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Diffraction by cold atoms
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Abstract

We have observed diffraction of a laser probe beam by a trapped sample of cold atoms. The effect is only visible in the
vicinity of a resonance line. The observed diffraction pattern arises from interference of the incident and scattered light
wave, allowing reconstruction of geometric properties of the trapped sample from the holographic record. q 1998 Elsevier
Science B.V.

1. Introduction

Ž .Magnetooptical traps MOTs provide dense samples of
w xatoms at very low velocities 1 . It is known that for

frequencies near the atomic resonant transition such sam-
ples are optically thick with only 107 atoms at a density of
1010 cmy3 giving rise to strong absorption of a weak

w xprobe beam 2,3 . At an optical density close to unity also
the trapping laser light is strongly absorbed and rescat-
tered, causing a repulsive force and balancing the total

w xnumber of atoms that may be accumulated 4 .
In the vicinity of an atomic resonance line the wave-

front of a probe beam illuminating a trapped sample of
cold atoms not only experiences attenuation due to absorp-
tion but also strong phase shifts due to dispersion. We
consider an isolated linear oscillator resonance for a sim-
plified model only. At low atomic densities n -ly3 theAt

complex index of refraction n in the trapped sample is
related to the atomic damping rate g and the detuning d of
laser frequency from atomic resonance by

3n l3 iy2drgAtX XXnsn q in s1q . 1Ž .2 28p 1q 2drgŽ .
For typical atomic densities n ,1010 cmy3 obtained in aAt

MOT and a probe laser detuning d of half a natural
< X < y4linewidth g one estimates n y1 ,10 for the real part
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of the refractive index. For a given sample the largest
excess phase shift in comparison to vacuum is accumu-
lated at 2drgs"1. When the sample of effective length
D reaches an optical density of unity, 2knXXDs1, a signif-

< < < X <icant maximum phase shift F skD n y1 s1r2, or an0

equivalent optical path difference of lr4p is calculated,
even though the refractive index differs very little from
unity. In high density storage devices, however, this phase
shift is obviously much more prominent and may easily
exceed 2p . Consequently dispersion may cause a notable
backaction of the trapped atoms on the light beam, and
also affects the trapping beams themselves. The influence
on the wavefronts in the trapping region is of relevance for
instance in the formation of optical lattices which are

w xparticularly interesting at high atomic densities 5 and
hence strong dispersion.

We have observed diffraction of a probe laser beam
Ž .from a cesium MOT Fig. 1 . Due to dispersion near an

atomic resonance retardation or advancement of the scat-
tered wave relative to the transmitted wave are expected.

w xIn very close analogy to in-line holography 6 the diffrac-
tion pattern observed is caused by the interference of the
incident reference wave and the scattered object wave. A
similar method is in fact used in optical instruments sizing
particles in a three-dimensional volume. There were also
experiments that observed the diffraction from an atomic

w xbeam 7 . Experiments exploring the case of very high
densities have recently been performed in connection with

w xatomic Bose-Einstein condensates 8 . It is the purpose of
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Fig. 1. 2D intensity distribution of the diffraction pattern on a
screen at 1.88 m separation from the MOT. The background
intensity is subtracted. Probe laser detuning is y4 MHz from the
unshifted Fs4™ FX s5 line center.

this work to investigate the dispersive aspect of light
interaction with a magnetooptically trapped sample of
atoms at moderate densities and to discuss the information
content of the diffraction pattern with regard to the total
number of trapped atoms, and the spatial density distribu-
tion.

2. Experimental

We use a standard MOT which captures cesium atoms
from the background gas. The trapping laser fields detuned

Ž .to the red from the D line wavelength ls852.1 nm2

are derived from a commercial Ti:sapphire laser locked to
a reference cavity. A beat note with a diode laser stabilized
to the center of the cesium cooling transition Fs4™FX

Ž .s5 master laser is observed to monitor the detuning.
Repumping is provided by an additional diode laser. De-

w xtails of our apparatus have been published elsewhere 9 .
A probe laser beam illuminating the trapped atom

sample propagates in the plane perpendicular to the MOT
symmetry axis and crosses the two other cooling laser
beams at an angle of 458. The probe beam is spatially
filtered with an optical single mode fiber to obtain a
smooth Gaussian profile. The 1re2 diameter of the probe

Ž . Žbeam 13.1 mm is much larger than the MOT size typi-
.cally 0.3 mm . The intensity of the probe beam was kept

well below the saturation intensity of 1.1 mWrcm2 in
order to minimize the influence on the dynamics of the

trapped atoms. For quantitative analysis of the diffraction
data with respect to trap size and density the probe laser
detuning has to be precisely known. This is achieved by rf
phase locking the probe laser to the master laser.

ŽFor a near resonant probe beam diffraction fringes Fig.
.1 are observed with a CCD camera on a screen 1.88 m

separated from the MOT without any additional imaging.
They resemble the diffraction patterns caused by a circular
aperture. Diffraction causes a maximum 10% modulation
of the total intensity in our experiment.

Very similar diffraction patterns are observed for all
2 Ž X .three hyperfine transitions to the 6 P F s3,4,5 levels3r2

2 Ž .of the cesium D line starting from the 6 S Fs42 1r2

ground level. To the red side of every resonance line a
bright center of the diffraction pattern is observed, to the
blue side the center is dark, setting a notable contrast to
conventional Fraunhofer diffraction by a pure amplitude
object where a central maximum is always observed.

3. Theory

In the case of refractive indices near unity the light rays
experience little bending by passing the scattering volume.
Hence, in order to calculate the diffraction pattern it is
sufficient to account for phase shifts only by integrating
them along unbent rays by neglecting refraction. The

Ž .extended 3D scattering object is then effectively reduced
to its two-dimensional ‘projection’ onto a plane perpendic-

Ž .ular to the ray direction all weak lenses are thin! .
According to scalar diffraction theory the wave EP

generated by the scattering object in an aperture area AA is
given by

i e ik s
X X X XE r sy d x d y E x , y ,0 , 2Ž . Ž . Ž .HHP

l sAA

where s denotes the distance between the observation
Ž . Ž X X .point rs x, y, z and an arbitrary point x , y ,0 in the

scattering plane AA at zs0. The transverse amplitude
distribution of the transmitted wave in a plane AA immedi-
ately after the scattering object may be written as

E xX , yX ,0 sE xX , yX ,0 e iF Ž xX , yX . . 3Ž . Ž . Ž .i

Ž . Ž .Here E x, y, z sE G x, y, z describes the incident laseri 0

wave in the form of a fundamental Gaussian beam. The
Ž X X. q` w Ž X. x X Ž .function F x , y sH k n r y1 d z in Eq. 3 givesy`

the phase shift for a ray passing through the scattering
Ž X X.object at x , y and it is proportional to the area density

of the scattering cold atoms. Note that the phase shift F is
complex and thus absorption is accounted for properly.

Ž X.The complex index of refraction n r reflects the spatial
distribution of atoms in the scattering sample and is of
primary interest for us. Introduction of the form factor
Ž X X. w Ž X X.xF x , y sexp iF x , y y1 allows us to represent the

transmitted wave as the sum of an undistorted incident
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wave and a secondary wave E generated by the diffract-s

ing object

E r sE G x , y , zŽ . Ž .P 0

iE e ik s
0 X X X X X Xy d x d y G x , y ,0 F x , yŽ . Ž .HH

l sAA

sE r qE r . 4Ž . Ž . Ž .i s

For z large compared to the size of the scattering object
Ž .D we conventionally replace 1rs in Eq. 4 by 1rz and

expand s in the exponential function to sfzqr 2r2 zq
r

X2r2 zyrPr Xrz. For a cylindrically symmetric problem
the form factor is a function of r

X only and hence the
X Ž .f -integration in Eq. 4 can be carried out. For a trap size

much smaller than the probe beam diameter one can
neglect the probe beam curvature in the scattering volume

Ž .and set Gs1 in the integral 4 . Furthermore, at suffi-
< < < Ž . <ciently small densities F f kD n y1 <1 we can0 0

Ž X X. Ž X X.expand the form factor to F x , y f iF x , y and find
for the scattered wave

E k 20 i k z i k r r2 zE r , z s e eŽ .s z

=
krr

X
` X 2X X Xi k r r2 zd r r e J F r , 5Ž . Ž .H 0 ž /z0

where J is the zero order Bessel function of the first kind0

and n is the maximum index of refraction in the trap0

center. For the special case of a spherical Gaussian distri-
X Ž .bution the r -integration in Eq. 5 can also be carried out

explicitly. In our homogeneous model we neglect the
influence of optical lattices which are known to be present

w xin a MOT 5,10,11 , and which could cause modifications

since the scattering density can be concentrated with peri-
odicities of commensurable length with the scattering
wavelength. We then expect a Gaussian distribution func-

Ž X X.tion for a well adjusted MOT, which yields F x , y s
X2 2 'Ž .F exp yr rv with the effective trap size Ds p v .0 0 0

The maximum complex phase shift for the central ray
' Ž .F s p kv n y1 is determined by the extension v0 0 0 0

of the cloud and the index of refraction n .0
Ž . w xThe integration of Eq. 5 yields 12

v 1 ik0 2E r , z sE iF exp ikzy ifyr y .Ž .s 0 0 2ž /W 2 RW

6Ž .

For the Gaussian density distribution the result is a cylin-
drical Gaussian TEM -mode with waist located at zs000

Ž .and with usual notations for the Gaussian width W z s
2(v = 1q zrz , for the radius of wavefront curvatureŽ .0 0

Ž . Ž 2 2. 2R z s z qz rz, Rayleigh range z skv r2, and0 0 0
y1Ž .Gouy phase fs tan zrz .0

Physically, this result is very transparent. Indeed, in
Ž < < .this limit F <1 we can expand the amplitude distribu-

Ž .tion 3 in the plane AA to

E xX , yX ,0 fE xX , yX ,0 q iE xX , yX ,0 F xX , yX , 7Ž . Ž . Ž . Ž . Ž .i i

Ž X X . Ž X X . Ž X2 2 .which yields E x , y ,0 s iE x , y ,0 F exp yr rv .s i 0 0

Hence the scattered wave directly after the scattering
object has a Gaussian field distribution. The propagation of
Gaussian waves with z is known. Therefore one can
directly construct the expected diffraction pattern at sepa-

Ž .ration z from the scattering sample from Eq. 4 as the
sum of an undistorted incident wave and the Gaussian

Ž .Fig. 2. Radial dependence of the diffraction pattern intensity dots , averaged over the azimuthal angle for probe laser detuning of q25
Ž . Ž . Ž . Ž .MHz a and y4 MHz b . The lines are fits to the data assuming one Gaussian beam 1 , the residual 2, dashed and two Gaussian beams

Ž . Ž .3 . The inset shows the fluorescence intensity distribution of the trap squares with two Gaussian components 1 and 2.
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beam generated by the diffracting object without explicit
Ž .calculation of the Kirchhoff integral 2 .

In the first order of F the diffraction pattern normal-0

ized by the undistorted incident wave is now given by

2 2< < < <E qE y E vi s i 0
< <sy2 F cos argF yf0 02 WE G r , zŽ .0

2kr 1 1
2 2q y exp yr rW ,Ž .ž /2 R Rp

8Ž .

< < Ž .where iF 'yF exp iargF and R describes the0 0 0 p

probe beam curvature radius at the observation screen.

4. Results

In a first series of experiments we recorded diffraction
Žpatterns under constant trapping conditions trapping laser

intensity of 4.5 mWrcm2 per beam, detuning equal to one
.natural line width for different probe laser detunings. For

background elimination the probe laser beam profile is
subtracted from the diffraction picture. A radial cross
section of the two-dimensional camera picture is obtained
by averaging on concentric circles. Two examples of radial
diffraction profiles for blue and red probe laser detunings
near the Fs4™FX s5 transition are shown in Fig. 2.

Ž . Ž .The fit curve 1 according to Eq. 8 describes well the
oscillatory part of the diffraction profiles. From this the
curvature radius R s14.5 m of the probe laser beam andp

and the trap waist v s0.29 mm are calculated. R agrees0 p

well with the probe beam curvature radius measured inde-
pendently.

At small radii, however, the theoretical curve deviates
significantly from the experimental result. Although our

< < Žapproximation F <1 is not rigorously justified in our0
< < .case F f0.3 , an account for higher orders in scattering0

could not explain this deviation. Indeed, for high densities
one can Taylor expand the form factor and obtain for the
scattered wave a set of cylindrical Gaussian TEM -modes00

with widths v 2sv 2rn. Thus, higher orders result inn 0

more divergent scattered waves with wider envelopes and
Žcannot add a desirable correction like the curves 2 in Fig.

.2 to the diffraction pattern in the far field.
An explanation for the disagreement can be found in

the deviations of the MOT profile from the Gaussian
shape. From a camera picture of the trap we have learned
that the density distribution of atoms can be well approxi-
mated by a superposition of two Gaussians with a ratio of

Žwidths and heights of 1:2 and 14.9:1 see the inset in Fig.
.2 . The linear approximation allows us to construct the

scattered waves from every cloud component indepen-
dently. In the far field only the narrow component con-

Ž .tributes significantly to the oscillatory wings large r of
the diffraction pattern. Despite the relatively small density
of the second wider component its contribution to the

Ž .central part may be large see curve 2 in Fig. 2 because
the contribution is proportional to the total atom number in
the corresponding component. Thus the envelope of the
interference pattern on the screen is the sum of two
Gaussian envelopes with relative amplitudes of approxi-

Ž .mately 2:1. With this correction the fit curve 3 shows
good agreement with the data.

In Fig. 3 we show the spectral behaviour of the scatter-
< <ing phase argF yf and the amplitude 2 F v rW. For0 0 0

Ž . Ž .Fig. 3. Spectral dependence of the phase a and the amplitude b of the scattered Gaussian beam. Solid lines represent fits to a linear
oscillator model including saturation by the trapping laser beams.
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a linear oscillator model we can replace the index of
Ž .refraction through Eq. 1 by

nX y1 2d
y1 y1argF s tan s tan ,XX0 yn g

2X XX 2'< < (F s p kv n y1 qnŽ .0 0

23 (3kv n l 1q 2drgŽ .0 At
s , 9Ž .3r2 28p 1qs q 2drgŽ .0

where in addition saturation was accounted for by the
saturation parameter s of the trapping laser beams. The0

line centers are blue shifted by 10.7"1.2 MHz for the
phase and 8.3"1.2 MHz for the amplitude due to the ac
Stark effect of the trapping laser. In the fit of the amplitude
curve the natural line width g was fixed to 5.22 MHz and
a saturation parameter was fitted to s s3.8"0.4. This0

has to be compared to the saturation parameter 6.4"0.4
extracted from the light shift and the one-beam saturation
parameter of 4.1 that was determined from the trapping
laser intensity. The natural line width of 17.4"1.6 MHz
in the phase curve strongly deviates from the theoretical
value of 5.22 MHz. This disagreement shows that details
of the ligh–matter interaction in the trapped sample are
beyond the simple linear oscillator model.

Unusual appearance of the amplitude curve on Fig. 3b
is due to the fact that the diffraction pattern depends on the

< <absolute value of the scattering amplitude F and not on0

Ž . Ž .its real dispersion or imaginary absorption part as in
Ž .common spectroscopic experiments. According to Eq. 9

a dip in the amplitude curve is predicted for strong satura-
tion s )1.0

In a second experiment the frequency dependence of
the forward scattering amplitude was investigated with the
probe laser frequency scanning across a resonance line.
We replaced the screen by a photodiode in the center of
the diffraction pattern. An iris diaphragm of 1 mm diame-
ter in front of the photodiode was used to select a central
detection area smaller than the width of the central fringe.
Here not the spatial but the spectral characteristics of the

Ž .diffraction can be seen at a glance. Using 8 for rs0 and
Ž .9 , the forward scattering signal reads

< < 2E qE 3 Ni s
y1sy2 2kzE 1q zrzŽ .00 0

=
1q zrz 2drgŽ .Ž .0

, 10Ž .21qs q 2drgŽ .0

where Nsp 3r2 n v 3 is the total atom number in theAt 0

trap.
As expected, due to dispersion on the red and blue side

of an atomic resonance the scattered wave is retarded or
advanced relative to the incident wave. This explains the
appearance of an intensity minimum in the center of the

Ždiffraction pattern from the blue detuned probe laser see

X Ž .Fig. 4. Forward scattering intensity as a function of probe laser detuning from atomic resonance for the Fs4™F s5 transition a and
X Ž . 2 Ž . Ž .the Fs4™F s4 transition b . Trapping laser intensity is 2.2 mWrcm per laser arm. The solid line in b is a fit using Eq. 10 . The

slight oscillations are due to an etalon effect of the fiber.
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Ž . Ž . Ž .Fig. 5. Comparison of trap parameters measured with forward scattering squares and with a calibrated CCD camera dots : a atom
Ž .number, b trap waist. Statistical errors of the values obtained from the fluorescence are small, but the uncertainty in the calibration factor

for absolute atom number is of order of 2. The measured waist values are more reliable and have an accuracy better than 10%.

.Fig. 4 . Note that for very short z<z an absorption0
Ž .profile shadow effect is expected on the screen

< < 2E qE 3N 1i s
y1sy . 11Ž .2 2kzE 1qs q 2drgŽ .00 0

At large distance from the MOT z4z the dispersion part0

remains relevant only,

< < 2E qE 3N 2drgi s
y1sy . 12Ž .2 2kzE 1qs q 2drgŽ .0 0

In the general case we have a mixture of dispersion and
Ž .absorption profiles in 10 weighted by the ratio zrz ,0

which allows one to obtain information on trap size from
the fitting.

First we scanned across the Fs4™FXs5 transition
Ž .Fig. 4a , that is the trapping transition at the same time.
The power broadened resonance line is seen as a disper-
sive line. On the red side of this line a sharp extra
resonance is recorded when the probe laser frequency
coincides with the trapping laser frequency. This resonance

w xhas been identified in transmission spectra 2,3,10 as a
result of Raman transitions between vibrational levels of
atoms localized in optical potential wells. It indicates that
nonlinear processes do play a significant role also in the
scattering process and hence cause wavefront distortion.

The situation becomes clearer when the Fs4™FX s4
transition is used for probing. In Fig. 4b an example of a
forward scattering spectrum is shown together with a fit

Ž .according to Eq. 10 . From the characteristic line form the
trap size is extracted. The forward scattering amplitude
then gives the atom number.

The same procedure was repeated for different trap
laser intensities. In Fig. 5 we present the fitting parameters

along with the data from CCD camera pictures that were
taken for each scan as a monitor. The deviation is smaller
than 10%.

5. Conclusion

We have observed diffraction of a near resonant light
field from a trapped sample of cold atoms. The diffraction
pattern yields information on the wavefront distortion by
cold samples and provides another method for both the
determination of the density distribution and the total
number of atoms. More precisely, the polarization density
may be reconstructed from the holographic records and the
relation of atomic dielectric response and wavefront distor-
tion can be studied.
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