achieved by optical pumping into the |↑〉 = |F = 4,mF = 4〉
hyperfine polarisation state after applying a magnetic field gradient to lift the de-
generacy of its hyperfine states. |↑〉 is coupled by pulsed microwave radiation at
a frequency of about 9.2 GHz with the |↓〉 = |F = 3,mF = 3〉 state [8, p.34], see
Fig.2.1

2

State-dependent transport

The preceding chapter illustrated an application of the state-dependent technique for
realizing a atom interferometer. In this chapter I will briefly present the state-dependent
transport scheme whereas further information can be found in [23–27]

2.1 Preparation of qubit states
A prerequisite for state-dependent transport is the control over the internal quantum
states of the atom. We select the outermost Zeeman sublevels of the two hyperfine mani-
folds of the cesium ground state as our spin |↑〉 and spin |↓〉 states, as shown in figure 2.1.
The atom is prepared in state |↑〉 by means of optical pumping, where a σ+-polarized
pump laser beam is set at the |F = 4〉 → |F ′ = 4〉 transition and a σ+-polarized re-
pumping beam is set at the transition |F = 3〉 → |F ′ = 4〉. An advantage of choosing the
outermost sub-levels of the atom as our two states is that the state |↑〉 is a dark state.
This means that once the atom has decayed into this state from the |F ′ = 4〉 state, it
is effectively transparent to the σ+ polarized pumping laser beam and hence the atom

6 2S
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Figure 2.1: A magnetic field is applied to Zeeman shift the magnetic sublevels of the hy-
perfine manifold of the ground state. The degeneracy of the Zeeman sublevels is lifted by
applying a magnetic field such that the transition frequency between the two levels is suffi-
ciently far away from the other transition frequencies. The outermost sublevels are chosen as
the two states of the effective two level system with pseudospin |↑〉 = |F = 4,mF = 4〉 and
|↓〉 = |F = 3,mF = 3〉.Figure taken from [26]
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Figure 2.1: Level scheme of Cs after applying a magnetic field[9, p.5].

Those two states form an effective two level system.
The beam configuration generating the state sensitive potential is shortly re-

viewed in Fig. 2.2a and Fig. 2.2b :
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4.1. Development of a High Numerical Aperture Objective Lens
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Figure 4.2.: (a) Rendering picture of the objective, a part of the holder and cesium
atoms (blue and red dots) in a lattice (yellow). The green circles indicated the initial
position of the magneto-optical trap as a source of cold atoms. The distances are not
up to scale. (b) Setup to determine the point spread function (PSF) by imaging the tip
of a SNOM fiber. In (c) the radially integrated PSF for measured (red), aberration fit
(orange), ideal airy disk (blue) and fitted PSF without defocus (purple) are shown. (d)
Image of the point spread function. Figures b-d are taken from [121].

4.1.4. Optical Characterization

Characterizing a high-NA objective lens is a demanding task by itself. Typical methods
rely on the wavefront of the collimated beam or imaging an ideal point source [122].

Wavefront Analysis As mention in the previous section, both objective lenses have been
characterized in the clean room by means of measuring the emerging wavefront with a
shearing interferometer.
The limitation of a shearing interfereometer consists in its capability to only detect local
variations of the wavefront. Even though shearing plates with larger thickness cause far-
ther separated parts of the wavefront to interfere, the spatial resolution is highly reduced
such that a direct global analysis of the wavefront can only be done by integrating the
resulting signal. Another method to determine the absolute wavefront over a detector
size 5 mm× 5 mm is utilizing a Shack-Hartmann wavefront sensor WFS1505 yielding an
on-axis variation of λD2/10. Stitching of many wavefront measurements from different
regions is in principle possible, but technically demanding for the required wavefront pre-
cision. Despite global wavefront detection the main limitation of this approach is given
by the initial wavefront quality, polarization effects in high-NA objectives and the precise
alignment of the mirror distance.

5Thorlabs, Inc.
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2.2 a) Sketch of the beam configuration
for the state dependent horizontal di-
pole potential trap (HDT,red). Perpen-
dicular to it the vertical dipole beam
(VDT,blue) is retroreflected by the high
numerical aperture (NA) objective form-
ing a standing wave pattern. The pos-
ition of the MOT before loading atoms
into the lattice is marked. Sketch not up
to scale [7, p.43].

5. State-Dependent Transport in Two Dimensions
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Figure 5.4.: (a) Zoomed picture of the rectangular lattice potential depth for |↓〉 state
when all polarization phases are zero. The black arrows indicate directions of transport,
while a unit cell of the lattice potential is highlighted by the grey diagonal lines. The
scale of the image ranges from 0 (dark blue) to a maximum normalized potential depth
of 1.5× U0 (light yellow). The main (orange) and minor (blue) axis at the maximum of
the potential depth determine the trap frequencies for |↓〉, which are plotted in (b) as a
function of the angle difference ∆φ, during a transport following the right arrow. The
plotted trap frequencies are initially identical to those of |↑〉, which are indicated by the
two grey lines and do not change during transport.

the trap frequencies. The amplitude of the modulation of the potential depth amount to
|∆U | = 1/8×U0 which coincides with the one dimensional case. Besides the corresponding
change in the depth of the potential, the ellipse of the trapping potential is slightly tilted
during a transport step by a few degrees. In addition, a small displacement of the ellipse
center position in the order of a few tens of nanometer can be observed for U ↓ when
the potential U ↑ is translated. The displacement becomes maximum when the relative
phase between two potentials equals to π but is still much smaller than the periodicity
of the lattice.

5.2.2. Distortions of the Optical Lattice

So far, we have assumed that the lattice beams and the quantization axis are perfectly
aligned and the intensities of all beams are identical. In a physical system, such con-
ditions can only be realized within a certain precision. Hence, the robustness of the
proposed configuration against such detrimental conditions is studied in the following
section. Without loss of generality all circular phases φ1,2 and θ1,2 are set to zero for this
analysis.

74

2.2 b) HDT potential contour plot. The
colour indicates the trap depth normal-
ised by the maximal trap depth. The
vertical plot axis is parallel to the coun-
terpropagating beams. The horizontal
axis parallel to the perpendicular HDT
beam. The black arrows indicate the
transport direction achieved by steering
the polarisation phase of the counter-
propagating beams. Image taken from
[7, p.74].

The counterpropagating horizontal dipole trap (HDT) beams are linear polar-
ised, consisting of two independently tunable circular polarisation components. The
orthogonal horizontal beam, is of a fixed linear polarisation. All combined are used
to create a state-dependent 2 dimensional optical lattice. The vertical dipole trap
(VDT) beams are for the purpose of confining the atoms in the HDT plane. Their
tighter confinement is in addition advantageous for achieving ground state cooling
along its direction. It also enhance the imaging due to confining the atoms within
the depth of focus of the vertical lattice spacing. The reason lies in its lattice con-
stant of 0.5 µm being smaller than the depth of focus of the high NA (0.92) objective
of 10 µm[7, p.41].
Choosing the HDT beam wavelength to be 865.8 nm the resulting lattice potential
U↑,↓ acts nearly independently on |↑〉 and |↓〉 with its σ+ and σ− beam polarisation
[7, p.69]:

(
U↑
U↓

)
= k

(
1 0 1/2

1/8 7/8 1/2

)
·



Iσ+

Iσ−
Iπ


 (2.1)

with k = −kB 2.717 pK/(W/m2) and kB the Boltzmann constant. The atoms are
attracted to the intensity maxima of the corresponding potential due to being red
detuned in this case.

The coefficients of each beam polarisation component contributing to the po-
tential of either hyperfine state are determined by calculating the AC-Stark shift
perturbatively up to second order. In the second order energy shift term all an-
gular momentum couplings of all hyperfine states with the chosen pair |↑〉 , |↓〉 are
summed up. To finally compute the potential, the dipole matrix elements arising
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are reduced by the Wigner-Eckart Theorem to the familiar Clebsch-Gordon coef-
ficients and a Wigner 6-j reduced matrix element. See [10, p.22-23] for a more
detailed description. The potential calculated will be used for simulating lattice
dynamics in chapter 4.
The potentials U↑ and U↓ can be shifted in relation to each other. This is ac-
complished by steering the phase of the circular polarisation components of the
counterpropagating beam pair. During a potential transport step, atoms confined
within will follow suit. This constitutes the way state dependent transport is real-
ised in this setup.
Further details in how this position shift can be accomplished will be omitted here,
referring to [7], [25], [42] for the two dimensional scheme and [8], [10], [51], [55] for
the original one dimensional scheme as reference.

The ability to conduct state-dependent transport (shift operation) and change
even for a single atom individually the polarisation state (coin operation) from |↑〉
to |↓〉 interchangeably by microwave pulses allows for the realisation of different
kinds of discrete time quantum walks [11].

2.2 Cooling and trapping of atoms

In order to work with the atoms they have to be loaded into the lattice from the
background vapour. In addition, cooling into the vibrational ground state of the
lattice site in which the atom is confined is desireable. This enables the reproduc-
tion of indistinguishable atomic states. Those are required for probing quantum
statistics [15]. It also allows for more reliable simulations and estimates of the dy-
namics due to knowing the precise initial state which will come to use in chapter
4.// The following section summarises the cooling and trapping mechanisms used
in our experiment.

2.2.1 Magneto optical trap

Atoms have to be cooled to efficiently trap and compress them. This aspect will be
revisited in 4.4.3. To cool a free atomic gas, all three independent directions have
to be cooled simultaneously. This may be achieved to a degree with the optical
Molasses technique. There six red detuned beams impinge on the atom. In case
of atom movement towards a beam, the atoms are Doppler shifted into resonance
to the beam and are subjected to an increased light scattering force counteracting
their movement.
Trapping cooled atoms requires a spatially varying potential to confine them. This
is accomplished by a MOT as seen in Fig.2.4 and was as a method first reported in
[13].
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192 Laser cooling and trapping

Fig. 9.9 (a) The mechanism of a
magneto-optical trap illustrated for the
case of an atom with a J = 0 to
J = 1 transition. In the magnetic field
gradient the Zeeman splitting of the
sub-levels depends on the atom’s posi-
tion. Two counter-propagating beams
of circularly-polarized light illuminate
the atom and the selection rules for
transitions between the Zeeman states
lead to an imbalance in the radiative
force from the laser beams that pushes
the atom back towards the centre of
the trap. (Not to scale; the Zeeman
energy is much smaller than the opti-
cal transition energy.) (b) A magneto-
optical trap is formed from three or-
thogonal pairs of laser beams, as in the
optical molasses technique, that have
the requisite circular polarization states
and intersect at the centre of a pair
of coils with opposite currents. The
small arrows indicate the direction of
the quadrupole magnetic field produced
by the coils (as shown in more detail in
Fig 9.8).

(a)

(b)

Coils

Coils

Figure 2.3: Magneto optical trap beam and magnetic field gradient configuration.
The magnetic gradient induces a Zeeman shift creating a position dependent po-
tential with minimum in the quadrupole field center which traps slow atoms. The
counter-polarised beams are chosen such that their relative detuning to the cooling
transition leads to an increased scattering force for atoms moving out of the center
in all orientations , molasses cooling them thus. [56, p.192].

Due to off-resonant scattering, an additional repump beam is required to pump
from the dark 62S 1

2

F = 3 state to 62P 3
2

, F =4 in order to decay back into the

cooling cycle.

Figure 2.4: Cooling and repumping cycle for the MOT [8, p.7].

To load the atoms into the HDT, the center of the MOT is shifted upwards
by adding a magnetic offset using the the compensation coils such that the MOT
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then overlaps with the HDT lattice. See Fig.2.5 for the schematic setup of the coil
geometry.

Figure 2.5: Experimental area: a) water cooled plates, b) z-compensation coils, c) z-
gradient aluminium band coils, d) x=y-compensation coils, e) double-layer µ-metal
shielding against high frequent magnetic fields, f) high NA-objective (NA = 0.92)
[17], g) twelve-sided vacuum glass cell [7], h) connection to vacuum maintaining.
Taken from [42, p.16] The compensation coils not only are counteracting stray mag-
netic fields. They also provide the quantisation axis along the counterpropagating
beams.

After overlapping the MOT with the HDT lattice, the loading of the thus cooled
atoms into the lattice becomes possible following [70, p.52].
The atoms are then confined within single lattice sites with their motional state
given by the respective lattice site’s vibrational levels they occupy.

Three-dimensional Raman ground state cooling inside a cavity

Figure 4.2: Vibrational states in a sinusoidal potential: (a) shows a numeric simu-
lation of the probability densities of the vibrational eigenstates |n〉 with eigenener-
gies En in a red-detuned sinusoidal dipole trap with a potential depth of kB ·25µK.
(b) shows a comparison of the eigenenergies and eigenstates in an harmonic and
sinusoidal potential. They agree well close to the ground state, but for high exci-
tations the approximation is not valid anymore.

Boozer proposed a Raman coupling generated by a blue-detuned standing wave
and a running-wave Raman beam [67]. We use the existing intra-cavity standing
wave as one Raman beam to circumvent optical access limitations. The scheme is
shown in Fig. 4.3. Even though the atoms are confined in the intensity minimum
of the trap, the residual motion of the atoms gives rise to a coupling to the light
field that is used for sideband cooling. The electric field of the Raman standing
wave inside the cavity resonator along the z-direction is well described by a sine
due to the high reflectivity of R ≈ 1. The field of the running wave Raman beam
along the y-direction is represented in the conventional complex exponential form.
The Franck-Condon factor Ĥ∆k

FC is then defined by the Raman photon momentum
transfer ∆kz and ∆ky along the cooling axes x and y:

Ĥ∆k
FC = sin(∆kxx̂)ei∆kyŷ

≈ (∆kxx̂)(1̂y + i∆kyŷ)

with x̂/ŷ =

√
h̄

2mCsΩtrap,x/y

(b̂†x/y + b̂x/y)εx/y .

(4.5)

The expression is approximated by the Taylor expansion and the position operators
are rewritten in harmonic approximation by the raising and lowering operators

27

Figure 2.6: Vibrational level structure of a single lattice site of a sinusoidal potential
[55, p.27].

2.2.2 Three dimensional ground state cooling

To reach the vibrational ground state sub-Doppler cooling is required.
In our applications it is preferred to avoid the atomic losses experienced by other

9



standard cooling methods like evaporative cooling with which reaching a Bose-
Einstein Condensate was accomplished[16]. The technique used in our experiment
is so called sideband cooling. Depending on the direction to be cooled, either Raman
or Microwave sideband cooling comes to use in our setup [8].

Raman sideband cooling First, an overview will be given about the Raman
sideband cooling method for free atoms and then the application in the cooling to
the vibrational ground state will be further explored.
The Raman two photon process is distinctively different from the common single
photon transitions. Two Raman photons coherently drive an atom over an in-
termediate virtual level to an excited state. Both transitions are with negligible
spontaneous losses. Concerning cooling a free atomic ensemble, the advantage of
Raman driven cooling is the higher sensitivity to Doppler shifting than in the single
photon case [56, p.209]. This higher sensitivity is exploited in the scheme presented
in Fig. 2.7.

Figure 2.7: a) Two counterpropagating laser beams are on frequencies far from res-
onance to the state 1-2 gap. Their difference frequency though is close to resonance
to the 1-2 transition. Atoms in a very narrow velocity distribution have velocities
such as to be on resonance to 1-2 when adding the laser difference frequency to the
Doppler shift. Those atoms are thus by a Raman two photon process mediated over
a virtual level excited from 1 to 2. Let the starting mean velocity of the atomic
ensemble before excitation be v. When on level 2 they will have experienced two
recoils from Raman photons, leading to mean velocity v − 2vr with vr the velocity
change due to emitting a Raman photon. b) A third beam excites the atom to a
higher level in which they will have a mean velocity of about v − vr. c) Then they
may spontaneously decay to a mean velocity between v and v− 2vr back to level 1.
After this last transition the number of atoms with v around 0 increases. d) After
numerous iterations while scanning the Raman beam detuning the final velocity
distribution will be sharper and centred around 0 with a distribution width given
by the sensitivity of the Raman process [56, p.211].

In our experiment, state 1 and 2 are the |↑〉 and |↓〉 states from before on
the same vertical dipole trap (VDT) lattice site. Two Raman beams along the
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vertical lattice direction are here detuned such that instead of being selective to
a certain velocity range they are selective to a vibrational transition of the dipole
trap. Transferring from some vibrational level n ,|↑, n〉 to the same n, |↓, n〉 is called
a carrier transition while detuning leads to sideband transitions |↑, n〉 to |↓, n± 1〉.
To actually cool the atom to a vibrational level lower than the initial starting state,
the MOT repumper beam is used. Here off-resonant excitations of the atom and
spontaneous decay back into the |↑〉 is functioning as the third beam from Fig. 2.7.

Microwave sideband cooling It is more convenient to employ microwave coup-
ling between different vibrational states for cooling along the horizontal directions.
The problem that a single microwave photon cannot give a large enough momentum
kick to allow for vibrational transition [8, p.53-54] can be circumvented. The pro-
cedure is as follows:
Along the direction where atoms can be state-dependently transported, one first
applies a microwave transition in resonance with the |↑, n〉 to |↓, n− 1〉 transition.
If performed while moving the |↑〉 and |↓〉 potentials over a certain distance ∆x,
this allows for similar coupling strengths as in the Raman sideband cooling case
between vibrational levels for different sites.

Figure 2.8: Microwave sideband cooling procedure. 1 being the resonant trans-
ition driven to lower the vibrational quantum number, 2 the off-resonant scattering
transition [8, p.54].

With Microwave sideband cooling it is thus possible to cool along the HDT-plane
directions and with Raman cooling orthogonal to it along the vertical direction.

With atoms cooled to the vibrational ground state of our trap, experimental
sequences may be employed. Their outcome would be monitored then by observing
the fluorescence arising from excitations due to the molasses beams of the MOT.
This fluorescence may be picked up employing the high NA objective in combina-
tion with the VDT confinement.
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2.3 Limitations of the experimental setup

After having discussed the experimental routine, the limitations will be reviewed
with special emphasis on the points addressed by the rest of this thesis.

2.3.1 Limitations due to vertical dipole trap

Employing the vertical dipole trap is necessary for 3D ground state cooling into
its vibrational ground state with the Raman sideband method. It also allows in
principle single site detection by setting the conditions in which the full NA of the
objective may be used. But it also has at present major drawbacks. The reason
becomes apparent observing Fig. 2.9.Chapter 2 Cooling and trapping atoms

dB
dz

Figure 2.5: The z-dipole trap beam is back reflected at the objective’s surface and establishes a standing wave dipole
trap. The blue spots symbolise the atom cloud divided into several lattice sites. The green spot is the remaining
lattice site after selection in a magnetic gradient field and removing of atoms in the other lattice sites [20] and is
subsequently operated by the (orange) two dimensional state dependent optical lattice.

Vertical confinement A laser beam with a wavelength of λz = 1 064 nm, pointing vertically upwards
is back reflected at the objective’s surface creating a standing wave dipole trap. Since we want to work
within the focus depth of 1 µm of our objective and image only a single plane of the z-axis, but loading
the MOT in the lattice will populate multiple places we require a mechanism to select a single one by
applying a magnetic gradient field along the z-axis [20]. A resonant microwave field changes the qubit
state in the desired lattice site from |↑〉 to |↓〉 [21] and a following push out laser beam resonant to the |↑〉
state removes these atoms from the other lattice sites. Figure 2.5 shows this process including the orange
horizontal two dimensional lattice beams. The z-dipole trap stays switched on during the experiment and
provide vertical confinement.
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HDT

VDT

Figure 2.9: On site view of the beam configuration of Fig. 2.2a. Additional planes
of the VDT (red) are populated besides the target plane encompassing the HDT
(yellow).

Atoms can be trapped out-of-focus within the vertical dipole trap while over-
lapping lattice and MOT. In the current setup observation of the vertical axis is
not yet accomplished. Therefore the trapped atoms are unknown distances away
from the center plane. In order to conduct interacting quantum walks atoms [6],
single plane occupation only is required. In addition, the imaging suffers twofold
by the presence of the out-of-focus atoms. First they decrease the atom detection
efficiency due to providing additional background light. Second they also create
aberrations that make themselves apparent by blurred peaks or intensity rings[7,
p.51].
From the one dimensional realisation of the DQSIM setup a method is already in
use to achieve single site occupation [18, pp.5-6]. The same method could be ap-
plied in the present case to achieve single plane occupancy. The idea is to apply a
magnetic gradient field and a constant offset field along the vertical axis. Due to
the Zeeman effect the transition frequency between |↑〉 and |↓〉 resonances will be
shifted the following way[18, p.5] :

δω = γB0 + γ∇(B)z + r2γ∇(B)2

8B0

, (2.2)

where B0 denotes the constant compensation field, γ the hyperfine gyromagnetic
ratio of 2π 2.5 MHz/G, z the coordinate along the vertical lattice and r the radial
distance along the HDT planes from the center of the coils.
Initialising all atoms in the |↑〉 state can be achieved by optical pumping. This is
followed by applying a π- microwave pulse. It has to be narrow enough in frequency
to only address in a single plane the transition from |↑〉 to |↓〉. A resonant push out
beam[37] may eliminates all atoms still in the |↑〉 state. The very same atoms in
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different planes. In the one dimensional setup employing a rectangular microwave
pulse for example leads to a sinc-occupation distribution after homogeneous filling
of sites :
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Figure 2. (a) Superposition of 50 fluorescence images after a rectangular
microwave pulse has been applied to a filled optical lattice in a magnetic gradient
field to flip the internal state from |0〉 to |1〉 and a subsequent laser pulse
has removed atoms in |1〉. (b) Vertically binned intensity distribution of the
images shown in (a). The solid line shows a fit with the expected sinc-like
frequency profile. The inset shows the atom distribution without application of
the microwave pulse and push-out laser.

of several images thus directly illustrates the shape of the microwave pulse in the frequency
domain. Microwave spectroscopy in position space is therefore a useful tool, which immediately
and quickly reveals information encoded in the frequency domain with a high resolution,
controlled by the strength of the field gradient. This method is much faster than a usual scan in
frequency across the resonance in a homogeneous field to map out the full spectrum. The time
to obtain a spectrum with a compatible signal-to-noise ration is reduced from approximately
3 h for the homogeneous field method to 12 . . . 20 s for the gradient method. Further, using
microwave pulses with a narrow-band spectrum, it allows us to monitor the evolution of the
transition frequency arising from changes and drifts of experimental parameters from shot to
shot. We stress that the shape of the microwave spectrum in position space is broadened due
to the optical imaging when the features in frequency space become smaller than the optical
diffraction limit. A further broadening may exist due to a radial offset of the lattice axis with
respect to the axis of symmetry of the coils. This effect, however, only becomes significant for
narrow-band pulses with a high spectral selectivity as we discuss in section 3.3.4.

3.2. Patterned atomic string preparation

The preparation of convenient initial atom configurations is an important first step toward
the application of neutral atoms for quantum information technology, such as the creation of
entangled states through coherent collisions; the tailoring of atom strings for efficient interaction
with the field of a high-finesse resonator; or the extraction of a selected plane or string of
atoms from a Mott-insulating state of atoms [19]–[21]. The concepts presented above provide
a toolbox that offers this capability: In the presence of a magnetic field gradient, only those

New Journal of Physics 12 (2010) 065027 (http://www.njp.org/)

Figure 2.10: Applying by a magnetic gradient a position dependent Zeeman shift
in the transition frequency allowed pushing out atoms of undesired lattice sites in
[18].

In our case we may use the gradient coils to generate the gradient field and
rotate the compensation coil field along the vertical axis to have a controllable B0

offset to target the plane.
This thesis addresses two challenges that still are required before plane selection
is feasible. It is desirable to have as many atoms as possible in the target plane
and in the vicinity of the coil axis center. The reason for the latter is the radial
dependency of the frequency shift in equation 2.2. From it follows that even atoms
in the target plane may remain in |↑〉 in large radial distances. To estimate the
severity of this limitation:
Assume first a gradient field of γ∇(B)/(2π) = 40 kHz frequency detuning per
vertical lattice site. Driving the maximal current through our gradient coils, such
a gradient field is realistic for our setup [7, p.56]. Concerning the constant guiding
field, we assume a strength in the order of about 1 Gauss, similar in strength to
the field strength used for defining the quantisation axis [7, p.56]. The detuning
of atoms about 16 horizontal lattice sites away from the coil axis center is then
the same as for atoms in an undesired different plane. Such atoms would then
be lost during a state-selective push after performing a microwave pulse driven
transition even though they are in the desired target plane. The atomic spread can
be estimated to be in the order of the 1/e-width of 50 µm of the MOT overlapping
with the lattice. This translates to more than 100 lattice sites .
A different way for reducing the limitation arising from the radial dependency of
the detuning would be increasing the guiding field strength. This would extend the
radial region within which atoms may be addressed by a microwave pulse selectively.
Then driving current noise would at some point limit the selectivity of the plane
selection while compression along the horizontal directions comes with no such
drawback. So a compression in the horizontal plane of at least 16 lattice sites is
aimed at. For the compression along the vertical direction a single plane would be
optimal to reduce the atom loss experienced by the state-selective push-out beam.
Those compression schemes will be discussed in detail in chapter 4.
The second challenge can be illustrated from the microwave Gaussian pulse used
to address the target plane. A frequency width of ∆ν = 20 kHz translates into a
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temporal duration ∆t = 4 log(2)
∆ν

≈ 140 µs. In order for atoms to remain stable during
this time in the initialised state, decoherence and heating mechanisms have to be
addressed. And one aspect as it will turn out, is going to be dealing with a stable
laser intensity which may be improved following chapter 3.

2.3.2 Decoherence and heating mechanisms

The experimental procedure is limited in time by either heating or decoherence
effects. Heating refers to the process of losing the atom due to interaction. Those
interactions increase the atom’s kinetic energy enough to escape the lattice alto-
gether.
Decoherence also refers to interactions with the uncontrolled environment. But
those do not necessarily lead to a loss of the atom in the lattice but to loss of sta-
bility in maintaining their initialised state without any coin operations applied. In
this context of an effective two level system of |↑〉 and |↓〉 a simplified model may
be introduced by the

-Sphere picture to describe decoherence.
There the dynamics of a two level atom interacting with an electric field may be
described by the optical Bloch equations. By Introducing two additional loss time
constants, decoherence may be added[10, p.34].

u̇ = −δv + ΩRw −
u

Tt

v̇ = δu− v

Tt

ẇ = −ΩRu−
w − w(t = 0)

T1

, (2.3)

with δ the detuning, ΩR the Rabi frequency, Tt the transverse, Tl the longitudinal
coherence time, w the population inversion and u twice the real part and v twice
the imaginary part of the off-diagonal element of the density matrix of the two level
system.
Longitudinal decoherence leads to a rate of spontaneous decay of the initialised
state. This includes also transition outside of the the two level system. Because
of the long lifetime of the Cs-hyperfine states, relevant transitions out of the two
level system occur usually due to scattering events [10, p.40]. In contrast the loss of
phase relations between the two states in case of a superposition is determined by
transverse decoherence loss terms [19, p.266]. This can be visualised by assuming
a superposition state of the two levels initially. This state lies thus on the u-axis
in the equator of the sphere. The transversal decoherence leads to a precession
movement around the w-axis of the (u,v,w)- Bloch vector, Fig. 2.11.
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Figure 2.11: Precession movement in the Bloch sphere equator region due to trans-
verse decoherence on 1√

2
(|↓〉+ |↑〉) in a two level system [10, p.35].

This in turn leads to an imperfect transfer of population to the w = 1 state

after applying a

∫ T

0

ΩR(t)dt =
π

2
pulse.

Figure 2.12: Incomplete population transfer after applying a π
2

pulse on the previous
superposition state [10, p.36].

Inhomogeneous transversal decoherence within an atomic ensemble may be com-
pensated by employing spin echo [54]. But non-differential decoherence in the long
term time can only be reduced by removing the causes from which it stems .

A short list of heating and decoherence mechanisms will conclude this chapter:

1. Pointing instability Pointing instabilities refer to any sort of change in the
beam’s orientation in form of angular or parallel displacement. This could arise
from changes the alignment optics may experience coming from air flows in the lab,
temperature changes leading to deformation or mechanical vibration on the optical
table and alike. A change in the degree the beams overlap or cross would change
the lattice geometry seen in Fig. 2.2b. Fluctuations thereof translate in a jitter of
the lattice constant, potential maxima, minima shapes and the transport direction.
Using a quadrature photodiode sensors like the PDQ80 [57] allows monitoring and
debugging pointing instabilities and is in the process of being installed in the DQSIM
experiment.

2. Phase noise Because the polarisation of the HDT1,3 beams is employed to
shift the lattice potential for either atomic polarisation state, differential noise in the
polarisation purity would lead to jittering of the potential positions. This turned out
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to be a major source of heating [21] and decoherence [22] in our setup. Based on that
extensive studies in optimising the polarisation synthesis and stability with phase
locked loops were accomplised in our group (see for example [60] [25]). Common
mode phase noise may imprint an inertial force on the atoms subjecting the atoms
to a phase gradient. This in turn reduces their coherence during transport [22,
p.26].

3. Magnetic field fluctuations Magnetic field fluctuations change the Zeeman-
shift of the hyperfine state. This leads to fluctuations of the detuning and therefore
of the dipole potential shape and depth causing heating and decoherence similarly
to pointing instabilities [10, p.39]. A current stealing circuitry to stabilise the coil
driving currents for our compensation coils is employed to minimise effects like this.
And additional adjustment for the gradient coils is currently being developed which
is of necessity to accomplish plane selection.

4. Scattering with the background atomic vapour The absolute lifetime of
the atoms in the optical lattice is in the best case limited by scattering with the
background vapour in the order of tens of seconds .2.1 Cooling and Trapping Individual Neutral Atoms in an Optical Lattice
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Figure 2.4: Storage time measurement of atoms which are trapped in our 1D optical lattice. Each blue dot represents
an individual measurement. The red solid line shows the result of a numerical simulation using the Fokker-Planck
equation, as discussed in sec. 2.1.2. For comparison, the grey dashed line shows the storage time, which is limited
purely by background vapor collisions.

also present when trapped atoms remain in the dark: off-resonant scattering of lattice photons leading to
recoil heating. The impact of these scattering events is not neglectable when cooling the atoms into their
vibrational ground state (see sec. 2.5.2). However, the corresponding heating rate is smaller than those
arising from technical fluctuations of the optical lattice, namely intensity and phase noise of the involved
laser beams.

In the following sections we will discuss how these two technical noise sources can be mathematically
modeled and quantitatively estimated using experimentally accessible observables [94]. These heating
rates can then be used in combination with the Fokker-Planck equation [95, 96] to model precisely the
experimentally obtained curve shown in figure 2.4. In fact, the red line shown in figure 2.4 is obtained
by numerically solving the Fokker-Planck differential equation. This method allows us to gain valuable
insight into the physical mechanism that primarily limits the storage time, which in turn, can be used
to further improve the experimental apparatus (see sec. 2.1.2). Furthermore, employing a least square
minimization of the numerically solved Fokker-Planck equation allows us to determine the temperature of
the atomic ensemble [97, 98]. Inferring the exact temperature of a cold atomic ensemble itself is already
a challenging task. Among various techniques the two most commonly used are the time-of-flight and
the release-recapture method. The time-of-flight method is based on measuring the thermal expansion of
an atomic ensemble after it is released into free space [99, 100]. On the contrary, the release-recapture
method determines the temperature by lowering the optical lattice adiabatically until the potential depth
is on the same or a lower order than the average temperature of the trapped atomic ensemble [101,
102]. For our experimental setup, the former method is experimentally not feasible, whereas the latter is
complementary to the storage-time-measurement method.

Modeling and Characterizing the Intensity Noise Induced Heating Rate

While the employed intensity feedback loops (see figure 2.2(b)) greatly reduce the noise of the lasers,
they cannot fully nullify them. Let us assume we have a cesium atom with mass mCs, which is trapped
in a harmonic potential V(x) at the position x0. The intensity noise, hence, leads to fluctuations of the
potential depth, which in turn can be modeled by a perturbation of the spring constant of the harmonic

11

Figure 2.13: Measured storage time of the atoms (blue points), simulation by Fo-
cker planck equation following [59] (red line) and the life time limit arising from
background scattering alone (grey dashed line) in the one dimensional setup [8,
p.11].

5. Light scattering Any light scattering is going to be detrimental to a quantum
walk. Recoil heating due to spontaneous emission will always be present. Scattering
with light may be in principle elastic or inelastic too.
Elastic scattering such as Rayleigh scattering is going to induce spin dephasing while
Raman scattering in addition will mix the populations [22, p.27]. Those scattering
effects are the reason for transitioning to a shallow lattice for experimentation and
a deep lattice for trapping and imaging by applying an adiabatic ramp to the HDT
beam powers[8, p.10].

6. Beam power mismatch Different beam strengths would lead to a more com-
plicated make up of the potential according to equation 2.1 as the intensity pattern
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would differ . This causes different trap depths, lattice constants combining in a
sense the effect of phase noise and intensity noise when the mismatch is fluctuating.

7. Potential crosstalk and transport phase ramp shape Performing a trans-
port step will lead depending on the phase ramp shape to atoms not staying in the
initial vibrational state of the trap.
In addition during transport the specific shape of the potential affects the transport
quality too. The potential for the |↑〉 is only dependent on the σ+ light polarisation
spatial interference pattern while the |↓〉 shows a crosstalk between the two circular
polarisations. This leads to an amplitude modulation of the potential depth during
a transport step. This additionally produces for the latter species decoherence and
heating. Both effects can be reduced by shaping the ramp to compensate for this
effect via optimal control [51][55].

8. Differential light shifts from populating multiple vibrational states
If an atom populates multiple vibrational levels it will experience a different de-
tuning depending on its concrete distribution over the vibrational levels leading to
dephasing [22, p.22]. This would be remedied by three dimensional ground state
cooling.

9. Inhomogeneities of the potential due to the laser beam profile The
finite width of the laser beams will lead to a flattening of the potential depth the
further from the center one operates. This decrease in depth will translate in an
increase in hopping rates [61, p.47]. Also, atoms will experience a different vibra-
tional level structure due to the flattening of the potential at the edge . Similarly,
they will not be efficiently addressed by a single microwave pulses due to changing
Zeeman shifts over certain distances as seen in 2.3.1. Compression along the vertical
direction will allow avoiding such inhomogeneities to play a dominant role.

10. Intensity fluctuations Intensity fluctuations translate directly into changes
of the dipole potential depth making up the optical lattice as can be seen from
equation 2.1 and may arise from multiple sources. For example it may come from
intrinsic noise of the power supplies or electromagnetic interference (EMI) coup-
ling into any sort of electronic driving the beam intensity. This would apply to
noise at frequencies capable of modulating the amplitude of the RF-signal driving
an Acusto-Optical-Modulator or electro optical modulator. Pointing instabilities
themselves may translate into varying coupling efficiencies thus fluctuating out-
coupled beam power in the case of optical fibers or tapered amplifiers for example.
Or fluctuations originate internally from the way the gain medium of the laser is
driven by current noise for laser diodes or tapered amplifiers, relaxation oscillations
in the gain medium itself or cavity losses. The effect intensity fluctuations have on
heating is (in first order perturbation theory using a harmonic approximation of
the lattice potential) [21, p.56]:

˙〈E〉 =
π

2
ω2

tr〈E〉Sε(2ωtr) , (2.4)

with ˙〈E〉 the rate of change in the energy of the atom, ωtr the trapping frequency
which is proportional to the square root of the trap depth in the harmonic approxim-
ation and Sε(2ωtr) the one sided power spectrum of the relative intensity fluctuations
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ε(t). The limitations intensity noise causes on decoherence is [22, p.24]:

pc = 1− exp(−∆Φ2/2) ≈ ∆Φ2/2

=
τ 2η2U2

0

2~2

∫ ∞

0

sinc2(ωτ/2)RIN(ω)dω,
(2.5)

with 1 − pc is the decay term of the off-diagonal density matrix elements. It
is related to the time evolution of the u and v component of the Bloch vector per
definition. Therefore 1 − pc provides in the Bloch sphere picture the time scale
for decoherence driven precession movements of the Bloch vector around the w -
axis as mentioned in 2.3.2. RIN describes the relative intensity noise and means
normalising fluctuations in the sense of signal to noise ratio by the laser beam power.
Equation 2.5 reveals that decoherence arising from intensity fluctuations is mainly
contributed by lower frequency noise in the order of magnitude of 1/τ , with τ being
the duration of a single step of the quantum walk. In our case τ is typically in the
order of 20µs [78, p.9774] and therefore noise up to 100 kHz is of special importance
to be suppressed.

2.4 Measuring decoherence

As a brief outline concerning how to measure the T1 and Tl times as quantities
characterising the decoherence effects acting on the system : The population relax-
ation can be simply measured by a state-dependent detection for different holding
times [8, p.41] while the dephasing can be measured by contrast measurements of
an atomic interferometer [63].

To summarise this chapter: This thesis is going to focus on contributing to the
reduction of the effects of intensity fluctuations by overcoming the current limita-
tions of our lattice beam intensity stabilisation setup.
The compression scheme may be used to avoid limitations due to inhomogeneities
in order to improve the experimental setup further in its coherence time and per-
formance and to contribute in achieving plane selection.
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3 INTENSITY STABILISATION

This chapter introduces the intensity stabilisation setup of the DQSIM experiment
and how a new photodiode amplifier circuit may improve the noise suppression. It
starts with sketching the setup. Then the current limitations will be inferred and
explained and based on those assessments a new design for a sensor photodiode
(PD) motivated. Its circuitry will then be reviewed and characterisations briefly
summarised. Then this chapter concludes with a test setup intensity stabilisation
result.

3.1 Laser intensity stabilisation setup

The intensity stabilisation in the DQSIM experiment consists of an analog and a
digital control system in series. This combines the high bandwidth of the analog
intensity stabilisation with the flexibility of programming scripts for fast intensity
modulation provided by digital control. The analog control box1 and stabilisation
as well as the Keysight module and digital stabilisation is implemented and de-
scribed in [26].

CHAPTER 2

Hardware of Intensity Control System

In this chapter, I will give a overview of the intensity control system setup we use in 2D
quantum walk experiments. After the introduction of the entire system structure, more detailed
information about the key components, namely Keysight FPGA module and Vescent control
box will be provided. Through this chapter, I will explain the reason why we apply a digital
control platform in our intensity control system.
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Figure 2.1: Block diagram of entire intensity control system. The part with an orange background is
the analog intensity lock, and the part with a blue background is the digital intensity control system.
Abbreviations: P1,2: polarizer, EOM: electro-optic modulator, PD: photodiode, PP: pickup plate, rf: radio
frequency, PI2D : proportional-double-integral-derivative controller, AOM: acousto-optic modulator,
AWG: arbitrary waveform generator.
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Figure 3.1: Block diagram of entire intensity control system. The part with an or-
ange background is the analog intensity lock, and the part with a blue background is
the digital intensity control system. Abbreviations: P1,P2: polarizer, EOM: electro-
optic modulator, PD: photodiode, PP: pickup plate, rf: radio frequency, PI2D :
proportional-double-integral-derivative controller, AOM: acousto-optic modulator,
AWG: arbitrary waveform generator [26, p.5].

The digital block starts first with coupling the beam into an acousto-optic mod-
ulator (AOM).

1Vescent Control Box D2-125

19



Its zeroth order is then dumped and the first order is coupled into a fiber and
from there split by a pick-up plate. The beam either goes to the atoms or hitting
the monitoring photodiode2 (TPD) at the moment. Its output is sent to the input
of the Keysight module where it is digitized. The desired DC value is then sub-
tracted and the FPGA (field programmable gate array) programming is employed
to apply PID control on the error signal. This error signal is going to modulate
at 80 MHz carrier frequency the Keysight module’s arbitrary waveform generator
output. This output is fed, after going through a RF amplifier, into the RF signal
input of the AOM to modulate and stabilise the first order appropriately.

3.2 Function of the AOM

The AOM will be used in the test setup to imprint additional noise on the beam
to quantify the suppression achieved by the new photodiode. How this may be
accomplished will be discussed in the following section.

3.2.1 Principles of AOM operation

An AOM is serving as the actuator device able to electronically steer the angle,
amplitude and frequency of a beam based on the RF-signal it receives.

2Thorlabs PDA-10EC
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Chapter 1 A two-dimensional optical lattice and state-dependent transport
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Figure 1.4: a) Schematic drawing of the AOM and the beam path propagation. The Bragg-angle between
the incident beam and the moving diffraction grating in the AOM-crystal is given by ΘB. RF is short for
the radio frequency source of the transducer. b) Relative intensity response of the AOM to a signals of
different powers. The figure depicts an average of multiple measurements, normalized to the corresponding
maximum intensity. This ensures the independence from laser intensity drifts. c) AOM step response
versus time. The radio signal is switched on instantly at t = 0 (blue), and the output of the AOM
is measured with a fast photo diode (red). The dead time of the AOM is indicated by t1, whereas t2
denotes the time until the steady state value of of the intensity is reached (rise time). The data is fitted
with an error function (red). d) Gaussian beam profile calculated from the fitted error function.

the light fields, which adds further versatility to the transport operation.
In this chapter I will only go over the basic principles of polarization synthesis and phase

manipulation, the detailed setup will be introduced in chapter 4.1.

1.3.1 Steering phase and amplitude of optical lattices

The phase and amplitude control of the optical lattice is achieved with acousto-optical modulators
(AOMs). A detailed description of the working principle can be found in [33]. The AOM is
driven by a radio signal of a digital vector generator at around 80MHz, which is amplified to
have a maximum power of 1W, the saturation intensity of the AOM1. A schematic illustration
is shown in figure 1.4 a. The working principle of the AOM is based around a piezo element
inducing vibrations in a Tellurium-Dioxide crystal at the frequency of the driving radio signal.
These vibrations will travel as phonons through the crystal at the material specific sound velocity,
which is in this case vsound = 4.2mm/µs. They produce a periodic modulation of the index of
refraction, on which the phase of the radio signal is imprinted. As on any grating, the incident
light can be reflected into one of the refraction orders for this specific wavelength. This can be
understood by viewing the process as a phonon-photon interaction. If we denote the momentum

1 Crystal Technologies AOMO 3080-122 [34]
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Figure 3.2: a) Schematic drawing of the AOM and the beam path propagation.
The Bragg-angle between the incident beam and the moving diffraction grating in
the AOM-crystal is given by ΘB. RF is short for the radio frequency source of
the transducer. b) Relative intensity response of the AOM to a signals of different
powers. The figure depicts an average of multiple measurements, normalized to
the corresponding maximum intensity. This ensures the independence from laser
intensity drifts. c) AOM step response versus time. The radio signal is switched on
instantly at t = 0 (blue), and the output of the AOM is measured with a fast photo
diode (red). The dead time of the AOM is indicated by t1, whereas t2 denotes the
time until the steady state value of of the intensity is reached (rise time). The data
is fitted with an error function (red). d) Gaussian beam profile calculated from the
fitted error function. From [25, p.10].

The RF signal drives the transducer to vibrate, generating sound waves con-
tracting and expanding the density of the transducer material. This translates into
variation of the refraction index periodically. This pattern of changing refraction
indices acts on the beam as a Bragg lattice generating a first order diffracted beam.
By modulating the RF signal the changes on the effective lattice will translate in
modulation of amplitude, angle and frequency of the first diffracted order beam,
see Fig.3.2.

3.2.2 Usage in setup and test setup

The AOM can be employed in the intensity stabilisation to modulate the first
diffracted order accordingly. The lattice beams and thus the potential may be
stabilised by the PID control tuning the RF signal. With this procedure the noise
of the first order can be reduced. The AOM rising time limits the bandwidth with
which it can follow the RF signal. The rising time depends on the beam diameter
as the rising time follows from the speed of sound inside the AOM crystal over the
full width of the coupled-in beam. For the AOM used 3 the rising time does not
limit the control bandwidth in a substantial way if properly focused (25 ns rising
time or above 10 MHz).
The steeper the slope of its diffraction efficiency happens to be for the operating RF
amplitude, the more sensitive the beam modulation is to RF amplitude modulation.

3AOMO 3080-125
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Sensitivity to noise coupling in and imprinting on the beam is also enhanced in this
regime. This will be used to increase the noise floor artificially in the test setup by
adding from a noise generator an additional signal to the photodiode output.

3.3 Current intensity stabilisation limitations

The limitation of the current setup arises from read-out noise[26]. In the following,
the effect of read-out noise will be elaborated. The measured noise traces of the
current setup are then discussed and the conclusions drawn from it presented which
are going to motivate the new photodiode design.

3.3.1 Read-out noise

Noise arising from the system, setpoint, the feedback path or the controller input
would experience different transfer functions depending on where they are injected.
Intuitively in the best case coupled in noise would be similarly suppressed as signal
noise. But this would still lead to unsatisfactory suppression of noise of other origins
than the laser. This is because the PID parameter are optimised for the laser noise
input path. Moreover any transfer function is only going to be able to attenuate
noise at a certain frequency by a finite factor. Any additional noise source will
degrade the noise floor of the stabilised laser.
From the setup in Fig. 3.1 many different noise sources could couple to the original
noisy laser signal. In the following we focus on the read-out noise of the Keysight
module input [30].
If the coupled-in noise is sensor or read-out noise (ε(t)), its presence counteracts
noise suppression for signal noise. Compared to the intrinsic laser noise d(t), sensor
noise and read-out noise are indistinguishable from the reference input r(t) leading
to the following error signal in the output y(t) following [52, p.789]:

R(s)− Y (s) = G(s)(R(s)−D(s)) + (1−G(s))E(s) (3.1)

with Laplace transform introduced in the appendix being L[r(t)] = R(s) etc., and
G(s) the suppression gain experienced due to feedback. One has to make a trade-off
in optimising noise suppression and reducing sensor noise imprinting on the signal
when dealing with sensor noise and read-out noise.

3.3.2 Noise in the current setup

The input port of the Keysight module can be adjusted to be a 50 Ohm input
impedance to the source or 1 MΩ (HiZ) input impedance and the voltage scale can
be continuously adjusted between 0.4 Vpp, 50 Ω or 0.2 Vpp, HiZ to 6 Vpp, 50 Ω
or 20 Vpp, HiZ. For the stability of the intensity locking we prefer to use the full
dynamical range and a HiZ input impedance . Otherwise voltage spikes would drive
the input close to the nonlinear regime where control theory cannot the effect of
the control action.
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Figure 3.3: The violet trace corresponds to the Titanium Saphire (Tisa) laser in-
tensity noise. It was measured out-of-loop and converted into units of RIN2 with
AOM intensity stabilisation disabled. The yellow trace is with active AOM sta-
bilisation. In both cases the analogue lock was enabled. The green trace is the
Keysight module input noise for HiZ input impedance and the full dynamical range
of 20 Vpp in RIN relative to the output of the TPD. The red trace is the TPD
measured laser noise of a laser diode being mostly shot noise limited.

In Fig. 3.3 the stabilised intensity noise is only slightly above the read-out noise
in the preferred setting of the Keysight module. The lacking sensitivity due to this
input noise is illustrated by the shot noise detected for a quiet laser source with
the same TPD. The current monitoring photodiode isn’t limiting us due to being
shot noise limited itself. Nor is the limitation shot noise as the physical limit of
non-squeezed intensity noise. That leaves the input noise of the digital control unit
with a read-out noise two decades above the TPD shot noise limit.
There can be two origins for this high read-out noise: Either it is due to digital noise
coming from the quantisation error of the module’s digitizer. Or it originates from
the internal analog electronics of the Keysight module before the digitizer which
are necessary to adjust the input impedance and voltage range scaling. The traces
of the read-out noise have been measured employing the DAQ command of the
Keysight module’s matlab[24] class for an input port terminated with 50 Ω. The
read-out data is then DC offset subtracted and Fourier transformed and averaged
after calibrating it.
The two traces of the TiSa noise are measured out-of-loop by the TPD and are then
after inserting a DC block spectrally analysed using a HP 3589A Network Analyzer
(NWA) The relative intensity noise (RIN) for all traces is normalised by the input
power measured by the TPD.
Two conclusions may be drawn from Fig. 3.3 which are of relevance to improving
the current intensity stabilisation.

Read-out noise The difference between 50 Ω and HiZ is too large to arise from
the input impedance alone. Due to the input impedance, voltage detection and
therefore voltage noise should differ by a factor of 2 or 6 dB. The much larger noise
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floor of nearly 30 decades therefore has to arise from internal electronics of the input
settings or from the digitizer error4.
The bandwidth of the digitizer is some 50 MHz [30]. If the noise would arise from
digitising errors it would show limitations due to the digitizers own bandwidth.
Therefore it is most likely noise arising from internal analog electronics. This loss
in sensitivity can be translated into a reduction of the numbers of available bits from
specified 16 bits to 10.4 bits in the worst case effectively [26]. Operating at the full
dynamical range is desirable though as the setpoint subtraction happens inside the
controller and the TPD output range for HiZ is 10 V at max. In addition nonlinear
behaviour of the Keysight module was noticed for voltage inputs above roughly 7 V.
So even far away from saturation of the TPD not using the full dynamical range is
going to degrade the control performance considerably. For example a large enough
spike entering the non-linear regime may lead to losing the lock.

PID parameters The crossing frequency between stabilised and unstabilised
laser intensity noise is at some 200 kHz which is an indication of the closed-loop
bandwidth of the intensity lock. Similarly to the treatment of the standard second
order system in the appendix, usually the transfer function phase starts to ap-
proach a sign change during gain roll-off. Inverting the feedback sign leads there to
gain peaking. In case of PID intensity noise suppression the sign change translates
into enhancement instead of suppression of noise during roll-off, a so called servo
bump. The servo-bump will then be cut off by the limited bandwidth at the cross-
ing frequency [65, p.250]. The absence of the servo bump here may be indicative to
read-out noise being close to the laser noise in the position of the servo bump.
In case of read-out noise limiting the stabilisation, allowing for increased lower noise
suppression gain would lead to more enhancement not only of the servo-bump but
also to the read-out noise, following equation 3.1. A high and rather white read-out
noise spectrum like the one from the Keysight module therefore requires reducing
lower noise suppression. As explained in the chapter 2.3, lower frequency noise is
more detrimental to coherence than higher frequency noise. This means that im-
proving the stabilisation by allowing better lower frequency suppression is going to
benefit the coherence time of the atoms.

To conclude: The readout noise translates itself into an effective loss of resolution
and hinders an effective noise suppression in the critical frequency range by a great
amount. The next section introduces a possible remedy to this problem by replacing
the TPD by a in-house-designed and constructed photodiode amplifier (PD).

3.4 Custom photodiode design

The custom designed photodiode should ideally have the following properties:

• A very low sensor noise error in its detection of intensity noise to avoid prob-
lems discussed before

• If it was able to low noise amplify the laser fluctuations thereby increasing
the resolution of the digitizer effectively it would compensate the effect the
Keysight module’s input noise

4Controlled addition of noise to the signal would have possibly already reduced the loss in
sensitivity had it been digitzing errors limiting the precision [52, p.823]

24



• The bandwidth has to be at least an order of magnitude higher than the closed-
loop frequency response bandwidth [23] of the entire intensity stabilisation so
in the order of above 1 MHz at least

• The picked up light for the intensity stabilisation is going to be in the order
of around 1 mW where the PD should operate optimally

Those requirements can be accomplished by a standard transimpedance amplifier
design and a differential amplifier in the second stage which will be shortly reviewed
in the next section.

3.4.1 Circuit design

Using active components it has become common practice to divide the functions
into multiple stages. The reason is that the requirement on a single stage would be
difficult to fulfill by single transistor or operational amplifier (op amp) [48]. The
input stage has to be sensitive with low signal-to-noise ratio even for higher band-
widths. The second stage has to amplify without too much added noise by enough
to allow shot noise limitation above the Keysight input noise.

Transimpedance stage The input stage was chosen to be a transimpedance
amplifier circuit( Fig.3.4) consisting of an op amp in negative feedback configura-
tion.

18.4 TRANSIMPEDANCE AMPLIFIERS 693
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One way to do it is to make the detector work into a virtual ground, as shown in
Figure 18.3. Although the inverting input of A1 draws no current, feedback forces the
voltage there to be close to zero at all times. The way this works is that A1 senses the
voltage across Cd and wiggles the other end of Rf to zero it out. Provided A1 has high
open-loop gain AVOL, the swing across Cd is greatly reduced, and the bandwidth greatly
improved. The amplifier input adds a significant amount (2–20 pF) of its own capacitance
Cin, which must be added to Cd . Because this circuit is so important in applications, it’s
worth spending a little time analyzing its bandwidth and noise.

The voltage gain of A1 is not infinite, so that the swing is not exactly zero; to produce
an output voltage Vo, A1 requires an input voltage Vi = Vo/AVOL. AVOL rolls off at
high frequency, which limits the bandwidth improvement. Prepackaged op amps have
their open-loop frequency responses carefully tailored to make them easy to use, which
in practice means that they roll off like 1/f (6 dB per octave), with a nearly constant
90◦ phase shift from a low frequency all the way to their unity gain crossover at fT .
The uppermost curve of Figure 18.4 shows the response of an LF356 (105 dB DC gain,
4 MHz fT ), which is of this character. The advantage of this is that any closed-loop
gain will result in a stable and well-behaved circuit that settles quickly. This approach
is called dominant pole compensation; its drawback is wasted bandwidth at high
closed-loop gain, which does not greatly concern us here. Mathematically, AVOL is
approximately

AVOL(f ) = ADC

(1 + jf/fdom) (1 + jf/f2)
. (18.3)

The exact values of the DC gain ADC and the dominant pole frequency fdom are
not well controlled from unit to unit. Their product, known as the gain–bandwidth
product (GBW), is approximately equal to the unity gain crossover frequency fT and
is a well-controlled parameter. The other term in the denominator, which is a pole at
frequency f2, represents the effects of limited bandwidth in other stages of the amplifier.
In amplifiers intended for use at unity gain, f2 is always higher than fT , but not by
much—a factor of 1.2 to 4, thus contributing an additional phase shift at fT from 40◦

down to 15◦.

−

+
A1

Rf

−Vbias

Id

D1
Output

Cd

Cf

Figure 18.3. Op amp transimpedance amplifier.
Figure 3.4: Transimpedance amplifier setup. The photosensitive chip is replace by
a substitute circuit. D1 the incident light power, Cd the photodiode capacitance,
Rf the feedback resistor, Cf the feedback capacitor , Id the photocurrent Vbias the
reverse bias voltage, A1 the operational amplifier [27, p.693].

In the following the function of each part will be explained starting with the
operational amplifier or op amp: Op amp functionality following [17] can be sum-
marised by describing an op amp as an integrated circuit with two inputs. It
provides an open-loop voltage input gain to the voltage difference of its inputs of
105 to 106. For tuning their stability (and avoiding saturation), they are always
employed in feedback configuration. An op amp has to compromise between speed
and gain. This is usually specified in datasheets with the gain-bandwidth product
or unity gain bandwidth.
The purpose of the op amp is to compensate for the photosensitive chip capacitance
by tuning the feedback path which will become clear when discussing equation 3.3.
Otherwise chip capacitance would severely limit the first stage bandwidth .
To introduce the open-loop transfer function of an op amp:
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Modern op amps have usually an internal frequency compensation implemented.
In the case of the so called dominant pole compensation the op amp is tailored by
introducing an additional dominant lowest frequency pole. This additional lower
frequency pole limits the bandwidth according to control theory.

This way unstable behaviour at higher frequencies is due to the bandwidth roll-
off suppressed[27]. Freqency compensated op amps have an approximate open-loop
transfer function of second order [27]:

AOL =
ADC

(1 + i f
fdom

)(1 + i f
f2

)
, (3.2)

with ADC the DC voltage gain, fdom the dominant pole frequency and f2 the
next highest internal system pole. Applying the op amp golden rules [17] and the
results from the control theory recap one attains the transimpedance or effective
resistance which the photocurrent will see [27] :

Z =
ZfAOL

1 + AOL + i2πfZfCd
(3.3)

with feedback impedance 1
Zf

= 1
Rf

+ 2πifCf . Linearity is preserved up to the end

of the bandwidth. The purpose of the resistor is just current-to-voltage conversion.
The aim of introducing a feedback capacitor becomes clear from the transimped-
ance (3.3). The feedback capacitor similarly to a capacitance divider reduces the
effects of the photodiode capacitance. Another point of view is its introduction of
a dominant lower frequency pole just as in the frequency compensation case for op
amps in general therefore reducing gain bandwidth and gain peaking by damping
the system.
In order to use the full dynamical range of the Keysight module input, the non-
inverting input of the op amp will be set to -9 V. This offsets the output by this
amount enabling an output ±10 Volt. The choice of the feedback is motivated by
allowing the op amp to operate at 0 Volt when the target laser impinges on the
photosensitive chip. This may avoid additional issues arising from having to provide
continuously a large voltage like heating. Knowing the chip, chosen to be a BPW34
peaking at the target wavelength of 866 nm in its responsivity, a Rf = 15 kΩ res-
istor was chosen. This would lead to a voltage output of zero after subtracting the
offset for about 1 mW incident power at 866 nm.

Voltage amplifier stage The second stage is a differential amplifier circuit(
Fig.3.5) . Its feedback path can be similarly adjusted by a parallel feedback ca-
pacitor to improve stability if necessary. The DC value to subtract (to amplify
only the fluctuations and avoid saturation in the second stage) can be provided
externally or by a tunable internal voltage reference.
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Figure 3.5: Difference amplifier schematic [17].

Its gain factor will be motivated in the next section after reviewing the sensor
noise sources of the PD. The layout and schematics of the entire circuitry are in
appendix D.

3.4.2 Internal noise and component choice

Assuming high quality resistors and a well isolated environment 5 with well filtered
power supply rails, internal noise will limit the performance of the PD. Therefore
a proper component choice has be made for which a short review of noise sources
and limits will be conducted.
Possible laser noise origins and forms have already been discussed in chapter 2.3.
The fundamental limit of laser noise arises from the photon statistics. In the fol-
lowing we assume non-squeezed states of light. The conversion of a photon to an
electron introduces the counting variance of Poissonian statistics for this process.
Even in the case of a limited quantum efficiency [28, p.384] it would translate to
rms fluctuations of photocurrent Id following the Schottky formula, so 〈i2shot〉 = 2eId
with e the electron charge.
An additional noise limit, this time for resistors, is provided by noise arising from the
fluctuation-dissipation theorem [49]. This leads to current fluctuations of 〈i2thermal〉 =
4kbT/R with T the temperature of the resistor R.
Both shot and thermal or Johnson noise are white in the frequency domain.
The noise floor provided by the first stage has to originate for the target intensity
from shot noise instead of being degraded by a bad resistor choice and becoming
temperature dependent. For 15 kΩ at 1 mW incident power and room temperature
shot noise is going to be more than a factor of 6 larger than the Johnson noise
contribution of the feedback resistor.
An important point to consider in addition, is noise arising from the op amp. The
input current and voltage noise depends on the internal transistor setup making up
the op amp. Usually a bipolar op amp has larger current noise and less voltage
noise than a corresponding field effect transistor type, for more details see [48].
The current noise will see the same transfer function as the signal noise, sim-
ilar to Johnson noise and shot noise, therefore degrading over all frequencies the
signal to noise ratio. The voltage noise, vnoise, generates by coupling through
the input capacitance of the op amp, Copamp, an equivalent noise current [27]√
〈i2〉 = 2πf(Cd+Copamp)vnoise. For higher frequencies the output voltage noise will

increase due to this before being suppressed by the bandwidth limitation arising
from the feedback capacitor, resulting in a servo bump.
The chosen op amp for both stages is the FET type AD8065 op amp. Its especially

5If not see appendix B

27



low current noise in the range of pA/
√

Hz current input noise and voltage noise of
the order of nV/

√
Hz ensure a very low internal noise floor.

In addition for op amps, a high slew rate determines the speed at which the output
can follow the input depending on the size it has to provide. Therefore this consti-
tutes a measure for the small signal regime in which linearity holds. Ad8065’s high
slew rate allows even for steep small signal spikes to be treated linearly. This should
improve the stability of the final intensity lock. Concerning its high bandwidth of
145 MHz, this allows for even higher compensation capacitance to reduce the det-
rimental effect of the photosensor capacitance while maintaining a high closed-loop
bandwidth.
The second stage is aimed at providing an amplification big enough that shot noise
overcomes the Keysight’s module input noise and leading therefore to a negligible
sensor noise effect. An amplification of a factor of 20 proved sufficient and allows
still to maintain an overall bandwidth of above a MHz.
As can be seen in Fig. 3.6 the new photodiode has shown a well understood noise
floor matching the datasheet specifications of all components and the expected noise
contributions discussed. The shot noise limited light source at 1 mW was a diode
laser (852 nm). To ensure the low additional noise which they are known to exhibit,
single mode operation was observed with a small, portable Fabry-Perot cavity which
our group developed.
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Figure 3.6: Keysight module input noise, output of the second stage of the custom
made PD with and without incident power with 20 amplification gain of the first
stage output and LTSpice simulation of the noise floor. The illuminated trace was
taken by the NWA after shining on the Pd single mode laser diode light. The dark
trace was measured in an entirely darkened room to avoid 50 Hz ceiling light noise.
The DC voltage subtraction for the second stage comes from the internal, tunable
voltage reference of the PD.
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The dynamical range of the custom PD is not limited by this amplification as in
principle the voltage compensation can be externally adjusted to by its AMP 03[77]
differential amplifier input for an external setpoint setting.

The dynamical range given by the first stage amplifier, feedback resistor and
photodiode chip is up to 2.4 mW input incident power.

Figure 3.7: Output Voltage first stage transimpedance amplifier for AD8065 op
amp and 15 kOhm feedback resistor, BPW 34 photodiode chip in dependency of
the input incident power (852 nm).

3.4.3 Charge zone screening of photodiode chip

One note needs to be taken concerning the photosensitive chip. It requires a large
reverse voltage applied to not degrade the speed of the first stage when higher
powers in the sense of Fig. 3.7 are illuminating it. This is due to the charge zone
effect within its depletion zone and will be in the following more elaborated.

Photodiode chip Light detection is usually performed employing the photoelec-
tric effect occurring in a semiconductor’s pn junction leading to the name photodi-
ode. The following summarises the properties following [31, chapter 1].
The junction arises from combining different doping regions thus creating a deple-
tion region generated by hole-electron recombination driven by diffusion.
The charge imbalance then leads to the formation of an electric field counteracting
the diffusion current in equilibrium. Applying an external electric field in reverse
to the junction leads to an increase of the depletion region size. The effective ca-
pacitance in this diode is then reduced. The photoeffect ensures linearity between
photocurrent and input light power below saturation. The semiconductor mater-
ial band gap determines what photon wavelength is required to allow for electron
transitions to the conduction band. Silicon’s band structure allows for sensitivity
to infrared radiation (IR).
Adding an intrinsic layer in addition in between thogse two differently doped regions
leads to the PIN photodiode design in Fig. 3.8.

The wider and deeper the depletion region the higher the quantum efficiency of
photon-electron conversion optimising the responsivity for larger wavelengths with
the PIN design. Therefore in case of IR radiation usually silicon PIN types are
used.
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There is a design trade-off arising from the way a photodiode chip operates. Having
high sensitivity for intensity fluctuations requires a large responsivity at the laser
wavelength. But then even before saturating, in the sense of nonlinearity occurring
in a PIN chip, higher incident power leads to degradation of performance. The
average speed at which charge carriers can travel through the depletion region
decreases at higher power exposure.

Figure 3.8: PIN photodiode structure. P doped , N-doped and intrinsic layer are
marked [31].

The reason is the formation of a charge cloud screening the inner charge carri-
ers from the accelerating electric field. This space charge zone screening is usually
compensated by a different design than standard PIN [47], allowing either higher
speed or less sensitivity.

Using a BPW-34 PIN chip with responsivity of about 0.6 W/A [32], a factor 2
more than the TPD, leads already at 1 mW exposure in visible degradation of the
speed. This effect was noticed by observing the step response in Fig.3.9.
The solution chosen here is to apply close to the maximal specified reverse bias to
the chip of 30 V. This brute force approach leads to wearing off the screening by
accelerating the outer charges faster out of the depletion region before they accu-
mulate densely to provide screening.6

6Larger reverse bias voltage has to come from an external power supply as the photodiode cir-
cuit is going to be driven by our standard ±15 V lab power supplies for safety reasons, necessitating
therefore additional noise filtering as explored in appendix B
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Figure 3.9: Frequency transfer function amplitude and phase of a photodiode circuit
with a BPW PIN chip at 1 mW incident power of a 852 nm laser for different reverse
biases generated by scalable Voltcraft VLP 1303pro lab power supply.

The setup for measuring this behaviour is the same as the one in the following
section which is a replicate of the digital intensity stabilisation in Fig. 3.1. The
optical step response was generated by modulating the AOM output intensity with
the Keysight module. The laser source is again the 852 nm diode laser.

3.4.4 Performance test

A test was performed to determine the achievable noise suppression as an indicator
of the sensitivity of the PD.

If the laser diode operates in single mode it tends to exhibit remarkably low noise.
The Moglabs Agile RF Synthesizer ARF021 was employed as a noisier alternative to
the Keysight module to add noise. Furthermore an Agilent Technologies oscilloscope
signal generator was used to add white noise to the photodiode output. The generate
noisier beam as a substitute for the at that moment unavailable TiSa was then
stabilised by employing the custom built PD as a sensor for the PID control. Due
to the beam splitter light losses the achievable noise stabilisation is limited to 6 dB
above shot noise [27, p.231] which was achieved in Fig.3.10 for a certain frequency
range indicating shot noise limited detection as aimed for in praxis.
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Figure 3.10: Laser intensity stabilisation of a 852 nm diode laser using the Moglabs
RF synthesiser with its own PID control. White noise was added externally from an
oscilloscope signal generator. Shot noise is reached around a kHz with a suppression
of 2 decades in RIN2.

To summarise this chapter: In order to overcome the limitations arising from
the Keysight module’s read-out noise, a house-build photodiode amplifier was built
and tested. It is possible to regulate down to shot noise with it as shot noise is
amplified above the Keysight module’s input noise and even with the much higher
input noise of the Moglabs digital. This promises ruling out intensity noise as a
sizeable effect for decoherence in our setup.
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4 COMPRESSION SCHEME

The following chapter deals with the description and analysis of the compression
scheme with which the efficiency of plane selection outlined in 2.3.1 may be en-
hanced. The temporal intensity ramp profile with which atoms are driven to the
center of the 3D optical lattice will be studied employing simple estimates. A numer-
ical simulation solving the time dependent Schrödinger equation is then employed
to attain robust parameters to test in the experiment and predict the optimum per-
formance. Then first experimental results are going to be summarised and discussed.

The next section describes the basic working principle of release-and-recapture
compression 1. Then key concepts necessary to quantify the limitations and ramp
shape will be introduced for a specific compression axis.

4.1 Principle of Compression

The procedure of the release-and-recapture compression is a recently developed
experimental technique [58] [71]. The atoms in the HDT plane and along the VDT
axis both see a potential of the form of Fig. 4.1 :

Figure 4.1: Slice of the dipole potential along the orthogonal HDT beam.

The bell shaped potential curve originates from the Gaussian beam profile of the
vertical dipole trap in the plot. The lattice is produced by the HDT beams. In case
of compression along the vertical direction the roles are reversed : The Gaussian
potential then stems from the HDT beams and the lattice from the vertical dipole
trap.
The method begins with the ramp down of the lattice beam power and therefore
the lattice potential until the atoms are released from the lattice. The Gaussian po-
tential and therefore the VDT beam is kept constant meanwhile. After letting the

1 To stress the difference: what is often referred to as release and recapture procedure in
literature is the measurement of the temperature of trapped atoms by measuring the spread of
the atomic ensemble for a known release time (for example in [82] or in [38, p.41]). The intensity
ramp shape and purpose are entirely different in this case
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atoms propagate for a quarter of the trapping period of the harmonic approximation
of the Gaussian potential, the lattice is ramped up again. In case the atoms were
confined in a region of the Gaussian potential where the harmonic approximation
holds, after a quarter period they would all be captured in the center. This holds
irrespective to their starting position then.

4.2 Experimental constraints

In the following section the parameters taken from the experiment are summarised.
They are used as a basis for estimating the effects of relevance for compression in
the rest of this chapter if not otherwise stated.

4.2.1 HDT compression paramters and modelling

Beam powers The standard experimental parameters are mostly attained from
the sideband spectra. The resolvable trapping frequencies in longitudinal direction
are about 180 kHz for the VDT, 34 kHz for the orthogonal HDT beam direction
and 70 kHz along the two counterpropagating HDT beams. The power can then be
inferred by the knowledge of the waist sizes and by Taylor expanding the analytical
expression of the potential to second order[8, p.6]. From the power the transversal
trapping frequencies are attained, 700 Hz for the VDT and 2 kHz for the HDT
beams. The beam powers are 4 W for the VDT and 9 mW for the shallow lat-
tice HDT. As mentioned in section 2.3 the shallow lattice is the lattice depth were
transports are conducted.

Beam shape and potential To calculate the HDT potential, equation 2.1 was
used. The intensity profile of the HDT beams is astigmatic (26 µm, vertical direc-
tion x 70 µm, horizontal, [7, p.45]). Therefore the modelling of their beam profile
was based on an astigmatic Gaussian beam model [72, p.43]. This was done in
order to account also for a configuration in which the minimal waist size of 26 µm
isn’t exactly along the VDT axis. The Gaussian potential of the HDT performing
the compression along the vertical direction would differ then in shape. This would
affect for example the release duration due to a change of the period of the Gaussian
potential.
The vertical potential was similarly calculated based on the approach outlined in
[10]. But because of a larger detuning to the relevant transitions (λ = 1064 nm),
it reduced to a much simpler form. The expression has been cross checked with an
approximated expression taken from [73, p.106]. This approximative form holds for
dipole traps generated by beams far detuned from the hyperfine splitting between
ground and excited state of Caesium.

Spatial dimensions The aim is to compress atoms displaced over a 100 lattice
sites in case of the horizontal compression. This constitutes the field of view of the
objective using the full NA [7, p.41]. The same goal holds for compressing along the
vertical direction. The MOT-lattice overlap procedure when loading atoms into the
3 D lattice, see section 2.2.2, allows estimating the initial spread in this direction
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to similarly be about 100 lattice sites. This corresponds to the 1/e width of the
MOT, 50 µm [7, p.35].

4.3 Limitations to the compression scheme

In the following sections considerations and limitations for the ramping will be
explained. Based on them estimates will be given for a good compression parameter
range.

4.3.1 Duration of the compression procedure

The total ramp duration is limited by the lifetime of the atoms within the 3D
optical lattice. This leads to lifetimes in the order of seconds due to collisions with
the background vapour (see grey curve in Fig.2.13). Because compressing atoms
will be part of the standard experimental sequence due to plane selection, the
compression scheme needs to be as short as possible. The current target duration
is in the order of tens of milliseconds.

4.3.2 Anharmonicity

Atoms further away from the center such that the harmonic approximation does
not hold any more won’t reach the center in a quarter of the trapping period.
The displacement from the center for the horizontal compression starts to become
relevant at 15 lattice sites initial displacement (Fig.4.2).

Figure 4.2: Simulated mean position of an atom initialised in the vibrational ground
state of different lattice sites after instantaneous ramp down of the HDT lattice and
waiting for a quarter period of the VDT. Using parameters of section 4.2.1

In case of the vertical compression, anharmonicity becomes relevant at about 6
lattice sites displacement from the center. The reason for this difference lies in the
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much shallower Gaussian potential generated by the HDT beams. When Taylor ex-
panding the Gaussian intensity profile the next highest correction term scales with
O((∆x

w0
)4). With waist size of w0 = 26µm the horizontal beams Gaussian potential

is only for smaller distances ∆x harmonic compared to the VDT’s w0 = 77 µm waist
along horizontal axes. This reduces the validity range of the harmonic approxima-
tion in vertical compressions.

As a consequence multiple compressions ramp need to be run in series.

4.3.3 Liouville theorem limit

Another limitation to compression can be motivated by classical physics. In case of
compression the increase in density leads to an increase in momentum for a cloud
of particles. This holds for dynamics that can be described by Hamilton mech-
anics. This notion of phase space volume conversation is formalised as Liouville’s
theorem[81, p.68]. Liouville’s theorem also holds for time dependent Hamiltonians
(so also during the ramp down).
Where it does not hold is when dissipative or say velocity dependent forces are at
work due to the system not being described by Hamilton mechanics any more. In
our case the dissipative force is cooling, as in section 2.2.1 introduced. Therefore
cooling into the ground state is necessary not only before the first compression
ramp, but before each successive ramp.

4.3.4 Adiabaticity

While ramping down the lattice potential it is in principle advantageous to remain
adiabatic such that the atomic wave function can follow the potential. In the fol-
lowing section the applied definition of adiabaticity will be clarified. Then the
argument for staying mostly adiabatic during ramp down will be discussed.

Adiabatic approximation The adiabatic theorem states that if a particle in a
system with discrete eigenenergies is initialised in an eigenstate |j(t = 0)〉 (in the
sense of the j’th numbered eigenstate of the system, j ∈ N ∪ {0}) then during an
infitesimally slow change of the Hamiltonian H it will remain in the instantenous
eigenstate |j(t)〉 over the duration T of change [75]. A simple condition which over-
estimates the violation of adiabaticity follows from [76, p.754] and is modified by
[86] in units of s = t/tf :

max
t∈[0,T ]

~
tf

| 〈i| ∂H
∂s
|j〉 |

| Ei − Ej |2
� 1 (4.1)

where tf is a parameter introduced such that when rewriting the Hamoltionian in
terms of s, tf does not explicitly appear in it. This is a modification of the classical
criteria used in [76, p.754] to formally exclude Hamiltonians with more than one
characteristic time scale. Otherwise adiabaticity cannot be estimated with inequal-
itys like this [79]. It still holds in systems with only one relevant time scale [80, p.6]
such as in optical lattices before tunnelling becomes important for the dynamics.
Staying adiabatic within the procedure is advantageous, since the spread of the
atom poitions distribution is limited during the release.
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If the initial ground state is able to follow the lowering of the lattice potential adia-
batically, its instantaneous trapping frequency will decrease over time. For shallow
lattices violating the harmonicity assumption [51, p.19], similarly the relevant time
scale decreases. As long as tunnelling is negligible, the width in the momentum
representation of the ground state decreases, similar to the harmonic case. There
the standard deviation (std) of the momentum space represented ground state is√
~ωtrm. During the release time of a quarter period of the harmonically approxim-

ated Gaussian potential the spatial broadening of the ground state depends on the
initial momentum distribution. For a Gaussian wave packet released in free space
for example holds [83, p.2]:

∆x(t) =

√
(∆x(t0)2 +

∆p(t0)t2

2mcs

) , (4.2)

with t0 the point in time when the release took place2. Therefore broadening
of the wave function during the release is going to be minimised by reducing the
initial momentum width before release. This can be achieved by ramping as low as
possible and adiabatically long for the wave function to follow.

Adiabatic ramp shape Based on the inequality 4.1 and using the harmonic
approximation one can estimate the ramp shape that violates adiabaticity the least
[38, p.44]3 [38]. The idea is that an appropriate ramp function should follow a
shape that leaves the left hand side of inequality 4.1 constant in time and using a
polynomial ansatz tn, n ∈ Z results in hyperbolic shape in this case.
Following [38, p.45] a parabolic ramp down in a less critical trap depth region will
be performed to speed up the overall ramping duration.

2The position-momentum correlation terms cancel out for a Gaussian function
3During turning off the potential the trapping frequency goes to zero and therefore the time

scale required for adiabaticity diverges
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Figure 4.3: Example ramp for the adiabatic lowering of the lattice with lowering
time t against instantaneous trap depth V (t) in terms of the initial trap depth V0.
Recapture would be the same ramp shape mirrored and scaled by a factor in its
characteristic time τ to speed up the capture. The lowest relative potential depth
in our setup, Vfin, is limited to 10−4. This is the EOM extinction ratio within the
intensity stabilisation setup of Fig. 3.1 for the HDT beams.

The ramps are characterised by the time scale τ where τ
√

2 is the point in time
for transitioning from parabolic to hyperbolic ramp down. The time where the
lattice is entirely shut off to start the release is τ√

Vfin
, with Vfin the relative trap

depth before shutting off.
A shut off has to be performed to avoid tunnelling and start a well defined release
time. A ramp down along the orthogonal HDT axis will have to be slower than
along the counterpropagating beam direction due to the smaller trapping frequency.
In the harmonic approximation the trapping frequency sets the time scale for to
respect adiabaticity. For this reason the estimates and simulation will concentrate
in the following on compression along this slow axis.

4.3.5 Introducing lattice dynamics

Critical trap depths for adiabaticity In order to make use of inequality 3.1
the following assumptions are going to be introduced to attain approximative solu-
tions for |i〉 , |j〉 and Ei and Ej that can be inserted. Due to the Ramp shape only
the hyperbolic ramp down will be considered. The reason being that adiabaticity
is more likely to be violated the shallower the lattice is. This is due to the fact that
the trapping frequency for vanishing potentials vanishes and therefore the time scale
for which one needs to be slower to stay adiabatic diverges. This holds even in the
non-harmonic trap depth regime as will be elaborated later in this section.
To estimate how well adiabaticity will be maintained neglecting the Gaussian po-
tential, a simplified model will be introduced. Only then inequality 3.1 would be
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applicable.
This will be accomplished by first introducing a simplified model of the potential
for the orthogonal beam axis. The Mathieu equation will then be recognised within
it and its characteristics summarised. This is followed by a brief outline of solid
state physical concepts. Then this section concludes with presenting the validity
range of neglecting the VDT Gaussian potential.

Model describing the lattice dynamics The first simplification is Taylor ex-
panding the VDT Gaussian potential up to second order. This restricts the validity
of the estimate to about ±12 lattice sites from the center in case of compression
along the HDT2 axis for the given parameters following Fig. 4.2. The second ap-
proximation is treating the HDT potential as a sin2 potential. This holds approx-
imately if all HDT beam powers are the same and if one restricts the treatment
to along the orthogonal beam axis only. Along the counterpropagating axis for
example the potential is unsinusoidal , Fig. 4.4.

Figure 4.4: Potential along HDT1,3 axis for the parameters given in 3.2.1.

The deviation from the sine shape generally happens at higher trap depths in
which atoms are not likely to be. In addition if the slower axis is adiabatic the
faster axis will be too. Therefore it may be neglected for now.
The following Schrödinger equation arises from this model :

39



~i
∂ψ(x, t)

∂t
=




H0︷ ︸︸ ︷
− ~2

2mCs

∂2

∂x̃2
+ V0 sin2

(
x
π

d

)
+
mCsω

2
gaussx
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2


ψ(x, t) , (4.3)

with d the lattice constant. Ignoring the harmonic part for the moment, the sta-
tionary Schrödinger equation of H0 can be reformulated into the so called Mathieu
equation following [19, pp.423-424].

d2

dx̃2
ψ̃(x̃, t) + (o− 2q cos(2x̃))ψ̃(x̃, t) = 0 (4.4)

with dimensionless eigenenergy o = (2E − V0)/(2ER) , dimensionless potential
q = −V0/(4ER) , recoil energy ER = ~2π2

2mCsd2
and x̃ = xπ

d
. The behaviour of the

Mathieu equations is well studied and the solutions are available as built-in func-
tions in Mathematica[87].
One usually differentiate between even, C(a, q, x̃), and odd Mathieu functions S(b, q, x̃)
as eigensolutions. For q = 0 they are just a cosine and a sine function while for
q > 0 only for characteristic eigenergies o , called a(k̃, q) and b(k̃, q), the even and
odd Mathieu functions are periodic in x̃ and k̃ ∈ R. They shall then be denoted as
ce(a, x̃, q) and se(b, x̃, q). For periodic boundary conditions and a periodic potential
the solutions can always be written in terms of Bloch waves following Bloch’s the-
orem. A Bloch wave shall be denoted as φk(x̃, t) = uk(x̃, t) exp(ikx̃) with uk(x̃, t) a
lattice periodic function and k the dimensionless quasimomentum. This defines the
width of the Brillouin zone (BZ) based on π-periodic x̃ and reciprocal lattice vector
magnitude kB = 2π

x̃B
= 2, so k ∈ [−1, 1]. The Mathieu functions exhibit in their

eigenenergy spectrum a band structure when plotted against the quasimomentum.
Using the parameters of section 4.2.1 and a representation reduced to the first BZ
leads to Fig. 4.5.
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(a)

(b)

Figure 4.5: a)Eigenenergy in dependence of the quasimomentum for a lattice trap-
ping frequency of 35 kHz in the harmonic approximation. The plot was generated
by plotting the even eigenergy a(k,−V0/4) for the given V0 of section 4.2.1 over 4
Brillouin lengths and folding back into the first Brillouin zone. In the harmonic limit
the bands are flat and the distance between the bands is 69 recoils or h 35 kHz. Flat
bands correspond to a good harmonic approximation b) Eigenenergy in dependence
of the quasimomentum for a trap depth of 1 recoil. The bands are increasingly less
flat the shallower the lattice is. Harmonicity does not hold in this case well.

The characteristic time scale of the Hamiltonian itself is for all trap depth re-
gimes given by the the band gap at the edge of the Brillouin zone. In the deep
lattice with flat bands for all k it is the vibrational level spacing and therefore the
trap frequency while in the quasi free regime it determines the tunnelling rate, as
will be discussed in this section. One can therefore generalise to an effective time
scale beyond the validity of the harmonic approximation based on the band gap at
the edge.
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Figure 4.6: Band gap frequency in dependence on the trapping frequency.

Depending on the treatment of the periodic potential it is convenient to in-
troduce a different function base from the Bloch waves. The localised Wannier
functions ws(x̃− jπ, t), s the band index and lattice site j ∈ Z, can be constructed
by Bloch waves the following way[51, p.18]. They can be chosen to be real functions.

ws(x̃− jπ) =

∫ 1

−1

dk exp(−ik(x̃− jπ))φsk(x̃) (4.5)

Neglecting the Gaussian potential Now coming back to equation 4.3: In order
to exclude the harmonic potential the connection between the Mathieu equaion and
its solutions and the actual Hamiltonian of equation 4.3 will be closely following
the discussion in [84]. The restriction to be applied to further simplify the estimate
is then expressing ψ(x, t) in terms of the lowest band Wannier functions only.

ψ(x, t) =
∑

j

zj(t)w0(x̃− jπ) (4.6)

For lattice depths above 2ER next to nearest neighbour hopping is negligible
by an order of magnitude. With only nearest neighbour hopping the tight binding
regime is formally defined and in this case inserting 4.6 in 4.3 leads to the following
equation of motion for the expansion coefficients zj(x, t) :

∂zj
∂t

= −J(zj+1 + zj−1) + Ωj2zj + εjzj , (4.7)

with Ω = 1
2
mCsd

2ω2
gauss, εj the on-site energy and J the Mathieu equation hopping

matrix element or

J = −
∫

dxw0(x̃)H0w0(x̃− jπ) (4.8)

The orthonormality condition of the Wannier states was used here[51, p.18]:

∫
dxws(x̃− jπ)ws

′
(x̃− j′π) = δs,s′δj,j′ (4.9)

Applying an exponential ansatz for them-th eigenstate for zj so zmj (t) = fmj exp(−iEmt/~)
leads to a recursion relation satisfied by the π periodic Mathieu functions. For
r = 0, 1, 2, 3, .. the even and odd eigenenergies are:
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E2r =
Ω

4
a(2r, 4J/Ω)

E2r+1 =
Ω

4
b(2r, 4J/Ω) (4.10)

Higher energy eigenstates in this case refers to excitations within the vibra-
tional energy spectrum of the VDT Gaussian potential. So in order to neglect this
potential it is necessary to exclude transitions within its vibrational structure so
E1−E0

E0
� 1⇒ b(0,4J/Ω)

a(0,4J/Ω)
� 1. This in turn holds for 4J/Ω� 1. In the tight binding

regime furthermore holds that the hopping matrix element J can be approximated
by the height of the lowest band, so J/4 = E(k = 1)− E(k = 0) [85, p.897].
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Figure 4.7: Hopping matrix element divided by the energy shift due to the VDT
harmonic potential per site plotted against the HDT lattice trapping frequency.

Based on Fig. 4.7 the measure 4J/Ω will be within the experimental parameters
always in about the order of magnitude of 1. Therefore a treatment neglecting the
vertical dipole potential and only concerning oneself with the lattice is insufficient
in estimating the ramp parameters reliably. But it will be fruitful to gain a deeper
understanding of the physical scales governing adiabaticity in the system.

Adiabaticity estimate After the discussion about the validity for applying in-
equality 4.1 on only the Mathieu equation part of the Hamiltonian, the evaluation
will be attempted. The measure of when ramp parameter τ and minimal potential
depth Vfin violate adiabaticity requires first determining how each term in inequal-
ity 4.1 is made up of.
As a first approximation the violation of adiabaticity will be the strongest at the
point in time when turning off the lattice potential. The total ramp down time T
neglecting the parabolic ramp part is is given by τ√

Vfin/V0
. The characteristic time

scale of the external process changing the Hamiltonian tf is just τ due to the ramp
shape.
The energy spacing between different bands arises from the Mathieu eigenvalues.
For deeper lattices the bands are flat but for shallower lattices the smallest band gap
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is at the edge of the Brillouin zone. To get a worst case estimate the energy spacing
will be substituted by the spacing at the edge. This also matches the intuition that
this energy scale is closely related to the characteristic time scale of the system as
stated. The |i〉 , |j〉 are the vibrational eigenstate functions of the respective bands
They will be assumed to be (Bloch-) Wannier functions. Note that they are time
dependent due to the change of the potential in time. Inserting this in inequality
4.1 leads to

1� max
t∈[0,T ]

~
tf

| 〈i| ∂H
∂s
|j〉 |

| Ei − Ej |2
≈ ~
τE2

R

|
∫ ∞

−∞
wi(x, T )V0

τ 3

T 3
sin2(kx)wj(x, T ) | dx

| a(2,−V0
τ2

T 2/(4ER)− a(1,−V0
τ2

T 2/(4ER) |2
≡ β(V0, τ, T )

(4.11)
here the real-valueness of the Wannier functions was employed. In addition the
expectation was utilised that right before turning off the lattice, violation of adia-
baticity is assumed to be the strongest . The integral will be zero unless j = i+ 2n,
, n ∈ N, due to symmetry. Restricting the calculation to only j = 2 for simplicity, β
will become an approximation to gain intuition for the time scales of adiabaticity.
But is not an accurate estimate for the compression with VDT turned on. A more
complete description allowing for this case an estimate would be based on employ-
ing Wannier-Stark functions. Instead of neglecting the Gaussian envelope it would
be linearised, treating it as a tilting of the lattice in first order [29, pp.64-64].

4.3.6 Minimal momentum spread

There is an additional limit to how much ramp down is practical based on the
adiabaticity argument of section 4.3. The initial vibrational ground state is as was
mentioned before approximately the lowest band Wannier state. It is defined by
a superposition in equal parts of all the lowest band Bloch vectors of the first BZ
(equation 4.5). This means its quasimomentum distribution is a flat top profile
filling homogenously the first BZ. During an adiabatic ramp down the quasimo-
mentum is not only conserved but in the shallow lattice also projected on the
physical momentum [88]. It is not possible with further ramp down to narrow the
width of the atom’s momentum wave function to lower values than this. With this
minimal momentum spread one can estimate a minimal spatial spread of 1.5 lattice
sites during release: hTtrap,V DT/(4mCsc) ≈ 1.5d. This estimate and the one of the
following section will be employed to study the effects of broadening within the
stated approximations in section 4.4.2.

4.3.7 Broadening during ramp down

The widening during release is estimated in equation 4.2 for a harmonic oscillator
ground state state or a Gaussian wave packet. But before that, an increase in the
width during the lattice lowering may be expected due to the crystal momentum

dispersion ∆xτ =

∫ T

0

∂E

∂k

d

π~
dt. Assuming an upper bound for the derivative by

averaging the slope in the BZ allows substituting the widening by

∆xτ ≈
∫ T

0

dt
2(E(k = 1, t = T )− E(k = 0, t = T )

πd~
, (4.12)

while the crystal momentum in deeper lattices is negligible due to the flat band
structure.
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4.3.8 Tunnelling

Another detrimental effect to the compression scheme is tunnelling. It is not possible
to reduce the width of the spatial position distribution after release. So tunnelling
before release will always add additional width which in itself expands again during
ramp down. In addition it effectively washes out the point in time of release. Two
different approaches may be employed to estimate the tunnelling rate.

One is the Wenzel-Kramers-Brillouin approximation (WKB), the other is the
tunnel rate estimate based on the hopping matrix element. The WKB approxima-
tion is based on assuming a spatially weakly varying potential. The approximation
is used when solving the underlying time independent Schrödinger equation by mak-
ing a plane wave ansatz. Then spatial varying amplitudes and phases are assumed.
Such an ansatz when treating the transmission through a potential barrier results
in an estimate of the tunnelling probability of the form [90, p.322]

Ptunnel = exp(−2

~

∫ a

0

| p(x) | dx), , (4.13)

with a the length of the non-classical region and p =
√

2m(V (x)− E). From the
tunnelling probability the tunnelling rate may be approximated as tunnel probab-
ility times frequency of impinging on the barrier or tunnel rate = Ptunnelωtrap in
our case, following [90, p.338]. Attaining this way the tunnel rate based on the
WKB approximation allows comparing it with the hopping matrix element. Both
estimates agree well.

Figure 4.8: Tunnel rate in dependence of the HDT beam power neglecting the VDT.
Red curve based on the hopping matrix element and the blue curve is based on the
WKB approximation.

The break down for this estimate is at about 2 recoils. This can be illustrated
by observing the WKB tunnelling probability is above one. The approximation
breaks down when the tunnelling probability becomes significant. This is in the
same regime where next-nearest neighbour hopping cannot be neglected following
[84].
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Figure 4.9: Tunnel probability of the WKB method. It breaks down at about 2
recoils where next-nearest neighbour hopping becomes significant.

So reducing the Vfin to less than say 5 recoils is creating a significant spread
over at least 2 lattice sites before release.

4.4 Summary simulation

Due to heating and influences from the optical lattice, a classical simulation of the
process does not suffice to get an estimate of the compression. In addition the effect
of ramping adiabatically and tunnelling can’t be understood classically. In order to
perform a quantum mechanical treatment of the compression, the time dependent
Schrödinger equation has been solved. For further details for this refer to appendix
C.
The simulation assumes at the beginning a single atom displaced by say 12 lattice
sites in the vibrational ground state.
The compression is then performed while ensuring numerical stability which is meas-
ured by the norm deviation. The reason is that the way the Schrödinger equation is
solved does not strictly fulfil unitary evolution of the wave packets. So unphysical
states with norm different from 1 are related to a bad simulation parameter choice,
either concerning the time grid or the space grid.

4.4.1 Simulation analysis

The measure of merit for the compression success is the standard deviation of the
probability distribution of the atoms. It is not calculated relative to the mean
position. Because of the aim of compressing in the center the standard deviation
employed here is the average rms distance from the center weighted by each lattice
sites integrated probability. In other words the measure of merit is the momentum
of inertia relative to the center.
The simulation sequence consists of ramping down, release and ramping up. In
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addition a waiting period as long as the release time is performed. The purpose of
this waiting period ensures that the atoms don’t gain enough kinetic energy due to
fast ramping up to escape the central lattice sites after the end of the ramp up.
Successive compressions are analysed by starting with a single compression ramp.
For each initialised lattice site the final distribution will be stored within a matrix
M̂ after integrating the probability density per lattice site . By scanning all initial
positions M̂ would contain all information of the ramp performance given the po-
tential shape.
Multiplying such matrices allows fast simulation of successive ramps with in-between
ground state cooling.

4.4.2 Comparison simulation with estimate

We estimate the spatial width after ramp down and release at time t0 by breaking
it down the following way: Assuming adiabaticity to hold, the initial width is given
partly by the width of the harmonic oscillator ground state of the release depth

Vfin, ∆x(t0)harm =
√

~
mCsω(t=t0)

. In addition during ramp down the atom will have

experienced broadening due to its crystal momentum by ∆xτ from section 4.12.
Those two widths will be for simplicity linearly added together to constitute the
entire position spread ∆x(t0)tot = ∆x(t0)harm + ∆xτ .
The momentum spread before release similarly consists of the harmonic part being
∆p(t0)harm =

√
~mcsω. The momentum broadening arising from ∆xτ using the

uncertainty relation is ∆pτ = ~
2∆xτ

. The absolute minimum momentum width of

one homogeneously filled BZ in case of adiabatic mapping , ∆plattice = 2π~
d

will be
moreover considered.
Adding the momenta broadening together linearly to attain a ∆p(t0)tot, equation
4.2 may be used to estimate the additional broadening during release. The result
of this estimate can be seen in Fig. 4.10 a). There is no dependency of the std as a
measure of final compression on τ . This is due to assuming adiabaticity a priori and
in addition the broadening effect of ∆xτ is not significant. The reason for this lies
in the fact that the dispersion relation from which ∆xτ stems is rather flat in deeper
lattices. The duration the ramp stays in shallower lattices on the other hand is not
comparable to the release time in scale. To give an idea of scaling, a good choice
of τ which respects adiabaticity is of the order of the inverse of the lattice trapping
frequency. Therefore in this case of the order of tens of microseconds whereas the
release time is of the order of ms in case of horizontal compression.
The estimate for the broadening during release is also not taking into account tun-
nelling which leads to continuous improvement when lowering the release depth.
The measure of adiabaticity β is calculated based on section 4.3.5 only considering
overlap of the ground state with the second excited state. The critical value for
adiabaticity was chosen to be about 0.1 and has been added to Fig.4.10 to comple-
ment the estimate of broadening. The same holds for marking the trap depth of a
critical tunnelling probability. Comparing Fig. 4.10 a) with Fig. 4.10 b) shows the
precision of the adiabaticity estimate applied to the lattice dynamics without any
Gaussian potential envelope.
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4.10 a) Estimated broadening based on 4.4.1 . β = 0.1 is the
indicator of adiabaticity. Critical trap depth for the tunnelling
has been marked.
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4.10 b) Simulation result without VDT turned on.
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The region where adiabaticity may be critical according to the β estimates agrees
with the simulated plot 4.10 b). Additional broadening can be observed and traced
back to the wave function not being able to follow the potential broadening fast
enough.

4.4.3 Introducing Gaussian potential in simulation

Having understood well the situation without Gaussian potential the following sec-
tion deals with exploring the differences briefly that follow from its presence. In
addition the ramping scheme for the setup will be judged in terms of how well an op-
timal ramp may be intensity noise insensitive. In addition the caveat of compression
along the horizontal plane which involves a faster and a slower axis will be discussed.

Effect of the Gaussian potential The effect of the Gaussian potential may
not be neglected following section 4.3.5. So large deviation from the parameter
landscape of the last section may be expected .
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Figure 4.11: Atom initialised in the ground state, 12 lattice sites displaced along
HDT2 from the center for different ramp characteristic time τ and release depth
Vfin. The std was plotted in dependence of τ and Vfin. The vertical beam power
was lowered to only 15 % or about 600 mW . The reason being that a high slope
of the VDT leads to low capturing rate due to atoms gaining large momenta in the
center of the HDT following simulations.
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Figure 4.12: Tunnel rate times ramp duration depending on τ and Vfin.

The effect of tunnelling becomes apparent in the range expected, for longer
characteristic ramp durations τ and small Vfin. This is due to atoms having more
time before release to occupy neighbouring lattice sites.

Intensity noise sensitivity Displaced from the center by 12 lattice sites the
simulation in Fig. 4.11 shows that over a rather broad range, τ and Vfin can be
chosen such that a final std of 1.6 lattice sites is achieved. Concerning robustness
the stabilised beam power fluctuate no more than 10 % on average. This would
lead to a relative deviation of about 10 % in Vfin due to being linearly dependent
on the beam power of the HDT beams following equation 2.1. Power fluctuations
of 10 % will lead to relative trap frequency variations in the order of 5 %. At
least in the harmonic regime the natural units of τ is the trapping frequency of
the lattice[38], so one can expect variations in the optimal τ regime of around 5 %
relative deviation. Such fluctuations will not result in a much larger spread in case
of the HDT2, 12 lattice sites displaced case.

Compression along the horizontal plane Optimising the ramp along one di-
mension doesn’t mean that all other horizontal directions will have their optimum
in the same parameter regime. Adiabaticity and tunnelling have been observed in
the previous section to affect the std of the final atomic probability distribution.
The up to now neglected recapture procedure consisting of the mirrored ramp down
at a faster time τ̃ will introduce differences in the compression efficiency between
different horizontal compression directions.
Concerning the ramping of the HDT beam the parameters chosen for the HDT2
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compression won’t necessarily be optimal in the other directions even if adiabaticity
may not be an issue.
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Figure 4.13: Simulated broadening during ramp down , release and recapture for
the same parameter range as in Fig.4.11, along the fastest horizontal axis. Clear
differences can be observed compared to the parameter landscape of the slow axis
in Fig. 4.11.

The reason for the strong dependency on which axis the atom is initialised,
leading to differences between the slow axis in Fig. 4.11 and the fast axis in Fig.
4.1,3 stems from the fact that the rising time is critical in this case. The ramp
up consists of the same sequence as the ramp down mirrored. The deciding factor
leading to difference is the fact that the ramp up heats atoms not only if performed
very fast with respect time scale of the wave packets free propagation. But also
depending on how steep the lattice potential is. The faster axis has a larger trapping
frequency leading to a steeper parabola shape of a single lattice site in the harmonic
approximation. Ramping up as fast as in the slow axis direction may heat up atoms
in the fast axis enough to not be confined within a few lattice cites around the center.
The ramp up in the optimal ramp chosen from Fig. 4.11 was performed by doubling
τup = 2τdown.

This is the reason why in Fig. 4.11 compression is rather good for larger τ and
smaller Vfin. The total ramp down time is related to τ√

V fin
. The larger τ and the

smaller Vfin is, the longer the whole ramp down and release. And the slower the
ramp down time, the slower the ramp up time due to the constant factor scaling
τdown and τup. For slow ramp downs the heating effect would be reduced and the
std improved.
For the experiment that means compressing over the whole plane requires two ramps
applied after each other with cooling in-between and along different horizontal axes.
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4.5 Nonlinearity of the Gaussian potential

The last issue to address, is the question how well a ramp performs which is op-
timised for an atom close to the center for atoms further displaced. The limitation
here arises due to anharmonicities at larger initial distances . , see section 4.3.2.
In order to compress atoms further away from the center at least two ramps will be
again required. The second could be chosen based on Fig. 4.11 as atoms compressed
after the first time and cooled should be in the vicinity of at least 12 lattice sites
around the center. For choosing the first ramp an atom displaced by 40 lattice sites
was used for determining the parameter land scape in Fig. 4.14 :
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Figure 4.14: Simulated broadening during ramp down, release and recapture for an
initial starting position of 40 lattice sites away from the center.

The deviation arises here from the effect of tunnelling being not enhanced in the
same fashion as in the harmonic regime due to the flattening out of the Gaussian
potential. This allows going for even lower Vfin.
The expected compression using the matrix multiplication of the ramp evolution
predicts for atoms 40 lattice sites away a std of about 6.5 lattice sites. For a
whole ensemble of atoms an idea of the entire compressed density may be gained
by plotting the matrix values and overlapping them for all initial positions :
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Figure 4.15: Overlap of final atomic distributions of independent simulation runs for
±40 lattice sites inital displacement from the center. Optimal parameters following
Fig. 4.11 and achieving a std of about 20 lattice sites .
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Figure 4.16: Plotted atomic distribution for all initial positions overlapped after
applying the optimal ramp from Fig. 4.14. The longer duration τ compared to Fig.
4.15 is enough for atoms in the nonharmonic outer edge to travel into the harmonic
region despite not perfectly fulfilling the quarter period condition.
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Figure 4.17: Plotted atomic distribution for all initial positions after ramp sequence
overlapped. First applying the optimal ramp from Fig. 4.14 followed by the optimal
ramp from Fig. 4.11 was performed. The std is 6 lattice sites, achieving the
requirements for the plane selection procedure.

For the z axis compression all the above has been repeated and the following
parameter plots for the first (ramp for long displacements of 20 lattice sites) and
second ramp (for 8 lattice site displacements) have been calculated:
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Figure 4.18: Simulated broadening during ramp down, release and recapture along
the vertical direction for initial displacement of 25 lattice sites.
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Figure 4.19: Simulated broadening during ramp down, release and recapture along
the vertical direction for initial displacement of 8 lattice sites.

The difference in the vertical compression and the horizontal one lies in the
much shallower Gaussian potential of the HDT beams in this case compared to the
Gaussian VDT potential. This leads to less enhancement of directed tunnelling
towards the center. Due to that a lower Vfin may be achieved than in the HDT
compression. In addition the trapping frequency of the VDT lattice potential is
high such that broadening during the ramp down and release are real constrictions
along this direction.

The longest ramp duration would be the optimal ramp for vertical compression
taking in total about 20 ms, therefore staying well within the time scale required.
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Figure 4.20: Simulated broadening during ramp down, release and recapture along
the vertical direction. From ±40 lattice site displaced final distributions overlapped
for two optimal compression ramps. std = 3 lattice sites. Considering only the inner
30 lattice sites for the std. The outer atomic distributions are less critical due to
being exponential suppressed if arising from the 1/e radius of the MOT of about
50 µm.

4.6 Experimental implementation of the compres-

sion

The initial attempt in compressing atoms was taken only with a single ramp and
while applying Molasses cooling .
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(a) Before compression.
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Figure 4.21: Fluorescence image of the atomic ensemble arising due to Molasses
cooling off-resonantly exciting the atoms. The image was taken by the high NA
objective. It was taken while zooming out, so not using the full NA. This can be
seen by observing the extend of the field of view being much larger than assumed
in the beginning of the chapter. The images were generated by adding 30 separate
images.

The achieved compression is already clearly visible by eye. Observing the radial
relative intensity distribution away from the calculated center of mass shows in
Fig. 4.22 that the initial atomic distribution wasn’t within the center of the trap.
But nevertheless applying an intensity ramp optimised for only 12 lattice sites
displacement already resulting in a reduction of the full width at half maximum
(FWHM) by 20 lattice sites.
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Figure 4.22: Radial distances from the center of mass measured by the brightness
of each position before and after applying a single compression ramp.
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Ground state cooling and multiple sequences would be promising improvement
to try out experimentally. The fact that the achieved compression is surprisingly
more efficient than conservatively estimated by simulation promises even better
performance using the mentioned improvement than simulated.
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5 CONCLUSION

5.1 Summary of results

5.1.1 Intensity stabilisation

Shot noise limited intensity stabilisation was achieved in a frequency range in which
the atoms are especially sensitive to decoherence arising from intensity noise in a
test setup. This was accomplished by an in-house developed, shot noise limited
photodiodes optimised for the digital intensity stabilisation of the DQSIM experi-
ment. It was possible to overcome the read-out noise limited loss of resolution of
the digital control unit with it .

5.1.2 Compression of atomic ensembles in a 3D optical lat-
tice

Compression of atoms confined within the 3 D optical lattice can be achieved in
all spatial directions while applying successive compression intensity ramps and
ground state cooling. For ensembles of atoms ranging from the entire field of view
two compressions may achieve spatial atomic distributions with standard deviation
of around 5 lattice sites around the center.

5.2 Outlook

The 5 photodiodes for the five lattice beams involved need to be installed within the
experiment as soon as it is running again to quantify the achievable noise suppres-
sion in the main setup. From the RIN the gain in coherence time may be estimated
and can be cross checked employing atomic interferometry.
The realisation of it allows the exclusion of intensity noise as a possible source of
decoherence limiting the experiment.
The efficiency of the simulated compression ramps needs to be verified experiment-
ally in order to move forward to single plane selection. The compression achieved
in simulations along all direction promises an efficient atomic compression after
a plane selection procedure. After ensuring the required magnetic field stability,
addressing a limited volume of planes with a microwave pulse and push-out beam
would be the next step forward for the experiment.
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A CONTROL THEORY RECAP

A.0.1 Feedback system

There are in principle three ways to reduce the detrimental heating and decoher-
ence effects intensity fluctuations can have for our quantum walk experiment. The
most simple is to remove the origin of the fluctuations. The more involved way
is to correct for such processes on the atoms after monitoring them by quantum
error correction protocols as developed in [44], described in [43, pp.428-430] and
applied for example experimentally in [45]. But non-unitary interactions with the
environment cannot be cancelled out by unitary interactions preferably used by the
experimenter like coherent microwave pulses. So over intermediate times the artifi-
cially enhanced stability will degrade.
The most direct way is to reduce the noise coupling into the system from the en-
vironment.
The suppression of laser intensity fluctuations can be achieved by applying control
theory which will be reviewed in the following to introduce necessary concepts for
the electronic design and the experimental characterisation.
A feedback loop is a system where the output is being compared with the value
desired, the so called setpoint. The difference between the two or error signal is
send to a control system and the control system is going to create a correction signal
based on the error signal and inject it into the input again in order to minimise the
error signal.
The process of closing a loop by feeding back a part of the output into the input
leads to the alternative naming of closed-loop system.
The advantage to an open-loop approach is that unknown disturbances are com-
pensated and no need for recalibration may arise over time. Downsides are that
depending on the nature of the feedback and the control parameter choice sta-
bility issues may arise for certain signal frequencies and that rechecking output
against setpoint to adjust the system slows down the whole system and decreases
therefore always the bandwidth to some extent. Control theory assigns a system
described by linear, time-invariant differential equations a transfer function relating
input x(t) and output y(t). It is convenient to formulate the linear processes not
only with real functions q(t) in the time domain but also in terms of their Laplace
transforms L[q(t)](s) as a function of s = σ + iω , σ,ω ∈ R. This allows the intro-
duction of the transfer function in the s-domain, G(s) under the assumptions that
x(t = 0) = y(0) = 0 holds.

n∑

j=0

αjy
(j)(t) =

m∑

j=0

βjx
(j)(t)

L[q(t)] = Q(s) =

∫ ∞

0

q(t) exp(−st)dt

G(s) =
Y (s)

X(s)

(A.1)

with n,m, j ∈ N+0. Adding feedback to the system results in :
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Figure A.1: Schematic introducing the terms ( feedforward) transfer function G(s)
, error signal B(s), H(s) the feedback transfer function , C(s) the output at the
branching point , R(s) the set point signal and E(s) the corrected input signal [46].

Without the input and output branching points the loop would be opened. That
is the reason for calling C(s)

E(s)
= G(s)H(s) the open-loop transfer function.The closed-

loop transfer function is C(s)
R(s)

= G(s)
1+G(s)H(s)

using C(s) = G(s)E(s) = G(s)(R(s) −
B(s)) = G(s)(R(s)−H(s)C(s)).

A.0.2 PID control

Concerning the input branching point in Fig. A.1, it could just calculate the dif-
ference between the feedback output and the set point to give an error signal. For
a simple operational amplifier circuit this may already be enough to achieve higher
stability and more linear behaviour at the cost of lower gain. But as electronically
generated signals may need to be converted by an actuator into control actions in
other applications and noise suppression in certain frequencies requires mores soph-
isticated adjustment of the error signal, the schematics needs to be generalised.

Figure A.2: Expanded feedback schematic. The error signal optimised by a specific
amplification is send into the actuator converting it into a control action like a valve
for example to affect the system or plant. Taken from [46].

To introduce the PID amplification scheme now: Let e(t) be again the error sig-
nal and u(t) the amplifier output. A proportional control action would generate an
output proportional to the input u(t) = Kpe(t), an integral control action an output
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change rate proportional to the input u̇(t) = Kie(t) and a differential an output
proportional to the rate of change of the input u(t) = Kdė(t). The interpretation is
that the differential control action approximates future corrections necessary by the
present rate of change, the proportional one reacts to present changes and the in-
tegral one adjust the control action based on the accumulated past control actions.
All combined one attains a Proportional-Integral-Derivative (PID) control action
where each gain factor Kp, Ki andKd is adjusted to accommodate the relevant time
scales. Laplace transforming the combination results in

U(s) = (Kp +
Ki

s
+Kds)E(s) (A.2)

A.0.3 Analysing the control performance

time-domain picture Now assume a feedback system is set up and if present
the PID gain parameters have some value to test the performance (possibly gained
by following tuning rules like Ziegler and Nichols for example, see [25, p.33] or more
generally explained in [50] ). Modelling noise as a series of sudden disturbances a
good input test function would be the step function θ.

θ(t) =

{
0 if t ≤ 0

1 if t > 0
(A.3)

But in principle any linear time-invariant system can be characterised by any non-
trivial input function .
The most important criterion to judge a system is stability as this addresses the
question if it can function in real applications or would in the worst case destroy
itself in oscillations. For illustrative purposes only a brief overview of stability in
the context of a second order system without feedback will be attempted like a
damped harmonic oscillator or a low-pass filter of second order. The term order
classifies transfer functions in the s-domain which can be represented as a fraction
of polynomials and refers to the difference between the denominator polynomial or-
der and the numerator order where the latter is always smaller for physical systems
[46].
The so called standard second order transfer function is then as an open-loop trans-

fer function C(s)
E(s)

= ω2
n

ω2
n+2sζωn+s2

. When subjected to a step three different cases can
be distinguished depending on the damping ζ.
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Figure A.3: Step responses of a standard second order system depending on damp-
ing factor ζ.

Overshoot (difference between maximum and steady state) and ringing become
apparent for an underdamped configuration (ζ < 1 ) and are signs for instability as
they appear at the onsets of oscillation. The overdamped case is strongly slowed
down in its rising time (time it takes to go from 10 % to 90 %). The smaller ζ
the longer the settling time (time it takes to reach amplitude variations within
5 % of the steady state value. If oscillations would persist then there would be no
steady state and the system is said to be unstable.
The poles of this transfer function are s

ωn
= −ζ ±

√
ζ2 − 1. The oscillations would

increase with time if ζ was negative and it is actually a general rule that a system
is unstable if the poles of the transfer function lie on the right side of the s -plane.
To generalise: A first order system always has the shape of an overdamped second
order system. At higher orders it can be shown that the step response of a stable
system is a combination of different first and second order responses weighted by
the position of the respective poles in the complex plane [46].
Multiplying the PID control transfer function now to the feedforward transfer func-
tion allows to fine tune the way certain poles may contribute in the closed-loop
transfer function for the overall transient behaviour of the step response in a ver-
satile way.

s domain picture Another way of characterising the performance of a system is
to look at the s-domain transfer function.
The transfer function may be obtained by Laplace transforming the step response
derivative. The reason is that the Laplace transform of a step is Θ(s) = 1

s
so

for a system with transfer function G(s) , C(s) = G(s)Θ(s) keeping in mind
L[ċ(t)] = C(s)/s = G(s) .
Now it is possible to replace the s-domain description in the more intuitive fre-
quency domain to some extent.
One may omit σ and substitute s by iω for describing the steady state behaviour of
the system for a sinusoidal input x(t) = A sin(ωt) which can be proven for linear,
stable, time invariant systems [46]. The transfer function G(s) retains its shape
then, so yss(t) = G(iω)x(t). Steady state as in the sense of time t so large that
exponential decay terms can be neglected as mentioned before. The same holds of
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course then for all Fourier transformable or L2 functions. A step function isn’t in-
cluded but its derivative luckily is so obtaining the transfer function in the frequency
domain by Fourier transforming the derivative of a step response is an option.

Frequency domain analysis The transfer function is a complex number for one
frequency so a sinusoidal input results in a phase shifted and amplitude scaled si-
nusoidal output in this case.
Observing phase and amplitude shape of G(iω) would then allow to optimise sta-
bility criteria against control bandwidth in the frequency domain.
In the case of the previous second order system substituting s = iω the frequency
transfer function G(iω) = A(iω) exp(iα(iω) shows peaking in the transfer amplitude
A occurring at frequency ωr = ωn

√
1− ζ2 for ζ < 1√

2
of height Mf = 1

2ζ
√

1−ζ2
.

This peaking is directly related to the overshoot height in the underdamped case
Mt = exp(− ζ√

1−ζ2
π) and to the settling time ts = 4

ωnζ
. If the phase α turns to 180◦

the amplitude has to be below 1 to avoid amplifying disturbances under a feedback
sign change and enter instability. This motivates the definition of the phase margin
γ = −180◦ + α(ωcr) with ωcr the frequency at which the amplitude equals 1. A
phase margin of about 60 % is usually a good distance from instability as a rule of
thumb. γ here is a function only of ζ and at ζ = 0.1 the margin is 0.1◦ while at
ζ = 1 it is 67◦.
After the amplitude peaking a 1/frequency like roll-off sets in. The point where the
amplitude drops below 3 dB from the DC gain indicates the 3-dB bandwidth and
is here for ζ = 0.1 at 1.5 ωn.

(a) The standard second order system
frequency transfer amplitude for differ-
ent dampings. Gain peaking height and
bandwidth are counteracting each other.

(b) The standard second order system
frequency transfer phases for different
dampings. No poles on the right side
of the s plane and no phase close to zero
agree in the stability analysis. Note the
phase moving towards sign change in the
same frequency range of the gain roll-off.

In general systems frequency response and transient behaviour are valid and
complete ways of characterising a system and each domains characteristics are con-
nected like in this example .
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B NOISE REDUCTION MEASURES

B.1 Noise types overview

Following [65, pp.236-240] noise can be classified by observing the frequency domain
it originates. Modes at around 1 Hz can be swinging modes of a building or turbulent
air flows. From 1 Hz to 100 kHz noise could come from mechanical resonances like
foot steps, air conditioning or pumps. 50 Hz line hums can also magnetically couple
into devices making smd versions due to being more compact also more robust in
not picking up such noise excessively. This is also one of the reasons why the final
Pd was mostly designed with smd resistors and capacitors. The other being the
handiness of a smaller sized device on an optical table. Ground loops will lead
to 50 Hz and harmonics on voltage signals too. And if the electronics is exposed
to ceiling light, normal diodes can exhibits 50 Hz and harmonics due to the 50
Hz modulation of the ceiling light being converted to 50 Hz current noise by the
photoelectric effect.
EMI can be coupled from computers who tend to radiate sizeable amounts into
the environment and usually in frequencies above 100 kHz. Around this frequency
switching power supplies also contribute noise peaks due to their transformer action.

B.2 Additional Intrinsic noise

Dropping one of the assumptions in section 3.4.2, now additional resistor noise will
be considered. Depending on the design of the resistor and its constituent material
an 1/f like noise structure may appear depending on the voltage drop over the
resistor. Potentiometer such as the one to tune the internal compensation voltage
for the second state of the photodiode design exhibit such noise. That necessitated
1000µF capacitor after the potentiometer to filter out the low frequency excess
noise.
Similarly lower quality resistors such as carbon film and thick film or even thin film
smd resistors show this excess noise [17] [66]. In the case of carbon film, it arises
from imperfect contacts of the granules of carbon [49, p.60]. Many characterising
measurements have been taken for this type of noise, for example in the context of
high sensitivity applications for gravitational wave detection [62].

B.3 EMI shielding

Now to drop the assumption of a quite environment, suppression schemes of EMI
will be shortly reviewed. In principle electromagnetic radiation couples mostly into
supply lines. Direct coupling through the shielding of the the die-cast aluminium
boxes is unlikely due to its absorption and reflection losses radiated signals may
experience when impinging on it (for steel and copper estimates see [64, p.219]) .
Common mode noise in the power supply lines can be suppressed by ferrites [64,
p.239]. Ferrites of material N30 for example may be able to suppress well above
100 kHz range common mode disturbances.
Filtering capacitors to bypass noise to the box shielding before it reaches the PCB
were also necessary to use. 0.1 µF and 10 µF tantalum proved reliable in avoiding
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not only lower but also higher frequency noise from noisy supplies reaching the
circuit, acting like commercially available suppression capacitors. The two ground
problem generating ground loops with 50 Hz fluctuations was circumvented by not
grounding the PD box with the common grounded optical table using plastic posts
to place it. In addition breaking the ground connection of the power supply using
diode protected power chords developed in [26] were of use.
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C TIME DEPENDENT SCHRÖDINGER EQUATION

Modelling for the compression scheme the dynamics of the atom in the optical lattice
classically is insufficient. A classical simulation with point particle like atoms does
not take into consideration heating within the lattice sites for example. It was used
to get a first idea about the effect of anharmonicity though which was illustrated
by the movement of a classical particle in a Gaussian potential calculated by the
Runge- Kutta method [74, pp.710-722] in Fig.C.1.

Figure C.1: Simulated trajectory of a classical atom within a Gaussian potential.

Therefore a quantum mechanical treatment of the ramping is required at least
concerning the atoms. The lattice Hamiltonian during the ramp for the compres-
sion scheme is time dependent and for numerically solving the time dependent
Schrödinger equation the so called split step operator method was chosen and fur-
ther refined using the Richardson interpolation following [39, pp.1135-1140] for both.
In both cases, classically and quantum mechanically, one needs to discretise time
and space. So at the end a measure for the correctness of the numerical result in
dependence of the grid sizes will be presented.

C.1 Split-step operator method

Starting with an initially known wave function the time evolution operator is applied
to it in successive steps assuming a Hamiltonian of the form

Ĥ(x, t) = T̂ + V̂ =
p̂2

2m
+ V (x, t) (C.1)

One needs to split the time evolution operator to take advantage of the fact that the
kinetic operator is just a factor in momentum representation of the wave function.
In contrast the potential operator is a factor in position representation . Switching
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between the two domains can be accomplished by the numerically efficient Fast
Fourier Transform (FFT) algorithm. That way, each separate time evolution oper-
ator can be computed in the most efficient representation of the wave function for
it .

Using the midpoint approximation for a Riemann integral for calculating the
contribution of the time dependent part of the time evolution operator yields

U(t, t+ ∆t) = exp(− i
~

∫ t+∆t

t

dt′H(x, t′)) = exp(− i
~

(∆t
p2

2m
+

∫ t+∆t

t

dt′V (x, t′)))

= exp(− i
~

(∆t
p2

2m
+ V (x, t+ ∆t/2))∆t+O(∆t3))))

(C.2)

With the following splitting, derived using the Baker-Campbell-Hausdorff (BCH)
relations for an operator of the form of H = H1 +H2 and δ = ∆t

~ , one attains :

exp(−iHδ) = exp(−iH2δ/2) exp(−iH1δ) exp(−iH2δ/2) +O(δ3) (C.3)

This can be used to arrive at the following representation of the time evolution
operator of

U(t, t+ ∆t) = exp(−iV (x, t+ ∆t/2))
∆t

2~
) exp(−i∆t

~
p2

2m
) exp(−iV (x, t+ ∆t/2))

∆t

2~
) +O(∆t3)

(C.4)

The accuracy has to be understood as a local error, so as the error made in a
single step. It can be proven and was already used in equation C.4 that this error
from the BCH relations estimate even holds if each decomposed operator is only cal-
culated in the order of O(∆t3) as is the case with the time dependent potential term.

The number of steps is usually in the order of 1
∆t

. Then over a full simulation
with successive steps applied to the wave function the overall accuracy or global
error is of the order of O(∆t2). Therefore the split step will be called a second order
method, referring to the global error scaling.
The split-step method is also known as Strang splitting and originates from [68].

C.2 Richardson Interpolation

A method of higher order would result in larger possible step sizes one can choose
and this in turn in less computation time.
One way to achieve this is just using more split terms. Another way to go is
following the proposal in [69]. There it is suggested to calculate the time evolution
of each step in different time step sizes. Then they are linear combined such as to
cancel out the lower order error terms.
When Taylor expanding the final wave function calculated in terms of ∆t only even
orders of ∆t contribute. This is due to when writing out the local expansion in
terms of the BCH relatins of the operators only odd orders don’t cancel out with
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higher expansion terms.[67, p.335]. And the global error scaling is an order smaller.
So this leads to :

ψ∆t(x, tend) = a∆t2 + b∆t4 + c∆t6 + ... , (C.5)

with a, b, c some real coefficients. It follows thus that arbitrarily higher even order
schemes cam be constructed based on the split-step method .
For example to achieve a sixth order global error method from the Strang splitting
used in the previous section one repeatedly computes the final wave function in step
sizes of ∆t , ∆t/2 and ∆t/3 and combine those results in each step such that :

ψ∆t6(x) = −13

24
ψ∆t +

32

3
ψ∆t/2 −

81

8
ψ∆t/3 (C.6)

where the coefficients of this linear combination result from explicitly writing down
the Taylor expansion and solving the resulting linear set of equations [39, p.1139].
Unlike the original Strang splitting, using the Richardson interpolation the norm
of the wave function is not preserved. This is due to breaking the unitarity of the
overall time evolution in each step. This can be exploited to attain a measure of
accuracy even if the solution isn’t analytically known by observing the norm. This
can be illustrated by the following check of the scaling behaviour of error against
time spacing ∆t for an harmonic oscillator potential :

Figure C.2: logarithmic deviation of the norm 1 against the step size ∆t in units
of 2 harmonic oscillator periods for the second, fourth and sixth order global error
method. At smaller step sizes higher order methods are limited not by the accuracy
of the method but by rounding errors. At larger step sizes the coefficients of the
Richardson interpolation aren’t accurate as the Taylor expansion does not hold then
well.

The exact same plot can be achieved by substituting the deviation from the
norm by energy difference between the known harmonic oscillator and the numer-
ical simulation .
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The observation of the norm will be thus used to monitor the correctness of the
simulation with the unknown wave functions arising during compression.

As a side note: Details concerning the limitations on the differential equations
for which the Richardson interpolation is applicable may be taken from [74, p.724]
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