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Nonadiabatic storage of short light pulses in an atom-cavity system
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We demonstrate the storage of 5-ns light pulses in a single rubidium atom coupled to a fiber-based optical
resonator. Our storage protocol addresses a regime beyond the conventional adiabatic limit and approaches the
theoretical bandwidth limit. We extract the optimal control laser pulse properties from a numerical simulation of
our system and measure storage efficiencies of (8.1 ± 1.1)%, in close agreement with the maximum expected
efficiency. Such well-controlled and high-bandwidth atom-photon interfaces are key components for future
hybrid quantum networks.
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I. INTRODUCTION

Quantum networks are the basis for distributed quantum in-
formation processing [1–3] and long-distance quantum com-
munication [4,5]. In quantum networks [6], distant nodes are
connected via quantum channels, e.g., optical fibers guiding
single photons as flying qubits [7]. The nodes for processing
and storage of quantum information require long coherence
times and the ability to efficiently convert flying to stationary
qubits and vice versa. Single atoms in optical cavities have
shown to fulfill these criteria [8,9], but so far only in the
adiabatic regime of atom-cavity dynamics when interacting
with photon pulses of length T � κ/g2, where κ is the cavity
bandwidth and g is the atom-cavity coupling strength. Both
working in this regime and the choice of cavity parameters
have limited previous experiments to pulses much longer than
the atomic excited-state lifetime τe and the cavity field decay
time [9,10]. However, high-bandwidth quantum communica-
tion will use short pulses, such as the polarization-entangled
photons emitted by quantum dots [11] or spontaneous para-
metric down-conversion sources [12].

In our approach, we use a high-bandwidth, microscopic
fiber Fabry-Pérot cavity (FFPC) [13], strongly coupled to a
single atom, to store a weak coherent pulse in the nonadiabatic
regime near T ∼ κ/g2 [14]. This way, pulses with T � τe

are stored, which is not possible in free space [15,16]. The
cavity is thus used as a bandwidth converter, matching the
narrow atomic transition to a spectrally broad pulse near the
cavity-bandwidth limit T −1 ∼ κ . The pulse is mapped into
the atomic ground states with the help of a control laser in
Raman configuration. In order to execute the storage process
efficiently, the exact control pulse properties, such as the
temporal profile, have to be found and matched to the input
pulse. Prominent theoretical work [14,17,18] has been mostly
concerned with realizing an adiabatic state transfer during
the storage process and hence is not applicable in our case.
Instead, we determine an optimum pulse sequence in the
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nonadiabatic storage regime by numerical simulations based
on the full quantum-mechanical Lindblad master equation de-
scribing our system. As a result, we reach an excellent agree-
ment between expected and measured storage efficiencies.

II. EXPERIMENTAL SETUP

Our photon memory consists of a single 87Rb atom trapped
at the center of a single-sided, high-bandwidth FFPC [19].
One of the fiber mirrors presents a higher transmission (HT),
ensuring a highly directional input-output channel [20]. As
depicted in Fig. 1(a), the cavity is placed at the focus of four
in-vacuum, aspheric lenses (NA = 0.5), which lead to a high
beam-pointing stability [21]. The lenses strongly focus two
pairs of counterpropagating, red-detuned dipole trap beams
at 860 nm which create a two-dimensional optical lattice in
the xy plane, see Fig. 1(b). One of the lattices acts as a
conveyor belt [22] to transport atoms from a magneto-optical
trap (MOT) into the cavity. Confinement in the z direction
is provided by the intracavity, blue-detuned lock laser field
at 770 nm, which is additionally used for stabilizing the
resonator length and for carrier-free Raman cooling in three
dimensions [23,24]. As a result, the atom is located with
subwavelength precision at an antinode of the cavity mode
driven by the input pulse. In particular, the mode is resonant to
the Stark-shifted |F = 2, mF = −2〉 → |F ′ = 2, mF = −1〉
hyperfine transition of rubidium at 780 nm. The quantization
axis is aligned with the cavity axis by applying a magnetic
guiding field of ∼1.8 G.

In each experimental cycle, the memory is initialized by
cooling and preparing the atom in the state |F = 2, mF = −2〉
by optical pumping with an efficiency exceeding 95%. As a
first step of the storage protocol, we send a triggered, coherent
input pulse with a mean photon number n and a duration of
5 ns (FWHM). It has a time-symmetric, sine-squared shaped
probability amplitude |φin|(t ) of the electric field [6]. When
it enters the FFPC through the HT mirror, a classical control
laser pulse in two-photon resonance is simultaneously applied
from the side along the x axis [Fig. 1(b)]. This results in
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FIG. 1. Schematic side (a) and top (b) views of the experimental setup illustrate the optical lattices trapping a single rubidium (87Rb) atom
at the center of a microscopic fiber Fabry-Pérot cavity (FFPC). The high-transmission (HT) mirror of the cavity is the access port for a coherent
input light pulse, which is stored in the atomic memory via a control pulse entering from the side. Retrieved single photons are guided to a
Hanbury Brown–Twiss (HBT) setup for detection. (c) Photon storage for a cavity with two degenerate polarization modes. The first mode
couples the initial state |F, mF 〉 = |2, −2〉 to the excited state |2′, −1〉 with a rate g and either results in coherent transfer to |1, −1〉 by the
interaction with the control laser (Rabi frequency �) or in coherent leakage to |2, 0〉 via a second cavity mode with rate g′. The efficiency of
an adiabatic retrieval process is not affected, as the photon detection is polarization insensitive.

transferring the atom dominantly to the state
|F = 1, mF = −1〉, see Fig. 1(c). After a storage time of
1 μs, the photon is read out with an adiabatic control pulse to
ensure maximum population transfer [25–27]. The cycle of
state initialization, photon storage, and retrieval is repeated
with the same atom up to 1500 times for ∼2 s, limited by the
efficiency of the currently employed cooling mechanism.

III. RESULTS

To find the optimum storage-assisting control laser pulse
with time-dependent Rabi frequency �(t ), we simulate the
system based on a Lindblad master equation. The underly-
ing Hamiltonian consists of the Jaynes-Cummings Hamilto-
nian [28] and an additional driving term

Ĥd(t ) = i h̄
�(t )

2
(σ̂ † − σ̂ ) + h̄

√
2κHT · √

n · φin(t )(â† + â),

where σ̂ †, σ̂ are the flip operators of the atomic states that are
coupled via �(t ), while â†(â) is the creation (annihilation)
operator of the driven cavity mode. The total cavity damping
κ = κHT + κloss is the sum of the pure transmission rate κHT

at which a coherent field [φin(t )] impinging on the HT mirror
interacts with the open system, and the undesired losses κloss,
e.g., due to absorption and scattering on the mirrors (for more
details see Appendix).

Our cavity supports two degenerate polarization modes
(σ±), which couple two Zeeman states in the same hyperfine
manifold F = 2 via the excited state |2′,−1〉 [Fig. 1(c)]. With
the π -polarized control laser coupling the excited state to the
F = 1 manifold, our choice of the initial Zeeman state leads
to coherent dynamics in a tripod configuration [29]. Addition-
ally, the probability to off-resonantly excite the state |1′,−1〉
has to be considered. We take all of these effects into account
in our model by including two polarization cavity modes with
effective atom-cavity coupling strengths g, g′ and a total of
five atomic states (for a detailed discussion see Appendix).

The main effect of the ideally absent atom-cavity coupling
g′ is a coherent population leakage during a storage attempt.
The photon storage efficiency ηstorage, which is the transfer
efficiency ηtransfer from the initial to the target state normalized
by the mean input photon number (ηstorage = ηtransfer/n), is
thus decreased compared to a standard 	 configuration [14].

In general, the storage efficiency depends crucially on the
properties of the control pulse, namely, the temporal shape,
the pulse amplitude, the detuning from the atomic transition,
and the delay with respect to the input pulse. However, in
a nonadiabatic regime we find that its exact temporal shape
plays a minor role. A simple compression of the temporal
length of the pulse shape for the adiabatic protocol [18] is
equally effective as a numerically optimized pulse shape for
our short input pulse [30]. In case of zero single-photon
detuning of the input pulse with respect to the atomic excited
state, our simulation predicts the highest storage efficiency for
a vanishing two-photon detuning of the Raman transition, as
also predicted by [14]. The remaining pulse parameters for
optimal storage are the peak Rabi frequency of the control
laser and its delay τ� with respect to the input light pulse.

Besides the pulse parameters, knowledge about the system
parameters g, g′, κHT, κloss, γ is important for the storage pro-
cess. κHT is known from the mirror characterization in [20],
and κloss = κ − κHT is obtained after measuring κ by probing
the frequency-dependent cavity reflection. For determining
g, g′, we take a measurement during which we store an in-
put pulse with on average n = 2.1 photons and reconstruct
the retrieved pulse after the memory readout, as shown in
Fig. 2. A simulation-based fit of the resulting shape with g, g′
as free parameters completes our set of system parameters:
(g, g′, κHT, κloss, γ ) = 2π × (29, 35, 16, 25, 3) MHz.

Two additional measurements determine the coherent stor-
age fraction. The first one omits the control pulse during
the storage process and thus indicates the incoherent state
transfer due to optical pumping by the input pulse. The second
measurement uses neither control nor input pulse, which
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FIG. 2. On the left: The time-symmetric, sine-squared shaped input pulse with intensity probability amplitude |φin(t )|2 sent to the HT
mirror has a FWHM duration of 5 ns (black points connected by red, solid line). For comparison, the atomic excited state decays with a time
constant of τe = 26 ns is shown (gray, dashed line). The Raman control pulse with Rabi frequency �(t ) (purple, solid line) is applied with a
delay of 4 ns with respect to the input pulse, in contrast to adiabatic storage protocols (see main text). All pulse amplitudes are normalized to
1. On the right: After a storage time of 1 μs, a control pulse (purple, solid line) adiabatically generates a photon |φout(t )|2 after the full storage
protocol (black dots). By taking into account the incoherently transferred population in the absence of a control pulse (dark green dots) and
the counts due to false initial state preparation (bright green dots), we infer a coherent storage component of (79 ± 3)%. The data-point values
have been scaled by a factor of 200, while the Raman pulse is still normalized to 1. From a simulation-based fit |φout, fit(t )|2 (red, solid line) we
extract the atom-cavity coupling strengths (g, g′) = 2π × (29, 35) MHz.

indicates false state preparation. From the ratio of the inte-
grated detection counts in Fig. 2, we obtain a coherent storage
component of (79 ± 3)% (for the special case of n = 2.1).
In a Hanbury Brown–Twiss experiment we verify the single-
photon character of the retrieved pulses by calculating the
correlation function g(2)(0) = (12.2 ± 6.5)% from the time
trace of detected photons, see Fig. 3. The value is consistent
with the amount of background light and detector dark counts
(see Appendix).

In a next step, the previously obtained system parameters
are used to simulate the storage process in order to map out
the full parameter space for the optimization of the storage ef-
ficiency ηstorage. In Fig. 4(a), ηstorage is displayed as a function
of the peak Rabi frequency of the control laser and its delay
τ�, and in Fig. 4(b), the transfer efficiency ηtransfer as a function
the peak Rabi frequency and mean photon number per input
pulse is shown. The latter is of interest for cross-checking the
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FIG. 3. We verify the single-photon character of the cavity emis-
sion by calculating the cross correlation g(2)

c of photons detected
by the HBT setup, which is depicted in Fig. 1(a). We observe a
minimum of g(2)

c (0) = (12.2 ± 6.5)%, which is intrinsically limited
to g(2)

c,bg(0) ≈ (13.6 ± 0.1)% by detector dark- and background counts
(see Appendix).

photon number calibration, which is required to determine the
storage efficiency rather than the transfer efficiency.

The simulation results show efficiency revivals towards
higher Rabi frequencies, which give insight into the under-
lying storage process. The revivals are a consequence of the
excited state being significantly populated before it is mapped
by the control laser to the target ground state in a coherent
π -pulse interaction [14]. In contrast, a classic stimulated
Raman adiabatic passage (STIRAP) protocol [31] does not
show revivals. It relies on the adiabatic transfer between the
ground states, which is no longer the most efficient storage
method in the presented experiment.

We confirm the simulated behavior by measuring four
independent parameter scans, which are fitted to the exper-
imentally accessible regions of the two simulated maps. To
obtain the storage and transfer efficiencies from the measure-
ment, the photon detection probabilities per storage attempt
are corrected for the imperfect state preparation, the read-
out efficiency of (80 ± 5)%, the escape efficiency κHT/κ =
(39 ± 1)%, the transmission in the optical path, the detection
efficiencies of (17 ± 2)%, and the spatial mode matching
between fiber-guided and cavity mode of (60 ± 2)% [20]. For
an input pulse with n = 1 [see Fig. 4(a)] we observe a maxi-
mum while scanning the control laser peak Rabi frequency,
from which we deduce the storage efficiency of ηstorage =
(8.1 ± 1.1)%, which is close to the highest expected value
of 9.0% for our tripod system with cavity losses. Taking
the aforementioned efficiencies into account, the end-to-end
efficiency of creating an outgoing single-photon Fock state
per impinging coherent state is (0.9 ± 0.1)%. For larger mean
photon numbers per pulse [see Fig. 4(b)], we observe the
expected saturation of the transfer efficiency, which is lim-
ited by the undesired transfer to |2, 0〉 (see also Appendix).
However, for higher peak Rabi frequencies the measured
data deviates from the simulation [Fig. 4(b)]. We attribute
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FIG. 4. Simulated efficiency maps and experimental pulse parameter scans. (a) For an input pulse containing a mean photon number of
n = 1, the storage efficiency ηstorage as a function of both control pulse peak Rabi frequency and control pulse delay τ� is simulated. The
nonadiabatic storage process reveals a significant atomic excited-state population, which is then mapped by the control laser to the target
ground state in a coherent π -pulse process. Thus, for higher peak Rabi frequencies efficiency revivals are observed. (b) For a fixed control
pulse delay of 4 ns, the transfer efficiency ηtransfer is simulated as a function of both control pulse peak Rabi frequency and mean photon number
per input pulse n. The measured transfer and storage efficiencies for four independent, experimental parameter scans (black points) are fitted
to the simulation of our system (red, dashed lines). This allows us to extract the storage efficiency ηstorage = (8.2 ± 0.6)% for a coherent input
pulse with a mean photon number of n = 1. The error bars combine both statistical and systematic uncertainties. Data points in gray are not
considered by the fit (see main text).

this behavior to variations in both the atom-cavity coupling
strength and the AC Stark shift, which originate from different
atom positions within the cavity mode and dipole traps. As
a result, the optimum (two-photon) Rabi frequency is met at
higher peak Rabi frequencies than expected, leading to the
observed higher efficiencies.

With technical improvements such as the realization of
a three-level (	) configuration, the efficiency can already
be improved by a factor of about 2. Assuming negligible
undesired cavity losses, storage efficiencies exceeding 40%
should be feasible with a single atom. The overall memory
efficiency can be increased by fiber cavities equipped with
graded index (GRIN) lenses [32], which reduce the losses due
to a cavity-fiber mode-mismatch.

IV. CONCLUSION

In conclusion, we have demonstrated the nonadiabatic stor-
age of light pulses, which are, with 5 ns, much shorter than the
atomic excited-state lifetime of τe = 26 ns. By simulating the
storage process in dependence of the control pulse parameters,
we find the optimum control pulse for the highest possible
photon storage efficiency and, unlike many similar experi-
ments, observe a remarkable agreement with experimentally
obtained values.

Our system is capable of interacting with very short light
pulses in a highly directional manner, thereby demonstrating
functionality for a high-bandwidth quantum network. Addi-
tionally, FFPCs offer an intrinsic fiber coupling that facilitates
the implementation in cavity-based networks [33,34]. We
would like to point out that the storage of short pulses has
been realized in warm atomic vapors [35] or atom-loaded

hollow-core fibers [36] as well, but here both the storage
time at the single-photon level and the applications of the
system are limited. In contrast, (few-) atom-cavity systems
offer longer storage times [8] and are more versatile, e.g., for
the realization of two-atom quantum gates [37].

In the future, we will employ ensembles of atoms, which
will enhance the light-matter interaction by collective ef-
fects [38], allowing for storage of even shorter pulses with
even higher bandwidths. In this way, true single-photon Fock
states as provided by the emission of a quantum dot [11] can
efficiently interact with our atom-based system. Envisioning
such a hybrid experiment [39], we have recently demonstrated
that the emission frequency of quantum dots can be stabilized
to atomic transitions [40].
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APPENDIX A: EXPERIMENTAL METHODS

1. Tripod configuration

Here, we briefly explain the choice of the tripod config-
uration [29]. In our experiment, a few tens of neutral 87Rb
atoms are trapped from the background gas (10−10 mbar) and
cooled in a magneto-optical trap which is located 1 mm away
from the cavity center. An optical lattice acting as a conveyor
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FIG. 5. The vacuum-Rabi splitting is measured to determine the
individual atom-coupling strength g for each sequence repetition.
The distribution of values is shown with a Gaussian fit and 1σ

confidence intervals. Each value still has to be scaled by
√

1/6 to
obtain the coupling strength on the |2, −2〉 → |2′, −1〉 transition. As
discussed in Appendix A, a specified range of coupling strengths
(highlighted area) is used for postselection in Fig. 3 and for an
accurate implementation of g in our simulations.

belt is used to transport them into the cavity region. Here,
the presence of an atom is detected by its interaction with a
near-resonant probe field at 780 nm, which is injected into the
cavity via the HT mirror. This σ−-polarized field drives the
cycling transition |F = 2, mF = −2〉 → |F ′ = 3, mF = −3〉,
which allows for a clean, nondestructive hyperfine state
detection [41]. In the presence of a continuous repumper,
which prepares the atom in its F = 2 ground-state mani-
fold, the atomic presence is detected by an increase of the
reflected probe light and the transport is stopped. At the
same time, the probe and repumper also prepare the atom
in |F = 2, mF = −2〉, the chosen initial state for the storage
protocol.

However, mapping the population between the two ground
states via a Raman process [Fig. 1(c)] has to involve the
excited state F ′ = 2 or F ′ = 1, so as a next step, we change
the cavity length such that its resonance frequency is shifted
by 267 MHz. Then the cavity mode is resonant with the
|F = 2, mF = −2〉 → |F ′ = 2, mF = −1〉 transition, which
is driven by the weak coherent light pulse. In the shifting
process, we also measure the vacuum-Rabi splitting [42],
from which we infer the atom-cavity coupling strength for
each individual atom, see Fig. 5.

To make use of these well-established techniques for our
experiment [19], the tripod configuration emerged as a first
choice for the demonstration of short-light-pulse storage.
However, for quantum memory applications it is not ideal.
Our experiment therefore is a proof of principle for high-
bandwidth applications and a milestone in the agreement
between expected and measured efficiencies.

Besides that, the tripod configuration also opens new
possibilities, since every photon generation attempt creates
entanglement between the emitted photon and the magnetic
sublevels of the atom, which is, e.g., useful for telepor-
tation experiments [43] or the generation of entanglement
between different platforms [44]. In [45], the properties of
such a system are investigated and the creation of two-mode
Schrödinger-cat states in the cavity is proposed.

2. Single-photon generation

For generating single photons, we make use of an adia-
batic two-photon Raman process known as vSTIRAP [25].
The probability of receiving more than one photon per read
pulse and emitter is practically zero, since the excitation laser
frequency is far detuned from the emission frequency. But
in order to identify the presence of more than one atom in
the cavity mode, it is interesting to analyze the normalized
cross-correlation g(2)

c (�x) between photon detections in single
photon counting module (SPCM) 1 and 2 of the Hanbury
Brown–Twiss setup. If the individual SPCM i sees ci counts
in the 100 ns generation window m, g(2)

c is defined as

g(2)
c (�m) = 1

m

〈c1(m) c2(x + �m)〉
〈c1(m)〉〈c2(m)〉 , (A1)

where m is the average number of coincidences for �m �= 0.
In Fig. 3, we show the detection coincidences for a shift

of �m windows along with the Poissonian error given by the
number of coincidences. At �m = 0, the dip is expected to
reach zero for a perfect single-photon source [46,47], but it is
usually limited by the dark count rates of the SPCMs and by
Raman-scattered lock laser light [20]. These two effects are
combined into the rates xd1 = (3.00 ± 0.03) kcps and xd2 =
(1.20 ± 0.01) kcps in order to give the estimate

g(2)
c,bg(0) ≈ ηretrieval

(
xd1 + xd2

)
(
ηretrieval/2 + xd1

)(
ηretrieval/2 + xd2

)

= (13.6 ± 0.1)%,

which is derived from Eq. (A1) for equal SPCM detection
efficiencies and the probability of detecting a photon per
triggered pulse ηretrieval = (2.3 ± 0.1)%. Considering all g
values in Fig. 5, we find g(2)

c (0) = (20.9 ± 3.4)%, which
means the contrast is not background limited, but most likely
constrained by a small two-atom component. In order to
filter the spurious events, we postselect the data for g ∈
[70, 80] × 2π MHz (highlighted bar in Fig. 5). As can be
seen from Fig. 3, the value g(2)

c (0) = (12.2 ± 6.5)% is then
close to the background limit, as expected. The bottleneck
for giving more precise g(2)

c (0) estimates is the number of
measurements.

APPENDIX B: THEORETICAL MODEL

1. Coherently driven multilevel atom in a dissipative cavity

First, we start with the more intuitive scenario of a closed
system: The well-known Jaynes-Cummings Hamiltonian [48]
describes the interaction between two atomic levels and a
quantized mode of an electromagnetic field. We first extend
this model to a three-level atom with two ground states
|g1〉 , |g2〉 and one excited state |e〉, where only the transition
from |g2〉 → |e〉 with frequency ωa2 is resonant with the
cavity. The Hamiltonian of this atom-cavity system consists
of several parts:

ĤJC = Ĥa + Ĥc + Ĥint,

where Ĥa and Ĥc are the separate Hamiltonians of the atom
and cavity mode, while Ĥint describes the interaction.

We treat the atom-photon interaction in both dipole- and
rotating-wave approximations, and simplify the individual
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Hamiltonians by putting the dynamics in the frame of the
pulse and Raman laser with frequencies ωp,R. The atom energy
in the presence of a single-photon detuning �p-a = ωp − ωa2

with respect to the excited state and a two-photon detuning
δ = �p-a − (ωR − ωa1 ) with respect to the ground state |g1〉 is
given by

Ĥa = − h̄ �p-a · σ̂ee − h̄ δ · σ̂g1g1 . (B1)

We introduce the raising and lowering operators σ
†
kl = |l〉〈k|

and σkl = |k〉〈l|, which describe the excitation and deexcita-
tion of the atomic spin, respectively.

The energy of the cavity field can be expressed in analogy
to the spectrum of a harmonic oscillator by m Fock states
|0〉 , . . . , |m〉. The creation- and annihilation operators â†

and â add or remove a photon from the cavity mode with
resonance frequency ωc, so that its energy for a certain fre-
quency detuning between the input pulse and cavity resonance
�p-c = (ωc − ωa2 ) − �p-a = �c-a − �p-a reads

Ĥc = − h̄ �p-c · â†â .

In the following, we consider the special case �p-c = �p-a =
δ = 0.

The interaction term describes the coupling between the
atomic dipole and the electric field of the cavity mode, which
occurs with the Rabi frequency 2g:

Ĥint = i h̄ g
(
σ̂ †

g2eâ − σ̂g2e â†). (B2)

We extend this model by two coherent, time-dependent
driving terms, for which the overall Hamiltonian Ĥ (t ) is given
by

Ĥ (t ) = ĤJC + Ĥd(t ) , (B3)

with the driving Hamiltonian

Ĥd(t ) = i h̄
�(t )

2

(
σ̂ †

g1e − σ̂g1e
) + h̄ E (t )(â† + â). (B4)

The first term with �(t ) stands for the control-laser-induced
interaction in a 	 configuration. The control laser addresses
the transition from ground to excited state, which is not
coupled to the cavity. The second term populates the cavity
mode according to the driving strength E (t ).

Without dissipative processes, i.e., the interaction of our
system with the environment, we cannot fully control the
ground-state population of our system, as is intuitively clear
from Eqs. (B4) and (B2): Any excitations brought into the
system would lead to infinite oscillations between the states
|g2〉 and |e〉 as soon as the control laser does not realize a
full population transfer to |g1〉. The environmental states, on
the other hand, are unknown, so we introduce the density
matrix formalism and “open” our system to loss channels. The
Schrödinger equation is replaced by the master equation [49],
which describes the density matrix ρ̂ of our closed system at
any point in time:

d ρ̂

dt
= L̂ ρ̂ = − i

h̄
[Ĥ , ρ̂] +

∑
l

Ĉl ρ̂ Ĉ†
l − 1

2
(Ĉ†

l Ĉl ρ̂ + ρ̂ Ĉ†
l Ĉl ) .

(B5)

The Liouvillian superoperator L̂ contains both the coherent
dynamics given by Eq. (B3) and the Lindblad terms attributed

to the decay and loss channels, which are specified by the
collapse operators Ĉl :

Ĉγ1 =
√

2γ1 σ̂g1,e , Ĉγ2 =
√

2γ2 σ̂g2,e , Ĉκ =
√

2κ â .

(B6)
The transmission rate κHT through the HT mirror and the

unwanted damping of the field due to absorption, scattering
at the mirrors, and leakage through the LT mirror at rate κloss

form the total cavity loss rate κ = κHT + κloss. The excited-
state decay � = 2γ to both ground states is considered with
independent rates γ1,2 such that γ = γ1 + γ2.

The conversion of modes on the outside of a resonator to
modes on the inside is commonly treated by the input-output
formalism [50,51]. For mapping a weak coherent pulse with
electric field probability amplitude φin(t ) into the atom, we
have to express the driving term E (t ) in terms of φin(t ), which
contains on average n photons:

E (t ) =
√

2κHT × √
n × φin(t ) . (B7)

Here, we have considered that φin(t ) has a temporal shape of
length T , to which it is normalized such that

∫ |φin(t )|2dt = 1,
and a mean number of photons n. For a given φin(t ) in the
adiabatic storage regime, �(t ) is found according to [18].

In summary, our model now describes the temporal evo-
lution of an idealized, three-level atom coupled to a res-
onator, including losses as well as driven excitations. We
can extract information, e.g., about the average intracavity
photon number n = 〈â†â〉, at any point in time. In the case of
single-photon generation, the simulation provides predictions
for E (t ) = 0. For our simulation plots, we solve Eq. (B5) to
investigate the efficiency of coherent-pulse storage in depen-
dence of its various parameters. For t > T , the system reaches
a steady state (L̂ ρ̂ = 0), which allows us to define the storage
efficiency ηstorage by the atomic state population in |g1〉:

ηstorage = ρg1g1

n
=

〈
σ̂ †

g1g1
σ̂g1g1

〉

n
. (B8)

Leaving the regime of weak coherent pulses with on average
one photon (n = 1), we explore the dynamics in the limit
n � 1. Remarkably, the results for ηstorage then correspond
exactly to the predictions for single-photon Fock-state storage
in [14,18]: In the adiabatic storage regime of TCγ � 1, the
storage efficiency is limited to

ηmax = C

C + 1
, (B9)

where C = g2

κHT γ
is the cooperativity parameter.

Reference [30], to our knowledge the most recent model to
describe single-photon storage, is complex, as it involves the
coupling of several electromagnetic modes inside and outside
the resonator. Here, the excited-state decay is directed to an
auxiliary state outside the three-level atom, most likely to
quantify the free-space loss. The main new aspect of their
work is an analysis of the drop in efficiency caused by
parasitic losses (κloss). In their presence, a new limit for the
optimum storage efficiency is found:

η′
max = κHT

κHT + κloss

C′

C′ + 1
, (B10)
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where C′ = g2

(κHT+κloss ) γ
is the loss-modified cooperativity. For

κloss �= 0, we obtain efficiencies according to Eq. (B10) as
well. Also, in our model the population sum in all coherently
coupled states is conserved, which is a more realistic case
when considering adiabatic storage processes.

2. Four-level atom coupled to two cavity modes

In our tripod configuration, the mediating atomic excited
state is coupled to two σ± cavity modes. This means an
additional state |g3〉 of approximately equal energy, as |g2〉 has
to be taken into account [see Fig. 1(c)]. The corresponding op-
erators acting on the photon number in the second cavity mode
are b̂† and b̂. Thus we modify the interaction Hamiltonian in
Eq. (B2) and the collapse operators in Eq. (B6) to

Ĥ ′
int = i h̄ g

(
σ̂ †

g2eâ − σ̂g2e â†) + i h̄ g′(σ̂ †
g3eb̂ − σ̂g3e b̂†

)
(B11)

and

Ĉ ′
γ ′

1
=

√
2γ ′

1 σ̂g1,e, Ĉ ′
γ ′

2
=

√
2γ ′

2 σ̂g2,e,

Ĉ ′
γ3

=
√

2γ3 σ̂g3,e, Ĉ ′
κa

=
√

2κ â, Ĉ ′
κb

=
√

2κ b̂ ,

with the new coupling strength g′ and an adjusted branching
ratio of the excited-state decays γ3 and γ ′

1,2. In reality, there
are more levels to decay to, but their respective transitions
strengths are weak, such that we may neglect them. Addition-
ally, the excited-state population decay is very small at any
time (κ � γi).

The cooperativity parameter C is defined for a single atom-
cavity coupling rate only. We are not aware of any generalized
coupling parameter depending on g and g′, so we cannot
estimate the efficiency as in Eq. (B10). Instead, we only give
results based on our simulations.

3. Multiple excited states

We assume transform-limited pulses, i.e., for our given
pulse duration and shape, a minimum spectral width is im-
plied. However, the width can easily be on the order of the
frequency difference of neighboring atomic excited states.
As a consequence, multiple excited states have to be taken
into account. For 87Rb, the Raman laser addressing the
|F = 1, mF = −1〉 → |F ′ = 2, mF = −1〉 transition has a
nonzero probability of driving the � = 157 MHz red-detuned
|F = 2, mF = −2〉 → |F ′ = 1, mF = −1〉 transition, which
is why the state | f 〉 = |F ′ = 1, mF = −1〉 should be taken
into account. The cavity itself acts as a frequency filter for
the input pulse, reducing the probability for off-resonant
transitions to less than a relative 2.5%.

In our simulation we include multilevel-atom effects by
introducing the detuned excited state with energy

Ĥa = −h̄ � · σ̂ f f (B12)

and extending Eq. (B4) to

Ĥ ′
d(t ) = i h̄

�(t )

2

(
σ̂ †

g1e − σ̂g1e
) + h̄ E (t )(â† + â)

+ i h̄
�′(t )

2

(
σ̂
†
g1 f − σ̂g1 f

)

FIG. 6. Figure 4(b) shows the population transfer ηtransfer to
|F, mF 〉 = |1, −1〉 as a function of the mean input pulse photon
number n and the control pulse peak Rabi frequency. Here, plot
(a) shows the transfer to |2, 0〉, while plot (b) displays the sum of the
transfer efficiencies to both states. The total transfer reaches above
80%, in agreement with the expectation for large n.

and Eq. (B11) to

Ĥ ′′
int = i h̄ g

(
σ̂ †

g2eâ − σ̂g2e â†) + i h̄ g′(σ̂ †
g3eb̂ − σ̂g3e b̂†

)

+ i h̄ g′′(σ̂ †
g2 f â − σ̂g2 f â†) + i h̄ g′′′(σ̂ †

g3 f b̂ − σ̂g3 f b̂†
)
,

where �′(t ), g′′, and g′′′ are the new coupling strengths ob-
tained by the ratio of Clebsch-Gordan coefficients. The decay
rates and collapse operators are adjusted as well. This is finally
the model we use to interpret our measured data.

The main effect of an additional excited state |1′,−1〉
is that a small fraction of the population in the target state
|1,−1〉 is transferred to the excited state and back during the
storage process. These dynamics result in a slightly reduced
expected efficiency compared to a simplified four-level atom
approach. However, for well-controlled polarizations of the
manipulating beams and cavity modes, five states are suffi-
cient to describe a real multilevel atom, since the F ′ = 3 level
does not couple to the target ground state. Additionally, it is
not addressed by the input pulse, which is frequency-filtered
by the cavity.
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4. On the maximum achievable transfer efficiency

In Fig. 4(b), the maximum achievable transfer efficiency
is limited to slightly above 60%, even for high-input photon
numbers. The transfer efficiency regards transfer only to
|1,−1〉 and neglects the population in the undesired state
|2, 0〉. In Fig. 6 the transfer to |2, 0〉 is shown, as well as
the sum of the transfers to both states. The combined transfer
reaches above 80%, a value which might converge towards
100% for even higher mean photon numbers [52]. However,
simulations for several tens of Fock states and a five-level
atom are computationally challenging. Intuitively, it is clear
that cavity field dampings due to both κloss and κHT can be
compensated by sending larger input fields. But the coher-
ent population leakage in a tripod configuration will always
take place, reducing the efficiency of transfer to the target
state.

5. Numerical tools

Exact analytical solutions to the master equation (B5) are
only possible in special cases. In general, a numerical ap-
proach is the easier choice. We use QUTIP (v4.1), the quantum
toolbox in PYTHON (v3.5) [53,54], to facilitate the process
of setting up state vectors, time-(in)dependent Hamiltonians,
and (super-)operators and to solve Eq. (B5) with the in-built
function mesolve. Based on an ordinary differential equation
solver, it evolves the density matrix and returns a time-binned
array of expectation values for a list of operators. As a result,
for example, the shape of generated photons can be simulated.

In order to fit these shapes and to obtain the system param-
eters, we developed our own optimal control scheme based on

basin hopping. Basin hopping [55] is a stochastic algorithm
which is similar to the well-known simulated annealing (SA)
algorithm. As opposed to gradient-based search algorithms, it
is less liable to end up in a local minimum while determining
the global minimum of a cost function in a large parameter
space.

The algorithm iterates through cycles composed of ran-
dom perturbation of the parameters, local optimization by a
routine to be specified, and acceptance or rejection of the
parameter set P based on the cost function value. We apply the
Nelder-Mead method [56], also known as the downhill simplex
method, for the local optimization. Based on the concept of
simplices, it approximates local optima by evaluating cost
values along the P + 1 points of a volume and introducing
variations such that the cost value decreases. For fitting the
photon shape, we define the cost function Cretrieval as

Cretrieval = nexp(t ) − n0 · n [t, τ�,�(t ),�, gdist] , (B13)

where the average photon number n(t ) given by the simulation
depends on the value of � = �p-a and the driving Rabi
frequency �(t ) and its pulse delay τ�. The experimentally
determined variation in coupling strengths is implemented as
a distribution gdist [as in Fig. 5(a)], over which we average
along with the different initial mF ground states. n is scaled
with n0 in order to reduce the difference of n(t ) and the
measured average detector counts nexp(t ). Once the simulation
finds the parameters to recreate nexp(t ), we can estimate
the efficiency of photon generation by integrating over the
intracavity photon number.
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