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Abstract

The development of quantum technologies requires a deep knowledge of quantum systems and a high
level of control of quantum states. In this thesis I report on my contribution to three areas that are
important to quantum technologies: (i) Imaging of quantum states (ii) Fast transport of matter wave
packets (iii) Estimation of the speed limit of quantum evolution. The platform here used consists of single
neutral 133Cs atoms trapped in a state dependent optical lattice potential. The control over the internal
state of the atoms and the potential landscape is used as a tool to study the atomic wave packet dynamics.

In the first part of the thesis I present the experimental setup as well as various experimental techniques
that are required for the measurements presented in the following chapters. Two new implementations
have been done in order to realize the desired measurements. One of them is a technique to measure
the motional ground state population fraction, with an accuracy that is robust over a wide range of
temperatures of the thermal ensemble. The second one is a pair of Raman beams to couple two hyperfine
states with Rabi frequencies of around 6.5 MHz. Much faster than the observed wave packet dynamics.

In chapter 3, I present a new technique to obtain time-resolved single-pixel images of quantum wave
packets using Ramsey interferometry. The technique shares a clear analogy to classical optical imaging
and can be potentially extended to obtain multi-pixel images that contain the same information as the
full wave function. Even though the measurements presented in this thesis are restricted to single-pixel
images, important information is extracted from them, including the Hamiltonian moments, the energy
spectrum of the Hamiltonian and the population probabilities in the basis of motional eigenstates.

In the last part of the thesis, the quantum speed limit of two different processes are studied. In chapter
4, the Mandelstam-Tamm and the Margolus-Levitin bounds are verified for atomic wave packets in a
static optical lattice potential. The bounds impose a limit to the maximum rate of change of a quantum
state. Two different regimes are covered: one where the Mandelstam-Tamm bound is more restrictive
and one where the Margolus-Levitin bound is more restrictive. Moreover, it has been observed that the
atomic wave packets evolve at a rate very close to the limit imposed by the Mandelstam-Tamm bound. In
chapter 5, the speed limit of a different quantum process is studied, namely, fast atom transport without
motional excitations over distances much longer than the width of the atomic wave packet. The transport
trajectories are obtained with optimal quantum control, making possible to realize transport operations
down to the shortest fundamental duration - the quantum speed limit. The Mandelstam-Tamm bound is
found to predict an absurdly small estimate of the minimum transport duration, but a meaningful bound
consistent with the measured speed limit is obtained based on geometric arguments.
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CHAPTER 1

Introduction

Faster cars, faster planes, faster internet. The world is every day more impatient. Time is gold nowadays.
But I cannot think of any field where time is as “expensive" as in quantum technologies, where the
required processes have to be done in time scales that go beyond our every-day notion of time. Every tiny
fraction of a second counts, so we keep pushing the gas pedal as long as we can. We are in a constant
race against nature and keep speeding things up, beating every technical limitation that gets on our way.
But how far can we keep racing? Or in other words, is it always going to be a matter of human creativity
and ingenuity to push the limit still one more step? It turns out it isn’t; also in the quantum realm there is
a speed limit, a fundamental bound impossible to overcome by technical improvements.

The impact of technology on society has hugely increased over the last decades, and quantum
technologies promise to do the same in the times to come. We hear that quantum computers will be
much faster than classical computers [3, 4], that quantum cryptography will make information transfer
more secure than ever [5] and that quantum sensors can improve the sensitivity to measure magnetic
fields, electric fields, acceleration, rotation, gravitational fields, etc. [6]. But all these technologies share
the characteristic that they rely on quantum processes, meaning that they are very sensitive to external
disturbances. This is why the time needed to realize the required operations has important implications
in many of those quantum technologies, including quantum information processing [7–10], quantum
communication [11–13], quantum metrology [14–16], energy storage [17], bond-selective chemistry
[18, 19], among others. In fact, the fundamental limit on the duration of the desired processes can
potentially become a limiting factor in the performance of future technologies. This is why substantial
effort has gone into understanding the speed limit of different processes, such as quantum gates [20],
information transport [21, 22], information production [23], nonequilibrium thermodynamics [24], as
well as fundamental limits that govern the evolution rate of generic quantum systems [25–33]. And
surely, the implications of such limits on concrete applications like computational speed [34–37].

One of the earliest studies on the speed limit of quantum evolution was done by Leonid Mandelstam
and Igor Tamm (MT), and dates back to the 40’s [27]. They reported an inequality that sets a lower bound
to the duration of quantum processes. The value predicted by the bound only depends on the energy
spread of the wave function, and can be interpreted as an alternative version of the famous Heisenberg’s
time-energy uncertainty relation [38]. The result was later generalized to time-dependent Hamiltonians
by Anandan and Aharonov [30]. A similar result by Norman Margolus and Lev B. Levitin (ML) predicts
a bound that depends on the mean energy of the wave function instead of the energy spread [28]. The
unified bound, defined as the maximum between the MT and ML bounds, is considered to be the quantum
speed limit, which has been proved to be saturated only by systems that can be effectively reduced to
two-level systems [39].
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Chapter 1 Introduction

The MT and ML bounds have only been experimentally verified for effective two-level systems in the
past [40]. The bounds are expected to be satisfied by any quantum system, however, it is known that for
more complex systems the bounds may provide absurdly small values that fall short of reflecting the
true limit [29]. Therefore, one may naturally think that the bounds are only useful for simple two-level
systems and turn useless as soon as more levels are added. In chapter 4 we will see that such a quick
reasoning is not true. I present our results on the experimental verification of the unified bound for the
dynamical evolution of single neutral atoms in an optical lattice, which constitutes a multi-level system.
We have found that the evolving wave packet not only satisfies the bound but also evolves at a speed that
approaches the limit even when multiple energy levels are populated. Moreover, the bound was verified
in two different regimes: one in which the MT bound imposes a stronger limit and one in which the ML
bound imposes a stronger limit.

As already mentioned, the MT and ML bounds fall short of predicting the true speed limit of some
quantum processes. Particularly, this happens in processes that connect spatially distant states for which
a Rabi-type coupling is impossible. A process of this type is studied in chapter 5 where our results on
single atom transport in optical lattices over distances of around 20 times the size of the wave packet
are presented. The atoms are initially prepared in the motional ground state and transported in such
a way that they are still in the ground state after the transport process. The transport trajectories are
obtained by optimal quantum control which optimizes the transport’s fidelity, given by the ground state
population fraction after transport. Transport operations with a fidelity equivalent to one are obtained for
any transport duration above a certain threshold, identified as the quantum speed limit. The observed
value of the quantum speed limit is well above the one predicted by the MT bound but is consistent with
a bound that we obtained with geometric arguments following a proposal by Bukov et al., [29].

Another subject of great importance for quantum technologies is the knowledge of the wave function
corresponding to the quantum states that are being manipulated. The wave function contains all the
information of the quantum state and this is why various techniques to image it have been explored in
different platforms [41–45]. In chapter 3 of this thesis, our results on time-resolved single-pixel imaging
of atomic wave packets in optical lattices are presented. The images are obtained with a novel technique
that makes use of Ramsey interferometry to image a time-evolving wave function by comparing it to a
static wave function. The measurements here presented are limited to a single pixel, but the technique
can be naturally extended to obtain a multi-pixel image that would contain the same information as the
wave function. Moreover, there are multiple features of the wave function and the trapping potential
that are extracted from the single-pixel images. The Hamiltonian moments of the system are extracted
from the behavior of the single-pixel images at the limit of short times, while the energy spectrum of
the trapping potential is extracted from the time dependence of the images over times of a few trapping
periods. The Hamiltonian moments characterize the evolution of the wave packet, and the first two of
them provide an upped bound to the rate of change of the wave packet evolution according to the MT and
ML bounds discussed in chapter 4. In fact, the recorded single-pixel image traces presented in chapter 3
have been used to verify the MT and ML bounds in chapter 4.
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CHAPTER 2

Experimental apparatus and measurement
techniques

The measurements discussed in this thesis require high level of control over atomic quantum states in
order to achieve the desired state preparation and subsequent manipulation. In our experiment we use
a one-dimensional optical lattice (Fig. 2.1A) as our canvas to trap, manipulate and study the dynamics
of neutral 133Cs atoms in a potential well. Specifically, we make use of the control over the internal
degrees of freedom (atomic hyperfine levels, see Fig. 2.2) to study the dynamics of the external degrees of
freedom (motional states in the trapping potential, see Fig. 2.1B). In this chapter I present basic concepts
of atom trapping and cooling as well as the experimental apparatus and techniques used to realize the
measurements presented in the following chapters. The concepts and techniques concerning the internal
degrees of freedom are introduced in Sec. 2.1, and the concepts involving the external degrees of freedom
are discussed in Sec. 2.2.

2.1 Internal degrees of freedom

2.1.1 Atom trapping and cooling

Every experimental sequence realized in our experiment starts by trapping the cesium atoms from a low
pressure thermal background gas using a magneto-optical trap (MOT). The MOT has three orthogonal
pairs of counter-propagating circularly-polarized laser beams tuned to a frequency close to the atomic
cycling transition |F = 4〉 −→ |F′ = 5〉 (see Fig. 2.1C), red detuned by a few times the natural linewidth of
the transition ΓD2 = 2π · 5.22 MHz [46]. Due to the Doppler shift, the MOT beams produce radiation
pressure on the atoms only in the direction opposite to their velocity [47]. Additionally, the MOT has a
pair of coils in anti-Helmholtz configuration (called MOT coils) that form a quadrupole magnetic field
gradient. The center of the quadrupole field is located at the position where the MOT beams intersect each
other. The exact position of the center of the quadrupole field is controlled by three additional pairs of
coils (called compensation coils) in Helmholtz configuration. When the magnetic field gradient is turned
on, the radiation pressure becomes position dependent due to the Zeeman splitting [48]. Specifically, the
radiation pressure increases as the atoms move away form the center of the quadrupole field. This way,
the atoms are trapped from the background gas in a region around the center of the quadrupole field and
cooled down to temperatures around the Doppler limit TD = ~ΓD2/(2kB) ≈ 125 µK [49]. More details on
the MOT used in our experiment can be found in [50] and for more details on the physical effects in a
MOT see [47, 51].
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Figure 2.1: Cesium atoms in optical lattices. (A) Illustration of our optical lattice formed by two counter-
propagating laser beams with a wavelength of λ ≈ 866 nm. The blue spheres represent 133Cs atoms trapped
by the optical lattice potential as explained in Sec. 2.1.2. (B) The trapped atoms not only have internal (spin)
degrees of freedom but also external degrees of freedom given by the motional levels determined by the trapping
potential. Here, the wave function amplitude of the first 10 bounded eigenstates are illustrated (colorful solid
lines). Each wave function is vertically shifted by its corresponding energy (horizontal dashed lines) for illustration
purposes. (C) 133Cs D2 line level scheme. The two red arrows indicate the transitions induced by the MOT cooling
(F = 4 −→ F′ = 5) and repumping (F = 3 −→ F′ = 4) beams.

After the atoms are trapped and cooled by the MOT, they are transferred to the lattice potential
(described in Sec. 2.1.2) which is formed by two counter-propagating beams that form a one-dimensional
lattice that intersects the MOT’s center. The atoms are therefore transferred to the lattice by simply
turning the magnetic field gradient off1. Once the atoms are in the lattice, the temperature is further
reduced by sub-Doppler cooling. Such technique cools down the atoms beyond the Doppler limit by
means of polarization gradient cooling [52] (also known as Sisyphus effect), reaching temperatures on
the order of 10 µK for a trap depth of2 80 µK. After the sub-Doppler cooling, the MOT beams are turned
off and the atoms are only trapped by the lattice potential. The storage time (half-life) of the atoms in the
lattice is around 6 s, limited by phase noise of the lattice beams [53], which is translated into position
fluctuations of the lattice, see Sec. 2.1.6. The storage time is orders of magnitude longer than the duration
of any physical process studied in this thesis.

1 Before turning the magnetic field off, the current of the MOT coils is shortly increased in order to increase the field’s gradient,
therefore compressing the MOT cloud. Simultaneously, the current of the compensation coils is linearly swept in order to
drag the MOT cloud along the lattice. This increases the transfer efficiency into the lattice.

2 The exact temperature depends on the depth of the potential, for more details see Sec. 2.2.3
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2.1 Internal degrees of freedom

2.1.2 Optical dipole trap

In this section I explain the concept of spin dependent dipole trap potential, meaning that the potential
experienced by the atoms depends on their internal spin state. The optical potential originates form the
energy shift of the internal atomic energy levels produced by the interaction between the atom and the
light field. The energy shift of the i’th energy level, with unperturbed energy εi, is given by [49]

∆Ei =
∑
j,i

| 〈 j| Ĥ1 |i〉 |2

εi − ε j
, (2.1)

where Ĥ1 = −µ̂ ·E is the interaction component of the system’s Hamiltonian Ĥ = Ĥ0 + Ĥ1 with µ̂ = −er
being the electric dipole operator. For illustration purposes, let us first consider a two-level system.
According to Eq.(2.1), the energy shift on the ground state of a two level system is

∆E =
3πc2

2ω3
0

Γ

∆
I, (2.2)

where ω0 is the atomic transition frequency, c is the speed of light, I is the intensity of the lattice beams,
∆ is the detuning between the atomic transition and the laser beam and Γ is the decay rate of the atomic
transition. From Eq.(2.2), it is clear that the energy shift of the ground state is attractive for a red-detuned
light field and repulsive for a blue-detuned light field.

In our experiment we work with 133Cs whose fine structure level scheme is shown in Fig. 2.2A.
The fine-structure splitting arises from the interaction between the orbital angular momentum and the
electron’s spin. Particularly, the ground state 62S 1/2 is split in two levels here denoted |↑fine〉 and |↓fine〉

corresponding to mJ = 1/2 and −1/2 respectively. According to Eq.(2.2), given a light field with a
frequency in between the D1 and D2 lines, the σ+-polarized component of the light field produces
a potential on |↓fine〉 containing an attractive contribution and a repulsive contribution, while the σ−-
polarized component has the same effect on |↑fine〉. A properly chosen lattice wavelength produces a
complete cancellation between the attractive and repulsive forces in such a way that the potential on
|↑fine〉 only depends on the intensity of the σ+-polarized lattice component while the potential on |↓fine〉

only depends on the intensity of the σ−-polarized lattice component. A computation including higher
energy levels [54] yields a value of λ = 865.9 nm known as the magic wavelength.

The fine splitting of the ground state on the two spin states |↑fine〉 and |↓fine〉 doesn’t take into account the
interaction with the nucelar spin. Such interaction produces the well known hyperfine splitting shown in
Fig. 2.2B. For the measurements presented in this thesis we have used three out of the 16 hyperfine levels
of the ground state: |4, 4〉 B |F = 4,mF = 4〉, |4, 3〉 B |F = 4,mF = 3〉 and |3, 3〉 B |F = 3,mF = 3〉.
They can be written in terms of the fine splitting states |↑fine〉 and |↓fine〉:

|4, 4〉 = |I =
7
2
,mI =

7
2
〉 ⊗ |↑fine〉 , (2.3)

|3, 3〉 = −

√
1
8
|I =

7
2
,mI =

7
2
〉 ⊗ |↑fine〉 +

√
7
8
|I =

7
2
,mI =

7
2
〉 ⊗ |↓fine〉 , (2.4)

|4, 3〉 = −

√
7
8
|I =

7
2
,mI =

7
2
〉 ⊗ |↑fine〉 +

√
1
8
|I =

7
2
,mI =

7
2
〉 ⊗ |↓fine〉 . (2.5)
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Figure 2.2: 133Cs fine and hyperfine level schemes [46]. (A) Fine structure level scheme. The lattice wavelength
λ = 865.9 nm corresponds to the so called magic wavelength (horizontal dashed line). It is red detuned form the
D2 transition 2S 1/2 −→

2P3/2 and blue detuned form the D1 transition 2S 1/2 −→
2P1/2. The |↑fine〉 state experiences

an attractive potential from the σ+-polarized component, which only has a contribution form the D2 line, and no
potential form the σ−-polarized component since the D1 and D2 line contributions cancel each other. For the
|↓fine〉 state the opposite happens. (B) Hyperfine structure level scheme. The 2S 1/2 orbital splits in 16 hyperfine
levels. The optical pumping (F = 4 −→ F′ = 4) and repumping (F = 3 −→ F′ = 4) beams are used to prepare the
atoms in the |4, 4〉 state. The push-out beam (F = 4 −→ F′ = 5) is used to remove atoms in F = 4 by radiation
pressure without removing atoms in F = 3. The pair of states |3, 3〉 ←→ |4, 4〉 is called the σ-Qubit, while the pair
|3, 3〉 ←→ |4, 3〉 is called π-Qubit.

Therefore, the potential of each of the three states in a one-dimensional lattice is given by3

U|4,4〉(~r) = αIσ+(~r), (2.6)

U|3,3〉(~r) =
1
8
αIσ+(~r) +

7
8
αIσ−(~r), (2.7)

U|4,3〉(~r) =
7
8
αIσ+(~r) +

1
8
αIσ−(~r), (2.8)

where α is a constant that depends on cesium polarizability, and Iσ±(~r) is the intensity of the σ±-polarized
component of the light field at the position ~r. In our case, we trap the atoms in a one-dimensional
lattice formed by two counter-propagating linearly-polarized laser beams with Gaussian profiles and
equal powers. Since the linear polarization can be decomposed into left and right-circular polarization
components with equal amplitudes, we effectively have two superimposed lattices, one σ+-polarized and
one σ−-polarized. The intensity profile of the two lattice components is

Iσ±(x, r) =
4P

πw2(x)
e−2r2/w2(x) cos2 [

k(x − x±)
]
, (2.9)

3 The contribution of Iσ+ and Iσ− to the potential depends on the lattice wavelength. The expressions here given correspond to
the magic wavelength. A different wavelength can be chosen such that U|3,3〉 only depends on Iσ− while U|4,3〉 only depends
on Iσ+ . Such configuration is optimal for certain measurements here presented. However, a change of lattice wavelength
requires a major re-optimization of the setup, which given the time constraint we have decided not to do.
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2.1 Internal degrees of freedom

where x and r are the longitudinal and transverse positions, k = 2π/λ with λ being the lattice wavelength,
w(x) is the Gaussian waist at x, P is the power of each of the two counter-propagating beams and x± is
the position of the σ±-polarized lattice.

Using Eq.(2.9), the three potential landscapes in Eqs.(2.6-2.8) can be written as a sinusoidal potential
with a depth and offset that depend on the relative position between the two σ-polarized lattices (see
Fig. 2.3).

U|4,4〉(x) = −U(0) cos2 [
k(x − x+)

]
, (2.10)

U|3,3〉(x) = −U(x+ − x−) cos2 [
k
(
x − xpos(x−, x+)

)]
− Uoffs(x+ − x−), (2.11)

U|4,3〉(x) = −U(x+ − x−) cos2 [
k
(
x − xpos(x+, x−)

)]
− Uoffs(x+ − x−), (2.12)

with

U(x) =
αI0

8

√
50 + 14 cos(2kx) (2.13)

Uoffs =
αI0

2
−

U(x)
2

(2.14)

xpos(x1, x2) =
λ

4π
arctan

(
7 sin(2kx1) + sin(2kx2)
7 cos(2kx1) + cos(2kx2)

)
, (2.15)

where we restricted ourselves to the positions along the lattice axis (r = 0), we assume that x is much
smaller than the Rayleigh length4 (w(x) ≈ w(0)), and I0 = 4P/(πw2(0)) represents the peak intensity of
each σ-polarization component.
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Figure 2.3: Spin dependent optical lattice potential. The three states |3, 3〉, |4, 3〉 and |4, 4〉 experience different
potential landscapes when there is a relative displacement ∆x = x+ − x− between the two σ-polarized lattice
components, Eqs.(2.10-2.12). The three curves here shown correspond to x+ = 0.25λ/2 and x− = 0. The position
of U|4,4〉 only depends on x+, its amplitude is independent of both x− and x+, and it has zero vertical offset. On the
other hand, U|3,3〉 and U|4,3〉 both acquire a vertical offset Eq.(2.14), their depth U is reduced Eq.(2.13) and their
effective positions depend on both x− and x+, Eqs.(2.11, 2.12 and 2.15).

4 In our experiment, the atoms are loaded within a range of less than 200 lattice sites, which is one order of magnitude smaller
than the Rayleigh length zR = πω2

0/λ
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Chapter 2 Experimental apparatus and measurement techniques

2.1.3 Spin state preparation

As already mentioned in Sec. 2.1.2, for the measurements presented in this thesis only the three hyperfine
levels |3, 3〉, |4, 3〉 and |4, 4〉 are used. However, after the atoms are trapped by the MOT and transferred
into the lattice, they are homogeneously distributed along the 16 different hyperfine levels of 62S 1/2,
Fig. 2.2. This is why every measurement sequence starts with a spin state preparation that transfers all
atoms into the outermost hyperfine state |4, 4〉. This is done by optical pumping, a well known technique
developed in the 50’s by the Nobel prize winner Alfred Kastler [55].

To prepare the atoms in the target state |4, 4〉, a σ+-polarized optical pumping beam, frequency-locked
to the |F = 3〉 −→ |F′ = 4〉 transition, shines the atoms in the direction of the quantization axis defined
by a nearly homogeneous magnetic field of 3 G parallel to the lattice5. The magnetic quantum number
of the atom increases by one unit for every absorbed photon mF −→ mF + 1, until it reaches the target
state mF = 4. The atoms decaying to the F = 3 are pumped back by a repumper beam locked to the
|F = 3〉 −→ |F′ = 4〉 transition, see Fig. 2.2B. Importantly, |4, 4〉 is a dark state because there are no
resonant transitions induced by the σ+-polarized optical pumping and repumper beams. This reduces
the probability of heating the atoms that have already reached the target state. Once the atoms reach
|4, 4〉 and the pumping beams are turned off, the hyperfine sublevel lifetime is limited by off-resonant
scattering with lattice photons [56, 57], to around 100 ms (half-life) [58]. This doesn’t pose a problem
for the measurements presented in this thesis since it is at least three orders of magnitude longer than the
physical processes here studied.

2.1.4 Microwave driving and σ-Qubit

The atoms initially prepared in |4, 4〉 can be transferred to |3, 3〉 by a microwave driving field that couples
the two states with a Rabi frequency6 ΩMW = 〈3, 3| µ̂~B |4, 4〉 /~ [59, 60]. In order to address a specific
transition between hyperfine levels, the quantization axis field of 3 G lifts the degeneracy by 1.05 MHz
between consecutive levels [46], allowing us to exclusively couple the two hyperfine states |4, 4〉 and
|3, 3〉, Fig 2.2B. This way we avoid populating any of the other hyperfine states during the microwave
driving. This means that we effectively have a two level system that we call σ-Qubit, because the
transition requires an angular momentum change of mF −→ mF ± 1.

The microwave driving field is generated by a horn placed close to the glass cell with which Rabi
frequencies of up to 50 kHz are reached. A detailed description of the microwave generation setup can
be found in [50]. Given a certain Rabi frequency, any desired superposition of the two σ-Qubit states is
obtained by controlling the length of the microwave pulses.

2.1.5 Raman driving and π-Qubit

As mentioned in Sec. 2.1.4, with microwave driving we reach Rabi frequencies up to 50 kHz. However,
for the measurements presented in Chapter 4, frequencies of up to the MHz regime were needed. To
reach the required Rabi frequencies we couple the two hyperfine states |4, 3〉 and |3, 3〉 with a pair of
Raman beams. The Raman coupling allows us to reach much higher transition frequencies even though
it is a two-photon process as opposed to the microwave transition that is a one-photon process. This is
due to the fact that the microwave field couples the two states by a magnetic dipole transition while the
Raman driving field couples the two states by electric dipole transitions [61]. Additionally, the Raman
transitions used here are driven by optical driving fields and can therefore be focused to achieve high

5 The magnetic field that defines the quantization axis is generated by a pair of coils in Helmholtz configuration [50]
6 Electric dipole transitions are forbidden due to selection rules.
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2.1 Internal degrees of freedom

intensities. Analogously to the σ-Qubit, the two states |4, 3〉 and |3, 3〉 effectively form a two level system
that we call π-Qubit, because the transition preserves the atom’s angular momentum (see Fig 2.2B).
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Figure 2.4: Raman and microwave transitions. (A) A Raman transition between two states |1〉 and |2〉 is a
two-photon process induced by two beams whose relative frequency difference ∆12 + δR is close to the energy
difference between |1〉 and |2〉 up to a possible detuning δR. Both beams have a detuning ∆ from a third excited
level |3〉. The atom is excited from its initial state |1〉 by the pump beam and decays to |2〉 emitting a photon
stimulated by the Stokes beam. The process effectively couples |1〉 and |2〉 with a Rabi frequency ΩR. (B) In our
system, the Raman transitions are used to transfer the atoms between the |3, 3〉 and |4, 3〉 states (π-Qubit) with a
pair of σ+-polarized beams. on the other hand, microwave transitions are used to transfer atoms between the |3, 3〉
and |4, 4〉 states (σ-Qubit) with a single-photon process induced by a resonant microwave driving field.

A Raman transition between two states |1〉 and |2〉 consists of a two photon process induced by a
pair of off-resonant beams, detuned by a frequeny ∆ from a third excited level |3〉, and whose relative
frequency difference is near the transition frequency ∆12 between |1〉 and |2〉 (see Fig.2.4A). The atom
initially prepared in |1〉 is excited by a photon from the pump beam and then decays to |2〉 emitting a
photon stimulated by the Stokes beam. In the case of Raman transitions between hypefine levels of 133Cs
ground state, the Rabi frequency of the transition is [62]

ΩR =
√

X(mF)
ΩSΩP

2∆
(2.16)

where ΩP and ΩS are the single-photon Rabi frequencies of the resonant optical transitions induced by
the pump and Stokes beams respectively, mF is the magnetic quantum number of the lower level (F = 3),
and X(mF) is a factor that depends on the polarization of the two beams

X(mF) =



1
288 (4 + mF)(5 + mF) : (π, σ−), (σ+, π)

1
288 (4 − mF)(5 − mF) : (π, σ+), (σ−, π)

1
9

[
1 − ( mF

4 )2
]

: (σ+, σ+), (σ−, σ−)

0 : (π, π), (σ±, σ∓)

(2.17)

where the two terms in parenthesis denote the polarization of the pump and Stokes beams respectively.
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Chapter 2 Experimental apparatus and measurement techniques

For the measurements presented in chapter 4, we need to couple the two π-Qubit states instead of the
σ-Qubit states that we couple by microwave driving. This is because the potential landscapes experienced
by the two π-Qubit states are equal between them up to a longitudinal displacement, while the σ-Qubit
states experience potential landscapes with different depth and vertical offset (see Fig. 2.3). Having equal
potentials for the two spin states is essential for the interferometric measurements presented in chapter
4, where the eigenstates of the two potentials need to coincide (up to a spatial displacement). From
Eq. (2.17) we know that the highest coupling (given that in our case mF = 3) is obtained with the (π, σ−)
or (σ+, π) configurations resulting in X(mF) = 0.1944. However, those configurations do not couple
the π-Qubit states. The only two configurations that produce a non-zero coupling between the π-Qubit
states are (σ+, σ+) and (σ−, σ−) which result in X(mF) = 0.0486. The two configurations work equally
well for our purpose; we have simply chosen the (σ+, σ+) configuration (see Fig. 2.4B) because it was
easier to implement in the setup. The Raman beams are overlapped with the σ+ polarized lattice beam
and they thus go trough the same optics before reaching the atoms. The beams have a Gaussian profile
with a waist of around 17 µm. Such a small waist means we have a high intensity at the position of the
atoms, which translates in high Rabi frequencies. With a detuning of around ∆ = 50 GHz we reach Rabi
frequencies up to ΩR = 6.5 MHz.

2.1.6 Lattice depth and position control

As we have already seen in Sec. 2.1.2, the position and depth of the potential experienced by the different
hyperfine states |4, 4〉, |4, 3〉 and |3, 3〉 depends on the position and intensity of the two σ-polarized lattice
components according to Eqs. (2.10-2.12). In this section I explain how the intensity and position of the
two lattice components are actively controlled using acousto-optic modulators (AOM) in closed feedback
loops. A more detailed explanation can be found in [53, 58].

One of the two counter-propagating lattice beams, called non-synthesized arm, has a fixed linear
polarization and only its intensity is actively controlled with the help of an AOM in a closed feedback
loop as shown in Fig. 2.5A. A fraction of the beam’s power is reflected by a pickup plate into a photodiode.
The photodiode’s signal is compared to a reference voltage produced by an arbitrary waveform generator.
The voltage difference between the photodiode and the reference is used as an error signal and sent to a
lock box7, whose output is mixed with an 80 MHz RF signal generated by a DDS8. The mixed RF signal
is finally used to drive the AOM which controls the beam’s intensity, therefore closing the feedback loop.

The opposite counter-propagating lattice beam, called synthesized arm, is controlled with two AOMs.
Each AOM controls the phase and intensity of each σ-polarized component. Initially, the beams
corresponding to the σ+ and σ− components are horizontally and vertically polarized respectively. A
quarter wave plate9 transforms the horizontally polarized beam into a left-circularly polarized beam and
the vertically polarized beam into a right-circularly polarized beam.10 Two independent loops, like the
one used for the non-synthesized arm, are used to actively control the intensity of each component. A
wollastone prism is used to split the horizontal and vertical polarization components in order to control
the two components independently (see intensity control box in Fig. 2.5B).

The phases of the two synthesized-arm components are actively controlled by two independent optical
phase-locked loops (see phase control box in Fig. 2.5B). To achieve this, a fraction of their power is

7 A proportional-double-integral-derivative (PI2D) lock box D2-125 from Vescent Photonics
8 Direct digital synthesizer AD9954 from Analog Devices
9 Since wave plates are never perfect, we actually use two (imperfect) quarter wave plates to produce the desired polarization

10 The quantization axis points in the same direction as the non-synthesized arm. The right-circularly polarized beam of
the synthesized arm therefore corresponds to the σ− component while the left-circularly polarized corresponds to the σ+

component
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Figure 2.5: Intensity and phase control of the lattice beams. The two counter propagating laser beams that form
the lattice are obtained from a common beam, split by a beam splitter (BS). One beam forms the non-synthesized
arm (A) and the other one forms the synthesized arm (B). The setup shown in B is called polarization-synthesizer
and is capable of producing any desired polarization (figure taken from [53]). The polarization of the non-
synthesized arm is fixed, and only its intensity is controlled by a feedback loop. The polarization and amplitude of
the two polarization components are controlled by four independent feedback loops as explained in the main text.
The abbreviations are acousto-optic modulator (AOM), referenceclock (CLK), direct digital synthesizer (DDS),
horizontal linear polarization (H), polarizing beam splitter (PBS), photodiode(PD), phase-frequency detector (PFD),
proportional-double-integral-derivative controller (PI2D), polarization maintaining (PM), pickup plate (PP), radio
frequency (rf), universal serial bus (USB), vertical linear polarization (V), voltage-controlled oscillator (VCO),
Wollaston prism (WP), half-wave plate (λ/2),and quarter-wave plate (λ/4).

reflected by a pickup plate after they have gone through their corresponding AOMs. Additionally, a
fraction of the power is picked up before the AOMs and is used as a reference. The beams picked up
before and after the AOM are overlapped11, producing a beating signal with a frequency of around
80 MHz, corresponding to the frequency of the RF driving of the AOM. The beating signal, detected
with a fast photodiode12, is compared with a phase frequency discriminator13 to a reference RF signal
generated by a DDS14. The phase difference is used as an error signal and sent to a lock box15, whose
output controls a voltage controlled oscillator that finally drives the AOM. The phase of each beam can
then be controlled by tuning the phase of the two separate reference RF signals produced by the DDS.
The

The position of the two lattice components x± are directly related to the relative phase between the two

11 Similarly to the intensity control loop, the two polarization components are split by a wollastone prism in order to independ-
ently control the two components.

12 Hamamatsu G4176-03
13 MC100EP140, ON Semiconductor
14 Direct digital synthesizer AD9954 from Analog Devices
15 A proportional-double-integral-derivative (PI2D) lock box D2-125 from Vescent Photonics
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Chapter 2 Experimental apparatus and measurement techniques

counter-propagating beams according to the following expression

x± =
λ

2
(φ± − φ0)

2π
, (2.18)

where φ± is the phase of the synthesized beam corresponding to the σ±-polarized component and φ0
is the phase on the non-synthesized beam. This way, the position of the two lattice components are
computer controlled via the DDS. The optical phase-locked loop reaches a bandwidth of around 800 kHz
and a slew rate of 0.84 rad µs−1. This is particularly important for the measurements presented in Chap. 5.

2.2 External degrees of freedom

Besides the internal degrees of freedom, the atomic quantum state has external degrees of freedom. The
trapped atom can populate different motional energy levels (eigenstates) given by the solutions of the
Schrödinger equation for an atom in the lattice potential. An example of the solutions for a potential
depth of 25 µK is shown in Fig. 2.1B where the wave functions corresponding to the first 10 levels are
plotted16. The following chapters in this thesis are devoted to study the external degrees of freedom,
meaning the dynamics of the atomic wave packet in the trapping potential. The ability to control the
internal atomic degrees of freedom (Sec. 2.1) is rather used as a tool to study the wave packet dynamics.
In the following sections, the methods used to control and monitor the external degrees of freedom of the
atoms trapped in the lattice potential are presented.

2.2.1 Motional ground state preparation

In Sec. 2.1.1 we have seen that after sub-Doppler cooling the temperature of the atoms is on the order
of 10 µK, corresponding to a ground state (lowest motional energy level) population of around 40%.
In this section I describe the cooling technique, first realized by Förster et al., [64], used to increase
the longitudinal ground state population up to around 98%. Cooling the atoms down to the motional
ground state is desirable to avoid inhomogeneous effects [60]. Moreover, the state preparation in a single
motional energy level is essential for the measurements discussed in Chapters 3, 4 and 5.

The cooling technique consists of a cycle that reduces the motional energy level of the atom using
sideband-resolved microwave transitions. Sideband-resolved here means that the microwave pulses are
spectrally narrower than the spacing between consecutive energy levels ωvib = ωn+1 − ωn where ~ωn

is the energy of the nth level (see Fig. 2.6). This way it is possible to address transitions on a specific
sideband. Particularly, transitions on cooling sidebands n −→ m with m < n reduce the energy of the atom
by n − m energy quanta. The cycle used to cool the atoms to the ground state addresses the first cooling
sideband to transfer the atoms from the motional level n of |4, 4〉 to the motional level n − 1 of |3, 3〉 (see
Fig. 2.6). The atoms are then pumped back by the repumper beam (F = 3 −→ F′ = 4) and decay back,
closing the cycle17. Importantly, the ground state of |4, 4〉 is a dark state of the process since there are no
more resonant transitions once the atom reaches that state.

One essential ingredient that is required for the cooling process to work is the coupling between
different motional levels. The local minima of the lattice potential are nearly harmonic, and it is well
known that the wave functions corresponding to different energy levels in a harmonic potential are
orthogonal. This means that the microwave driving field cannot couple different motional levels as long

16 The solutions are obtained numberically using the Strang split-step integration method [63]
17 If the atom decays to F = 4 with mF < 4, the atom is pumped back to |4, 4〉 by the σ+-polarized optical pumping beam

(F = 4 −→ F′ = 5) which is also turned on during the whole cooling process
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Figure 2.6: Motional ground state cooling. The microwave driving induces a transition from the motional level n
of |4, 4〉 to the motional level (n − 1) of |3, 3〉, therefore reducing the energy of the atom. The remumping beam
(F = 3 −→ F′ = 4) transfers the atom to 62P3/2 from where it decays back to close the cycle. Once the atom reaches
the ground state of |4, 4〉 there are no resonant transitions available, making it a dark state.

as the potentials corresponding to |4, 4〉 and |3, 3〉 are equal. Therefore, in order to enable the microwave
sideband transitions, one of the spin potentials is longitudinally displaced by around ∆x = 17 nm, lifting
the orthogonality between different motional states [65] (see Fig. 2.6).

There are two sources of heating during the cooling cycle [65]: recoil heating and projection heating.
The recoil heating is induced by the absorption and spontaneous emission of the microwave photons

∆Erec = ~2k2/m, (2.19)

where k is the wave vector of the microwave driving field. The projection heating, on the other hand, is
produced by the non-vanishig projection of the motional states of |3, 3〉 onto the motional states of |4, 4〉
during the repumping process. The average energy increase per cycle repetition due to projection heating
in the harmonic approximation is [65]

∆Eproj = mω2
vib∆x2/2, (2.20)

where ~ωvib is the energy difference between consecutive vibraitonal levels and ∆x is the relative
displacement between the two lattice components. The effective energy change over one cooling cycle is
then

∆Etot = ∆Erec + ∆Eproj − ~ωvib. (2.21)

The condition to cool the atoms is ∆Etot < 0, known as Lamb-Dicke regime [65, 66]. In our case, the
recoil heating is orders of magnitude smaller than ~ωvib and can be neglected. The lattice displacements
is chosen to be ∆x = 17 nm which is a trade off between a high coupling between consecutive motional
levels and a small projection heating.

The microwave sideband cooling only reduces the axial temperature of the atoms. However, some
measurements, particularly the ones presented in Chap. 5, are sensitive to the transverse temperature of
the atoms as well. In order to reduce the transverse temperature of the atoms, during molasses cooling
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we superimpose to the optical lattice a blue-detuned donut-shaped beam. Thereby, we increase the
confinement of the atoms in the direction transverse to the optical lattice. By subsequently ramping
down the intensity of the donut beam adiabatically, we lower the transverse temperature of the atoms
approximately by a factor of 3 (see Sec. 2.2.3). For more details about the donut-shaped beam see [58].

2.2.2 Robust measurement of motional ground state population

For the measurements presented in Chapter 5, a robust measurement of the ground state population
fraction P0 is required. One technique to obtain the ground state population, previously used in this
group, consists in measuring the population fraction pcool

e transferred by a microwave π-pulse tuned to
the cooling sideband (n −→ n − 1) and the fraction pheat

e transfered by an equal pulse tuned to the heating
sideband (n −→ n + 1). The ground state population is then P0 = 1 − pcool

e /pheat
e [67]. However, since the

spectral widths and positions of the sidebands depend on the temperature of the atoms [68], multiple
points are needed in order to determine the height of each sideband.

We have used a more suitable technique, first proposed in [65], which requires a single point to
determine the ground state population fraction. The technique consists in selectively removing from the
trap all the atoms that populate higher motional states while retaining those in the ground state. To achieve
this, all atoms are first transferred from |4, 4〉 to |3, 3〉 with a microwave π-pulse on the carrier transition,
(n −→ n) therefore preserving the population distribution of the motional levels18. Subsequently, the
relative position x↑ − x↓ between the σ+ and σ− components of the lattice is adiabatically increased from
zero to around 17 nm to maximize the overlap between consecutive motional levels [65] i.e. maximize
the efficiency of the microwave transitions on the motional sidebands. At this point, a 10-repetition
removal cycle begins. The cycle starts with a microwave π-pulse resonant to the first cooling sideband
(n −→ n − 1) that transfers all atoms to |4, 4〉 except those in the ground state. The atoms transferred to
|4, 4〉 are then removed by radiation pressure with a D2-line beam resonant to the |F = 4〉 −→ |F′ = 5〉
transition. The ground state population is given by the remaining population fraction after the removal
cycle finishes. The multiple repetitions of the removal cycle are required to: 1) Ensure that all excited
atoms are removed, in spite of the imperfect efficiency of the |3, 3〉 −→ |4, 4〉 transfer. 2) Make the detection
technique robust against changes of the longitudinal temperature of the atoms (i.e. equally accurate for
high and low temperatures).

In Fig. 2.7B, two spectra measured with the technique previously described are shown. The horizontal
axis corresponds to the frequency of the microwave driving field used for the 10 pulses of the pushout
cycle. The power and duration of the pulses is the same for all points and is chosen so that the transfer
on the first sideband (n −→ n ± 1) is maximized. The blue points correspond to atoms prepared in the
longitudinal ground state as described in Sec. 2.2.1 while the orange points correspond to atoms not
prepared in the ground state (only molasses cooling, see Sec. 2.1.1). The horizontal offset between the
two spectra is on the order of 4 kHz and is within the long term fluctuations (on the order of hours) of
the transition frequency due to external magnetic field fluctuations. The flat bottom of the 1st sideband
makes the ground state population measurement robust against changes of the longitudinal temperature
of the atoms as well as external magnetic field fluctuations.

The model used to fit the spectra is given by the following expression

PGS(ν) = B
∞∑

n=0

pn

1 − ∞∑
m=0

αn,me
−

(
ν−νSBm
√

2σ

)2
N

, (2.22)

18 This is done in a non-displaced lattice (no logitudinal displacement between σ+ and σ− components of the lattice) to suppress
the transitions between different motional levels.
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Figure 2.7: Motional ground state population measurement. (A) The ground state population is measured by
removing all atoms except those that are in the ground state. The atoms that populate the excited motional levels
are first transferred from |3, 3〉 to |4, 4〉 with a sideband-resolved microwave π/2 pulse. They are then removed from
the lattice by radiation pressure with a beam resonant to the F = 4 −→ F′ = 5 transition. (B) Spectra measured with
the sequence described in A, where the removal cycle was repeated 10 times. The horizontal axis is the frequency
of the 10 microwave π-pulses. The vertical axis is the fraction of remaining atoms after the removal cycle. Orange
points were measured with atoms that were not cooled into the longitudinal ground state, while blue points were
measured with atoms cooled in the ground state with the method described in Sec. 2.2.1.

where B is the efficiency of the initial carrier π-pulse (from |4, 4〉 to |3, 3〉), pn is the population probability
of the nth motional level, νSB is the longitudinal trap frequency, αn,m is the π-pulse transfer efficiency
from the nth to the mth level, σ is the spectral width of the π-pulse, and N is the number of repetitions of
the pushout cycle (10 in our case). The sum over m corresponds to the different sidebands (each one at
position νSBm) while the sum over n corresponds to the contribution of the initial population pn of each
motional level to all sidebands. For the fits shown in Fig. 2.7B, the transfer efficiencies are theoretically
computed from the Franck-Condon factors while the other parameters are free.

To understand the model, consider first the term corresponding to the sum over m

Tπ,n(ν) =

∞∑
m=0

αn,me
−

(
ν−νSBm
√

2σ

)2

. (2.23)

This term represents the probability that an atom initially in the nth motional level is transferred from
|3, 3〉 to |4, 4〉 after a single π-pulse. This means, (1 − Tπ,n)N is the probability that the atom remains in
|3, 3〉 after the N pushout repetitions. Therefore, given an ensemble of thermal atoms that populate the
motional levels with probabilities pn, the probability that the atoms remain in |3, 3〉 is given by the sum
in Eq.(2.22), with B correcting for the fraction of the total population that is lost even before the removal
cycle19. Notice that the term 1 − Tπ,n has an inverted Gaussian-like shape and the Nth power is what
produces the desired flat bottom.

19 The main contribution to the atom losses comes form the atoms that remain in |4, 4〉 after the initial carrier π-pulse. Those
atoms are pushed out on purpose, otherwise they may be transferred to |3, 3〉 during the removal cycle
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2.2.3 Measurement of potential depth and transverse temperature

The measurements presented in Chapter 5 require knowing the depth of the lattice potential U0 as well as
the transverse temperature T⊥ of the atoms after the state preparation. The two parameters are essential
for the proper computation of the optimal control transport trajectories. In this section I explain the
method used to simultaneously measure the two parameters.

When atoms prepared in the longitudinal ground state are transported by moving the lattice potential,
the atoms may be heated up during the transport when the process is not adiabatic. The final longitudinal
temperature of the atoms after transport, given a specific transport trajectory, depends on U0 and T⊥.
Particularly, when the transport trajectory is linear, the process starts by a momentum kick (the lattice
starts moving) that puts the atom in a coherent state that oscillates with a frequency that depends on
the depth of the trapping potential. The transport then ends by a second momentum kick (the lattice
stops moving) in the opposite direction. When the transport time is a multiple of the oscillation period,
the atom goes back to the longitudinal ground state at the end of the transport, otherwise, the atom has
a higher probability of populating the excited states. This is observed in the measurements shown in
Fig. 2.8. The atoms were transported over a distance of one lattice site with a linear ramp, and the ground
state population was measured with the technique presented in Sec. 2.2.2. The three plots in Fig. 2.8(A-C)
correspond to measurements done in three different potential depths.
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Figure 2.8: Linear transport. Atoms are transported by one lattice site with a linear transport ramp. The atoms
receive a momentum kick at the beginning of the transport and a second momentum kick in the opposite direction at
the end. For transport durations close to a multiple of the trapping period the ground state population after transport
is close to unity, otherwise, they may end up in highly excited states. Here I show three examples of the measured
ground state population after linear transport of different durations, in an optical lattice potential with a trap depth
U0 of (A) (28.61 ± 0.23) µK (B) (14.31 ± 0.13) µK and (C) (6.72 ± 0.06) µK. The orange points are the measured
ground state population and the blue points are the fit, from which the trap depth and transverse temperature are
obtained. (D) transverse temperature versus trap depth U0 obtained form the fit to the three measurements (blue
points). The solid blue curve shows the expected square root scaling. The green point corresponds to the values
obtained with radially cooled atoms.
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The exact probability of occupying the ground state after a transport operation is obtained by simulating
the wave packet evolution in the moving potential using the Strang split-step integration method [69].
More details on the simulation can be found in [63, 70]. The simulation takes into account the two-
dimensional transverse distribution of the atoms assuming a Boltzmann distribution in a harmonic
potential [65]

P(r,T⊥) =
mω2

⊥

kBT⊥
r exp

(
−

mω2
⊥r2

2kBT⊥

)
, (2.24)

where r is the transverse distance from the lattice axis and ω⊥ is the trapping frequency in the transverse
directions. Moreover, given that the trapping frequency is two orders of magnitude smaller in the
transverse directions than in the longitudinal direction, r is assumed to be constant during the transport
duration (typically a few longitudinal oscillations). Since the lattice is formed by two counter-propagating
beams with Gaussian profiles, the effective trap depth experienced by the atoms decreases with r and
follows a Gaussian

U(r) = U0 exp
− 2r2

w2
DT

 , (2.25)

where wDT is the waist of the lattice beams and U0 = U(0) is the depth along the axis. The ground state
population after transport, for a thermal ensemble of atoms with transverse temperature T⊥ in a lattice
potential of depth U0 is then given by

PGS(T⊥,U0) =

∫ ∞

0
dr PGS(U(r))P(r,T⊥), (2.26)

where PGS(U(r)) is the ground state population after transport assuming that all atoms experience a
potential depth equal to U(r).

The function in Eq.(2.26), with the integral replaced by a trapezoidal sum over about 10 different
discrete values of r, is used as a fitting function on the data shown in Fig. 2.8. The free parameters are
the transverse temperature T⊥ and the potential depth along the axis U0. This way, the linear transport is
used as a thermometer to extract the transverse temperature of the atoms and the longitudinal potential
depth. In Fig. 2.8D I plot the transverse temperature versus the trap depth obtained form the fits to the
three measurements in Fig. 2.8(A-C). The transverse temperature clearly decreases with the trap depth,
following a square root dependence. This is expected because the atoms are initially cooled by molasses
cooling (see Sec. 2.1.1) in a potential depth of around 370 µK and then the depth is adiabaically lowered to
the desired value. During the adiabatic lowering of the potential depth, the population distribution in the
different motional levels is preserved, but the energy of each level decreases approximately proportional
to the square root of the depth. This can be easily seen in the harmonic approximation where the energy
of the nth motional level is En = (1/2 + n)~ωHO with

ωHO = 2π

√
2U0

mλ2 . (2.27)

The harmonic approximation is reasonable given that only the first few bounded energy levels are
populated after molasse cooling (at least 96% of the population is within the first half of the bounded
states of the shallowest lattice used for the measurements). This explains the square root scaling of
the temperature shown by the solid blue curve. The curve was computed based on the measurement
corresponding to a depth of 28.61 µK, i.e. it shows the values expected from the square root scaling as
computed from that single point.

As already mentioned in Sec. 2.2.1, the cooling in the transverse direction is improved by doing the
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Chapter 2 Experimental apparatus and measurement techniques

molasse cooling in a deeper transverse potential, induced by a blue-detuned donut-shaped beam that
radially surrounds the atoms along the lattice. The donut-shaped beam is adiabatically turned off after
molasse cooling therefore reducing the transverse temperature as shown by the green point in Fig. 2.8D.

2.2.4 Raman Ramsey interferometry

The measurements presented in chapter 3 and chapter 4 rely on quantifying the overlap between an
evolving wave function and a reference wave function. For that purpose we use a technique called
Ramsey interferometry which originated in the field of Nuclear Magnetic Resonance [71]. In this section
I present the experimental sequence and the model used to extract both the modulus and phase of the
overlap between the two wave functions. For simplicity, the two states of the π-Qubit will be simply
called spin-up |↑〉 B |4, 4〉 and spin-down |↓〉 B |3, 3〉.
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Figure 2.9: Ramsey interferometry. (A) The Ramsey interferometry sequence starts with all atoms in spin-down,
typically prepared in an eigenstate of the trapping potential, Eq.(2.28). (B) A π/2-pulse is applied at time t = 0,
putting the atomic wave function in a balanced superposition between the two spin states, Eq.(2.29). (C) Each
wave function evolves over a desired waiting time t = τ according to its corresponding potential, Eq.(2.30). The
spin-down potential is typically kept static, meaning that the component of the wave function in spin down will
also remain static (provided it was prepared in an eigenstate). (D) A second π/2-pulse with a control phase ϕR with
respect to the first one is applied at time t = τ, Eq.(2.31). (E) All atoms in spin-up are removed and the remaining
population fraction is measured. The remaining population fraction as a function of the control phase ϕR follows
a sinusoidal fringe from which the overlap between the two spin components of the wave function is obtained,
Eq.(2.32). The green circles correspond to the measured spin-down population while the green curve is the fit, with
the dashed curves indicating the confidence interval.

The sequence starts by preparing the atom in an eigenstate of the spin-down potential, Fig. 2.9A

|Ψ(0)〉 =
√

p |↓〉 ⊗ |ψ(0)〉 , (2.28)

where ψ(0) is an eigenstate of U|3,3〉(x) and p ∈ [0, 1] is the overall efficiency of the state preparation. The
value of p is mainly determined by the efficiency of the spin state preparation in |4, 4〉 (see Sec. 2.1.3)
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2.2 External degrees of freedom

and the efficiency of the microwave transfer from |4, 4〉 to |3, 3〉 (see Sec. 2.1.4). Subsequently, a Raman
π/2-pulse is applied at t = 0. The atom is therefore in a coherent balanced superposition of the two spin
states, Fig. 2.9B ∣∣∣Ψ π

2
(0)

〉
=
√

p
[
−i sin

(
θ

2

)
|↑〉 ⊗ |ψ(0)〉 + cos

(
θ

2

)
|↓〉 ⊗ |ψ(0)〉

]
. (2.29)

where θ = π/2 + δθ is the Rabi angle induced by the pulse, with δθ being a possible deviation from
a perfect π/2 rotation. The two components of the wave packet then evolve during a time τ in their
corresponding potentials, Fig. 2.9C∣∣∣Ψ π

2
(τ)

〉
=
√

p
[
−i sin

(
θ

2

)
|↑〉 ⊗ |ψ↑(τ)〉 + cos

(
θ

2

)
|↓〉 ⊗ |ψ↓(τ)〉

]
. (2.30)

where ψ↑(τ) and ψ↓(τ) denote the wave functions after an evolution time τ in the spin-up and spin-down
potentials respectively. Subsequently, at time t = τ, a second π/2-pulse with a variable control phase ϕR

relative to the first one, gives rise to an interference pattern, Fig. 2.9D

∣∣∣Ψ π
2 ,

π
2
(τ)

〉
=
−i
√

p
2
|↑〉 ⊗

[
sin(θ)

∣∣∣ψ↑(τ)
〉

+ sin(θ)e−i(ϕR+δRτ)
∣∣∣ψ↓(τ)

〉]
(2.31)

+

√
p

2
|↓〉 ⊗

[
(cos(θ) − 1)ei(ϕR+δRτ)

∣∣∣ψ↑(τ)
〉

+ (cos(θ) + 1)
∣∣∣ψ↓(τ)

〉]
,

where δR is the Raman detuning form the π-Qubit transition in the dark, i.e. when the Raman beams are
off. We finally remove all atoms in spin-up and measure the remaining population in spin-down, which
reads

p↓ =
∣∣∣∣〈↓ ∣∣∣ Ψ π

2 ,
π
2
(τ)

〉∣∣∣∣2 =
p
2

[
2 − sin2(θ)

(
1 +V(τ) cos(ϕR + δRτ − ϕ(τ))

)]
. (2.32)

whereV(τ) and ϕ(τ) are the modulus and phase of the overlap
〈
ψ↑(τ)

∣∣∣ψ↓(τ)
〉

respectively. An example
of such measurement is shown in Fig. 2.9E where it can be seen that the spin-down population follows a
simple sinusoidal fringe. The fringe has visibilityV(τ) and phase offset ϕ(τ) − δRτ.

The overlap
〈
ψ↑(τ)

∣∣∣ψ↓(τ)
〉

is obtained by fitting Eq.(2.32) to the measured fringe. However, still
one more step has to be done. In order to obtain the phase ϕ(τ), the linear phase acquired due to the
Raman detuning δRτ has to be removed form the phase obtained from the fringe fit. The term δRτ is
not at all negligible because δR is equal to the lightshift produced by the Raman beams, which is on
the order of a few MHz. This is due to the fact that δR corresponds to the detuning when the raman
beams are off, but the frequency of the raman beams is chosen such that it is resonant to the π-Qubit
transition when they are on, to obtain the highest transfer efficiency. The measurements presented in
chapter chapter 3 and chapter 4 require knowing ϕ(τ) with a precision of a fraction of a radian, over times
of the order of 100 µs, meaning that δR needs to be known with a precision well below 1 kHz. This is
actually achieved using Ramsey interferometry itself. The sequence is exactly as described in this section
with the two lattice components static and in the same position (i.e. the intensity maxima of the two
lattice components coincide). Since the wave packet is prepared in an eigenstate, and the potentials of the
two spin components are the same, then the spin-up and spin-down components of the wave packet will
remain in the eigenstate and both will acquire the same phase. Any phase accumulated by the measured
fringe will then come form the Raman lightshift. An example of the accumulated phases, measured for
different evolution times from a fraction of a µs up to around 50 µs, is shown in Fig. 2.10.
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Figure 2.10: Ramsey phase accumulation due to Raman lightshift. Besides the dynamical phase ϕ(τ), the
Ramsey fringes accumulate a phase δRτ due to the Raman lightshift. (A) The blue points are the measured phases
accumulated after different evolution times, exclusively due to the Raman lightshift, and the orange curve is a
linear fit. (B) Same points and curve shown in A after subtracting the lilnear fit. The dashed curves and colored
area represent the confidence interval of the linear fit.

2.2.5 Potential crosstalk compensation

In the measurements presented in Chapter 5, the |4, 4〉 spin state is used to study the dynamics of the
trapped wave function in a position-modulated trapping potential. The |4, 4〉 state is ideal for that, since
its potential doesn’t depend on the relative position between the two σ-polarized lattices (see Eq.(2.10)).
However, some of those measurements require a static wave function in |3, 3〉 that is used as a reference to
be interfered with the evolving wave function in |4, 4〉. Such a reference wave function is prepared in the
ground state of |3, 3〉 and, therefore, remains static as long as its potential remains static as well. However,
from Eqs.(2.11, 2.15) we know that any modulation on the position or amplitude of the σ+-polarized
lattice induces a modulation on the position and depth of the U|3,3〉 potential. Figs. 2.11(A-C) illustrate
an example where the position x+ of the σ+-polarized lattice follows the trajectory shown in Fig. 2.11A
with a constant amplitude. The induced modulation on the position and depth of the U|3,3〉 potential is
shown by the orange curves in Figs. 2.11(B,C).

The effect of the σ+-polarized lattice on U|3,3〉 can be actively compensated with a modulation on the
position and amplitude of the σ−-polarized lattice. For all the measurements presented in this thesis
the amplitudes of the σ+ and σ− lattice components are kept constant and equal between them. In that
case, the position modulation induced by the σ+-polarized component on U|3,3〉 can be suppressed by a
modulation of the phase φ− of the σ−-polarized component20

φ− = − arcsin
(

φ+

7 f (φ+)

)
, (2.33)

where the function f (φ+) is a long analytical expression computed with Wolfram Mathematica [72]. An
example of such compensation curve is shown as a dashed black line in Fig. 2.11B. The dashed curve is
the required modulation of the σ−-polarized component, according to Eq.(2.33), to suppress the orange
curve that was induced by the modulation of the σ+-polarized component. Such compensation only
suppresses the position modulation on U|3,3〉, the induced depth modulation is still present. However, a

20 We here remind the reader that the phase and the position of the lattice are related by Eq.(2.18).
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Figure 2.11: Motional excitations due to lattice crosstalk. Atoms initially prepared in the longitudinal ground
state of |3, 3〉 may be heated up when the position or intensity of the σ+-polarized lattice component are modulated,
see Eq.(2.11). (A) Example of a modulation on the σ+-polarized lattice position x+. (B) Position of the U|3,3〉
potential (orange solid curve) induced by the modulation of the σ+-polarized component shown in A. And required
modulation of the σ−-polarized lattice component (dashed black curve) to suppress the induced modulation of the
U|3,3〉 potential. (C) Depth of the U|3,3〉 potential induced by the modulation shown in A. In B and C, the position of
the σ−-polarized lattice x− and the intensities of both lattice components Iσ± are kept constant. (D) Measurement
of the crosstalk effect on |3, 3〉. Atoms are prepared in the ground state of |3, 3〉. Subsequently, the position of the
σ+-polarized lattice component is modulated with ramps similar to the one shown in A with different durations
(horizontal axis of the plot). The ground state population after the modulation is measured (vertical axis) in the
case when the crosstalk compensation Eq. (2.33) is done (green squares) and when it is not done (orange circles).
The orange curve corresponds to the simulated ground state population.

compensation of the depth modulation is not required since most of the motional excitations are induced
by the position modulation. This can be clearly seen in the results shown in Fig. 2.11D. Atoms were
prepared in the ground state of |3, 3〉 and the σ+ lattice component was modulated with sequences similar
to the one shown in Fig. 2.11A but with different durations. Finally, the ground state population on
|3, 3〉 was measured with the technique presented in Sec. 2.2.2. The measurement was done in two
different situations: one in which the position compensation was done (green squares) and one in which
no compensation was done (orange circles). It can be clearly seen that the position compensation is
enough to suppress the motional excitations that are otherwise induced by the crosstalk.
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CHAPTER 3

Hello atom, how do you look like?

- Curious kid: “Hello atom, how do you look like?"

- 133Cs atom: “I don’t know, give me a mirror and I will tell you."

- Curious kid: “No problem, I got one here..."

3.1 Introduction

Imaging is a well known concept in the field of optics. From simple pinhole imaging up to time-resolved
femtosecond holographic imaging in the sub-100 nm regime[73], a manifold of techniques have been
developed to record the shape of an object in an image. Any imaging process requires some interaction
with the imaged object and can, therefore, potentially disturb it. In the classical regime this generally does
not pose a problem since the disturbances are typically negligible. Imaging a quantum object, on the other
hand, is a different story. Extending the classical imaging to the quantum realm is a very challenging
problem, since any interaction can produce substantial changes on the imaged object. Another difficulty
comes from the fact that, unlike most classical objects, the exact state of a quantum object strongly
depends on its environment. An atom trapped in our optical lattice potential looks different form the one
freely flying inside the vacuum chamber. The answer to how does an atom looks like thus depends on the
external conditions, unlike a football that looks pretty much the same in my hands, on the table or on
Ronaldo’s foot.

The idea of observing a quantum object dates back to Werner Heisenbeng who discussed the idea of
using a microscope to observe an electron illuminated with light [38]. Since then, multiple techniques
to image quantum objects have been developed and realized, including atomic density microscopy
by nonlinear atomic response [41, 42], photoionization microscopy [74, 75], electron wave function
measurement by angle-resolved photoemission [43], single photon holograms [44], atom-localization
via position dependent Ramsey interferometry [76], recollision-based electron holography [77, 78],
sequential measurement of complementary variables [45], among others. In this chapter I present a
method to obtain a direct spatial image of a quantum wave packet ψ(x, t) at any evolution time t with
high accuracy, using Ramsey atom interferometry (see Sec. 2.2.4), and present the experimental results
that correspond to the single-pixel version of the method. As we will see, even though the measurements
correspond to single pixel images, they carry important information of the wave function as well as the
trapping potential, allowing us to directly extract the eigenenergies of the Hamiltonian as well as the
decomposition of the wave function in the eigenstate basis (Sec. 3.3). Additionally, form the behaviour of
the images at short times, on the order of half an oscillation period, the first four Hamiltonian moments
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are obtained (Sec. 3.4).

3.2 Single pixel image of a quantum wave packet

The imaging method presented in this chapter provides a direct time-resolved image of an evolving
quantum wave function ψ(x, t). The method consists of interferometrically comparing ψ(x, t) to a static
reference wave function Φ(x − xp) parametrized by its position xp. The interferometric signal provides
the overlap between the two wave functions

O(xp, t) =

∫ ∞

−∞

dx Φ̄(x − xp)ψ(x, t), (3.1)

i.e., the convolution between ψ(x, t) and Φ̄(−x). The recorded overlap O(x, t) represents the image of the
evolving wave function ψ(x, t). In fact, this imaging method is reminiscent of classical optical imaging.
The spacial intensity distribution I(x, t) (the image) measured by an optical imaging system at a given
time t is given by the convolution between the intensity distribution of the object Io(x, t) and the point
spread function of the imaging system P(x) [79]

I(xp, t) = (P ∗ Io)(xp, t) =

∫ ∞

−∞

dx P(xp − x)Io(x, t), (3.2)

where xp is the position of the pixel in the optical detector. Comparing Eq.(3.1) to Eq.(3.2), the analogy
is clear, with O(x, t) being the quantum analog of an optically recorded image I(x, t) and Φ̄(−x) being the
quantum analog of the point spread function P(x).

The measurements presented in this chapter were done with the reference wave function in one single
position xp = 0 and the recorded images O(xp = 0, t) are thus simply called O(t) in the rest of the chapter.
The recorded images are then identified as single-pixel images, following the analogy with an optical
image recorded with a single pixel. The measurements make use of the hyperfine states |F = 4,mF = 3〉
and |F = 3,mF = 3〉, called spin-up and spin-down in this chapter, and are coupled with a pair of Raman
beams (see Sec. 2.1.5). The imaging sequence starts by preparing the atom in a motional eigenstate of
the spin-down potential1. The spin-up potential (initially unpopulated) is displaced by a distance ∆x
as shown in Fig. 3.1A. At t = 0, a Raman π/2 pulse rotates the internal state into a coherent balanced
superposition of the two spin states, effectively creating a copy of the spin-down wave function (blue) in
the spin-up potential (red). Importantly, the component of the wave function in the spin-down potential is
an eigenstate and remains stationary up to a phase, and its shape doesn’t change. On the other hand, the
component of the wave function in the spin-up potential is not an eigenstate, and thus it evolves in time,
swinging back and forth in the trapping potential. After a desired evolution time t, the overlap between
the two wave functions (Fig. 3.1B) is obtained by Ramsey interferometry as described in Sec. 2.2.4. The
measurement is repeated for different evolution times to obtain time-lapse single-pixel images of the
evolving wave packet. Notice that the wave functions prepared in the spin-up potential correspond to
displaced number states, i.e. spatially displaced eigenstates ψn,∆x(x) = ψn(x − ∆x), where ψn(x) is the
nth motional eigenstate. A similar measurement has been done in the past with cold ions in a harmonic
potential [80].

In Fig. 3.2, some examples of the measured time-lapse single-pixel images O(t) are shown. Fig. 3.2A
illustrates the modulus |O(t)| of the single-pixel images versus evolution time for wave packets initially

1 To prepare the atoms in a specific eigenstate of |F = 3,mF = 3〉, they are initially prepared in the ground state of
|F = 4,mF = 4〉 and transferred to |F = 3,mF = 3〉 with a sideband resolved microwave pulse (see Sec. 2.1.4)
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Figure 3.1: Time-resolved single-pixel imaging. The single-pixel image O(t) of an evolving wave function at any
time t is obtained by an interferometric comparison to a static reference wave function. (A) The atom is prepared
in an eigenstate (blue) of the spin-down potential ψ(x, t = 0). A Raman π/2 pulse creates a copy of it (red) in
the spin-up potential, which is shifted by a distance ∆x. The component in spin-up evolves over time while the
component in spin-down doesn’t, because it is an eigenstate. (B) After an evolution time t, the overlap between the
two components is obtained by Ramsey interferometry, see Sec. 2.2.4. (C) The measured overlap O(t) constitutes
the time-resolved single-pixel quantum image of the wave function.

prepared in a displaced number state n = 0 with ∆x = 0.08λ/2 (green), n = 0 with ∆x = 0.16λ/2
(orange), n = 1 with ∆x = 0.16λ/2 (blue) and n = 2 with ∆x = 0.2λ/2 (black). Figs. 3.2(B-D) illustrate
the phases ϕ(t) = arg(O(t)) for n = 0 and n = 1. The solid black curves correspond to the theoretical
expectation obtained from the simulation2 of the wave packet dynamics and shows excellent agreement
with the measurements. The evolution time is given in units of τHO, the oscillation period in the harmonic
approximation3.

The imaged wave packets correspond to motional eigenstates initially displaced by a spatial distance
from the bottom of the potential. As time evolves, the wave packet swings back and forth in the trapping
potential. If the potential was harmonic, the wave packet evolution would be perfectly periodic. Since
our trapping potential is sinusoidal instead, the anharmonicity breaks the periodicity of the evolution. For
a small initial displacement, as in the case of the green traces in Fig. 3.2A that correspond to n = 0 with
∆x = 0.08λ/2, the wave packet remains close to the bottom of the potential which is nearly harmonic.
In that case, the wave packet evolution is almost periodic and both modulus and phase follow a nearly
sinusoidal pattern, almost as in the case of a harmonic potential (see Sec. 3.5). Moreover, the oscillation
period is very close to the harmonic period, only around 4% longer. For a larger displacement, as in the
case of the orange traces that correspond to n = 0 with ∆x = 0.16λ/2, the effects of the anharmonicity of
the trapping potential are more evident. One of them is a more substantial elongation of the oscillation
period to around 9% longer than the harmonic period. The other one is the reduction of the overlap
maxima after every oscillation period. This happens because the components corresponding to different
motional states do not perfectly rephase after every oscillation, as opposed to the harmonic case. The
time-lapse images also allow us to resolve the double-peak and triple-peak structure of the wave functions
corresponding to the first and second excited states respectively. This is illustrated in Fig. 3.3 for the case
of the first excited state. The wave packet has two symmetric peaks and it swings back and forth in the
trapping potential Fig. 3.3A. The shape of the wave packet deforms over time due to the anharmonic

2 As mentioned in chapter 2, the simulation of the wave packet evolution is done using the Strang split-step integration method
[69], and more details can be found in [63, 70]

3 In the harmonic approximation of the trapping potential (expansion up to the second order), the oscillation period is
τHO =

√
λ2m/(2U) where λ is the lattice wavelength, m is the mass of the atom and U is the trap depth
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Figure 3.2: Single-pixel time-lapse images of atomic wave packet evolution. (A) Modulus of the single-pixel
image versus evolution time |O(t)| for wave packets prepared in n = 0 with ∆x = 0.08λ/2 (green), n = 0 with
∆x = 0.16λ/2 (orange), n = 1 with ∆x = 0.16λ/2 (blue) and n = 2 with ∆x = 0.2λ/2 (black). The evolution time is
given in units of the oscillation period τHO in the harmonic approximation of the trapping potential. Each point is
measured with the sequence illustrated in Fig.3.1. The measurements were done at a trap depth of around 27 µK.
For clarity, the different cases are vertically shifted, where the colored horizontal lines correspond to zero. (B),
(C), (D) Phases ϕ(t) of the single-pixel image for a wave packet initially prepared in n = 0 with ∆x = 0.08λ/2
(green), n = 0 with ∆x = 0.16λ/2 (orange) and n = 1 with ∆x = 0.16λ/2 (blue) respectively (same cases shown in
(A) except n = 2). The measurements are compared to the numerical simulation (solid black curves).

shape of the potential but the two peaks can still be clearly identified during the first oscillation, Fig. 3.3B.
The different peaks observed in the recorded single-pixel image correspond to the moments when either
one peak of the evolving wave packet coincides with one peak of the reference (numbered arrows 2 and
4) or when the two peaks coincide simultaneously (numbered arrows 1 and 5). The valley indicated
by the arrow 3 correspond to the moment when the wave packet is at the farthest point from the initial
position, i.e., after half an oscillation period.

3.3 Model-agnostic spectral decomposition

In Fig. 3.2 we have seen that the simulation of the system shows excellent agreement with the measure-
ments. From the simulation we can certainly extract the eigenenergies and population probabilities of the
wave packets, which characterize the wave packet evolution. But in this section we will see that a full
simulation is not required to access that information. The energy spectrum of the trapping potential and
the population probabilities of the wave function ψ(x) in the basis of motional eigenstates are extracted
with a simple method that doesn’t rely on any predefined model. We only assume that the spectrum is
discrete and that the population beyond a certain finite number of levels can be neglected.

As explained in Sec. 3.2, the atom is prepared in an eigenstate of the spin-down potential and a copy of
it is produced in the spin-up potential. Therefore, at time t = 0 the wave function in spin-up ψ↑(x, t = 0)
and the wave function in spin-down ψ↓(x, t = 0) coincide, and their expansion in the eigenstate basis of

26



3.3 Model-agnostic spectral decomposition

0 0.5 1 1.5 2 2.5 3 3.5 4
Evolution time ( HO)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ve

rla
p 

|
(0

)|
(t)

|

Ev
ol

ut
io

n 
tim

e 
(A) (B)

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

(4)

(5)

x

Figure 3.3: Resolving double-peak structure of the first excited motional eigenstate. (A) Evolution of a wave
packet initially prepared in the spin-up potential in a dismplaced number state with n = 1 and ∆x = 0.16λ/2 (red)
that swings back and forth in the trapping potential. The wave packet in spin-down is in the eigenstate n = 1
(∆x = 0) and remains static (blue). The evolution is shown at 5 different times from t = 0 up to one oscillation
period. The two lattice potentials are only shown for t = 0 for illustration purposes but they remain static at all
evolution times. (B) Overlap between the two wave packets vs evolution time (also shown in Fig. 3.2A). The
numbered arrows indicate the evolution times corresponding to the time shots shown in (A).

the spin-up potential reads

ψ↑(x, t = 0) = ψ↓(x, t = 0) =

∞∑
n=0

cnψn(x), (3.3)

where ψn(x) is the nth eigenstate of the spin-up potential and cn ∈ C. As time evolves, the spin-down
wave function remains static and only acquires a global phase4

ψ↓(x, t) = e−i2πνmt
∞∑

n=0

cnψn(x), (3.4)

where m is the eigenstate number in which the wave function is initially prepared and hνm its energy
with h being the Planck’s constant. The spin-up is not in an eigenstate and each component thus evolves
according to its corresponding eigenenergy

ψ↑(x, t) = e−iĤ t/~
∞∑

n=0

cnψn(x)

=

∞∑
n=0

cne−i2πνntψn(x). (3.5)

The overlap between the spin-up, Eq.(3.4), and spin-down, Eq.(3.5), wave functions is then given by

O(t) =

∞∑
n=0

pne−i2π(νn−νm)t (3.6)

4 ψ↓(x, t) is written in terms of the eigenstates of the spin-up potential and this is why it is a sum of multiple terms. But it only
acquires a global phase because it is actually trapped in the spin-down potential where it only occupies the mth eigenstate.
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Figure 3.4: Wave function spectral decomposition. The recorded images shown in Fig. 3.2 are here shown in (A)
to (F) split in their real and imaginary components. Simultaneous fits of the real and imaginary components were
done using the complex-valued function (3.6) and shown as solid black curves. The population probabilities of the
atomic wave packet and eigenenergies obtained from the fits are shown in (G-I) and (J-L) respectively (orange
bars). The horizontal axis corresponds to the eigenstate number with zero being the ground state. The extracted
values are compared to the theoretical values obtained from the simulation (blue bars). The energies are given in
units of the Harmonic frequency νHO = 1/τHO and with respect to the energy of the ground state ν0. The energies
extracted form the fit in the case of the first excited state are given with respect to ν1. To give the values with
respect to the ground state energy (as plotted in L) the value ν0 − ν1 obtained form the simulation is subtracted
form them.

where pn = |cn|
2 is the population probability of the nth eigenstate. Since the population probabilities

are constant for time-independent Hamiltonians, the eigenenergies and population probabilities can be
directly extracted by fitting the measured overlaps O(t) with the expression in Eq.(3.6) with a finite
number of terms. A simultaneous fit of the real and imaginary components has been applied to three of
the measurements shown in Fig. 3.2. The measurements as well as the fits are shown in Fig. 3.4(A-F) split
in their real and imaginary components. The number of eigenstates included in each fit is chosen up to
the last component with a population probability above 1%; for the components with a small population
probability the uncertainty of the fitted frequency diverges. The extracted population probabilities are
shown in Fig. 3.4(G-I) and the eigenfrequencies in Fig. 3.4(J-L), all of them showing very good agreement
with the theoretical values obtained from the simulation. It can be clearly seen that for a wave packet
prepared in n = 0 with a small displacement of ∆x = 0.08λ/2, most of the population is within the first
four eigenstates, with the highest fraction still in the ground state. For a wave packet prepared in n = 0
with a larger displacement of ∆x = 0.16λ/2, 6 eigenstates are populated, with the highest population
fraction shifted up to the first and second excited states. In the two cases the population distribution has
a shape similar to a Poisson distribution, which is the population distribution of a coherent state in a
harmonic potential. In the case of a wave packet prepared in n = 1 with a displacement of ∆x = 0.16λ/2,
8 eigenstates are populated and the population distribution clearly differs from the Poisson distribution.
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3.4 Hamiltonian moments from recorded image traces

The similarity to the population distribution of a coherent state in the case of the wave packets prepared
in n = 0 is expected due to the nearly harmonic shape of the bottom of the lattice potential. This can also
be seen in the energy spectrum; the first energy levels are very close to integer multiples of hνHO but
the higher levels clearly deviate from the uniform energy spacing due to the anharmonic shape of the
potential away form the bottom.

In the case of wave packets prepared in n = 0, an estimate of the width of the wave packet can be
obtained form the extracted population. The ground state population is the square of the projection of the
wave function into the ground state of the shifted potential, which under the harmonic approximation it is

p0 = e
− ∆x2

2x2
0 (3.7)

were x0 is the width of the wave packet5. Using Eq.(3.7) to obtain x0 from the extracted ground state
populations shown in Figs. 3.4(G,H), a value of x0 = (37.8 ± 0.3) nm is obtained from the measurement
done at ∆x = 0.08λ/2 and x0 = (38.3 ± 0.3) nm from the one done at ∆x = 0.16λ/2. Both values of x0
correspond to around 8% of a lattice site and differ by less than 3% form the theoretical value.

3.4 Hamiltonian moments from recorded image traces

The eigenfrequencies νn of the Hamiltonian and the population probailities pn of the imaged wave function
discussed in Sec. 3.3 completely characterize the evolution of the wave packet, Eq.(3.5). Alternatively,
the wave packet evolution is also characterized by the Hamiltonian moments 〈Ĥk〉 = 〈ψ| Ĥk |ψ〉, and the
first two of them provide upper bounds to the rate of change of the evolving wave function, as we will
see in chapter 4. The Hamiltonian moments can be computed from νn and pn

〈Ĥk〉 =

∞∑
n=0

pn(hνn)k, (3.8)

however, as we will see in this section, the Hamiltonian moments can also be directly extracted from
the recorded images by a simple polynomial fit. Additionally, the method presented in this section has
the advantage that it only requires the time-lapse single-pixel images at short evolution times (a fraction
of an oscillation period) to extract the lowest order moments, as opposed to the method presented in
Sec. 3.3 that requires a few oscillation periods. In this section, the first four moments are extracted from
image traces recorded up to evolution times of only around half an oscillation period.

To obtain a relation between the Hamiltonian moments and the recorded images, let us expand the
wave function |ψ(t)〉 over time

|ψ(t)〉 =

∞∑
n=0

tn

n!
dn

dtn |ψ(t)〉
∣∣∣∣∣
t=0

=

∞∑
n=0

(−it)n

n!~n Ĥ
n|ψ(0)〉 , (3.9)

where the Schrödinger equation i~d|ψ(t)〉/dt = Ĥ|ψ(t)〉 has been used for the second equality, assuming
that the Hamiltonian Ĥ is time independent. The overlap O(t) is then obtained by projecting into the

5 Here x0 is the width of the normalized Gaussian wave function ψ0(x) = (x2
0π)−1/4e−x2/(2x2

0)
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Figure 3.5: Direct extraction of Hamiltonian moments The Hamiltonian moments are obtained by fitting a
polynomial to the recorded images at short times. The Hamiltonian moments are the coefficients of the fitted
polynomials. The even order moments are obtained from the real component (A) and the odd order moments
are obtained from the imaginary component (B). Here shown is an example corresponding to the wave packet
prepared in n = 0 with ∆x = 0.45λ/2. The measured values are shown as blue circles, the red solid curve is the
fitted polynomial and the black dashed curve is the simulation.

state 〈ψ(0)|

O(t) = 〈ψ(0)|ψ(t)〉

=

∞∑
k=0

(−it)k

k!~k 〈Ĥ
k〉 . (3.10)

The Hamiltonian moments are thus the coefficients of the time expansion of O(t). The first moments
are directly obtained by fitting O(t) with a polynomial fit. The real component contains the even order
moments while the imaginary component contains the odd order moments. The real and imaginary
components are independently fitted as in the example shown in Fig. 3.5 which corresponds to a lattice
displacement of ∆x = 0.45λ/2. The red curves are the polynomial fits and the dashed black curves are
obtained from the simulation. The method doesn’t rely on any predefined model and is works for any
system that evolves under a time independent Hamiltonian.

A fit like the one shown in Fig. 3.5 has been done on 34 different time-lapse images corresponding to
displaced number states with different displacements from ∆x = 0 to ∆x = 0.5λ/2 and motional states
n = 0, n = 1 and n = 2. The extracted moments are shown in Fig. 3.6. The blue circles correspond
to n = 0, the orange diamonds to n = 1 and the green triangles to n = 2. The values of the moments
obtained with this method are given with respect to the eigenenergy of the reference wave function, i.e., a
frame where the reference energy (zero energy) corresponds to the energy of the eigenstate in which the
reference wave function is prepared. For comparison purposes, the values in Fig. 3.6 are all given with
respect to the ground state’s energy. The change of energy reference is explained in Appendix A. The
experimental results are compared to the numerical calculation (solid lines). The excellent agreement
between the theory and experiment confirms the validity of our extraction method.

Some features of the wave packets and the trapping potential are reflected in the mean energy (first
moment). In Sec. 3.3 we have seen that the width of the ground state’s wave packet is a few times
smaller than a lattice site. Therefore, it is expected that as the wave packet is shifted, it will move up the
potential hill, and its mean energy as a function of the shift ∆x will have a shape similar to the potential.
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Figure 3.6: Hamiltonian moments. Extracted Hamiltonian moments 〈Ĥ〉 (A), 〈Ĥ2〉 (B), 〈Ĥ3〉 (C) and 〈Ĥ4〉 (D)
obtained from the polynomial fit of the short time traces versus lattice displacement for n = 0 (blue circles), n = 1
(orange diamonds), and n = 2 (green triangles). The curves correspond to the theory obtained from the simulation.

In Fig. 3.6A it can be clearly seen that the mean energy indeed follows a shape similar to the sinusoidal
shape of the lattice potential. Moreover, it can be seen that the mean energy in the case n = 1 (orange)
also increases with ∆x, but the energy increase is smaller. And in the case n = 2 (green), the energy
increase is even smaller. This is due to the fact that, as n increases, the width of the wave packet also
increases. Therefore, when the center of the wave packet is at the top of the potential, the probability
distribution of a wave packet with n = 0 is concentrated at the top but the ones corresponding to higher
excited levels (n > 0) extend further away from the top where the potential is lower. This is also why the
mean energy of the excited levels is higher when ∆x = 0, since a wave packet with n = 0 is concentrated
at the bottom but the higher excited levels reach higher regions away from the bottom.

3.5 Phase of single-pixel images

In Fig. 3.2 we have seen that the phase ϕ(t) = arg(O(t)) of the single-pixel images is nearly periodic
when the displacement ∆x is small, while for large displacements it accumulates an overall phase over
time. Moreover, the accumulated phase may exhibit sharp jumps like the one observed in the case of a
wave packet prepared in n = 0 with ∆x = 0.16λ/2, inset in Fig. 3.2C. In this section I will discuss the
origin of those features.

To get insight into what causes the phase accumulation, let us first look at the harmonic case. The
phase of O(t) in the case of a coherent state in a harmonic potential follows a sinusoidal curve ϕ(t) =

∆x2mω sin(ωt)/(2~) and always comes back to zero after multiples of the oscillation period, irrespective
of the displacement. Some examples of the phase versus time are shown in Fig. 3.7A for coherent states
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corresponding to different displacements. And the trajectories of O(t) in the complex plane for the same
four cases are shown in Fig. 3.7B. The solid segments correspond to the first half of the oscillation
period and the dashed segment to the second half. In the zoomed in region close to the origin, shown
in Fig. 3.7C, it can be seen that the trajectories may get very close to the origin but they never encircle
it. This is the reason why the phase goes back to zero once the trajectory closes. On the contrary, if a
trajectory went around the origin, it would acquire an extra phase of 2π for every time it encircles the
origin.

The reason why the closed trajectories of O(t) corresponding to coherent states in a harmonic potential
never encircle the origin, can be easily understood from a topological approach. Consider the case ∆x = 0.
In that case the wave function is in the ground state and remains static, which means O(t) = 〈ψ(0)|ψ(t)〉 = 1
for all evolution times, i.e. the trajectory is just a point. As we continuously increase ∆x, the trajectory
O(t) deforms continuously and acquires shapes similar to the ones shown in Fig. 3.7B. The trajectories
may get close to the origin but never cross it because that would imply that for a certain value of ∆x there
is a time t for which O(t) = 〈ψ(0)|ψ(t)〉 = 0, i.e. the wave function at time t would be orthogonal to the
initial wave function. This is impossible for coherent states since the overlap between two coherent states
can be arbitrarily small but never zero, irrespective of the displacement between them (see Appendix B).
Therefore, irrespective of the value of the parameter ∆x the closed trajectories never encircle the origin.
In other words, in the case of coherent states in a harmonic potential, the single-pixel image traces are
topologically protected against phase winding.

As opposed to the harmonic case, the phase of the single-pixel images of wave packets in the lattice
potential may not come back to zero after every multiple of the oscillation period but rather wind up as
time evolves. Fig. 3.7D shows the simulated phases for wave packets in the lattice potential, prepared
in n = 0 with ∆x = 0.08λ/2 and ∆x = 0.16λ/2 (same curves shown in Fig. 3.2(B,C) next to the
measurement). Their trajectories in the complex plane are shown in Fig. 3.7E. For illustration purposes,
the first oscillation period is shown as a solid curve, the second as a dashed curve and the third one as a
dotted curve. Clearly, for ∆x = 0.08λ/2 the trajectory doesn’t encircle the origin and the phase doesn’t
wind up. On the other hand, for ∆x = 0.16λ/2 the trajectory in the complex plane encircles the origin
three times (once in the second oscillation and twice in the third oscillation), and the phase indeed winds
up by three times 2π. This means that the topological protection against phase winding is not present in
the lattice potential.

By now we have seen that in the lattice potential, after the first few oscillation periods O(t) encircles
the origin when ∆x is large and it doesn’t encircle the origin when ∆x is small. But a natural question
arises at this point: in the case of a small ∆x, will the trajectory eventually go around the origin if we
wait long enough? And the answer is: no, if more than 50% of the population is in one single eigenstate.
To see why this is the case, consider Eq.(3.6) in the case that the wave packet has more than 50% of the
population in one eigenstate, i.e. pk > 0.5 for some k ∈ N. Then6

O(t) =

∞∑
n=0

pne−i2π(νn−νk)t

= pk +
∑
n,k

pne−i2π(νn−νk)t

= pk + r (3.11)

6 Without loss of generality, we moved to the reference frame rotating at a constant angular frequency equal to 2π|νm − νk |

where m corresponds to the eigenstete in which the reference wave function is prepared. Since the rotation is done around the
origin, the change of frame has no influence on the distance between the origin and the trajectory
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Figure 3.7: Phase accumulation of single-pixel image traces. (A) Phase ϕ(t) of the single-pixel image traces
O(t) of coherent wave packets in a harmonic potential for different displacements ∆x (obtained from simulation).
(B) Trajectories followed by O(t) in the complex plane for the same cases shown in A. The solid curves correspond
to the first half of the oscillation period and the dashed curves to the second half. (C) Zoom in on the region close
to the origin of the plot in B. The trajectories get arbitrarily close to the origin but never go around it. (D) Phase
ϕ(t) of the single-pixel image traces in the lattice potential for n = 0 with ∆x = 0.08λ/2 (orange) and ∆x = 0.16λ/2
(blue) over approximately three oscillation periods (obtained from simulation). (E) Trajectories followed by O(t)
in the complex plane for the same cases shown in D. The colored background circles illustrate the area that must
contain the the trajectories of O(t) according to Eq.(3.11). The solid segments of the curves correspond to the
first oscillation period, the dashed segments correspond to the second period, and the dotted segments to the third
period. (F) Zoom in on the region close to the origin of the plot in E. From E and F it is clear that for ∆x = 0.08λ/2,
the trajectory never encircles the origin. For ∆x = 0.16λ/2, in the first period the trajectory doesn’t encircle the
origin, in the second period it encircles it once and in the third period it encircles it twice. The accumulated phase
shown in D winds up by a factor of 2π radians for every time that O(t) encircles the origin in the complex plane.
And a sharp jump of π radians is observed when the trajectory of O(t) in the complex plane passes close to the
origin (red segment in D and F).

where r is a complex number with modulus |r| ≤ 1 − pk < 0.5 (from triangle inequality). Therefore, the
trajectory has to be inside the circle with center at pk > 0.5 and radius |r| < 0.5, which doesn’t contain
the origin. Two examples of the circles defined by Eq.(3.11) are represented by the colored background
in Fig. 3.7E for wave packets in the lattice potential with ∆x = 0.08λ/2 (orange) and ∆x = 0.16λ/2
(blue). In the case ∆x = 0.08λ/2, the ground state population is above 50%, therefore, the trajectory
cannot reach the origin and thus cannot encircle it. On the other hand, for ∆x = 0.16λ/2 the maximum
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population is below 50% and can (but doesn’t have to) encircle the origin. Note that this also means
that pk > 0.5 is a sufficient (but not necessary) condition to have no phase winding. In fact, since the
trajectory has to be inside the circle defined by Eq.(3.11), the phase is bounded by

|ϕ(t)| ≤ arcsin
(
1 − pk

pk

)
when 0.5 ≤ pk ≤ 1, (3.12)

at all evolution times (Appendix C). Moreover, note that Eq.(3.12) is valid for any trapping potential,
since Eq.(3.11) is independent of the potential.

Another feature that can be easily understood from the trajectories in the complex plane is the possible
discontinuities in ϕ(t). If the trajectory of O(t) in the complex plane crosses the origin, the phase
suffers a discontinuous jump of π radians. If the trajectory passes close to the origin, the phase is not
mathematically discontinuous but still has a very abrupt increase or decrease of π radians. This is
observed in the case corresponding to n = 0 with ∆x = 0.16λ/2 at t ≈ 2.6τHO highlighted as a red
segment in its phase, Fig. 3.7D, and its trajectory in the complex plane, Fig. 3.7F. This can also be
observed in the measurement corresponding to the same parameters (see inset in Fig. 3.2C).

3.6 Outlook

In this chapter we have seen that a lot of information can be extracted from the images recorded with the
reference wave function restricted to a single position, i.e. Eq.(3.1) restricted to one fixed value of xp.
An N-pixel version of the measurement can be done by repeating the single-pixel measurement N times,
with the reference wave function placed at N different positions xi with i ∈ [1 : N] and xi+1 − xi = δx for
some chosen spacing δx. In that case, the wave function ψ(x, t) can be reconstructed at the N discrete
positions ψi(t) B ψ(xi, t) at any desired evolution time t. Let the reference wave function be Φ(x) and let
Φ j,i B Φ(xi − x j). The measured overlap is then given by the discrete version of Eq.(3.1)

O j(t) =

∫ ∞

−∞

dx Φ̄(x − x j)ψ(x, t)

≈

N∑
i=1

Φ̄(xi − x j)ψ(xi, t)δx2

=

N∑
i=1

Φ̄ j,iψi(t)δx2 (3.13)

which we can write as
~O(t) = P̄~ψ(t) (3.14)

where ~O(t) = (O1(t), ...,ON(t)) is the vector of measured overlaps, ~ψ(t) = (ψ1(t), ..., ψN(t)) is the imaged
wave function vector and P is the matrix with elements δx2Φ j,i. If the matrix P is invertible, then the
imaged wave function is computed from the measured overlaps as

~ψ(t) = P̄−1 ~O(t). (3.15)

This way, the whole dynamical evolution can be imaged with the proposed method.
In Sec. 3.5 we have seen that the trajectories of the single-pixel image traces in the complex plane in

the case of coherent states in a harmonic potential never wind up around the origin. In fact, we have seen
that the trajectories are topologically protected against winding. On the other hand, in the case of wave
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3.6 Outlook

packets in the lattice potential the trajectories may wind up after a few oscillation periods. Some natural
questions arise from this observation: Is the topological protection against winding also present in some
anharmonic potentials or only in the harmonic potential? When there is non-zero winding, is it possible
to define a winding number associated to each trajectory? For which type of trapping potentials can a
winding number be defined? Can we observe topological phase transition between winding numbers
with the method presented in this chapter? A clear difficulty in defining a winding number is the fact that
the trajectories have to be closed, otherwise the winding number is not well defined. But these are all
interesting questions that we are planning to investigate in the future.
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CHAPTER 4

How fast am I allowed to drive Mr. Heisenberg?

- 133Cs atom: “Mr. Heisenberg, How fast can I drive?"

- Werner Heisenberg: “That depends on how well you know yourself my friend."

4.1 Introduction

We all remember the famous Heisenberg uncertainty principle form our first course on quantum mechanics.
Specially its two most common versions: the position-momentum uncertainty relation ∆p∆x ≥ ~/2
and the energy-time uncertainty relation ∆E∆t ≥ ~/2. Werner Heisenberg came out with these results
in 1927 [38] from his analysis on the observation of an electron with light. A more general result
was derived by Robertson in 1929 [81], for any pair of observables ∆O1∆O2 ≥ | 〈[O1,O2]〉 |/2 where
∆O2 = 〈ψ|O2|ψ〉 − 〈ψ|O|ψ〉2 is the standard deviation of the observable O associated to the quantum state
ψ. Heisenberg’s position-momentum relation is clearly a case of Robertson’s result, since p and x are
both observables, and the relation is valid for any quantum state. On the other hand, the energy-time
relation cannot be directly generalized to any quantum state using Roberstson’s result because time is not
an observable. In fact, even nowadays the energy-time uncertainty relation sometimes creates confusion
because time and energy are wrongly regarded as a pair of canonical variables [82, 83] giving rise to
situations where ∆t doesn’t have a concrete meaning.

An alternative to Heisenberg’s energy-time uncertainty relation, valid for any quantum system, was
proposed by two Soviet physicists, Leonid Mandelstam and Igor Tamm (here called MT bound) [27]

|〈ψ(0) |ψ(t)〉| ≥ cos
(
∆Et
~

)
for t ∈ [0, τMT], (4.1)

where ψ(t) is the wave function at time t evolving under a Hamiltonian1 H , and τMT B π~/(2∆E) is
the minimum time to reach an orthogonal state according to the MT bound. The inequality has a clear
interpretation: given an evolution time t, it sets a bound to the minimum overlap between the initial and
the evolved wave functions. Later, Norman Margolus and Lev B. Levitin proposed a similar inequality
(here called ML bound) with the same interpretation [28]

|〈ψ(0) |ψ(t)〉| ≥ cos

√πEt
2~

 for t ∈ [0, τML], (4.2)

1 The energy spread is the standard deviation of the Hamiltonian ∆E2 = 〈ψ|H2|ψ〉 − 〈ψ|H|ψ〉2.
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where E = 〈H〉 is the mean energy measured with respect to the ground state’s energy, and τML B

π~/(2E) is the minimum time to reach an orthogonal state according to the ML bound.
Experimental demonstrations of the MT and ML bounds have been done in the past for systems

that can be effectively reduced to a two-level system [40, 84, 85]. In this chapter, our results on the
experimental verification of the bounds in a multi-level system are presented. To our knowledge, this is
the first demonstration of the bounds beyond effective two-level systems. This way we have given more
value to the bounds by extending their validation towards more complex systems. This is relevant for
quantum technologies, that rely on systems that typically make use of a higher number of states than a
simple two level system. The platform used to realize the measurements consists of a single atom trapped
in a static optical lattice potential, with the atom initially prepared in a displaced number state i.e. an
eigenstate spatially displaced by some desired distance (between zero an one lattice site). Verifying the
MT and ML bounds requires measuring the overlap O(t) = 〈ψ(0) |ψ(t)〉, as well as the energy spread
and mean energy of the wave function. The overlap O(t) corresponds to the interferometric single-pixel
image of the evolving wave packet discussed in Chapter 3, while the energy spread and the mean energy
are extracted from the behaviour of O(t) in the limit of small times, with a method similar to the one used
to obtain the Hamiltonian moments2 in Chapter 3. As expected, we have found that the evolving wave
packets satisfy the unified bound. Moreover, a crossover from a region where the MT bound is more
restrictive to a region where the ML bound is more restrictive is observed, Fig. 4.1. The crossover is
only observed when the wave packet has an energy spread higher than its mean energy, ∆E > E. In that
case, the wave packet evolution is limited by the MT bound at evolution times below the crossover time
τc B τ2

MT/τML, while at longer times it is limited by the ML bound, Fig. 4.1A. If E > ∆E, on the other
hand, the wave packet evolution is limited by the MT bound at all evolution times within the region of
applicability, i.e. up to the orthogonalization time τMT, Fig. 4.1B.
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Figure 4.1: Crossover between Mandelstam-Tamm and Margolus-Levitin bounds. Illustration of the bound
imposed by the MT and ML bounds. The blue and orange curves represent the minimum overlap allowed by the
MT and ML bounds respectively. The blue and orange backgrounds distinguish the time region where either the
MT or the ML bound is more restrictive respectively. (A) If ∆E > E, the MT bound is more restrictive up to the
crossover time τc while the ML bound is more restrictive at times beyond the crossover. (B) If E > ∆E, the MT
bound is more restrictive at all times.

The MT bound can be alternatively written in terms of the Fubini-Study metric [86, 87],D
[
ψ(0), ψ(t)

]
B

arccos |〈ψ(0)|ψ(t)〉| as

D
[
ψ(0), ψ(t)

]
≤

∆Et
~

for t ∈ [0, τMT]. (4.3)

2 Even though the energy spread can be computed from the first two energy moments measured in Sec. 3.4, we here use a
method that extracts the energy spread from O(t) in a direct way, providing a more accurate value.

38



4.1 Introduction

And equivalently, the ML bound can be written as

D
[
ψ(0), ψ(t)

]
≤

√
πEt
2~

for t ∈ [0, τML]. (4.4)

The Fubini-Study metric provides a measure of the distance between the two states ψ(0) and ψ(t).
This way, the inequalities impose a limit on the maximum distance between the initial and final states
(Fig. 4.2A), in other words they impose a maximum speed limit of quantum evolution. Interestingly, it
has been proved that the actual path length covered by a quantum state over an evolution time t is always
`(t) = ∆Et/~ [30], which happens to be equal to the maximum distance between ψ(0) and ψ(t) according
to the MT bound Eq.(4.3). This could lead to the wrong conclusion that the MT bound is always saturated.
To clarify this, it is important to distinguish between the total path length and the distance between the
initial and final states, as illustrated in Fig. 4.2B. Both ψ1 and ψ2 follow trajectories with a path length
equal to `(t), but ψ1 reaches a longer distance between initial and final states. With this at hand, the MT
bound can be written in geometric terms as D

[
ψ(0), ψ(t)

]
≤ `(t), i.e. the maximum distance between

the initial and final states cannot be larger than the path length `(t). This brings us to another important
question covered in this chapter: how close is the evolution of the system to the fundamental speed
limit. Or in other words, how close isD

[
ψ(0), ψ(t)

]
form `(t)? This question is important if you want to

improve the performance of a quantum system by speeding up the required operations, since it will tell
you how much room for improvement is potentially available. In this chapter, the deviation from the MT
bound is quantified for wave packets prepared in 34 different initial states. We have found that as ∆E
increases, the deviation decreases and converges to a small value, meaning that the wave packet evolves
at a rate close to the limit imposed by the MT bound even though multiple levels are populated. This is in
contrast with the intuitive but wrong idea that the MT bound is only meaningful for effective two-level
systems and quickly deviates from the actual evolution rate (providing absurdly small values) as soon as
many levels are populated. Such wrong idea arises from the fact that the MT and ML bounds have been
proved to be saturated only by effective two-level systems [39]. A strong deviation from the bounds is
observed in some systems as we will see in chapter 5, but the results in this chapter show that this is not
always the case.
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Figure 4.2: Fubini-Study metric. (A) The Fubini-Study metric provides a measure of the distance between two
quantum states. (B) The quantum state ψ1 evolves along the black curve while ψ2 evolves along the blue curve.
The path length is `(t) in both cases but the distance between initial and final states is shorter for ψ2.

39



Observing quantum-speed-limit crossover with matter wave interferometry

Gal Ness,1 Manolo R. Lam,2 Wolfgang Alt,2 Dieter Meschede,2 Yoav Sagi,1 and Andrea Alberti2, ∗
1Physics Department, Technion – Israel Institute of Technology, IL-32000 Haifa, Israel
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Quantum mechanics sets fundamental limits on how fast quantum states can be transformed in
time. Two well-known quantum speed limits are the Mandelstam–Tamm (MT)1 and the Margolus–
Levitin (ML)2 bounds, which relate the maximum speed of evolution to the system’s energy uncer-
tainty and mean energy, respectively. Here, we test concurrently both limits in a multi-level system
by following the motion of a single atom in an optical trap using fast matter wave interferometry.
Our data reveal two different regimes: one where the MT limit constrains the evolution at all times,
and a second where a crossover to the ML limit is manifested at longer times. We take a geometric
approach to quantify the deviation from the speed limit, measuring how much the matter wave’s
quantum evolution deviates from the geodesic path in the Hilbert space of the multi-level system.
Our results, establishing quantum speed limits beyond the simple two-level system, are important to
understand the ultimate performance of quantum computing devices and related advanced quantum
technologies2,3.

Introduction.—The celebrated energy-time uncer-
tainty relation was given a rigorous interpretation by
Mandelstam and Tamm (MT) as a lower bound on the
time it takes a quantum system to evolve into a different
state1. A second independent bound was formulated by
Margolus and Levitin (ML) in terms of the mean energy
relative to the ground state2. The maximum of these two
times provides a unified bound for the quantum speed
limit4–6.

In the simplest scenario of a two-level system (qubit),
both limits yield the same minimum time to reach an
orthogonal state, which is the Rabi flopping time. The
same holds for systems that can be effectively mapped
onto two-level Hamiltonians, as was demonstrated by
previous experimental investigations7–9. However, de-
vices for quantum simulation and information processing
rely on a far greater number of states, and often include
a nonvanishing coupling to the continuum. It is there-
fore essential to test quantum speed limits beyond the
restricted Hilbert space of a qubit.

In this work, we study quantum speed limits in a clean
manifestation of a multi-level system—a single atom
in a potential well of finite depth. The potential sup-
ports many bound states, yet at the same time it pos-
sesses a continuum of free-particle states, which allow
the atom to leave the trap. Using a fast excitation-
interrogation scheme, we investigate the ideal case of a
time-independent Hamiltonian Ĥ, where the quantum
dynamics originates from an initial motional excitation
of the atom—a matter wave. In the limit of small ex-
citations, we recover the qubit case, where the quantum
evolution involves mainly two states. However, by in-
creasing the excitation extent, we depart from this limit
in a well-controlled manner to probe the multi-level con-
tribution, up to the point that the atom populates mostly

∗ alberti@iap.uni-bonn.de

unbound states in the continuum. Our measurements re-
veal that both speed limits provide relevant bounds on
the system’s quantum dynamics. This result is in stark
contrast to the case of a driven multi-level system, where
the MT bound yields an excessively short time scale10.

The MT bound constrains11–13 the two-time state over-
lap |〈ψ(0) |ψ(t)〉| from below by means of the energy un-
certainty ∆E,

|〈ψ(0) |ψ(t)〉| ≥ cos

(
∆Et

~

)
, (1a)

in the domain 0 ≤ t ≤ τMT ≡ π~/(2∆E). Here, τMT is
the MT orthogonalization time, i.e., the minimum dura-
tion for the evolved state to become orthogonal to the
initial one. The energy uncertainty follows14 the conven-
tional definition ∆E2 = 〈Ĥ2〉 − 〈Ĥ〉2.

The ML bound, on the other hand, constrains4 the
two-time state overlap from below by the mean energy
E = 〈Ĥ〉,

|〈ψ(0) |ψ(t)〉| ≥ cos

(√
πEt

2~

)
, (1b)

in the domain 0 ≤ t ≤ τML ≡ π~/(2E), with the ground
state energy chosen to be zero. Similarly, τML repre-
sents the minimum orthogonalization time according to
the Margolus-Levitin bound.

The left-hand side of Eqs. (1a) and (1b) can be un-
derstood as a measure of the change of the time-evolved
quantum state with respect to the original one. In fact,
the two-time state overlap relates directly to the dis-
tance covered by the quantum state as measured by
the Fubini-Study (FS) metric in the projective Hilbert
space15, D [ψ(0), ψ(t)] ≡ arccos |〈ψ(0)|ψ(t)〉|. This defi-
nition of distance allows interpreting the two inequalities
as bounds on the quantum state’s rate of change, i.e., as
quantum speed limits.
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Figure 1. Fast matter wave interferometry for test-
ing quantum speed limits (a) Illustration of the Raman-
Ramsey measurement technique: (i) At t= 0, the atom is
placed in a superposition of |↑〉 and |↓〉 states, each subject
to a different periodic potential, U↑ and U↓. (ii) The atom
with |↑〉, initially displaced by ∆x from the trap center, slides
downhill and concurrently deforms by the anharmonicity of
its potential. The atom with |↓〉 is in a vibrational eigen-
state (n=0 in this example), which remains unchanged. (iii)
The probability of occupying |↓〉 is measured as a function of
the control Ramsey phase ϕR. The quantum states are dis-
played on the right-hand side up to a normalization factor.
(b) Ramsey fringes measured as a function of ϕR for two se-
lected evolution times, 300 ns and 2.2 µs, with ∆x = 0.2 λ/2.
Solid lines are cosine functions fitted to the data, with shades
denoting the 1-σ confidence regions. Data points are normal-
ized to account for atom losses (5 %), and error bars mark
the standard error. (c) Fringe phase tracked as a function
of time. Circled points correspond to the fringes displayed in
(b). Solid line is a fifth-order polynomial fit containing only
odd-power terms16, used to extract E based on Eq. (2).

Fast matter wave interferometry.—The basic idea of
our experiment is as follows. We start with an atom in
the vibrational level n of an optical trap (Appendix A),
and then suddenly displace the trap minimum by a dis-
tance ∆x. Subsequently, we let the atom slide down the
potential hill, and after a time t, we use fast matter wave
interferometry to measure how far its quantum state has
evolved.

Our interferometry technique is illustrated in Fig. 1(a).
At t= 0, we put the atom in an equal superposition of
two internal states, |↑〉 and |↓〉, using a fast Raman pulse
(Appendix B). Each spin state is subject to a different

potential17, U↑ and U↓ (Appendix C). The atom in state
|↑〉 experiences a ∆x-displaced potential, as described
above. Conversely, the atom in state |↓〉 is maintained
unchanged (up to a global phase) in the vibrational eigen-
state n of its trapping potential, where it is originally
prepared18 before applying the Raman pulse. Thus, by
such a splitting of the matter wave, we effectively cre-
ate two copies of the same state, where one undergoes
the intended downhill evolution, and the other remains
stationary, serving as a reference for the state at t = 0.

After a given evolution time t, we let the two copies in-
terfere with each other by applying a second fast Raman
pulse, akin to a Ramsey interrogation scheme. Crucially,
both Raman pulses must be much shorter than the time
scale for the quantum state evolution, max{τMT, τML},
which we anticipate to be in the microsecond range. In
the experiment, we achieve pulse durations as short as
45 ns, thus ensuring that their action is nearly instanta-
neous and not affected by the trapping potential.

With this fast interrogation technique, we obtain all
three quantities needed to test Eqs. (1a) and (1b): the
two-time state overlap |〈ψ(0) |ψ(t)〉| as a function of time
t, the mean energy E, and the energy uncertainty ∆E.
To this purpose, we record the probability, p↓, to find
the atom in state |↓〉 as a function of the Ramsey control
phase ϕR, i.e., the relative phase between the first and
second pulse. This measurement yields a typical Ramsey
fringe [Fig. 1(b)], characterized by a visibility V(t) and a
phase ϕ(t) (Appendix D). Importantly, these two quanti-
ties combined yield the complex-valued overlap integral,
〈ψ(0) |ψ(t)〉 = V(t) exp{−i[ϕ(t) + Ent/~]}, where En is
the energy of the stationary state n, with the ground
state energy chosen to be zero (E0 ≡ 0). Thus, the vis-
ibility directly gives us the two-time state overlap, i.e.,
the first of the three quantities to be measured.

We obtain E, the second quantity to be measured, from
the phase of the Ramsey fringe, ϕ(t), by expanding it for
short times19,

ϕ(t) = (E − En) t/~ +O(t3) , (2)

and knowing the energies En from sideband spectroscopy
measurements18. Hence, tracking the phase evolution for
short times, we extract E from the linear term of a fifth-
order polynomial fit [Fig. 1(c)].

From the short-time expansion of the visibility13, we
obtain the third quantity to be determined, ∆E:

V(t) = 1− (∆Et/~)2/2 +O(t4) . (3)

This expansion establishes a relation between the short-
time evolution and ∆E, which is well recognized in the
literature on the quantum Zeno effect20. It is important
to underline that the MT bound of Eq. (1a) is a statement
about the quantum evolution speed that, unlike Eq. (3),
is not constrained to the short-time limit.
Testing quantum speed limits.—In Fig. 2 we present

three representative data sets of the two-time state over-
lap, with n = 0 and initial displacements ∆x set to (a)

41



3

τc

τc

τMT

0

0.2

0.4

0.6

0.8

1

(a)

Evolution time, t (µs)

(b) (c)

O
ve

rl
ap

,
|ψ

(0
)
|ψ

(t
)
|

0 1 2 30 1 2 3 4 50 2 64 8 10

∆x = 0.04λ/2 ∆x = 0.08λ/2 ∆x = 0.16λ/2

measurement

MT forbidden

ML forbidden

τML

Figure 2. Quantum speed limits in a multi-level quantum system. Measured two-time state overlap vs evolution
time for three displacements ∆x from the trap center. The initial state is chosen with n= 0. Colored regions are those excluded
by the MT (pink) and ML (yellow) bounds. The crossover time between the two speed limits is marked by τc. A sixth-order
polynomial containing only even-power terms16 is fitted to the data points (solid line), from which we extract ∆E using Eq. (3).
Shades around lines represent the 1-σ confidence region. Note that the x-axis domain extends up to τMT, whose value differs
in each panel.

0.04 λ/2, (b) 0.08 λ/2, and (c) 0.16 λ/2. Comparing the
three data sets, we find that the two-state overlap drops
at a faster rate for increasing values of ∆x, meaning that
the matter wave departs from its original state at a higher
speed for increasingly larger excitations. We compare
the data points to the lower bounds as predicted by the
MT and ML speed limits in Eqs. (1a) and (1b). The
regions excluded by the two bounds are hatched in dif-
ferent colors. The remaining region is the one allowed
by the unified bound, defined by the maximum of the
two limits. From this comparison, we make two impor-
tant observations. The first is that all data points fall
within the allowed region, thus giving the first exper-
imental confirmation of the unified bound. Deviations
from this bound are quantitatively studied below. The
second observation is that a crossover between the two
limits is manifested in panels (a) and (b): The two-time
state overlap is bounded from below by the MT bound
for short times (t< τc) and by the ML for longer times
(t> τc).

Quantum-speed-limit crossover.—To research the con-
dition and origin of this crossover, we test a wide spec-
trum of experimental conditions, leveraging the great
degree of control and flexibility of our setup: The po-
tential exerted onto the atom originates from an opti-
cal lattice. The lattice has a period of λ/2 = 433 nm
and is sufficiently deep to suppress tunneling between
adjacent sites when the atom populates the low energy
states (Appendix C). The initial displacement can be con-
trolled with sub-nanometer precision over the full range,
0 < ∆x ≤ 0.5 λ/2. We excite mostly bound states for
∆x� λ/2 and, vice versa, mostly unbound states in the
continuum for ∆x at around 0.5 λ/2. Large displace-

ments, ∆x > 0.25 λ/2, allow us, in particular, to test the
speed limit for a nonharmonic potential, where the cur-
vature of the potential is inverted. Furthermore, we vary
the type of excitation by choosing the shape of the initial
atomic wave packet to have n = {0, 1, 2} nodes along
the direction of the motional excitation. Since states
with n > 0 differ starkly from Gaussian-like states, their
quantum evolution is substantially different from that of
semiclassical matter waves.

We examine 34 combinations of parameters, and record
for each of them a data set as those shown in Fig. 2. In-
specting individually each data set shows that the vast
majority are bounded by the MT limit only. However, in
a few cases, a crossover to the ML bound is manifested
at longer times, as exemplified in panels (a) and (b). To
explain the crossover condition, we display in Fig. 3 the
extracted energy uncertainty ∆E and mean energy E,
in terms of the reciprocal of the MT and ML orthogo-
nalization times. The inset highlights cases where the
crossover is clearly visible. As revealed by the diagram,
the crossover between Eqs. (1a) and (1b) occurs when the
orthogonalization times satisfy the condition τMT < τML.
The region defined by this condition is identified in the di-
agram by shades of color, with the color representing the
crossover time, τc = τ2

MT/τML (0 < τc < τMT). We call
this the ML regime, since the quantum state evolution
is constrained by the ML bound for t > τc. Conversely,
we call τMT > τML the MT regime, since the evolution is
solely constrained by the MT bound for all times.

To obtain insight into the origin of the crossover, we
gather the points in three different groups according to
the quantum number n. Remarkably, the points falling
in ML region are only those with n = 0, and in particular
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Figure 3. Quantum-speed-limit crossover. Measured
orthogonalization times, τML and τMT, displayed through
their reciprocals, with n the quantum number characterizing
the initial wave packet shape. Shades in color identify the ML
regime, where a crossover manifests at time τc, as opposed to
the MT regime, where no crossover occurs. Inset highlights
data points in the ML regime. Points number 3, 5, 9 from
the left of the series with n = 0 correspond to panels (a),
(b), and (c) of Fig. 2. Solid lines show the expected curves
computed with no free fitting parameter by numerical diago-
nalization of Ĥ. The limiting case of a qubit (dashed line) and
of a coherent excitation (dotted line) are also shown. Values
are expressed in units of the reciprocal of the trap oscillation
period, which is around 16 µs.

those in the limit τ−1
MT . τ−1

HO, where τHO ≡ 2π/ωHO is
the trap oscillation period in the harmonic approxima-
tion. This limit corresponds to small initial excitations,
∆E . ~ωHO, when only very few levels are involved:
mainly the original vibrational level n and with a small
probability the additional levels n ± 1 (or only level 1
when n= 0). To understand why this limit falls in the
ML regime, it is sufficient to consider the limiting case
of a qubit subject to a static Hamiltonian. Representing
the qubit as a spin precessing around a fixed axis at fre-
quency ωHO/(2π), one finds it always in the ML regime,
as long as the lower level is more populated than the
upper level (Appendix G).

By contrast, for large excitations, the distribution of
the many excited levels is highly localized as a function
of energy (∆E < E), yielding an evolution in the MT
regime (τMT > τML). An example interpolating the two
limiting cases of small and large excitations is obtained
by considering a coherent excitation in a harmonic poten-
tial (dotted line), where the population of the vibrational
levels follows a Poisson distribution. Notably, this curve
fits well only the n = 0 series for sufficiently small exci-
tations. Its failure to fit the rest of the data reveals that
the matter waves tested here include but are not limited
to the semiclassical case of coherent excitations.

Deviation from the speed limit.—To gain insight into
the mechanisms leading to deviations from the speed
limit, we specifically consider the MT bound because it
applies to both regimes. For a quantitative analysis, we
take a geometric point of view, as proposed by Anan-
dan and Aharonov13, which relies on the FS metric as a
measure of the distance between states in Hilbert space.
They showed that the length of the path traced by the
time-evolved state equals `(t) ≡ πt/(2τMT). On the other
hand, the length of the shortest path (geodesic) connect-
ing the initial state to that at time t amounts to the FS
distance between the two states, `geo(t) ≡ D [ψ(0), ψ(t)].
The MT bound in Eq. (1a) can be expressed as `(t) ≥
`geo(t), which has a clear geometrical interpretation—
the MT bound is saturated only when the system evolves
along a geodesic21. Using the definition of D and the ex-
pansion in Eq. (3), we express the geodesic length as a
series of powers of t/τMT:

`geo(t)/`(t) = 1− π2ξ

48

(
t

τMT

)2

+O(t4) , (4)

where ξ is a dimensionless parameter empirically intro-
duced to quantify the deviation of the state evolution
from the geodesic. The foregoing geometrical condition,
representing the MT bound, translates into ξ ≥ 0.

We obtain the deviation coefficient ξ from a polynomial
fit of the measured FS distance `geo for each data set ex-
amined above. The results are displayed in Fig. 4 as a
function of the energy uncertainty ∆E. As expected, all
data points fall within the allowed region. Surprisingly,
however, the points coalesce around ξ = 1 regardless
of the wave packet shape, the potential’s anharmonic-
ity, and for nearly all values of ∆E, save for the limit-
ing case of very small excitations, discussed below. Such
a coalescence hides a nontrivial relation with the energy
uncertainty. In fact, for this result to hold, t in the power
series in Eq. (4) must be expressed in units of τMT, which
in turn depends on ∆E.

We attribute the observed strict deviations from the
MT bound, ξ > 0, to the multi-level nature of our sys-
tem. This result is in line with the well-known fact that
only a qubit system can evolve along a geodesic21, and
thus, saturate the MT bound. For a quantitative inter-
pretation of the deviation coefficient, we derive its ex-
pression in terms of Ĥ from the unitary evolution under-
lying the Schrödinger equation, ξ = (β2 − 1)/2, where
β2 = 〈(Ĥ − E)4〉/∆E4 is the kurtosis of the energy spec-
trum. This expression reduces to ξ = 1 if we model the
population of the vibrational levels by a Gaussian distri-
bution as a function of energy.

It is nonetheless remarkable that the observed devi-
ations are small on the scale of τMT. We explain this
observation by the well-known fact in statistics that the
majority of tailed distributions relevant to describe en-
ergy excitations have a kurtosis around 3, thus yielding
ξ ≈ 1 (Appendix E). Owing to the small factor π2ξ/48 in
Eq. (4), we therefore conclude that the MT speed limit
establishes a relevant bound on the evolution rate of a

43



5

0 1 2 3
0

1

2

3

Energy uncertainty, ∆E ( )

Qubit

Poisson

MT bound

n=2

n=1

n=0

ωHO

Figure 4. Deviations from the MT speed limit. The
measured coefficient ξ is plotted vs ∆E for a wide spectrum of
experimental conditions, varying the initial displacement ∆x
and the wave packet shape n = {0, 1, 2}. The pink line indi-
cates the MT bound. Points corresponding to ∆x> 0.25 λ/2
(nonharmonic regime) are highlighted by a surrounding cir-
cle. Note that for better visualization purpose the fourth root
of ξ is plotted.

multi-level system subject to a time-independent Hamil-
tonian [see, e.g., Fig. 2(c)], in clear contrast to what ob-
served in time-driven multi-level systems10.

The limit of small excitations, ∆E . ~ωHO, reveals
qualitatively different physics, with values of ξ signifi-
cantly larger than 1. To obtain further insight, we con-
sider the limiting case of a qubit, for which we find
ξqubit = 2(∆E2

max/∆E
2 − 1), where ∆Emax = ~ωHO/2

is the maximum energy uncertainty attainable by the
qubit. This expression reveals a good agreement with
the experimental data. It also shows that the bound is
theoretically saturated (ξqubit = 0) for ∆E = ∆Emax,
which occurs when the spin precesses along a great cir-
cle (the geodesic). In practice, however, this situation
never occurs in our setup, since small excitations of the
matter wave correspond to the case of the spin forming
a very small angle with respect to the precession axis.
In this limit, the evolved state is far from becoming or-
thogonal to the original one and, correspondingly, devi-
ations from the MT bound are large on the scale of the
orthogonalization time τMT. This situation is well exem-
plified by Fig. 2(a), which shows a cosine-like oscillation
of the two-time state overlap, corresponding to a spin
precessing with a small angle of about 40°. An interpo-
lation between the qubit case (ξ � 1) and the foregoing
multi-level Gaussian case (ξ = 1) is obtained considering
the previous example of a Poisson distribution, which
yields ξHO = 1 + (~ωHO)2/(2∆E)2. The comparison of
this curve with the experimental data shows an excellent
agreement, which also holds for n = {1, 2} (Appendix F).

Concluding remarks.—Our study sheds light on two
fundamental limits of quantum dynamics and their
crossover. Thereby, we have uncovered the relevance of
multiple levels in approaching the quantum speed limit.
Unexpectedly, our measurements reveal that deviations
from the MT bound are small in the case of multiple
levels, despite the well-known fact that this bound can
only be attained in a qubit system. Our results can
find applications for quantum computing with continu-
ous variables22, and quantum simulations in infinite di-
mensional systems.

Key to our study is the ability to measure the two-
time state overlap, which gives the FS distance covered
by the evolving state. We emphasize the direct nature
of this measurement, which, leveraging matter wave in-
terferometry, does not require quantum state tomogra-
phy nor any prior knowledge of the spectrum of Ĥ. This
technique is reminiscent of that used in Loschmidt echo
experiments23,24, with the notable difference that in our
case one of the two branches of the Ramsey interferome-
ter is held stationary in its initial state.

This work deals with quantum dynamics on the time
scale of τMT. However, the same matter wave interfer-
ometer technique developed here can be used to explore
quantum state evolution on a much longer time scale25.
We also envisage extensions of this technique to open
quantum systems in order to measure the Bures distance
(the FS distance analog) covered by mixed states un-
der unitary26 or non-unitary27 evolutions. Understand-
ing the quantum speed limit of open quantum systems is
an important ongoing effort28–34.
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Appendix A: Experimental sequence

An ensemble of 133Cs atoms is cooled in a three-
dimensional magneto-optical trap (MOT) and subse-
quently transferred into an optical trap consisting of a
one-dimensional optical lattice formed by two counter-
propagating laser beams with wavelength λ ≈ 866 nm.
About twenty atoms are sparsely loaded into the opti-
cal lattice, with a vanishing probability of having more
than one atom per lattice site due to losses induced by
light-assisted collisions. The initial number of atoms is
measured by collecting the fluorescence light emitted by
the atoms when these are illuminated by nearly resonant
laser beams. Subsequently, the laser beams are kept on
for an additional 10 ms with a reduced intensity and a
larger detuning in order to cool the atoms into a low
energy motional state. During loading, detection, and
cooling of atoms, the lattice depth U0 is set sufficiently
large (kB × 370 µK) to suppress the probability that an
atom hops between lattice sites. Here, kB denotes the
Boltzmann constant.

For the preparation of the atom state and the subse-
quent experiments testing the quantum speed limits, the
lattice depth is reduced to about kB×26 µK, correspond-
ing to 270ER, where ER = (2π~)2/(2mλ2) is the recoil
energy of an atom of mass m. Owing to the large value
of U0/ER, tunneling between sites is completely negligi-
ble (Appendix C) when the atoms occupy a low energy
motional state. For the low energy motional states, the
trap potential can be approximated by a harmonic oscil-
lator, with trap frequencies ωHO ≈ 2π × 66 kHz in the
direction longitudinal to the lattice, and ≈ 2π× 1 kHz in
the transverse directions. We note that the harmonic ap-
proximation in the longitudinal direction only applies in
the limit of small excitations, i.e., for ∆x .

√
~/(mωHO),

or equivalently, ∆E . ~ωHO. Also, due to the large dif-
ference between the two trap frequencies, the excitations
in the longitudinal direction and in the transverse direc-
tions are decoupled.

We employ microwave sideband cooling18 to cool the
atoms along the longitudinal direction into the vibra-
tional ground state and, simultaneously, optically pump
them to the Zeeman state |F = 4,mF = 4〉 of the elec-
tronic ground state. A bias magnetic field of 3 G oriented
in the lattice direction is used to define the quantization
axis. The ground state population of the longitudinal
motion is measured to be around & 96 % using sideband
spectroscopy. Subsequently, a microwave π pulse trans-
fers the atoms to state |F = 3,mF = 3〉. By tuning the
frequency of the pulse to be resonant with one of the mo-
tional sidebands, we selectively transfer the atoms into
the desired vibrational level n of the U↓ potential. The
pulse fidelities are 95 %, 85 % and 68 % for the eigen-
states n = {0, 1, 2}, respectively. The atoms that are not
successfully transferred remain in |F = 4,mF = 4〉, and
removed from the trap using an optical push-out pulse.

With the atom initialized in the vibrational level n, we
adiabatically vary (Appendix C) in 300 µs the relative

position of the two lattices to reach the desired displace-
ment, 0 < ∆x ≤ 0.5 λ/2, and then carry out the matter
wave interferometer sequence (Appendix D), which con-
sists of two fast π/2 pulses separated by a time t and
resonant with the transition between the internal states
|↓〉 = |F = 3,mF = 3〉 and |↑〉 = |F = 4,mF = 3〉.

After the second π/2 pulse, we remove the atoms in
|↑〉 with a second optical push-out pulse, increase the
lattice depth, illuminate the atoms with nearly resonant
light, and collect the emitted fluorescence light. We re-
normalize the detected fluorescence by the fidelity of the
π pulse used to prepare the atom in the vibrational level
n, in order to compensate for the fraction of atoms re-
moved by the first push-out pulse. The ratio between the
re-normalized fluorescence and the initially detected one
yields an estimate of p↓. To gain sufficient statistics, the
sequence described above is repeated 10 times.

Appendix B: Fast Raman pulse setup

We employ a pair of phase-locked laser beams to drive
the fast pulses of the matter wave interferometer by
means of resonant two-photon transitions.

Before illuminating the atoms, the two beams are cou-
pled into a common optical fiber and then sent through a
double-pass acousto-optic modulator (AOM). By control-
ling the RF drive power of the AOM, we can temporally
shape the intensity of the Raman pulses with nanosecond
precision. On such a short time scale, the AOM inten-
sity control exhibits a nonlinear response, which is taken
into account and compensated using a look-up table. A
second optical fiber is employed to overlap the Raman
laser beams with one of the two laser beams forming the
one-dimensional optical lattice (Appendix A). Thereby,
we ensure that the Raman beams overlap perfectly with
the optical trap, and that the momentum transferred to
the atom by the Raman transition is negligible, since the
two Raman beams are co-propagating.

The two Raman beams are red-detuned by about
2π × 48 GHz from the cesium D2 line. Because of the
large detuning, the probability of an off-resonant photon
scattering event during the pulse duration is negligible
(≈ 10−4). The frequency difference of the Raman beams
is tuned to the hyperfine splitting of about 2π×9.2 GHz,
separating the two internal states |↑〉 and |↓〉. The two
Raman laser beams illuminate the atoms with an indi-
vidual power of 1.2 mW and the same circular polariza-
tion. This polarizaiton enables σ-type transitions, since
the quantization axis is collinear with the optical lattice
(and, thus, with the Raman beams).

We achieve a high effective Rabi frequency ΩR ≈
2π × 6.5 MHz as a result of the high intensity of the Ra-
man beams, which are tightly focused onto the atoms
through a relatively small waist (≈ 17 µm). Such a high
intensity causes, in addition, a differential light shift of
about 12 MHz, which is taken into account by tuning
the frequency difference of the two Raman beams to be
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resonant with the shifted transition. In the Ramsey in-
terrogation scheme, this differential light field adds to
the phase of the Ramsey fringe a linear shift in time by
81 rad µs−1, which is subsequently subtracted from the
Ramsey phase ϕ(t).

The Rabi frequency ΩR is mostly homogeneous over
the entire ensemble of atoms, thus ensuring a high fringe
visibility & 96 %. We observe relative variations of less
than one percent for atoms positioned at different lat-
tice sites due to the collinearity of the Raman and lattice
beams. Atoms have a small, but not vanishing temper-
ature of about 1.5 µK in the directions transverse to the
lattice, which cause to a distribution of the atoms’ trans-
verse positions and thus of the Rabi frequency. To re-
duce the inhomogeneous spread of the Rabi frequency,
we use an additional blue-detuned hollow beam counter-
propagating to the Raman beams to increase the con-
finement of atoms close to the optical axis, where the
intensity of the Raman laser beams is maximal.

Appendix C: Spin-dependent optical lattice setup

The spin-dependent optical lattice setup is described
in detail in Ref.17. We employ two counter-propagating
laser beams, each linearly polarized with an angle θ be-
tween their linear polarizations, to create two superim-
posed optical standing waves of right- and left-handed
circularly polarized light. By controlling θ, we displace
the two standing waves along their common axis by
∆xsw(θ) = (θ/π)λ/2 with sub-nanometer precision.

The light shift exerted on the atoms by the two stand-
ing waves gives rise to two spin-dependent optical lat-
tices, U↑ and U↓, which differ for the two spin states
because of their specific polarization-dependent ac polar-
izability. At the wavelength λ, one can show that the
potential U↑ comprises two contributions proportional to
the intensity of the right circularly polarized light (rela-
tive weight 7/8) and to the intensity of the left circularly
polarized light (relative weight 1/8); the same expression
holds for U↓, with the two polarization circularities being
exchanged.

The two potentials, U↑ and U↓, exhibit an ideal si-
nusoidal profile along the longitudinal direction, with a
lattice constant equal to λ/2. Due to both standing waves
contributing to the lattice potential, the displacement ∆x
between the two lattices has a slightly nonlinear depen-
dence on the polarization angle,

∆x(θ) =
tan−1[3/4 tan(θ)]

θ
∆xsw(θ) . (C1)

The trap depth U0 is equal for both lattices. However, it
slightly depends on the polarization angle θ,

U0(θ)/U0(0) =

√
25 + 7 cos(2θ)

32
(C2)

again as a result of the contribution by both standing
waves. The minimum trap depth is U0(π/2) = 3/4U0(0) ≈

200ER occurring when ∆x(π/2) = 0.5 λ/2. Because the
trap depth varies with θ (equivalently, ∆x), the trap
frequency also slightly depends on the displacement,
ωHO(θ) =

√
2U0(θ)/(mλ2).

In the deep lattice regime, U0 � ER, the atom has a
negligible probability to tunnel to adjacent sites when it
populates a low energy state. The low energy bands are
virtually flat, and correspondingly the tunneling time is
much longer than the microsecond time scale of the ex-
periment. For example, the band with index n = 0 has
a tunneling time greater than 1 year. By contrast, the
energy bands with n & U0/(~ωHO) ≈ 10 resemble the
dispersion relation of a free particle. The tunneling time
varies nearly exponentially as a function of the band in-
dex n, changing by more than 12 orders of magnitude
from n = 0 to n = 10. Hence, it is a very good approx-
imation to consider states belonging to the low energy
bands as effectively bound states, and vice versa states
in the higher energy bands as unbound states.

Appendix D: Matter wave interferometry

The matter wave interferometer sequence shown in
Fig. 1 is described in detail below. At time t = 0, the
atom occupies |ψ(0)〉 ⊗ |↓〉, where |ψ(0)〉 ≡ |n〉 is one of
the motional eigenstates of U↓ potential. The first π/2
pulse, acting nearly instantaneously (Appendix B), puts
the atom in a superposition both of spin states,

1√
2
|ψ(0)〉 ⊗ (|↓〉+ |↑〉) , (D1)

where the atom’s motional state remains unchanged dur-
ing the short pulse. Afterwards, the atom is let evolve
for a duration t, resulting in

1√
2

[
e−iEnt/~ |ψ(0)〉 ⊗ |↓〉+ |ψ(t)〉 ⊗ |↑〉

]
, (D2)

expressed in the frame rotating with the hyperfine fre-
quency of the transition between the two spin states. A
second fast π/2 lets the two branches of the superposition
state interfere with each other, yielding

e−iEnt/~ |ψ(0)〉 − eiϕR |ψ(t)〉
2

⊗ |↓〉+

e−i(Ent/~+ϕR) |ψ(0)〉+ |ψ(t)〉
2

⊗ |↑〉 , (D3)

where ϕR is the Ramsey control phase, which is varied by
controlling the relative phase between the first and sec-
ond pulse. Finally, a push-out pulse removes the atoms
in state |↑〉, and the probability p↓ of occupying state
|↓〉 is measured as a function of ϕR, producing a typical
Ramsey fringe,

p↓(ϕR) =
1− V(t) cos[ϕR − ϕ(t)]

2
, (D4)
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where the visibility V(t) and phase ϕ(t) are related
to the complex-valued overlap integral, 〈ψ(0) |ψ(t)〉 =
V(t) exp{−i[ϕ(t) + Ent/~]}. The fringe phase is shifted
by an offset, Ent/~, where En is the energy of the vibra-
tional level n with respect to the ground state, E0 = 0,
known by sideband spectroscopy18.

Appendix E: Tailedness of spectral distribution as a
measure of deviation from MT bound

In the main text, the MT bound is shown to imply
the inequality ξ ≥ 0, where ξ is a coefficient accounting
for the tailedness (kurtosis) of the spectral distribution
of the excitation,

ξ =
〈(Ĥ − E)4〉 − 〈(Ĥ − E)2〉2

2〈(Ĥ − E)2〉2
. (E1)

A normal distribution has a deviation coefficient ξ = 1.
The distribution is said to be leptokurtic for ξ > 1 and

platykurtic for ξ < 1. Leptokurtic are most of the tailed
distributions describing excitations in a many-level sys-
tem. By contrast, the most platykurtic distribution is
notably the Bernoulli distribution with an equal proba-
bility of heads and tails, for which the deviation coeffi-
cient reaches its minimum possible value, ξ = 0. Such a
distribution describes the excitation of a qubit with both
eigenstates equally populated. Since the MT bound is
saturated for this excitation, we thereby prove that ξ = 0
is not only a necessary but also a sufficient condition to
saturate the MT bound.

It is interesting to observe that the numerator in
Eq. (E1) is equal to the variance of (Ĥ − E)2, and must
therefore be positive, thus providing an independent con-
firmation of the result derived from the MT bound.

Appendix F: Deviation coefficient in the harmonic
approximation

At t = 0, the excited motional state is equal to the
vibrational eigenstate |n〉 displaced by ∆x,

|ψ(0)〉 = e−ip̂∆x/~ |n〉 , (F1)

where p̂ is the momentum operator. In the harmonic
approximation, valid for sufficiently small excitations, the

probability distribution for the case n = 0 is given by

pn=0(n′) = |〈n′ |ψ(0)〉|2 =
e−|α|

2

n′!
|α|2n

′
, (F2a)

where |α| =
√
mωHO/(2~) ∆x is the amplitude of the

corresponding coherent state (m is the atomic mass).
Using pn=0(n′) to compute ξ in Eq. (E1), one obtains
ξn=0 = 1+ (~ωHO)2/(2∆E)2. Note that in the main text
ξn=0 is denoted as ξHO.

For the other cases, n = 1 and n = 2, the probability
distributions in the harmonic approximation are

pn=1(n′) =

(
|α|2 − n′

)2

|α|2 pn=0(n′) , (F2b)

pn=2(n′) =

(
|α|4 − 2r |α|2 + n′2 − n′

)2

2|α|4 pn=0(n′) , (F2c)

yielding the coefficients ξn=1 = 1/3 + (~ωHO)2/(2∆E)2

and ξn=2 = 7/25 + (~ωHO)2/(2∆E)2, respectively. No-
tably, the expression of ξ exhibits for all three cases
the same behavior in the limit of very small excitations,
where mainly two states (n = 0) and three states (n > 0)
are excited.

Appendix G: The qubit case

For very small excitations, |α| � 1, the excited state
in Eq. (F1) in the case of n = 0 reduces to two levels,

|ψ(0)〉 ≈ |0〉+ |α| |1〉 , (G1)

as in a qubit system.
In general, a qubit precessing with frequency ωHO/(2π)

around a fixed axis at an angle ζ has ∆E =
~ωHO sin(ζ)/2, E = ~ωHO sin2(ζ/2) and the two-time
state overlap

|〈ψ(0) |ψ(t)〉| =
√

1− sin2(ζ) sin2(ωHOt/2) . (G2)

In the case the two states are equally populated, ζ = π/2,
the two-time state overlap in Eq. (G2) saturates the MT
bound in Eq. (1a) for all times, 0 ≤ t ≤ τMT. In the
case of no population inversion (0 < ζ < π/2), as in
Eq. (G1), we have ∆E > E, meaning that the qubit is in
the ML regime. For the other case of population inversion
(π/2 < ζ < π), we remark that a bound equivalent to the
ML bound in Eq. (1b) can be derived considering the fact
that the energy is limited from above,

|〈ψ(0) |ψ(t)〉| ≥ cos
[√

cos2(ζ/2)πωHOt/2
]
. (G3)
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4.3 Summary

4.3 Summary

In this chapter we have verified the validity of the Mandelstam-Tamm and Margolus-Levitin inequalities
for single atoms trapped in a static optical lattice potential. The bounds impose a maximum rate of
change of the atomic wave packet evolution. The measurements here presented are the first experimental
verification of the bounds for a multi-level system.

A crossover is observed form a region where the Mandelstam-Tamm is more restrictive to a region
where the Margolus-Levitin bound is more restrictive. The crossover only happens when the energy
spread of the evolving wave packet is higher than its mean energy. Otherwise, the Mandelstam-Tamm
bound is more restrictive at all evolution times.

A geometric approach based on the Fubini-Study metric has been used to quantify the difference
between the actual rate of change of the wave packets and the maximum rate of change imposed by
the Mandelstam-Tamm bound. That has been done for wave packets prepared in 34 different initial
states. Surprisingly, as the energy spread increases and more energy levels are populated, the wave packet
evolution gets close to the bound. This is an important result since it reveals that the Mandelstam-Tamm
bound is also relevant for some multi-level systems and not only for effective two-level systems.
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CHAPTER 5

Quantum drag racing

We made a drag race against quantum mechanics. We didn’t win. We didn’t loose. We got as far as it can
be, a draw.

5.1 Introduction

In this chapter, our results on fast atom transport in optical lattices are presented, where the presence
of a quantum speed limit is observed. The exact process consists in transporting the atoms, initially
prepared in the motional ground state (Sec. 2.2.1), by a distance of one lattice site in the shortest possible
time and in such a way that the atoms are back at their ground state at the end of the transport. We have
observed that the atoms cannot be transported in a duration shorter than the quantum speed limit without
compromising the transport’s fidelity, quantified by the ground state population after the transport. In
order to spatially move the atom, the position of the lattice is controlled as described in Sec. 2.1.6 and the
atom is dragged by the lattice potential. The optimal transport trajectories are computed with optimal
quantum control methods, which optimize the fidelity for a fixed distance and duration, experimentally
measured with the technique presented in Sec. 2.2.2. The process can be thought of as a drag race with
an additional rule: after accelerating from rest at the start line, the race car has to brake and reduce its
speed back to zero (its ground state) exactly at the finish line (Fig. 5.1A). A low fidelity transport would
then correspond to a race in which the pilot fails to stop the car exactly at the finish line, meaning that
either the car doesn’t reach the finish line at all, or it reaches it with a non-zero speed (it is not back at its
ground state).

Atom transport without final motional excitations is essential for measurements that rely on matter
wave interference, such as quantum walks and single atom interferometers. For this reason, we have
realized a Mach–Zehnder single-atom interferometer with optimal control transport trajectories in order
to verify if coherence is preserved during the transport process. The interferometer splits the atomic
wave packet in two spin components (the hyperfine states |3, 3〉 and |4, 4〉), each one trapped by one of
the two components of the spin-dependent lattice (Sec. 2.1.2). The spin state |4, 4〉 is transported by one
lattice site and then transported back to its original position. Meanwhile, the component in the |3, 3〉 spin
state is kept static and used as a reference. An unwanted position wobbling of the |3, 3〉 state, induced by
the transport of the |4, 4〉 state, Eq.(2.11), is suppressed as explained in Sec. 2.2.5. The coherence of the
transport operation is quantified by Ramsey interferometry and the results confirm that the optimal control
transport operations preserve coherence. Coherent transport can be alternatively achieved by adiabatic
transport. However, adiabatic processes are typically slow, meaning that the number of operations that
can be realized within the coherence time of the system is reduced. By speeding up the transport operation
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Chapter 5 Quantum drag racing
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Figure 5.1: Quantum drag race. (A) Our atom transport operation is analogous to a usual drag race in which the
car starts from rest and accelerates when the light turns green, except that we add the extra rule that the car has to
go back to rest exactly at the finish line. (B) In the same way, our atom start at the initial position in the motional
ground state and are transported to the target position in such a way that they are back in the motional ground state
after the transport process. (C) The quantum geometric tensor provides a measure of distance between initial and
target states in the Hilbert space. The distance defined by the quantum geometric tensor `QGT increases linearly
with the spatial distance between the atomic wave packets d and can be seen as the number of local operations
(between wave packets separated by a spatial distance 2∆x, with ∆x being the width of the wave packet) required
to move the atom from the initial to the target position.

we are effectively increasing the number of operations that can be realized. This is why speeding up
quantum processes is so important in the field of quantum technologies.

Given that reducing the duration of quantum processes is a common effort in quantum technologies, it
is advantageous to have a good estimate of the fundamental limit that cannot be overcome by technical
improvements on the system. In Chapter 4, we have seen that the Mandelstam-Tamm bound provides
a good estimate of the minimum duration of quantum processes in some systems. However, it is well
known that for complex systems that cannot be effectively reduced to a two-level system, the bound may
provide absurdly small values [29]. In such cases the bound is useless and falls short of reflecting the
true limit. The atom transport operations presented in this chapter belong to such type of processes. In
fact, for long transport distances d for which the initial and target states are orthogonal, the minimum
duration predicted by the Mandelstam-Tamm bound is independent of d, as opposed to the expectation
that it scales with

√
d. We found out that this issue originates from the fact that for transport distances

longer than the size of the atomic wave packet1 d >> ∆x, the Fubini-Study distance [86, 87] between the
initial and final states in the Hilbert space is always `geo = π/2, independently of d. However, for initial
and target states separated by such long spatial distances, the geodesic2 according to the Fubini-Study
metric is unphysical [29]. This is because a state following the geodesic would have to follow a Rabi-type
transfer between two spatially distant locations, something impossible for massive particles. To solve

1 Please note that in this chapter ∆x refers to the width of the wave packet, as opposed to chapter 4 where it refers to the lattice
displacement.

2 In a metric space, the geodesic is the path that minimizes the distance between two states.
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5.1 Introduction

this, the process has to be restricted to the physically accessible states. This is done with the quantum
geometric tensor (QGT), which depends on the controllable parameters of the system and defines a
distance between quantum states in such a way that the geodesic is restricted to the physically accessible
states. As a consequence, the distance defined by the quantum geometric tensor `QGT can be much longer
than the distance defined by the Fubini-Studi metric `geo. In fact, in the case of atom transport by a
distance d we find `QGT = d/(2∆x). Therefore, `QGT increases linearly with the transport distance as
opposed to `geo which stagnates at π/2. Interestingly, `QGT can be thought of as the number of local
operations required to transport the atom from the initial to the target position (Fig. 5.1C). With this at
hand, we have derived an estimate of the minimum transport duration based on the quantum geometric
tensor. We have found that the estimate is consistent with the theoretically expected scaling of the
transport duration versus transport distance and is consistent with the experimental results as well.
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Transforming an initial quantum state into a target state through the fastest possible route—a quantum
brachistochrone—is a fundamental challenge for many technologies based on quantum mechanics. In two-
level systems, the quantum brachistochrone solutions are long known. These solutions, however, are not
applicable to larger systems, especially when the target state cannot be reached through a local
transformation. Here, we demonstrate fast coherent transport of an atomic wave packet over a distance
of 15 times its size—a paradigmatic case of quantum processes going beyond the two-level system. Our
measurements of the transport fidelity reveal the existence of a minimum duration—a quantum speed
limit—for the coherent splitting and recombination of matter waves. We obtain physical insight into this
limit by relying on a geometric interpretation of quantum state dynamics. These results shed light on a
fundamental limit of quantum state dynamics and are expected to find relevant applications in quantum
sensing and quantum computing.
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I. INTRODUCTION

.How fast can a quantum process be? Previous efforts to
answer this question have resulted in fundamental insights
into quantum state dynamics [1–7] and shed light on the
ultimate physical limits to the rate of information process-
ing [8–10]. Speeding up the dynamics of a quantum
process is also key to advance quantum technologies
[11–13], because faster processes can help us outrun
detrimental decoherence mechanisms, and so boost the
number of high-fidelity operations executed within the
system’s coherence time [14–16].
The fact that a minimum time is required to accomplish a

physical process has been known since Bernoulli’s famous
brachistochrone problem [17], long before the advent of
quantum physics. The origin of such a minimum time can
be traced back to the maximum rate at which a physical

state can change in time, which is generally determined by
the amount of physical resources (energy and type of
control) available to carry out the process.
For quantum processes, a precise formulation of such a

speed limit was first derived by Mandelstam and Tamm [1]
considering the transformation of a quantum state jψ initi into
an orthogonal one jψ targeti. They discovered that the duration
τQB of the fastest process—the quantum brachistochrone—
is bound by the inverse of the energy uncertainty [18],

τQB ≥ τMT ¼ ℏπ
2ΔE

; ð1Þ

providing a firm basis for Heisenberg’s time-energy uncer-
tainty principle [19]. Most significantly, the Mandelstam-
Tamm bound shows that the duration of a quantum process
cannot vanish, unless infinitely large energy resources
can be controlled. This bound was generalized to time-
dependent Hamiltonians, making it applicable to a far larger
class of quantum processes [2]. Further extensions have
been obtained for generic target states not necessarily
orthogonal to the initial one [20–22], open quantum systems
[23–26], semiclassical systems [27,28], and optimal
quantum control problems [29–33]. An experimental
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demonstration of the Mandelstam-Tamm bound in Eq. (1)
was given in effective two-level systems using ultracold
atoms [34,35] and superconducting transmon circuits [36].

II. QUANTUM BRACHISTOCHRONES
BETWEEN DISTANT STATES

Today, it is understood [4,37,38] that the Mandelstam-
Tamm bound in Eq. (1) can only be saturated (i.e.,
τQB ¼ τMT) when the quantum dynamics can be reduced
to that of a simple two-level system, i.e., when the
target state can be reached directly by a Rabi oscillation
[Fig. 1(a)]. Recently, however, Bukov et al. [7] pointed
out that such a simple Rabi oscillation dynamics connect-
ing the two states may be hard, or even impossible, to be
realized in many-level systems. Thus, the authors ques-
tioned the usefulness of the Mandelstam-Tamm bound for
these processes, since it fails to capture their true quantum
speed limit (i.e., τQB ≫ τMT).
A paradigmatic example of such a process would be

“teleporting” a massive quantum object between distant
quantum states through a Rabi oscillation, which is
fundamentally impossible because no direct coupling
between them [39] can be realized by physical local
operators [Fig. 1(b)]. In fact, any physical operator Ω̂Rabi
coupling directly the two states yields a vanishingly small
Frank-Condon factor, hψ initjΩ̂Rabijψ targeti ≈ 0.
In this work, we give the first experimental demonstra-

tion of coherent control of a physical process at its quantum
speed limit beyond direct local operations. Specifically, we

consider the problem of transporting a trapped massive
quantum particle to a distant location, separated by about
15 times the size of the wave packet, in the minimum
possible time under the constraint of a fixed trap depth. The
initial and target states are defined by the ground state of the
trap potential centered at the two different locations.
Because of the wide separation between the two states,
it is fundamentally impossible for the massive quantum
particle to reach the target state by a Rabi oscillation.
We see that inequality (1) fails to give a meaningful

bound on the shortest transport duration τQB if we examine
its scaling with respect to the transport distance d: While
the minimum time τQB is naturally expected to increase
with d, remarkably, the time τMT exhibits rather the
opposite behavior, as it decreases with d (Appendix M).
Away out of this conundrum is discussed below, adopting a
geometric point of view on wave packet dynamics.

III. FAST ATOM TRANSPORT IN OPTICAL
CONVEYOR BELTS

As of yet, transport experiments have been performed
with trapped ions and ultracold atoms in the nearly
harmonic low-energy portion of the trap potential
[40–44], where fast, high-fidelity transport is enabled by
effective protocols [45,46] known as shortcuts to adiaba-
ticity. In order to reach the quantum speed limit, however,
excitations of the wave packet beyond the low-energy range
of the trap potential must be controlled, requiring precise
knowledge of the full potential. For this purpose, we use a

(d)(a) (c)

(b)

FIG. 1. Transporting a massive quantum particle to a distant state. (a) Direct local coupling Ω̂Rabi between the initial and target state
can be realized when the two wave functions have nonzero spatial overlap. (b) Fundamentally, no direct local coupling between the two
states can be realized for large separations, d ≫ Δx, suppressing the possibility to attain the Mandelstam-Tamm bound. (c) Atom
transport in an optical conveyor belt (sinusoidal potential curves), depicted at the initial, intermediate, and final time of the process. The
probability distribution of the transported wave packet jψðtÞi is shown (shaded area), together with that of the initial and target states
(dashed lines). For illustration purposes, the chosen example shows a wave packet ending up in an excited state, corresponding to a low
(F ∼ 0.5) transport fidelity. (d) Quantum brachistochrone trajectory xtrapðtÞ of the optical conveyor belt (dark blue), corresponding to the
diamond data point marked by an arrow in Fig. 2. The actual position of the conveyor belt (cyan), measured with 1 Å precision by optical
interferometry, and the corresponding external drive (light blue), applied to steer the conveyor belt position, are also shown. For
comparison, a linear transport ramp (dashed line) is displayed.
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one-dimensional optical lattice as a conveyor belt [47] to
transport neutral atoms along its axis [Fig. 1(c)]. Its
sinusoidal trap potential is inherently well defined over
all spatial regions from trough to crest since it is created by
optical interference of two counterpropagating laser beams
(wavelength λ ≈ 866 nm, lattice constant λ=2). We choose
the trap depth U0 of the order of 100Erec in order to
suppress tunneling of the initial state to adjacent sites;
Erec ¼ ð2πℏÞ2=ð2mλ2Þ is the recoil energy of an atom of
mass m. We also maintain U0 constant during the whole
transport process to explore the scenario where the energy
available to control a physical process is fundamentally
limited; in fact, for an infinitely deep potential, no speed
limit exists [45] in nonrelativistic quantum mechanics.
All transport experiments begin by preparing the

matter wave of a 133Cs atom into the motional ground
state jψ initi of one of the sites of the optical conveyor belt
(Appendix A), which is initially held at rest. Subsequently,
we displace the conveyor belt within a given time τ to the
desired target location following a chosen trajectory xtrapðtÞ
as a function of time t [Fig. 1(d)]. The target location is
chosen to be one lattice site away (d ¼ λ=2) from the initial
location, corresponding to 15 times the initial sizeΔx of the
wave packet. While the atomic wave packet is highly
excited during transport, it ideally ends up in the ground
state of the displaced potential, jψ targeti, once the optical
conveyor belt is brought back to rest. We conclude the
experiments by measuring (Appendix F) the fidelity of the
transport process,

F ðτÞ ¼ jhψ targetjψðτÞij2; ð2Þ

quantifying the probability of occupying jψ targeti.
In the experiments, we control the position xtrapðtÞ of the

optical conveyor belt with high precision using a fast
polarization synthesizer [48], reducing the position noise
δx to much less than the size of the wave packet Δx
(δx ≈ 0.1 nm ≪ Δx ≈ 25 nm). We additionally suppress
systematic distortions from the desired trajectory
(Appendix E). Time-resolved measurements of xtrapðtÞ,
carried out by on-site laser interferometry (Appendix D),
reveal a nearly perfect agreement between the actual
trajectory of the conveyor belt and the targeted one
[Fig. 1(d)], with peak-to-peak discrepancies less than 10 nm.

IV. OPTIMAL TRANSPORT SOLUTIONS

For the transport of atoms, we choose a feed-forward
quantum control approach [49]: we steer the conveyor belt
along trajectories xtrapðtÞ that are designed to maximize the
transport fidelity. To obtain a trajectory xtrapðtÞ of given
duration τ, we take the solution for the corresponding
classical problem (Appendix G) and subsequently optimize
it using optimal quantum control methods [31,50,51] in
order to achieve maximum fidelity F ðτÞ. For the fidelity

optimization, we employ numerical simulations of atom
transport imposing two constraints: (1) xtrapðt ≤ 0Þ ¼ 0 and
xtrapðt ≥ τÞ ¼ d and (2) the Fourier spectrum of xtrapðtÞ is
limited to within the control setup bandwidth in order to
ensure that xtrapðtÞ is faithfully reproduced in the experi-
ments (Appendix H).
The resulting optimal trajectories [Fig. 1(d)] exhibit a

rather wiggling behavior, which is key to control excita-
tions during transport. Disregarding the fast wiggles, the
remaining behavior of xtrapðtÞ is reminiscent of a constantly
accelerated and decelerated trajectory for the first and
second half of the transport duration. In addition, optimal
trajectories notably start and finish with swift displace-
ments, which are favorable to place the atomic wave packet
where the trap potential is steep (Appendix G).

V. REVEALING THE QUANTUM SPEED LIMIT

Our measurements of the transport fidelity (Fig. 2)
demonstrate that optimal quantum control solutions accom-
plish F ≈ 1 within experimental uncertainty for all trans-
port times greater than τQB, occurring in the proximity of
τHO, the oscillation period in the harmonic approximation
of the trap potential (Appendix G). Crucially, for times
shorter than τHO, the fidelity drops rapidly, revealing
the existence of a minimum duration—a quantum speed
limit—for the transport of matter waves. To our knowledge,
this is the first observation of the quantum speed limit for a
multilevel system, where the transition from a quantum-
controllable to a quantum-noncontrollable process is
sharply resolved by fidelity measurements. Our measure-
ments reveal a rapid, yet smooth crossover around τQB, quite
at variance with the analogous classical problem, where the
transition between the two regimes is sudden [52].
We obtain insight about τQB by exploring the fidelity

landscape F ðτÞ as a function of τ, for different trap depths
U0 ≈ f70; 150; 300gErec. By varying the trap depth, we
change the number of effectively controlled energy levels
(4,6,10, respectively), for which site-to-site tunneling is
negligible over the transport duration τ. We determine the
transition to a quantum noncontrollable process as the
transport time at which the measured fidelity drops to
F ðτÞ ≈ 0.5 (inset of Fig. 2). Our measurements demon-
strate that in the range of trap depths explored here, the
quantum brachistochrone time τQB follows approximately
τHO. Atom transport performed in a time close to τHO is
notably much faster than its adiabatic counterpart, which
requires on the contrary τ ≫ τHO (Appendix J). In Sec. VII
we provide theoretical insight into the scaling of τQB,
showing that the minimum transport time is bound from
below by the classical brachistochrone time τCB ≈ 0.8τHO
(hatched area in Fig. 2). This bound corroborates the
experimentally observed scaling behavior of τQB with
τHO, which quite differs from that of the MT bound τMT
(dotted area in the same figure).
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To validate our experimental results, we employ numeri-
cal simulations of the transport process based on a one-
dimensional model of the conveyor belt potential
(Appendix C). A direct comparison of the computed
fidelity with the measured F ðτÞ reveals an excellent
agreement with the simulations taking into account a
thermal distribution in the transverse direction to the optical
conveyor belt (Fig. 2). Relying on the numerical simu-
lations, we are able to explain the rapid drop of fidelity
observed when the transport duration is reduced below τQB:
For short durations, high-energy excitations are created
above the discrete spectrum of controlled energy levels,
leading to a significant probability of tunneling to the
neighboring sites and thus to a drop of fidelity. The
occurrence of tunneling is especially evident in the limit
of very short durations, τ ≪ τQB. In this limit, in fact, the
optical conveyor belt is displaced so fast that the atom has a
considerable probability to remain in the very same state
jψ initi where it was initially prepared. This possibility
explains the apparent rise in fidelity for very short times
observed in Fig. 2; such events could be singled out by

probing a small ensemble of individually resolved atoms,
whose initial and final positions in the lattice can be
precisely detected [53] in addition to measuring the ground
state probability.
For comparison, we perform analogous transport

experiments applying a simple linear transport ramp
[Fig. 1(d)], corresponding to a bang-bang type of control
(Appendix I), as opposed to optimal quantum control. In
spite of its simplicity, bang-bang control enables faster-
than-adiabatic high-fidelity transport, and finds wide
applications in quantum technology [43]. The measured
transport fidelity reveals maxima of F ðτÞ when the
transport duration is chosen to be a multiple of the
oscillation period τHO (Fig. 2). In an ideal harmonic trap,
these maxima are expected to reach unit fidelity owing to a
perfect refocusing of motional excitations (Appendix I).
Our measurements show, however, that such refocusing
mechanism is only partially effective, owing to the
anharmonicity of the conveyor belt potential. To reach
fidelity values close to unity, long transport times are
required, τ ≫ τHO, rendering bang-bang control in

FIG. 2. Revealing the quantum speed limit. The fidelity F ðτÞ of transporting an atom over one lattice site is measured as a function of
the transport duration τ, expressed in units of the oscillation period τHO ≈ 20 μs, for a trap depth U0 ≈ 150Erec. Blue points: optimal
quantum control achieves near-unit fidelity for durations above the quantum brachistochrone time τQB (diamond point marked by an
arrow), in the proximity of τHO. Hatched area: low-fidelity region as expected for durations shorter than the classical brachistochrone
time τCB; see Sec. VII. Dotted area: low-fidelity region predicted by the Mandelstam-Tamm bound τMT. Purple points: linear transport
ramps achieve suboptimal fidelity. Black lines: computed fidelity based on numerical simulations of atom transport, assuming a
transverse temperature T⊥ ≈ 1 μK (solid) and a zero-temperature case (dashed). Inset: the fidelity landscape computed numerically as a
function ofU0 and τ for T⊥ ¼ 0 (colored contour map) and the measured transition points (experimental data) where the fidelity reaches
F ≈ 0.5. White lines: the oscillation period τHO, approximately representing the quantum brachistochrone time τQB, and the adiabatic
limit ensuring fidelities F > 0.9. Error bars represent one standard deviation.
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anharmonic potentials nearly as ineffective as adiabatic
transport.

VI. COHERENT SPLITTING AND
RECOMBINATION OF MATTER WAVES

To demonstrate that optimal quantum control transport is
fully coherent, we conduct a second, closely related experi-
ment, realizing a single-atom Mach-Zehnder interferom-
eter. To this purpose, we create a copy of the initial atom
wave packet with opposite spin direction, realizing a
superposition of j↑i and j↓i states, subject to two fully
independent, spin-selective optical conveyor belts [48].
Keeping the initial spin-down state at rest, we transport
the spin-up state to the next lattice site employing an
optimal quantum control trajectory of duration τ, and bring
it back with the same trajectory reversed. We conclude the
interferometer experiments by retrieving the contrast Cð2τÞ
of the interference fringe with a Ramsey interrogation
scheme [54].
In analogy to our previous findings, the interferometer

measurements reveal a high contrast for transport durations
τ ≳ τHO, attesting to the fully coherent nature of the process
(Fig. 3). The measured contrast is in fact directly related to
the fidelity F 2ð2τÞ of the process transporting the atomic
wave packet back and forth: Cð2τÞ ¼ jhψ initjψð2τÞij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2ð2τÞ

p
. Moreover, if we make the assumption

F 2ð2τÞ ≈ F ðτÞ2, we can trace F 2ð2τÞ back to the single

transport fidelity. The direct comparison of the measure-
ments of the fidelity F ðτÞ and contrast Cð2τÞ reveals a
striking similarity (Fig. 3). This comparison shows the
importance of achieving high-fidelity transport operations
for fully coherent quantum processes involving super-
position of states.

VII. INTERPRETATION AND PHYSICAL INSIGHT

A basic interpretation of the quantum brachistochrone
time τQB observed in the experiments is provided by the
analog classical problem. There, the fastest process is
realized when the particle is maximally accelerated for
half of the time and then decelerated for the other half, with
its position being centered at the points of steepest
potential. This protocol results in the classical brachisto-
chrone time, τCB ¼ τHO

ffiffiffiffiffiffiffiffiffiffiffi
2n=π

p
, where n represents the

transport distance d expressed in units of the lattice
constant λ=2 (Appendix G). When transporting a quantum
particle, however, extra control is necessary to prevent too
large spreading of the wave packet in the anharmonic
potential [52], in particular when the wave packet
approaches the points of steepest potential, where the trap
loses its ability to confine. This additional requirement
translates in a longer time to achieve a near-unit fidelity
(τQB > τCB), yielding a lower bound on the quantum
brachistochrone time,

τQB > τHO
ffiffiffiffiffiffiffiffiffiffiffi
2n=π

p
; ð3Þ

where n ¼ 1 is the case chosen for the experiments in this
work. Comparing this bound to the measured data, which
show near-unit fidelity for durations above τHO, validates
the finding that the transport of atoms in our experiments
attains the quantum speed limit.
Can the same bound in Eq. (3) be obtained from quantum

mechanical principles? As we argued earlier, this question
cannot be answered based on the Mandelstam-Tamm
bound. Instead, we consider the quantum state evolution
from a geometric point of view, as proposed by Anandan
and Aharonov [2]. They prove that for every quantum
process of duration τ, the average energy uncertainty ΔE
[18] is related to the geometric path length of the time-
evolved state jψðtÞi,

l ¼
Z

τ

0

dsFS ¼ ΔEτ=ℏ; ð4Þ

measured by the Fubini-Study metric in the Hilbert space
of quantum states, ds2FS ¼ 1 − jhψðtþ dtÞjψðtÞij2 [55].
Applying this relation to a quantum brachistochrone
process, we directly obtain a lower bound on the quantum
brachistochrone time, τQB > ℏlQB=ΔEupper, provided that
(I) the path length lQB of the process is known and (II) an

FIG. 3. Atom interferometry at the quantum speed limit. Square
points: measured contrast Cð2τÞ of the atom interferometer of
duration 2τ, with the atom in j↑i being transported with optimal
quantum control back and forth. Circle points: measured fidelities
F ðτÞ from Fig. 2, reproduced here for comparison. Solid line:
expected contrast obtained from numerical simulations assuming
T⊥ ≈ 1 μK. Error bars represent one standard deviation. Inset: the
blue and red lines describe the movement of the spin-up and spin-
down conveyor belts, ensuring that the atom in spin-down state
remains effectively at rest, since the two spin-dependent poten-
tials are not fully decoupled (Appendix B).
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upper bound ΔEupper on the average energy uncertainty can
be provided.
To produce (I) and (II), we assume that at the quantum

speed limit the wave packet is steadily accelerated in
the first half and steadily decelerated in the second half,
with its shape maintained close to that of a coherent state.
Concerning point (I), under this assumption we can
estimate the path length of the quantum brachistochrone
process as the product of two factors (Appendix K),

lQB ≈
d

2Δx
f

�
τHO
πτQB

�
; ð5Þ

where fðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
þ ξ2arccschðξÞ is a monotonically

increasing function greater than 1 for positive arguments.
Notably, the first factor in Eq. (5) coincides with the
distance between the initial and final states as measured by
the quantum geometric tensor (Appendix K),

lQGT ¼ d
2Δx

: ð6Þ

In contrast to lQB in Eq. (5), lQGT is a purely geometric
quantity independent of the dynamics of the process, since
it represents the shortest path length as measured by the
Fubini-Study metric in the restricted manifold of static
states that are reachable via an adiabatic transformation of
the control parameter xtrap (Appendix K). Equation (5)
shows that lQB is larger than lQGT. This finding is in line
with the conjecture put forth in Ref. [7] that lQGT is a lower
bound on the path length l of those processes that are
realizable with the control parameters available (in this
work, xtrap),

l ≥ lQGT: ð7Þ

The two factors in Eq. (5) can thus be interpreted as
follows. The first factor lQGT is a measure of the change of
jψðtÞi when its position is moved across a distance d,
which can be loosely understood as the number of local
transformations necessary to carry out the transport proc-
ess. The second factor f instead carries information about
the dynamics, reflecting the change of jψðtÞi when the
momentum is varied during transport. Numerical simula-
tions show that Eq. (5) approximates the actual lQB to
within a few percent.
Concerning point (II), the determination of an upper

bound on ΔE, we bound from above the potential con-
tribution to the instantaneous energy uncertainty ΔEðtÞ by
assuming the wave packet of size Δx to be positioned
where the trap potential is steepest, at�λ=8 from the center
of the site (Appendix K). By averaging over time [18], we
thus find an upper boundΔEupper onΔE, which remarkably
can be expressed in the form

ΔE < ΔEupper ¼ lQGTf

�
τQB

2nτHO

�
ℏ
τQB

; ð8Þ

where lQGT originates from the kinetic contribution to
ΔEðtÞ, whereas the second factor f stems from the trap
potential contribution. Combining Eqs. (5) and (8) in the
Anandan-Aharonov relation (4), we obtain

τQB ¼ lQB

ΔE=ℏ
> τQBf

�
τHO
πτQB

��
f

�
τQB

2nτHO

�
; ð9Þ

which, because of the monotonicity of f, directly translates
in inequality (3), thus providing a positive answer to the
question raised in the beginning. This result is consistent
with the recent findings that the quantum speed limit is not
a purely quantum phenomenon, but a universal property of
the dynamics of physical states in Hilbert space [27,28].
The conjectured bound on the path length, Eq. (7), alone

is not sufficient to yield a bound on τQB, since it does not
take into account the dynamical contribution, represented
by f in Eq. (5). Even so, this bound in Eq. (7) allows us to
obtain novel insights applicable to any transport process
that connects spatially distant states. In fact, using this
bound, we find that l is not just longer, but significantly
longer than the geodesic—the shortest possible path as
defined by the Fubini-Study metric—connecting the initial
to the target state. The reason is that the geodesic coincides
[56] with the path in Hilbert space traced by a Rabi
oscillation (Ω ¼ π=τ),

jψðtÞi ¼ cosðΩtÞjψ initi þ sinðΩtÞjψ targeti; ð10Þ

whose length is lgeo ¼ arccosðjhψ targetjψ initijÞ. Importantly,
lgeo levels off to π=2 for orthogonal states, regardless of the
distance d separating the two states in real space, thus
yielding l ≫ lgeo for d ≫ Δx. The atom, in contrast,
cannot evolve as in Eq. (10) because, as a massive particle,
it cannot disappear from the initial location while reap-
pearing at the target location [57], but must take a different
much longer path.
The geometric relation just obtained, l ≫ lgeo, is

the fundamental reason why the Mandelstam-Tamm
inequality falls short of giving a meaningful bound on
the quantum brachistochrone duration, τQB ≫ τMT. In
fact, applying the Anandan-Aharonov relation (4) to the
quantum brachistochrone process, we directly obtain
τQB ¼ ℏlQB=ΔE ≫ ℏlgeo=ΔE ¼ τMT, where τMT desig-
nates here the Mandelstam-Tamm bound generalized [19]
to the case of not necessarily orthogonal states.

VIII. CONCLUSIONS AND OUTLOOK

In this work, we have experimentally demonstrated high-
fidelity transport of matter waves connecting spatially
distant states in the shortest possible time, under the
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constraint of a fixed trap depth. By splitting and recombin-
ing atomic matter waves, we showed that coherent quantum
control is preserved at the quantum speed limit. By using
geometric arguments, we showed how our transport experi-
ments connecting distant states go beyond the quantum-
speed-limit paradigm developed for single qubits and
complex systems that can be effectively reduced to a
two-level system [58], where the Mandelstam-Tamm
bound is known to provide a meaningful lower bound
on the shortest duration τQB. This work focused on a
transport distance equal to one lattice site, which is the most
relevant case for quantum walks [13]. Extending our results
to much longer transport distances (Appendix L) is a very
interesting goal, with applications in long baseline inter-
ferometry, which is key to boost the sensitivity of quantum
sensors [59,60], to carry out fundamental tests of quantum
superposition states [61], and to implement fault-tolerant
quantum memories [62].
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APPENDIX A: ATOM TRAPPING AND COOLING

We load 133Cs atoms from the background gas
into a magneto-optical trap and subsequently transfer
them into a superimposed one-dimensional optical lattice
with a trap depth U0 ≈ kB × 400 μK ≈ 4000Erec, where kB
is the Boltzmann constant andErec ¼ ðℏkÞ2=ð2mÞ ¼ 2πℏ ×
2 kHz is the recoil energy; here, k ¼ 2π=λ is the wave
number associated with the wavelength λ of the optical
lattice, m is the mass of cesium atoms, and ℏ is
the reduced Planck constant. The initial number of atoms
is obtained by fluorescence imaging under near-resonant
molasses illumination with an exposure time of 400 ms. A
typical sample consists of 30 atoms loaded sparsely over 100
lattice sites. The molasses also cools the atoms further down
by polarization gradient cooling. Adiabatically lowering the
lattice trap depth to kB × 80 μK ≈ 800Erec further cools the
atoms down to around 10 μK. This temperature corresponds
to a longitudinal ground state population of around 40% as
determined by microwave sideband spectroscopy.
A weak magnetic field of 3 G along the lattice axis

provides a well-defined quantization axis. Relative to
the quantization axis, we select two hyperfine states of

the ground state for the atom transport experiments,
j↑i ¼ jF ¼ 4; mF ¼ 4i and j↓i ¼ jF ¼ 3; mF ¼ 3i. In
interferometer transport experiments, we use a superposi-
tion of both states, while for the other transport experiments
we use state j↑i.
We cool the atoms down to the vibrational ground state

along the longitudinal lattice direction by resolved side-
band cooling using microwave radiation at 9.2 GHz [63].
More specifically, microwave sideband cooling is achieved
by driving the cooling sideband j↑; ni to j↓; n − 1i, thereby
removing one vibrational energy quantum ℏωHO, while
simultaneously repumping the atoms to j↑i; here ωHO ¼
2π denotes the harmonic oscillation frequency:

ωHO ¼ 2π=τHO ¼ 2π

ffiffiffiffiffiffiffiffiffi
2U0

mλ2

r
: ðA1Þ

Microwave sideband transitions are enabled by displacing
one of the spin potentials by around 17 nm along the lattice
axis, lifting the orthogonality between different vibrational
states. After sideband cooling for 20 ms, a longitudinal
ground state population of typically 96% is reached.
In order to reduce the transverse temperature of the

atoms, during molasses cooling we superimpose to the
optical lattice a blue-detuned donut-shaped beam. Thereby,
we increase the confinement of the atoms in the direction
transverse to the optical lattice. By subsequently ramping
down the intensity of the donut beam adiabatically, we
lower the transverse temperature to T⊥ ≈ 1 μK.

APPENDIX B: SPIN-DEPENDENT
OPTICAL LATTICES

The optical lattice is operated at λ ¼ 865.9 nm, a
so-called “magic” wavelength allowing atoms in the state
j↑i to be trapped only by the right-handed circularly
polarized (R-polarized) light, while atoms in the state
j↓i are predominantly trapped by the left-handed circularly
polarized (L-polarized) light. The dipole trap potentials for
the two spin states are

U↑ ¼ −αIR; ðB1aÞ

U↓ ¼ −α
�
7

8
IL þ 1

8
IR

�
; ðB1bÞ

where IR and IL denote the intensity of the two circular
polarization components of the lattice laser field, and
the proportionality constant α only depends on cesium
polarizability.
In order to create two fully independent optical conveyor

belts transporting atoms selectively in either one of the two
spin states, we employ a polarization-synthesized beam,
where the phases ϕR and ϕL and the amplitudes of its
left- and right-handed circularly polarized components
are steered with high precision [48]. By interfering the
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polarization-synthesized beam with a counterpropagating
reference beam of fixed linear polarization, we create two
perfectly superposed standing waves. The position of each
standing wave,

xR;LðtÞ ¼
λ

2

ϕR;LðtÞ − ϕ0

2π
; ðB2Þ

is independently controlled by the phase ϕR;LðtÞ relative to
the phase ϕ0 of the counterpropagating reference beam.
The conveyor belt potential for an atom in state j↑i is
simply

U↑ðx; tÞ ¼ −U0;↑ cos2 fk½x − x↑ðtÞ�g; ðB3Þ
with x↑ ¼ xR and U0;↑ ¼ αIR > 0 being the trap depth; for
the sake of notation, we simply useU0 to refer toU0;↑ when
only state j↑i is involved. The conveyor belt potential for
an atom in state j↓i originates from the contribution of both
polarization components, as indicated by Eq. (B1b), and
takes the form

U↓ðx; tÞ ¼ −Uoffs;↓ −U0;↓ cos2 fk½x − x↓ðtÞ�g; ðB4Þ

with

U0;↓ ¼ α

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2L þ 49I2R þ 14ILIR cosðϕR − ϕLÞ

q
; ðB5aÞ

Uoffs;↓ ¼ α

16
ðIL þ 7IRÞ −

1

2
U0;↓; ðB5bÞ

x↓ ¼ λ

4π
arctan

�
IL sinðϕLÞ þ 7IR sinðϕRÞ
IL cosðϕLÞ þ 7IR cosðϕRÞ

�
: ðB5cÞ

Here,U0;↓ > 0 andUoffs;↓ > 0 are the contrast and offset of
the spin-down conveyor belt potential (see Fig. 4).
The phase of each of the two polarization components

ϕR;LðtÞ is controlled by two independent optical phase-
locked loops (OPLLs) with respect to a common reference
beam, using two acousto-optical modulators as actuators.
The set points of the OPLLs are controlled by a direct
digital frequency synthesizer (AD9954 by Analog
Devices), enabling fast preprogrammed arbitrary phase
ramps. The control system has a bandwidth of 800 kHz
and a slew rate of 0.84 rad μs−1. This slew rate limits the
maximum speed of the lattice to 0.13 sites per μs (equiv-
alently, 56 mm=s).
During the atom interferometer sequence described in

the main text, the spin-down conveyor belt is kept static in
order to preserve the spin-down wave function as a
reference. To that purpose, we actively compensate the
effect of the moving R-polarized standing wave onto U↓
during the transport of the spin-up potential. We therefore
suppress the position modulation with a compensation
ramp ϕL (blue trajectory in the inset of Fig. 3 of the main
text) that maintains x↓ constant,

ϕL ¼ − arcsin

�
ϕR

7fðϕRÞ
�
; ðB6Þ

where fðϕRÞ is a rather involved analytical expression
depending on ϕR. We do not compensate the depth modu-
lationU0;↓, Fig. 4(c), because motional excitations of atoms
in state j↓i are predominantly caused by position modula-
tion x↓, when the latter is not properly compensated.

APPENDIX C: SIMULATIONS OF ATOM
TRANSPORT

For the numerical simulations of atom transport, we
consider a one-dimensional model of the conveyor belt
potential, as introduced in Appendix B, corresponding to
the Hamiltonian:

ĤðtÞ ¼ p̂2

2m
þU0 cos2fk½x̂ − xtrapðtÞ�g: ðC1Þ

(a)

(b)

(c)

FIG. 4. Cross talk between spin-dependent potentials. Example
of transport ramp as in Fig. 1(d) when varying xRðtÞ without
compensating xLðtÞ; i.e., xLðtÞ ¼ xLð0Þ. (a) The position of the
spin-up potential only depends on the R-polarized standing wave,
x↑ðtÞ ¼ xRðtÞ. The position (b) and depth (c) of the spin-down
potential are modulated because of the cross-talk contribution
from the moving R-polarized standing wave; see Eq. (B5).
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We assume that the atom occupies initially the lowest
energy state of Ĥð0Þ. We compute the evolution of the wave
packet in discrete time steps using the Strang split-step
integration method [64].
In the transverse directions, a small, but nonzero temper-

ature T⊥ characterizes the initial state of the atoms; see
Appendix A. For the atom transport problem, the motion of
atoms in the transverse directions can be considered as
frozen. This assumption is justified by the large separation
between the timescales of the longitudinal (20 μs) and
transverse (1 ms) motion. However, because of the thermal
distribution of transverse positions, atoms experience a
different trap depth U0 depending on their distance from
the lattice axis (inhomogeneous broadening). Such a
distribution of trap depths reduces the transport fidelity,
especially for short transport durations close to the quantum
speed limit; see Fig. 2 of the main text. In the numerical
simulations, we take into account the thermal distribution
of transverse positions by assuming a two-dimensional
Boltzmann distribution in the harmonic approximation of
the transverse energy potential [63],

Pðr; T⊥Þ ¼
mω2⊥
kBT⊥

r exp

�
−
mω2⊥r2
2kBT⊥

�
; ðC2Þ

where r is the transverse distance from the lattice axis and
ω⊥ is the transverse trap frequency. The effective trap depth
experienced by atoms as a function of r is

U0ðrÞ ¼ U0ð0Þ exp
�
−
2r2

w2
DT

�
; ðC3Þ

where wDT is the lattice beam waist and U0ð0Þ is the depth
on the lattice axis. The average fidelity for a thermal
ensemble of atoms is then given by

F ðτ; T⊥Þ ¼
Z

∞

0

drF(U0ðrÞ)Pðr; T⊥Þ; ðC4Þ

where

F ðU0Þ ¼ jhψ targetjV̂ðτ; U0Þjψ initij2: ðC5Þ

Here, V̂ðτ; U0Þ denotes the operator evolving the state
for a time τ according to the Hamiltonian in Eq. (C1) with a
trap depth U0. In practice, the integral in Eq. (C4) is
replaced by a trapezoidal sum over about 10 different
discrete values of r.

APPENDIX D: PRECISION OPTICAL
MEASUREMENT OF TRANSPORT RAMPS

Measuring the actual trajectory of the conveyor belt with
high precision is important to achieve high-fidelity trans-
port operations. Indeed, knowledge of the actual trajectory

allows us to compensate for deviations from the target
optimal trajectory xtrapðtÞ; see Appendix E.
To that purpose, we developed an interferometric tech-

nique to reconstruct in situ the trajectory x↑ðtÞ and x↓ðtÞ of
the optical conveyor belts for the two spin states: The
conveyor belt trajectories are inferred via Eqs. (B3) and
(B4) from the positions xRðtÞ and xLðtÞ of the R- and
L-polarized optical standing waves, which are in turn
obtained via Eq. (B2) from a time-resolved measurement
of the optical phases ϕRðtÞ and ϕLðtÞ of the R- and
L-polarized components that form the polarization-
synthesized beam of the spin-dependent optical lattice.
The two phases are measured by using an optical phase

quadrature detection scheme, which consists of inserting a
Glan-Laser polarizer directly into the optical path of the
polarization-synthesized beam, and detecting the intensity
signal produced by the two interfering R- and L-polarized
components. If, for example, we aim to detect ϕRðtÞ, we
then hold ϕLðtÞ constant at either ϕRð0Þ or ϕRð0Þ þ π=2.
The recorded interference signals correspond to the in-
phase and quadrature components of ϕRðtÞ, respectively,
from which it is straightforward to obtain xRðtÞ; see Fig. 5.

APPENDIX E: AVOIDING DISTORTIONS
CAUSED BY BANDWIDTH LIMITATION

Deviations from the target optimal trajectory, which are
caused by the limited bandwidth of the control system,

(a)

(b)

FIG. 5. Optical interferometric measurement of the trap tra-
jectory. (a) Phase quadrature measurement of ϕRðtÞ, showing the
normalized intensities recorded after a Glan-Laser polarizer for
the in-phase, f1þ cos½ϕRðtÞ�g=2, and the quadrature signal,
f1þ sin½ϕRðtÞ�g=2. (b) Displacement x↑ðtÞ ¼ ðλ=2ÞϕRðtÞ=ð2πÞ
of the optical conveyor belt, reconstructed from the in-phase and
quadrature signals.
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must be compensated in order to realize high-fidelity
transport operations.
To that purpose, we initially assume a linear time-

invariant control system, implying that its response to an
external drive is fully characterized by its impulse response
function. The impulse response function can be obtained
as the derivative of the step response, which we measure
with the technique described in Appendix D by recording
the actual position of the conveyor belt after driving a
sudden, small step of its position. The resulting impulse
response function (Fig. 6) extends over a couple of
microseconds, limiting the control bandwidth to below
1 MHz. By deconvolving the target optimal trajectory
xtrapðtÞwith the impulse response function, we obtain a first
approximation of the external drive signal to be applied in
order to avoid signal distortions.
In a second step, in order to also take into account

nonlinearities of the control system, we iteratively reduce
the residual deviations between the actual and the optimal
target trajectory. In each iteration, the residual deviations are
measured with the technique in Appendix D, and a fraction
of them (typically 0.4 to avoid instabilities) is subtracted
from xtrapðtÞ before deconvolution. After 10 iterations, the
difference between themeasured and the target trajectories is
over the whole transport duration below 2% of a lattice site,
or equivalently, less than 10 nm. An example can be seen in
Fig. 1(d) of the main text.
Using numerical simulations, we could verify that the

deviations of the actual trajectory from the target one
affected the transport fidelity by no more than 1%, which is
within the experimental error. The reason why such
deviations, which are comparable in size to the atomic
wave packet, do not significantly affect the fidelity can be

explained in terms of two factors. (I) The target trajectory is
an optimal one, meaning that the transport fidelity is
affected by small deviations of the lattice trajectory only
in second order. (II) The spectral distribution of the
deviations from the target trajectory is important. High-
frequency components, ν≳ 3=τHO, are found to have small
effect. In fact, the wave packet response at higher frequen-
cies decreases akin to the response of a harmonic oscillator
subject to a high-frequency drive.

APPENDIX F: PRECISION MEASUREMENT
OF TRANSPORT FIDELITY

The fidelity F of a transport operation is given by the
fraction of atoms occupying the motional ground state
jψ targeti of the conveyor belt potential at the target position,
as defined in Eq. (2) of the main text.
We measure the ground state fraction with a detection

scheme that selectively removes atoms in higher motional
states from the trap while retaining those in the ground
state [63]: All atoms are first transferred from jψ↑i to jψ↓i
with a fast microwave π pulse on the carrier transition,
j↑; ni → j↓; ni. Subsequently, the relative position x↑ðtÞ −
x↓ðtÞ between the spin-up and spin-down conveyor belts is
adiabatically increased from zero to around 17 nm in order
to enable microwave transitions on the motional sidebands.
We perform 10 repetitions of a removal cycle, where first a
microwave pulse on the sideband j↓; ni → j↑; n − 1i trans-
fers all atoms, except those in the ground state, to the spin-
up state, and then a push-out beam resonant to the transition
jF ¼ 4i → jF0 ¼ 5i removes the transferred atoms by
radiation pressure. The remaining fraction of atoms indi-
cates the motional ground state population, with a typical
statistical uncertainty at the 2% level.
To compensate for the imperfect initial state preparation,

the reported values of the transport fidelity F are normal-
ized by the fidelity of the initial state preparation (around
96%; see Appendix A), which is measured by the same
technique, but omitting the transport operation.
The fraction of atoms in the motional ground state, as

measured with this scheme, does not discriminate whether
the transported atom ends up in the ground state of the
target site (true positive) or in that of an adjacent site of the
optical lattice (false positive). The latter possibility has,
however, a negligible probability to occur, unless the
transport duration is significantly shorter than the quantum
brachistochrone time τQB; see Fig. 2 of the main text. Such
false positive events could be separately detected and
filtered out by resolving the individual lattice sites [53]
in addition to measuring the ground state probability.

APPENDIX G: ANSATZ FOR OPTIMAL
TRANSPORT TRAJECTORIES

For optimal control of the transport process (see
Appendix H), it is important to start with a good ansatz

FIG. 6. Reconstructed impulse response function. The control
bandwidth is mainly limited [48] by a time delay, which
originates from the acousto-optical modulators employed in
the optical phase-locked loop to control the phases ϕR;LðtÞ;
see Appendix A.
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of the transport trajectory xtrapðtÞ. We obtain it considering
the classical analog of the atom transport problem: A
classical point particle of mass m, initially at rest in a
sinusoidal potential with lattice constant λ=2 and depth U0,
is to be transported over a distance d in the shortest possible
time such that it is again at rest after the transport. The
optimal strategy evidently is to maximally accelerate the
particle during the first half of the transport and maximally
decelerate it during the second half. Thus, the optimal
classical transport trajectory starts with a sudden lattice
displacement equal to δx ¼ λ=8, which places the particle
at the point of steepest potential, where it is maximally
accelerated. The lattice potential is then moved together
with the particle in order to maintain maximum acceler-
ation until the particle reaches half of the transport distance.
At that point, the potential gradient is suddenly reversed by
displacing the lattice by −2δx, thus ensuring maximum
deceleration in the second half. The particle reaches the
target position at zero speed, where a final sudden dis-
placement by δx places the potential minimum at the
particle’s final position. The duration of this process is
the classical brachistochrone time,

τCB ¼ τHO
ffiffiffiffiffiffiffiffiffiffiffi
2n=π

p
; ðG1Þ

where n ¼ d=ðλ=2Þ is the transport distance d expressed in
number of lattice sites.
This protocol can be extended to any transport duration

τ ≥ τCB by reducing the constant acceleration and decel-
eration below the maximum value, yielding the trajectory
[Fig. 7(a)]

xansatzðtÞ ¼

8>>>>>>>><
>>>>>>>>:

0 for t ≤ 0

d
2

�
t

τ=2

�
2

þ δx for 0 < t < τ=2

d −
d
2

�
τ − t
τ=2

�
2

− δx for τ=2 < t < τ

d for t ≥ τ;

ðG2Þ

with

δx ¼ λ

4π
arcsin

��
τCB
τ

�
2
�
≤
λ

8
: ðG3Þ

The effect of the sudden steps by δx is best understood
considering the dynamics from the reference frame comov-
ing with the trap. There, the classical particle is constantly
kept at the position of the minimum of the tilted potential,
thus avoiding in this reference frame motional excitations
(e.g., slosh motion); see Fig. 7(b).
We note that the same solution, xansatzðtÞ, was derived in

Ref. [65] by minimizing the transport time for a particle
confined within a distance δx from the center of a harmonic
trap. The ansatz trajectory xansatzðtÞ also resembles that
proposed in Ref. [66], which is obtained by minimizing the
anharmonic contribution of the trap potential. This con-
dition, in fact, can be shown to be related to minimizing the
slosh motion as achieved by xansatzðtÞ.
We also remark that a different type of transport control

has been proposed, where the Hamiltonian ĤðtÞ in Eq. (C1)
is extended with a linear potential term controllable in time,
which could be realized by means of an additional optical
lattice with a lattice constant about 10 times that of the
conveyor belt lattice [67]. In fact, a time-dependent linear
potential allows one in theory to perfectly counteract the
noninertial forces experienced by the atom in the reference
frame comoving with xtrapðtÞ, thereby enabling unity
fidelity for arbitrary transport trajectories xtrapðtÞ. This
approach requires, however, much greater energy resour-
ces, since the counteracting lattice to be effective must be
about 10 times deeper than the conveyor belt lattice.

APPENDIX H: OPTIMAL QUANTUM CONTROL
OF TRANSPORT TRAJECTORIES

Optimal quantum control searches for the trajectory
xtrapðtÞ that maximizes the transport fidelity F ðτ; T⊥Þ as
defined in Eq. (C4) for a given transport duration τ
and transverse temperature T⊥. Relying on numerical
simulations of the transport problem (see Appendix C),
we search for an optimal transport trajectory in the form of
a Fourier series,

(a) (b)

FIG. 7. Excitation-free classical trajectories. (a) The dotted
curve shows the trajectory of a classical point particle being first
constantly accelerated and then decelerated. The solid curve is the
trajectory of the trap xansatzðtÞ, see Eq. (G2), required to drive the
particle along the dotted curve. The example refers to τ ¼ 1.2τHO
and d ¼ λ=2, whereas δx is given by Eq. (G3). (b) The potential
in the noninertial comoving frame (solid curve) is equal to the
static potential (dashed curve) plus a linear tilt with slope
mẍansatzðtÞ. The sudden shift by δx keeps the particle at the
position of the potential minimum in the comoving frame,
avoiding motional excitations (e.g., slosh motion).
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xtrapðtÞ ¼ d
1 − cosðν1tÞ

2
þ
Xjmax

j¼1

bj sinðνjtÞ; t ∈ ½0; τ�;

ðH1Þ

where the frequencies νj ¼ πj=τ are chosen to satisfy the
boundary conditions xtrapð0Þ ¼ 0 and xtrapðτÞ ¼ d. We
choose the maximum frequency νjmax

to lie within the
bandwidth of our control system of around 800 kHz to
ensure that xtrap can be faithfully reproduced in the transport
experiments (see Appendix E). Importantly, the bandwidth
constraint νjmax

does not significantly affect the maximum
attainable fidelity when the condition νjmax

≳ U0=ð2πℏÞ is
fulfilled, which is the case here.
Numerical simulations comparing the maximum fidelity

reached by the optimization procedure as a function of the
bandwidth of the control system show that the limitation to
frequencies below νjmax

has no significant effect in the range
of parameters considered in this work. In fact, because νjmax

is larger than U0=ð2πℏÞ, the control system bandwidth
allows driving any relevant transition, i.e., any transition
between pairs of discrete states of the trap, for which
tunneling to neighboring sites is negligible.
Moreover, we conjecture that the optimal transport tra-

jectory satisfies the point symmetry xtrapðtÞ¼ d−xtrapðτ− tÞ,
which is equivalent to reducing the search parameter space
to the even Fourier coefficients fb2jg and thus taking
b2jþ1 ¼ 0. This conjecture is supported by numerical stud-
ies, showing that when the search parameter space is
unconstrained, theweight of the odd coefficients is negligible
compared to that of the even coefficients.
For a robust convergence of the search algorithm to a

global optimum of F ðτ; T⊥Þ, it is convenient to start
the optimization procedure with good initial values of
the coefficients fb2jg defining the transport trajectory. For
this purpose, based on physical intuition, we consider the
trajectory defined in Eq. (G2), xansatzðtÞ, which is designed
to avoid motional excitations of a classical point particle.
We project this ansatz into the form of Eq. (H1), thus
obtaining the initial set of control parameters fb2jg for the
numerical optimization procedure. We note here that
alternative to xansatzðtÞ, one can choose as ansatz for the
optimization procedure an optimal solution obtained for a
slightly longer transport time [51].
While xansatzðtÞ produces no motional excitations

for a classical point particle, it does cause small, but not
negligible wave packet deformations because of the anhar-
monicity of the potential. These excitations, if not counter-
acted via optimal quantum control, would result in a loss of
transport fidelity F ðτÞ, which becomes especially signifi-
cant for τ close to τQB. Our numerical optimization of the
transport process shows that optimal quantum control of
xtrap achieves this objective by avoiding too large motional
excitations (e.g., breathing and slosh motion) in the

reference frame comoving with the conveyor belt during
the whole transport process.
We here note that the degree of control can be increased

by changing in time the trap depth, in addition to xtrapðtÞ.
While for classical particles the shortest transport time is
achieved when the trap depth is held constant, and equal to
its maximum allowed value U0, for quantum particles the
minimum time can in theory be reduced by controlling the
trap depth in time, while keeping it below U0. Whether this
additional control parameter allows a visible reduction of
τQB will be investigated in future work.
Concerning the search algorithm, we use the interior-

point method provided by MATLAB with the fmincon
function, which allows us to include constraints. We use
constraints to limit the gradient of the trajectory to the
maximum slew rate of the control system (0.84 rad=μs),
which is determined by how fast the OPLL is able to track
the change of its set point; see Appendix B.
We note that for transport over many lattice sites, more

frequency components νj fit within the system bandwidth
due to the longer transport time, resulting in a higher-
dimensional search parameter space. In this case, using a
reduced randomized basis of functions to represent xtrapðtÞ,
as done by the DCRAB algorithm [68], is expected to be
preferable to exhaustively searching through the whole
system bandwidth at once, as done here.

APPENDIX I: BANG-BANG CONTROL

A widely used transport method is the so-called bang-
bang type of transport. We here compare the fidelities
achieved with our optimal control optimization procedure
to the fidelities of two types of bang-bang transport
protocols: the linear transport and the parabolic transport.
For the linear transport, xtrapðtÞ follows a trajectory with
constant speed from the initial to the target position. For the
parabolic transport, xtrapðtÞ is constantly accelerated with
ẍtrapðtÞ ¼ a on the first half of the transport and constantly
decelerated with ẍtrapðtÞ ¼ −a on the second half.
Both protocols are better understood in the reference

frame comoving with the trap. During the linear transport,
the wave packet is subject to two momentum kicks: one at
the start and one at the end. During the parabolic transport,
the wave packet is subject to three position kicks: one at the
start by −a=ω, one at half of the transport time by 2a=ω,
and one at the end by −a=ω. In both cases, motional
excitations are created after the initial kick. However, the
transport process can be timed so that the excitations
created by the first and possibly middle kicks are undone
by the last kick. The simulated infidelities of the two
transport types are shown in Fig. 8 and compared to the
infidelity of the optimal control transport as well as the
adiabatic transport discussed in Appendix J. The “magic”
transport durations for which the transport brings the wave
packet back to a minimally excited state lie close to
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multiples of approximately the harmonic period. The
small, but visible deviation from the harmonic period
τHO can be understood to a very good approximation
as the result of the anharmonic potential, which yields
an effectively lower trap frequency ω̃HO ≈ ωHO − Erec=ℏ
and, correspondingly, an effectively longer oscillation
period τ̃HO ≈ τHO½1þ ErecτHO=ð2πℏÞ�.
The dashed lines are the envelopes (worst-case infidel-

ities) derived in the harmonic approximation for the two
bang-bang protocols:

τlinearðF Þ ¼ τHO
1

π

lQGT

½− logðF Þ�1=2 ; ðI1aÞ

τparabolicðF Þ ¼ τHO
2

π

ffiffiffiffiffiffiffiffiffiffi
lQGT

p
½− logðF Þ�1=4 : ðI1bÞ

Their scaling with distance, lQGT ∝ d, indicates that the
linear transport protocol is faster for short transport dis-
tances, whereas the parabolic transport is faster for long
distances, since the trap can be accelerated to higher
speeds. Both are, however, much slower than the transport
operation obtained by optimal control, which is also shown
for comparison in Fig. 8.

APPENDIX J: ADIABATIC LIMIT

Adiabatic transport minimizes excitations of the wave
packet during the entire transport by using smooth transport
ramps. As an example, we here consider ramps that follow
a sinusoidal trajectory, which is continuous in position,
velocity, and acceleration,

xtrapðtÞ ¼ A sinð2πt=τÞ þ dt=τ; ðJ1Þ

where A ¼ −d=ð2πÞ is chosen such that _xtrapð0Þ ¼ 0. For a
given fidelity, we find in the harmonic approximation
that the required worst-case duration of the adiabatic
transport is

τadiabaticðF Þ ¼ τHO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
þ
�

l2
QGT

π2½− logðF Þ�
�1=3s

: ðJ2Þ

This relation is shown as the dashed green curve in Fig. 8.

APPENDIX K: ESTIMATION OF GEOMETRIC
PATH LENGTH AND ENERGY SPREAD

A very good, analytic approximation of the geometric
path length can be obtained assuming that at the quantum
speed limit the wave packet is steadily accelerated in the
first half and steadily decelerated in the second half,
meaning that the average position of the wave packet
evolves as

x̄QBðtÞ ≈
�
2dðt=τÞ2 for 0 < t < τ=2

−dþ 4dt=τ − 2dðt=τÞ2 for τ=2 < t < τ:

ðK1Þ

Numerical simulations confirm that this assumption, where
x̄QBðtÞ is a smooth function of time, is well fulfilled despite
the much less regular shape of the optimal control transport
trajectories xtrapðtÞ. Moreover, we assume that quantum
optimal control preserves the wave packet jψðtÞi close to a
coherent state jαðtÞi, avoiding too large spreading
and deformation, in particular when it approaches the
points of steepest potential, where the trap loses its ability
to confine. The coherent state is specified by its phase space
coordinates,

αðtÞ ¼ x̄QBðtÞ
2Δx

þ i
m _̄xQBðtÞ
2Δp

; ðK2Þ

with the position and momentum width being Δx ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωÞp

and Δp ≈ ℏ=ð2ΔxÞ. Thus, the geometric path
length lQB, as defined in Eq. (4) of the main text, is
obtained by integrating the Fubini-Study differential form,

dsFS ¼ j _αðtÞjdt; ðK3Þ

over the duration τ. The integration produces

lQB ≈
d

2Δx
f

�
τHO
πτQB

�
; ðK4Þ

which corresponds to Eq. (5) of the main text.
We note that the factor d=ð2ΔxÞ can be identified with

the geodesic length lQGT determined by the quantum
geometric tensor [7,69]. In the atom transport problem,

FIG. 8. Transport protocols compared. Infidelity computed
numerically for the same conditions of Fig. 2 and T⊥ ¼ 0 using
different transport protocols. From top to bottom: a linear
transport ramp (purple), parabolic control (blue), adiabatic con-
trol (green), optimal quantum control (thick red). The dashed
lines represent the envelope functions according to Eqs. (I1a),
(I1b), and (J2).
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the quantum geometric tensor χμ;ν reduces to a scalar
quantity χ1;1 because of the single control parameter used to
transport the atom, i.e., the conveyor belt position xtrap. Its
value is specified by the differential form ds2QGT ¼
dxtrapχ1;1dxtrap ¼ 1− jhψ0ðxtrapþdxtrapÞjψ0ðxtrapÞij2, where
jψ0ðxtrapÞi ¼ expð−ip̂xtrap=ℏÞjψ initi denotes the ground
state of the conveyor belt displaced to the position xtrap
(p̂ is the momentum operator). The physical meaning of
the quantum geometric tensor is that of the Fubini-Study
metric in the restricted manifold of states reachable by an
adiabatic transformation of the control parameter xtrap. An
explicit computation of its value yields χ1;1 ¼ ðΔp=ℏÞ2,
from which we directly obtain

lQGT ¼
Z

d

0

dsQGT ¼ dΔp
ℏ

≈
d

2Δx
; ðK5Þ

where the last step follows from the approximately
Gaussian shape of the ground state. Notably, the geodesic
defined by the quantum geometric tensor, in stark contrast
with the Fubini-Study geodesic, denotes a path that actual
physical processes (e.g., adiabatic transformations) can
follow. In contrast to lQB in Eq. (K4), lQGT is a purely
geometric quantity independent of the out-of-equilibrium
dynamics of the process. Its length lQGT does however
scale with the transport distance d, and it can be loosely
interpreted as the number of local transformations neces-
sary to carry out the transport process.
For the determination of an upper bound on the energy

spread ΔE, we rely on the same assumptions made to
estimate lQB, i.e., an approximately coherent state evolving
as specified in Eq. (K2). A direct calculation of the
instantaneous energy spread yields

ΔEðtÞ¼ ½hψðtÞjĤ2ðtÞjψðtÞi− hψðtÞjĤðtÞjψðtÞi2�1=2

≈
�
_̄x2QBðtÞΔp2þ

�∂Uðx;tÞ
∂x

�
2

Δx2
�
1=2

½1þOðη2Þ�;

ðK6Þ
where Uðx; tÞ refers to the lattice potential, as defined
in Eqs. (B3) and (B4), the derivative of the potential
is computed at x ¼ x̄QBðtÞ, and η2 ¼ Erec=ðℏωÞ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4U0=Erec

p
is the Lamb-Dicke factor, which is negli-

gible for the trap depths considered in this work. The two
terms in Eq. (K6) correspond to the leading contributions to
the energy uncertainty,

ΔKðtÞ ¼ Δpj _̄xQBðtÞj; ðK7aÞ

ΔUðtÞ ¼ Δx
				 ∂Uðx; tÞ

∂x
				
x¼x̄QBðtÞ

; ðK7bÞ

originating from the kinetic (ΔK) and potential (ΔU)
energy. The origin of the two terms can be intuitively

understood if we consider the evolution of the wave packet
in the reference frame comoving with x̄QBðtÞ. There, the
wave packet is at rest and displaced from the center of the
site by a distance x̄QBðtÞ − xtrapðtÞ, where the potential has a
nonvanishing slope ∂U=∂x, which explains the potential
contribution ΔUðtÞ. A Galilean transformation from the
comoving to the laboratory reference frame introduces a
term equal to _̄xQBðtÞp̂ to the Hamiltonian (Heisenberg
representation), explaining the kinetic contribution ΔKðtÞ.
We bound ΔU from above by replacing the derivative of

the potential (i.e., the force applied to the wave packet) by
its maximum value. For the conveyor belt potentials in
Eqs. (B3) and (B4), the maximum of the derivative,
2πU0=λ, is reached at the positions �λ=8 relative to the
center of the site, yielding the inequality

ΔEðtÞ < ½ _̄x2QBðtÞΔp2 þ ð2πU0=λÞ2Δx2�1=2: ðK8Þ

Integrating this expression over time [18] gives an upper
bound on the time-averaged energy uncertainty,

ΔE < ΔEupper ¼
ℏ
τQB

lQGTf

�
τQB

2nτHO

�
; ðK9Þ

which corresponds to Eq. (8) of the main text.
We note that at the quantum speed limit, for very long

transport distances, n ¼ d=ðλ=2Þ ≫ 1, ΔE is dominated by
the kinetic rather than the potential contribution,

ΔK
ΔU

>
Δp
Δx

d=τ
2πU0=λ

¼ n
τHO
τ

∝
ffiffiffi
n

p
≫ 1; ðK10Þ

where ΔK and ΔU denote here the time average of ΔKðtÞ
and ΔUðtÞ, respectively; in this expression, the first
inequality results from the foregoing upper bound on
ΔUðtÞ, whereas the proportionality assumption follows
from the scaling τ ∝ τHO

ffiffiffi
n

p
expected for a quantum

brachistochrone process. Hence, we find that in the limit
of n ≫ 1, the energy uncertainty ΔE of a transport process
at the quantum speed limit reduces to the time average of
ΔKðtÞ in Eq. (K7a):

ΔE ≈
ℏ
τQB

lQGT: ðK11Þ

APPENDIX L: LIMIT OF LONG DISTANCES

To transport atoms over n lattice sites, the quantum
brachistochrone time τQB is of the order of τHO

ffiffiffi
n

p
, as

shown in Eq. (3) of the main text. In turn, such a transport
time corresponds to velocities of the order of nλ=τQB ¼ffiffiffi
n

p
λ=τHO. Importantly, the transport velocity increases withffiffiffi

n
p

when atoms are transported in the shortest pos-
sible time.
Experimentally, the maximum velocity at which atoms

can be transported is determined by themaximumvelocity at
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which the optical conveyor belt can be displaced. In our
setup, this maximum velocity is at around 50 mm=s, limited
by the slew rate of the control system (see Appendix B).
Considering the foregoing scaling of the transport

velocity with n, the maximum velocity of the conveyor
belt presently limits the transport distance to about one
lattice site, n ≈ 1, over which atoms can be transported
following a quantum brachistochrone for trap depths up to
300Erec, which have been considered in this work. We also
note that the present optical-lattice control system [48]
allows us to transport atoms over much longer distances
with high fidelity, though in a time longer than τQB.

APPENDIX M: MANDELSTAM-TAMM BOUND IN
THE LIMIT OF LONG DISTANCES

We investigate the scaling of the Mandelstam-Tamm
bound of Eq. (1) in the main text in the limit of long
transport distances. In its most general form [19], when the
initial jψ initi and target jψ targeti states are not necessarily
orthogonal, the Mandelstam-Tamm time reads

τQB ≥ τMT ¼ lgeo

ΔE=ℏ
; ðM1Þ

where ΔE represents the time-averaged energy uncertainty
[18] and lgeo denotes the geodesic length as measured by
the Fubini-Study metric [55], lgeo¼arccosðjhψ targetjψ initijÞ.
Concerning the numerator in Eq. (M1), it is evident that

lgeo levels off to its maximum value, π=2, since for long
distances, d ≫ Δx, the target state is effectively orthogonal
to the initial state.
Concerning the denominator in Eq. (M1), it can be

shown, see Eq. (K11), that for very long transport distances
its expression is well approximated by

ΔE=ℏ ≈
d

2Δx
1

τQB
∝

ffiffiffi
d

p
; ðM2Þ

where the last step follows from the scaling τQB ∝
ffiffiffi
d

p
expected for the quantum brachistochrone time τQB as a
function of the transport distance d; see Eq. (3) of the main
text. The scaling ofΔE in Eq. (M2) results in the seemingly
counterintuitive fact that τMT is a monotonically decreasing
function of the distance, in stark contrast with the mono-
tonically increasing behavior of τQB with respect to the
distance. Note that with a different argument, the wrong
scaling of the Mandelstam-Tamm bound was recognized
before, studying the limit of very short transport durations
in harmonic traps [46].
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Optimal Transport of Ultracold Atoms in the Non-Adiabatic
Regime, Europhys. Lett. 83, 13001 (2008).

[41] R. Bowler, J. Gaebler, Y. Lin, T. R. Tan, D. Hanneke, J. D.
Jost, J. P. Home, D. Leibfried, and D. J. Wineland, Coherent
Diabatic Ion Transport and Separation in a Multizone Trap
Array, Phys. Rev. Lett. 109, 080502 (2012).

[42] A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M.
Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger,
Controlling Fast Transport of Cold Trapped Ions, Phys.
Rev. Lett. 109, 080501 (2012).

[43] J. Alonso, F. M. Leupold, Z. U. Solèr, M. Fadel, M.
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5.3 Summary

5.3 Summary

In this chapter, the existence of a quantum speed limit of atom transport beyond local coupling in
optical lattices has been verified. Single atoms prepared in the motional ground state of the optical
lattice potential were transported by a distance of one lattice site (≈ 0.5 µm) in durations as short as
the minimum fundamental limit, known as quantum speed limit. Using optimal quantum control, the
transport operations are optimized to bring the atoms back to their motional ground state at the end of the
transport, even though they may populate highly excited states during the process. We observed that for
transport durations shorter than the quantum speed limit, the ground state population inevitably drops
below unity. Moreover, using matter wave interferometry we have verified that the transport operations
preserve coherence for all transport durations above the quantum speed limit.

The minimum transport duration revealed by the measurements is much higher than the one predicted
by the Mandelstam-Tamm inequality. In the past, it was well understood that this was due to the
complexity of the system that cannot be approximated by a two-level system. There was, however, no
theoretical estimate of the minimum transport duration consistent with our measurements. We here
presented an estimate that explains our observations, based on a geometric approach that only considers
the states that can be physically reached by the system.
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CHAPTER 6

Summary and Outlook

In this thesis I have reported some results on the study of matter wave dynamics of single atoms in optical
lattices. Particularly, in chapter 3 I have presented my results on time-resolved single-pixel imaging
of the atomic wave packets in a static optical lattice. Even though the recorded images are restricted
to a single pixel, they allow the observation of the single, double and triple peak structure of the first
three eigenstates of the trapping potential. Moreover, the time-resolved single-pixel images contain
not only information about the wave function but also the trapping potential. In fact, the Hamiltonian
moments, the energy spectrum of the Hamiltonian and the population probabilities in the basis of motional
eigenstates are extracted from the single-pixel images. Moreover, the phase of the single-pixel images
of atomic wave packets in the lattice potential reveals different topological properties as compared to
wave packets in a harmonic potential. The phase acquired by the single-pixel image of a wave packet
in a harmonic potential is topologically protected against phase winding, while for wave packets in the
lattice potential the topological protection is broken. This observation opened room for new questions on
possible topological properties that have been left for a future work. The questions include a possible
definition of a winding number for wave packets in anharmonic potentials and the possibility of observing
topological phase transitions with the imaging method presented in this thesis. Another extension to
the work presented in chapter 3 is the generalization to multi-pixel imaging that could be obtained by
spatially displacing the reference wave function to different locations, mimicking a multi-pixel detector.

In chapter 4, the single-pixel images of the atomic wave packets obtained with the method presented in
chapter 3 have been used to verify the Mandelstam-Tamm (MT) and Margolus-Levitin (ML) bounds for
atomic wave packets in a static lattice potential. The bounds set a limit to the maximum rate of change
of the wave packet, known as quantum speed limit. The MT and ML bounds are characterized by the
energy spread and the mean energy of the wave function respectively. The two bounds may predict
different values, therefore, two regions in the time domain are defined: one where the MT bound is more
restrictive and one where the ML bound is more restrictive. The two regions meet at the crossover time
τc B π~E/(2∆E) where the two bounds predict the same value. For evolution times shorter than τc the
MT bound is more restrictive while for longer times the ML bound is more restrictive. The measurements
here presented cover both regions and a transition from the MT region to the ML region is observed.
Experimental demonstrations of the MT and ML bounds have been done in the past for effective two-level
systems [40, 84, 85], however, to my knowledge this is the first demonstration of the MT and ML bounds
in a multi-level system. Additionally, the difference between the maximum rate of change imposed by the
MT bound and the measured rate of change of the atomic wave packets, quantified by the Fubini-Study
metric, has been obtained for 34 different initial states. It has been found that, as the energy spread
increases, the difference converges to a small value even though the wave packet populates many energy
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levels thus deviating from a simple two-level system.
In chapter 5, the quantum speed limit was verified for a quantum process more involved than the one

discussed in chapter 4, namely the transport of atomic wave packets without final vibraional excitations
over distances much longer that the width of the wave packet. The existence of a minimum duration of a
transport operation with limited resources has been verified. The atoms were transported with trajectories
obtained by optimal quantum control which minimizes the final motional excitations. It was observed
that the atoms, initially prepared in the motional ground state, are still in the ground state after the
transport when the transport duration is above the quantum speed limit. For durations below the speed
limit, however, a finite probability of populating higher motional levels is unavoidable. The minimum
transport duration observed is well beyond the one predicted by the MT bound, but we have provided a
theoretical estimate, based on geometric arguments, consistent with the measurements. Moreover, using
atom interferometry we have verified that the transport operations preserve coherence.

In future measurements, the fast coherent atom transport operations over one lattice site could be
directly applied on quantum walks experiments. The shorter duration of the transport process translates
into a higher number of operations within the coherence time of the system. This is important when a
minimum number of steps is required, as in the measurement of topological invariants with the split-step
quantum-walk protocol [88]. An immediate extension of the work here presented is the transport over
longer distances. This would increase the enclosed space-time area of an atom interferometer, therefore
boosting its sensitivity [89, 90]. Computing optimal trajectories for longer transport distances requires a
higher computational power since the size of the search space increases (for example a higher number of
Fourier components). Moreover, the atoms transported over longer distances reach higher speeds. This
brings more challenges from the technical side since the position control of the lattice has a maximum
speed, limited by the slew rate of the optical phase-locked loop. This could be overcome substituting the
feedback control by feedforward control [91].

In chapter 4 we have seen that atomic wave packets in a static optical lattice evolve at a rate very close
to the limit imposed by the Mandelstam-Tamm bound. On the other hand, in chapter 5 we have seen that
the quantum speed limit of excitation-less atom transport is orders of magnitude slower than the limit
imposed by the Mandelstam-Tamm bound, but is consistent with the estimate obtained from geometric
arguments. Future investigations along this line could bring up important insight about what determines
the minimum duration of a quantum process. A deeper understanding of this topic can have important
implications in quantum technologies, since it can help in identifying systems that can be potentially
faster, an important criterion in a field that is in constant need of speeding up quantum processes.
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APPENDIX A

Change of energy reference of Hamiltonian
moments

The Hamiltonian moments obtained with the method presented in Sec. 3.4 are given with respect to the
energy of the reference wave function. The values plotted in Fig. 3.6 are all given with respect to the
energy of the ground state. In this section, the expression to do the change of energy reference is derived.

Let Ei be the eigenenergies of the Hamiltonian, with i being the eigenstate number, and let the ground
state’s energy define the zero energy reference, i.e. E0 = 0. The Hamiltonian moments computed with
respect to the ground state’s energy are

〈
Hn〉 =

∞∑
i=0

En
i pi, (A.1)

where pi is the population probability of the i’th eigenstate. The Hamiltonian moments computed with
respect to another energy reference E′ are

〈
Hn〉′ =

∞∑
i=0

(Ei − E′)n pi

=

∞∑
i=0

n∑
k=0

(
n
k

)
En−k

i (−E′)k pi, (A.2)

where
(
n
k

)
= n!/(k!(n − k)!) is the binomial coefficient. Exchanging the order of the sum this is

〈
Hn〉′ =

n∑
k=0

(
n
k

)
(−E′)k

∞∑
i=0

En−k
i pi,

=

n∑
k=0

(
n
k

)
(−E′)k

〈
Hn−k

〉
, (A.3)

where Eq.(A.1) has been used for the second equality. This way, the Hamiltonian moments computed
with respect to one energy reference can be obtained form the moments computed with respect to another
energy reference.
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APPENDIX B

Overlap between coherent states

In this section I will prove that the overlap between two coherent states evolving under the same
harmonic potential is always non-zero. Consider a coherent state |φα(t)〉 associated to the parameter α,
i.e. a |φα(t)〉 = α |φα(t)〉 where a is the creation operator. The wave function |φα(t)〉 in the coordinate
representation is [92]

φα(t, x) = c(α, t, ω)e
√

2α(t)x/x0−x2/(2x2
0) (B.1)

where c is a non-zero complex number that depends on α, the evolution time t and the trapping frequency
ω, and α(t) = α exp(−iωt). The overlap between two coherent states at different evolution times t1 and t2
is

〈φα(t1)|φα(t2)〉 =

∫ ∞

−∞

dx φ̄α(t1, x)φα(t2, x)

= c̄(α, t1, ω)c(α, t2, ω)
∫ ∞

−∞

dx e
√

2ᾱ(t1)x/x0−x2/(2x2
0)e
√

2α(t2)x/x0−x2/(2x2
0)

= c̄(α, t1, ω)c(α, t2, ω)
∫ ∞

−∞

dx e
√

2(ᾱ(t1)+α(t2))x/x0−x2/x2
0 . (B.2)

From the Hubbard–Stratonovich transformation [93, 94], the last integral is non-zero. Therefore,
〈φα(t1)|φα(t2)〉 , 0.
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APPENDIX C

Bound of the phase of single-pixel images

If a complex number c is contained in a circle with center at pk ∈ R and a radius 1− pk with 0.5 ≤ pk ≤ 1,
then its phase ϕ = arg(c) is bounded by

|ϕ| ≤ arcsin
(
1 − pk

pk

)
. (C.1)

As illustrated in Fig. C.1, the triangle defined by the points O, A and B is a right-angled triangle.
Therefore, the angle at the origin is ϕmax = arcsin[(1 − pk)/pk] which is an upper bound on the phase of
any complex number inside the circle, thus proving Eq.(C.1). This sets an upper bound on the phase of
the single-pixel image of a state with population pk in a single eigenstate, as discussed in Sec. 3.5.
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Figure C.1: Phase bound of single-pixel images. The phase of a complex number inside the orange circle is
bounded by the expression given in Eq.(C.1).

87





Acknowledgements

First of all I would like to thank Prof. Meschede for giving me the opportunity to join the group. Before
coming to Germany I had no experience in experimental physics. I had never used an oscilloscope,
and didn’t even know what a BNC cable is. On top of that, I was coming form a different field, so my
background on atomic physics and quantum optics was very limited. But still, he gave me the chance to
join the group as an intern student to acquire the required experimental knowledge before starting the
PhD.

I would also like to thank my supervisor Dr. Andrea Alberti for his constant support and guidance,
specially since I joined the quantum walks team. His constant quest for improvements helped me, and the
other members of the team, achieve very satisfying results. To Dr. Wolfgang Alt who always provided
helpful advice, and always had the answer to those questions that seemed unanswerable to all of us. Also
Dr. Carsten Robens was of great help in my process of entering a field that was completely new to me.
His altruistic help was always present even after he left the group. Moreover, me and the other members
of the SDT team inherited an excellent setup from him.

To Dr. Natalie Peter and Thorsten Groh, my first two team mates in the SDT lab, who made of my first
half of the PhD a very enjoyable journey. We learned many things together and had fun at the same time.
To Andreas Blendl and Jan Uckert who did their master thesis in the SDT team, they were of great help. I
finally never really used Andy’s “magic box” but we definitely had fun chasing the mysterious magnetic
signal all around the institute. Of course to Gal Ness who temporarily joined the SDT team, even though
he joined for a short time, he helped a lot in getting the famous Mandelstam-Tamm project going. Also
to his professor, Yoav Sagi, for his valuable support on the writing of two of the papers presented in this
thesis.

To all the other students of the group (Gautam, Tobi, Richard, Stefan, Sajid...) including the Spanish
speaking crew (Eduardo, Miguel, Jose) with whom at some point we almost outnumbered the German
speaking members. I want to thank all of them for the stimulating discussions and for sharing the
suffering of maintaining ungrateful labs that sometimes gave us satisfaction and sometimes nightmares. I
will always remember the barbeques in Tobi’s house, the multiple bike rides with Gautam (including the
multiple hours waiting for him at the top or every hill) and all the hours wasted in the gym with Jose.

I thank the people that took the time to read parts of my thesis to give me constructive comments that
helped me improve the thesis: Carsten, Natalie, Gautam, Eduardo and Nicolas.

I am grateful to Dietmar Haubrich, Fien Latumahina, Annelise von Rudloff-Miglo and Kerstin
Steinseifer for all their help concerning the administrative matters, very important to keep the group
working.

Por supuesto, voy a estar eternamente agradecido con mi familia, sobre todo mi papá y mi mamá que
me han apoyado desde que tengo memoria (dentro de mi limitada memoria, que todo se me olvida).
Siempre han confiado en mí, y me han ayudado a realizar mi carrera aunque eso significara estar lejos de
casa. A mi esposa Fabiana que ha estado a mi lado desde el día que la conocí, y ahora no imagino mi
vida sin ella. A sido fuente de motivación y apoyo constante, incluso los años que pasamos a un océano
de distancia. Y a mi hija María Inés, que en sus primeros meses de vida ya nos ha enseñado tanto a

89



Appendix C Bound of the phase of single-pixel images

Fabiana y a mí.
Y nunca dejaré de estar agradecido con Dios y la Virgen María, mis eternos protectores y guías.

90


	Introduction
	Experimental apparatus and measurement techniques
	Internal degrees of freedom
	Atom trapping and cooling
	Optical dipole trap
	Spin state preparation
	Microwave driving and -Qubit
	Raman driving and -Qubit
	Lattice depth and position control

	External degrees of freedom
	Motional ground state preparation
	Robust measurement of motional ground state population
	Measurement of potential depth and transverse temperature
	Raman Ramsey interferometry
	Potential crosstalk compensation


	Hello atom, how do you look like?
	Introduction
	Single pixel image of a quantum wave packet
	Model-agnostic spectral decomposition
	Hamiltonian moments from recorded image traces
	Phase of single-pixel images
	Outlook

	How fast am I allowed to drive Mr. Heisenberg?
	Introduction
	Observing quantum-speed-limits crossover with matter-wave interferometry
	Introduction
	Fast matter wave interferometry
	Testing quantum speed limits
	Quantum-speed-limit crossover
	Deviation from the speed limit
	Concluding remarks
	Appendix

	Summary

	Quantum drag racing
	Introduction
	Demonstration of quantum brachistochrones between distant states of an atom
	Introduction
	Quantum Brachistochrones between distant states
	Fast atom transport in optical conveyor belts
	Optimal transport solutions
	Revealing the quantum speed limit
	Coherent splitting and recombination of matter waves
	Interpretation and physical insight
	Conclusions and Outlook
	Appendix

	Summary

	Summary and Outlook
	Bibliography
	Change of energy reference of Hamiltonian moments
	Overlap between coherent states
	Bound of the phase of single-pixel images

