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Abstract. We discuss an analytic method for the design of 
three-dimensional magnetic multipoles from permanent 
magnet materials. The concept is explicited with an 
idealized, continuously varying magnetization. The effect 
of segmentation for realistic implementations is discussed. 
As an example we present an open, experimentally 
accessible cylindric structure for a dipole and a quad- 
rupole field with high purity. The fields are useful over 
several  cm 3. 

PACS: 07.55.+x, 85.70.Ec 

The magnetic field strength generated from permanent 
magnet materials is invariant if all physical dimensions 
are scaled linearly. In contrast, the current density 
required by an equivalent solenoid system grows with 
the inverse of the dimension and hence leads to 
technical problems such as cooling efficiency etc. Perma- 
nent magnets offer furthermore compact structures and 
independence of utilities, and as a result may be competi- 
tive or even superior in terms of achievable field strength 
at small scales of order cm [1]. 

The construction of permanent magnet assemblies for 
the production of magnetic field configuration has much 
been facilitated since the arrival of rare earth materials 
(REM) with remanence Br> 1 T and large coercitive 
forces [2]. REM-systems are particularly useful, since the 
fields of individual magnetic moments may be linearly 
superposed to a good approximation, which makes an 
analytical treatment possible. 

The design of such systems, i.e. the distribution of 
magnetization, is determined by their application. Two- 
dimensional systems for accelerators and for synchrotron 
radiation sources have been studied in great detail both 
theoretically and experimentally [3, 4]. While those 
systems still operate at relatively large scale there is a 
growing interest for such systems at a more moderate 
scale also. Potential applications include magnets for 
nuclear magnetic resonance spectroscopy [5], Penning 

traps [6] for low energy charged particles and magnetic 
quadrupole traps [-7] for neutral atoms. It is interesting 
to note that the cylindrical geometry that we will discuss 
is for instance fully compatible with a more recent design 
[8] of electrodes to produce an electric quadrupole field 
for a Penning trap. Hence these concepts may be easily 
combined. While Penning traps for precision measure- 
ments set stringent demands on field homogeneity, the 
sheer strength of a quadrupole field is of interest for the 
construction of a magnetic trap for neutral atoms. A two- 
dimensional variant of this method has already been 
demonstrated with permanent magnets I-9]. 

We will introduce our concept by giving some simple 
arguments on how to arrange magnetized material in 
order to construct a certain magnetic field configuration. 
This reasoning will lead us to a general treatment, by 
which we will explore the experimentally interesting 
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Fig. 1 a, b. Construction of a magnetic dipole (a) and a magnetic 
quadrupole (b) from axially and radially magnetized cylindrical 
elements (not to scale), Multipoles are analyzed with respect to the 
origin at z = 0. The convergence volume is a sphere centered at the 
origin and of diameter d i 
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special case of open cylindrical structures (Fig. 1), which 
allow direct access to the field region of interest• Those 
components can be treated analytically, are relatively 
simple to build and allow furthermore a tuning reduction 
of imperfections. Simple special cases of our problem have 
been treated by other authors [5, 10]. 

1 Optimum Orientation of Magnetization 

Since the superposition principle holds, one can consider 
any problem as a combination of the field or potentials of 
individual elementary dipoles m. For  a given magnetic 
material one cannot vary the absolute value of  magneti- 
zation, i.e. magnetic dipole moment  per volume, but  its 
orientation. Therefore, we begin by asking the question: 
What  is the opt imum orientation of a magnetic dipole at a 
particular position in space (Fig. 2a) as to contribute 
optimum strength to a given multipole moment  of the 
field? We will restrict ourselves to problems of azimuthal 
symmetry which can be treated in the zQ-plane. We 
consider a thin ring (Fig. 2b) of radius ~ and separation z 
from the origin, magnetized with linear magnetic moment 
density m=(mo/2rcQ)coscte~+(mo/2n~)sin~eQ forming an 
angle ~ with the z axis. At the origin m gives rise to the 
well-known potential [11] 

~ , ~ = -  ! Qdq ~m'(QeQ+ze~) 
(Q2 + z2)3/2 

(~omo'~ z cose + Q sine 
= - -  \ 4re J (~2-~-Z2)3/2 (1) 
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Assume we are aiming at constructing a maximum 
strength magnetic field at the origin. Only its 
z-component Bz can be nonzero. As ~m only depends on 
the vector of separation of the origin and the source 
points, B~ may be expressed as the derivative of ~m with 
respect to the source, B~ = a/~z~ m. 

(#omo ~ 1 
Bz = - \ 4re ] (Q2 + z2)5/2 

• [(Q2 _ 2z z) cos 0c - 3Qz sin 0~], (2) 

and the angle of maximum contribution is found from 

3Qz 3sin20 1 P2t(cos0) 
t an~=2z2  Q Z - 3 c o s 2 0 + l -  2P°2(cos0 )' (3) 

where P~' denote associated Legendre polynomials. The 
dependence of ct vs 0 is shown in Fig. 3 a. 

Similar arguments may be used to construct a strong 
magnetic quadrupole. In order to compensate any mag- 
netic dipole component  at the origin we have to choose 
the z-magnetization antisymmetric in z and the #-mag- 
netization symmetric in z. The strength of  the quadrupole 
is then determined from d2/aza~m, 
t3 2 (#orno ~ 3 

~ ~m = --  \ 4n ] (Q2 + Z2)7/2 

• [z(2z 2 - 3Q 2) cos ~ + O(4z 2 - e 2) sin ~] (4) 

which demands an optimum angle consistent with 

e(4z z -- e z) 1 P~(cos 0) 
tanct = z(2z 2_  3Qz) - 3 P°(cos0)" (5) 
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Fig. 2a, b. Geometry and coordinates of 
a magnetic dipole at a distance r from 
the origin (a), and thin magnetized ring 
at a distance r= (Q2 +z2)1/2 Ca). The 
dipole axis is in the r0-plane and forms 
an angle ct with the z-axis 
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Fig. 3a, b. Angle ct of the magnetiza- 
tion with the z-axis as a function 
of 0 for maximum contribution to 
(a) dipole moment and Ca) quadrupole 
moment 
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We show a vs 0 in Fig. 3b. Note that our results are 
independent of geometry. The perturbation by other 
multipoles is, however, strongly determined by the specific 
choice of magnetic components. In the spirit of this 
introduction we will analyze cylindric components which 
allow immediate experimental access and hence are of 
preferential interest. 

2 Three-Dimensional Maitipoles 

2.1 Idealized Continuously Varying Magnetization 

We again restrict ourselves to multipoles of azimuthal 
symmetry. In spherical coordinates rod? the magnetic 
potential of a pure axial multipole of order 2n can be 
written 
• ,(r) = ~ornp.(cos 0). (6) 

Obviously, the magnetization M required to create such a 
potential should reflect the azimuthal symmetry itself and 
hence is obtained by rotating the distribution in the xz- 
plane around the z-axis, i.e. it does not depend on ~b and 
has no component parallel to %. Furthermore, we will 
treat materials of constant magnetization [M(r', 0'1 = Mo 
only, which in spherical and cylinder coordinates is: 

M = Mo cos(~-  0')er + Mo sin(~-  0')e0, 

= Mo sin c~%, + Mo cos~ez. (7) 

The angle e is a function of (0', z') or (r', 0 '=  arctan((/z')) 
and describes the local angle between the magnetization 
M and the z-axis, e~ (Fig. 2). Following the arguments 
given in Sect. 1, the magnetic potential ~u is the sum of all 
dipole contributions within the magnetized volume ~ ' ,  

• M(r)=-  ~ , }r,_rl3 d at'. (8) 

We may rewrite (8), 

#o 4~M(r)=- ~nn V, , d3r ' 

= (~-°) ~ M(r') • Vr it, 1 ~ _  rl d3r ' . (9) 

The scalar product M(r')- V r,  which for arbitrary mag- 
netization MQ,e o, + M~ ,%, + M~ ,e~ reads 

M(r').V,,=MQ, +M~,~zTz ' + ~TM~,~-b,, (lOa) 

does not depend on qS', 

{ 3 + cos E~(O')] ~7} (lOb) M(r')" V., = Mo sin[.(O')] ~0~7 

in the case described by (7). If the magnetization is 
generally located outside the volume of interest (r < r') we 
may use the weU-known expansion [11] 

r ' ( 1 1 )  -- Pc(cos O)P e(cOs 0 ) 
Ir'--rl e = o  

-1 
m)! 

PT(cos O)P~'(cos 0') cos re(q5 -- qT)/. +2  ~=~ (t~+m) ! A 

We insert (lOb) and (11) into (9) and carry out the 
qT-integration immediately, which extinguishes the sec- 
ond term of the (11) and leaves us with the expected 
expansion in terms of Legendre polynomials, 

~M= Br ~ CerePe(cosO), (12) 
~=1 

where M o has been replaced by the remanence field 
B r = #oMo . 

Note that using (10a) instead of (10b), with Me,, Mz,, 
Mo, expressed as Fourier series in ~b', one obtains an 
expansion analogous to (12) valid inside a hollow magnet 
of arbitrarily chosen magnetization and shape. The 
second term of (11) then gives rise to terms proportional 
to P'~(cosO)cos(mc~) and P~'(cosO)sin(m~b). This result 
is used in Sect. 2.2.6 for calculating the perturbations 
arising in segmented magnets. 

For a cylinder with radii Q1 and Q2 and with endcaps at 
Zl and z2, the coefficients in (12) are 

C e=~ Q'd e'~dz' 
e l  Z1 

X{cosE°~(Qt, zt)]~+sinE°~(Q',z')]~} P¢(cOsO')gtd + 1 

(13) 

In particular, for zl = -z2,  all Ce of even order E vanish 
for Me,(Q', z') an odd and M~,(Q', z') an even function in z'. 
For the opposite case all odd Ce vanish. This generalizes 
the symmetry considerations in the introduction. 

We can remove the differential operations in (13) 
exploiting the following recurrence relations, 

O Pe(cosO) - ( f  + 1)Pc+ 1 ( c  °s0) (14a) 
~Z r ~+1 ~ rg+2  ' 

O Pe(cosO) = P)+I (14b) 
OQ r e+l r ¢+2 ' 

0 ~ P~, (cos0)  (~2 Pc(cos0) (14c) 
O~O 00 r ¢+1 = - Q  ~z 2 re+l 

For problems without cylindrical symmetry or with 
nonzero M,, one also needs 

O P~"(cos 0) 1 
00 r e + 1 2r e+2 

x [P~+ 11 (cos 0) -- (# - m + 2)(g -- m + 1)P~'+11 (co s 0)], 

(14d) 

0 P~'(cos 0) 1 
Oz r e+l - r e-~{[Pe~+l(c°sO)]((-m+ l)}" (14e) 

Equations (14d) and (14e) will not be used immediately, 
but they are required for treating, e.g. a cylindrical 
element made up from a finite number of segments (see 
Fig. 7 and Sect. 2.2.6 for this). 
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From (13), (14a), and (14b) we obtain 
1 02 =2 1 

Ce= ~ j o'do'~dZ'r,e+--~ 

x { - ( {  + 1) cos [c~(e', z')]P~ + ~(cos0) 

+ sin [e(0', z')]P)+ 1(cos 0')}. (15) 

In agreement with special cases (3) and (5), we find from 
(15) that the angular variation of magnetization only 
depends on cos 0' = z ' / ( ,  

1 PI+ 1(cos0' ) 
tanc~(0) = (16) 

d + 1 Pc+ 1(cos0') 

for maximum possible contribution to a specific multipole 
or order 2{. Clearly, the 1/r 'e+2 factor in (15) makes 
spherical arrangements favorable. Cylindrical elements, 
however, are much simpler to construct and will be of 
dominating interest experimentally. If necessary, several 
cylinders may be stacked in order to take advantage of 
spherical structures. 

In realistic situations we, furthermore, have to ap- 
proximate the idealized continuous rotation of  the mag- 
netization by a finite number of  homogeneously mag- 
netized elements. Any azimuthal magnetization can be 
analyzed from a decomposition into radially and axially 
magnetized cylinder components. It is hence sufficient to 
restrict ourselves to the explicit discussion of  these two 
special cases. 

2.2 Magnetized Cylinders 

We consider the two cases of axial magnetization (e = 0 or 
re) and of radial magnetization (e = -T-re/2) for cylindrical 
magnet components. Any other case may be treated as a 
superposition of these special cases. 

From (16) it is clear that for a cylindrical assembly of 
elements that is to create an odd multipole, the conditions 
M¢(e', -- z') = - Me,((  , z') and M~,((, -- z') = M2,(O' , z') 
should hold everywhere, and vice versa for an even 
multipole. (In particular, the magnet's shape is always 
symmetrical under reflection on z'=0). For  calculating 
the multipole coefficients Ce of such a configuration, it is 
convenient to express an element with radii 01 and 02 and 
with endcaps at zl and 22 as the difference of the two 
z-semiinfinite shells extending from the lower bounds 
z' = za and z' = z2 to z' = + oo. All one needs to know are 
the multipole coefficients of such z-semiinfinite magnets 
as functions of a variable lower bound z. These are 
denoted by C o if the magnetization points upwards (i.e. 

=0)  and by C~/2 if the magnetization points radially 
outwards (~ = re/2), and are calculated now. 

2.2.1 Axially Magnetized Cylinders. The z-integration of 
the first term in (13) is immediately carried out using (14 a). 
For the z-semiinfinite magnet under consideration, ex- 
tending from z' = z to z' = + oe with c~ = 0, we find with 
r2=o2 + z 2 

02 oo 
CO = ~ ode I dz' d Pe(z'/r) o2 pe(z/r ) 

o, dz' r e + l - ~ dee r e + l g O1 
_ o2 d00 ~2 pe_2cos0  

ol { ( { - 1 ) ~ z  2 7 --~ " 0 7 )  
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A magnet of finite length may be composed of two such 
semiinfinite magnets with opposite magnetization. 

With the help of (14b) and (14c), the coefficients can be 
given in closed form for { > 2, 

1 e p ) _ l E z / ( z z + Q 2 ) l / 2 ]  o2 08) 
c ° -  2{({-  1~ (z 2 + 02) e/~ ~ ,  

The result for { = 1 is straightforwardly calculated from 
(13). The coefficients for l=  1 to 6 are: 

z ii C° = 2 (O z + za) 1/2 (19a) 

1 ~2 02 
C°-- 4 (02 -¢- z-2)3/21e 1' (19b) 

1 Z02 ~'2 

c O -  4 (02 ~-z2)5/21o 1' (19c) 

1 02(6z2- 02) °2 (19d) 
CO-  16 (02-+'Z2) 7/2 Or' 

1 zeZ(622 -- 302) 02 ' 
c O -  16 ~ ) 9 ~ -  01 (19e) 

1 e2(10Z 4-12z202 +04) o2 
c o =  32 ( ~  + - - ~  ~-7i -01" (19f) 

2.2.2 Radially Magnetized Cylinders. In this case (~ = r~/2) 
only the second term in (13) survives. Incorporating again 
relation (14b) we find 

Q2 
1 Jl do0 ~ d i  P)+ x(z'/r) 

C 7 2 =  ~ ~ r e + 2 

1 of 8 1 Pe-l(z/r) (20) 
= - doe re , 2 ~0 { 

which by partial integration yields 

1 [oPe_x(z/r)o2 o}~ pe_l(z/r)~ 
C~/2 = ~ k  / -QI - Jol ae / ~" (21) 

Integration of (21) is somewhat tedious, but the final result 
for { > 2  is 

C,~/2=~[Pe_¢z/r)  1 e~2(z)k+'Pk(Z/r)l  o2 
{ - 1  ~=o 7 -J o l" (22) 

Again C~/2 is found by direct integration. Similar to the 
case ~ = 0 we write the first six coefficients 

)02 
C~/2= ! ( .  ~ _ln[-e  + (02 + z2)1/2] (23a) 

1 2 ~(02 "~- Z 2) 1/2 /101' 

1 03 ~2 
C~/2= 4 z(o2~z2) 3/2o1' (23b) 

I O3(O2 + 4Z2) Oz, 
C~/2= 12 zZ~f--+ ~ o 1 (23c) 

I 0a(2e 4 + 7e2Z 2 + 20z 4) e2 
C~/2- 48 za(oZ+z2) 7/2 ol (23d) 

1 03(2O 6 + 9e4Z 2 + 12eZz 4 +40Z 6) ~2, 
C'~/2 = -- 8--0 z4(e2 + z2) 9/2 ol (23 e) 



(23f) 

1 
C~2-- 480 

x 0a(100s + 4406Zezs(Q z + 9904z4+ z2)1 +1/22802z6 "]- 280z8) ~" Q~ 

(25a) 

Equations (23) seem to diverge at z=0 .  The divergent 
part, though, is independent of Q and therefore cancels 
out, which is seen for E > 2, e.g. by using the convenient 
recurrence relation (arbitrary fixed ~) 

C~+ 1 = ( + 1 8Z C~ (24) 

with the Taylor series expansion of (23b) to obtain: 

t ~ > 1, even 

c p =  (t + 1)!! (z] 
20 e-1 ~!!~ \~/Io, 

[ >  1, odd 

CY 2 _ ( _  1)(~- ,)/2 t ~!! 
2d -~ d t - 1 ) ( ~ - l ) ! !  

(25c) 

l (d + 2)g'(¢- 1) (z )2~  Q~ (25b) 

For  t' = 1 

lno 3z__2_ z Q~ 
C~/2 = 

2 8O z Io~ 

is found. 

i 

B,(O)/B, 

O.B 

2.2.3 Properties of  the C-Coefficients. The axial case ~ = 0 
and the radial case ~ = ~/2 are interrelated by 

g2 

C'~/2 = (d + 1) ~ doze°+ , ,  (26) 

where Xe°+, stands for the indefinite integral in O corre- 
sponding to the definite integral C°(z) given in (18). 
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The symmetry properties of multipole coefficients (18) 
and (19) are given by C°(z )=( -1 )ec° ( - z ) ,  and for (22) 
and (23) are C7/2(z)= - ( -  1yCff/2(- z). An odd multipole, 
such as the dipole of Fig. 1 a, requires an array of cylindric 
magnet elements symmetric in the z-component and 
antisymmetric in the 0-component of magnetization. For  
an even multipole, for instance the quadrupole of Fig. 1 b, 
the magnetization of elements is chosen antisymmetric in 
z and symmetric in O. 

2.2.4 Example: Construction of  Dipoles and Quadrupoles. 
From (24) we conclude that the contribution of a thin, 
magnetized disc at location z and of thickness Az to a 
given multipole of order n = 2f  at the origin is given by dBz 
= - (E + 1)C~ + 1 dz. As an illustration we show in Fig. 4 a 
the contribution of axially and radially magnetized discs 
to a magnetic dipole, i.e. C O and C[/2, where we have 
chosen experimentally reasonable dimensions for the 
inner and outer diameter di = 20 mm and da---50 mm of 
the cylinder. At each separation z we are free to select an 
optimum direction of magnetization for maximum contri- 
bution. According to Fig. 4a, the innermost cylinder A 
should be axially magnetized and 8 mm long, followed by 
two oppositely magnetized radial components B and B' of 
length 27.5 mm, and then axial components C and C' 
again oriented oppositely to the central one. The total 
dipole strength at the origin is given by the integral 
over the maximum C~ coefficients. This integral, Bz(O) 

L/2 
= - 2 B r  ! m{~x(2lC~(z)l)dz, is presented in Fig. 4b as a 

function of L/2, the total half length of the cylinder with 
optimum orientation of the magnetization. We note that 
in the central part of the system described within the 
linear approximation field strengths of the order of the 
remanence field B, are obtained in a volume of a few cm 3. 
B, may exceed 1.3 T for suitable materials such as 
NdFeB [2]. 

The maximum field strength is theoretically limited 
only by the ratio of the geometric dimensions. For large 
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Fig. 4a, b. Construction of a mag- 
netic dipole D i = 20 mm, Da = 50 mm. 
(a) Contribution of a thin disc situated 
at z = L/2 to the dipole field strength 
at the origin, dBz(O)= 2C~Brdz. 
( . . . . .  ) - contribution of individual 
axial (~ = 0 or n) and radial (a = + n/2) 
magnetization. Maximum contribu- 
tion enhanced by ( ). (b) Dipole 
field strength from pairs of discs 
at ±z: B~(O)/Br as a function of L/2, 

LI2 
B~(O)/B,=2 ~ max [2C~(z)]dz 

0 {a} 
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outer diameters (02 >> 0~) and very long (L/2 >> 0~) radially 
magnetized cylinders we reproduce the known result [10] 
that the field strength near the origin diverges like 

In this case very large demagnetizing fields exceeding the 
coercitive force will occur and hence limit any realistic 
system. 

Another case of  interest [7] is the construction of  
a magnetic quadrupole. Following the reasoning for the 
dipole we have to choose the magnetization from the 
maximum value of the C~ coefficients, which are given in 
Fig. 5a. The gradient of the magnetic field strength in the 
z-direction as derived from the quadrupole coefficient of 
such a realistic system is given in Fig. 5b and may 
overcome 1 T/cm. It is, of course, interesting to estimate 
the maximum field gradient possible, which can be 
achieved by choosing the magnetization according to (7). 
For an infinitely long cylindric structure of inner and 
outer radii 01 and 02, we find a maximum coefficient IC21 

~- 1 
~ ~ dz!odo~{[3P°(z/r)]2+[P~(z/r)]2}l/2 

From (28) we conclude that the maximum field gradient to 
be expected is approximately 2.4B~/0~. Clearly, at the 
aperture Q 1 of the cylinder the radial field strength at z = 0 
exceeds the remanence strength by a factor 1.2. Inside the 
material strong demagnetizing fields may occur and hence 
the application of materials with high coercitive forces is 
mandatory. 

2.2.5 Compensation of Higher Order Multipoles. Not  
only the achievable multipole strength is of interest but 
also its purity or homogeneity. For the dipole construc- 
tion of Fig. 1 and Fig. 4 we demonstrate one of several 
possible strategies to compensate higher order multipoles 

based on the alignment of cylinder segments only. Obvi- 
ously, these efforts may be supplemented by external low 
current shim coils which we will not consider here, 
however. 

Due to symmetry only odd multipole moments do 
exist in the cylindric magnetic dipole and hence the C~ 
coefficients are to be compensated. In our construction 
(Fig. 1) the dipole (f = 1) contributions of the inner three 
elements A, B, B' are essential only, and we neglect the 
influence of C and C'. The ~ = 3 contribution of A is 
- 2C°(La/2) as a function of its length LA. The two radial 
cylinders B and B' are chosen somewhat longer than in 
our example with 45 mm length, their g = 3 contribution is 
- 2[C~/2(XJ2)- C~/2(X~/2 + 45 mm)] as a function of 
their separation X~. From Fig. 6 it is seen that the sum is 
zero for several pairs (L A; X~). As an example, leaving out 
the innermost part of  element A, i.e. splitting A into 
two elements extending from z =  + 2 . V m m  to LA/2 
= _+7.1 mm=XB/2  yields 80% of the optimized field 
strength while the f = 3 contributions vanish (see Fig. 6). 
The configuration is easily tunable by changing the 
separation of its two halves to a value differing from 
5.4 mm. Not  only the systematic effects described in this 
paragraph but also contributions due to imperfections 
such as variations in the direction of magnetization may 
be compensated in this way. 

The leading term in the multipole expansion is now C5 
which is of order 10-2/cm 4, resulting in a dipole field 
inhomogeneity of order 10 - a within half the convergence 
radius, or a volume of about  1 cm 3 in our example. 

2.2.6 Perturbations due to Radial Segmentation. The 
radially magnetized cylinders as described in Sect. 2.2.2 
cannot in general be manufactured with continuously 
varying magnetization. Instead they will typically be 
assembled from N identical segments. The influence of 
this segmentation can be estimated from an azimuthal 
Fourier analysis of the magnetization that originally led 
us to neglect terms with m > 1 in (11). First, the effective 
magnetization, i.e. the average radial magnetization 

1 oo × 81 ] 

2 1 

0 t 
o 15 30 

(a) L/2 [mm] (b) 

I 1 1 
15 30 

L/2 [ram] 

Fig. 5a, b. Construction of a mag- 
netic quadrupole D~ = 10 ram, 
Da = 50 mm. (a) Contribution of 
a thin disc situated at z = L/2 
to the field gradient at the 
origin, d(dB=(O)/dz) = 6C~Brdz. 
( . . . . .  ) - contribution of individual 
axial (a = 0 or 70 and radial 
(ct= +~z/2) magnetization. Maxi- 
mum contribution enhanced 
by ( ). (b) Field gradient 
dB~(O)/dz from l~airs of thin discs 
at +_z as a function of L/2, 

L/2 

B~=2Br=2 ~ max[6C~]dz 
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1 . 5  

c~' 
0-3 I • ~-~m~ ] 

1 . 0  

0 . 5  

' '  ' 1  ' ' I '  ' 1  . . . .  I . . . .  I . . . .  I . . . .  

~3C ~f2r~-z~ C'~/~; =-~45~ k 2 1 - -  3 k 2 - -  / 

• ! "'-,.. c~ ~ _/  (~) 

t i i - - ~ _  . . . . . . . . . . . . . . . . . . . . . . .  : 

-0.5 , r * , v  t t I I ~ [ q r , , I , r I I I , p , I I , r , , 

5 10 15 20 25 30 

L A/ 2 [ram] 
:G/2 

Fig. 6. Compensation of third order perturbation for a magnetic 
dipole. Dotted curve: C o as a function of half length LA/2 (see 
Fig. 1 a). Solid curve: C~/2 as function of Xn/2, half separation of  
B and B' in Fig. 1 a with fixed length of B, B' = 45 ram. Leaving 
out the part of A extending from LA/2=0 to left vertical line 
and changing magnetization directions (A--*B) at right vertical line 
yields a tunable magnet with zero third order (hexapole) field 

Fig. 7. Segmentation of radially magnetized cylinders 

(Mr), will be reduced, and second, a perturbation of 
multipole orders 2N and higher is introduced. 

The reduction of magnetization may straightforwardly 
be estimated from (Fig. 7) 

(Mr)  N ~/~ sin(n/N) 
- [ cos~bd¢- (29) 

M o 2n -~/N n/N ' 

which gives ( M r ) / M o = 9 7 %  for N = 8  and 99% for 
N =  12. By the method outlined in Sect. 2.1 and using 
(14d) and (14e), we find that the leading perturbation 
varies as rn[Cn~ cos (N¢) + Cn~ sin(N¢)] with coefficients 
CnQ and CN~. After a lengthy calculation not reproduced 
here, we find that the magnitude of these does not exceed 

~--~th part of C~v, the fundamental coefficients of the 

(18) and (22). 
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Fig. 8. Field gradient dB/dz (z = 0) of  the rings shown in the inset vs 
separation x. ( - - )  - calculation from (19b); [] - experiment. 
Br= 1.05 T; di=9.4 mm; da= 19.4 ram; L=5 .0  mm 

3 Experimental  Results  for a Simple Sys tem 

In order to demonstrate experimentally the validity of our 
calculations on real magnetic systems we used axially 
magnetized cylindrical rings designed for optical iso- 
lators, which were readily available in the laboratory. We 
assembled simple dipoles and quadrupoles with variable 
lengths and distances. An electronic integrator and a Hall 
probe were employed to measure magnetic moments and 
two- or three-dimensional magnetic field distributions. 

Within a few percent predictions by our analytic 
treatment could be proven for various situations. As a 
simple example we give the quadrupole field gradient 
(Fig. 8) on the symmetry axis of two rings (~l =4.7 mm, 
Q2 = 9.7 mm, B, = 1.0 T) as a function of their separation x. 
We also tested the validity of linear superposition for the 
material used. We found the superposition principle to 
hold to a very good approximation even in this extreme 
case. 

Combinations of cylindrical magnets optimized for 
maximum field strength or steep gradients with high 
purity are currently under construction. Results of this 
experiment will be the subject of a later report. 

4 Conclusions  

We have analytically calculated the magnetic field of 
cylindrical permanent magnets. From our calculation 
we can derive optimum conditions for the construction 
of strong magnetic multipoles with high purity. The 
cylindric structures are openly accessible, and the mag- 
netic fields should be useful over several cm 3 under 
realistic conditions. A preliminary measurement showed 
good agreement with the calculated field distribution. 
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