@article{2008-sague, Abstract = {In this thesis I present experiments concerning the investigation and manipulation of cold neutral atoms using ultra-thin optical fibres with a diameter smaller than the wavelength of the guided light. In such a fibre-field configuration the guided light exhibits a large evanescent field that penetrates into the free-space surrounding the fibre thus enabling to couple laser cooled atoms to the fibre mode. By trapping and cooling caesium atoms in a magneto-optical trap formed around the fibre I investigated the interaction of the atoms with the evanescent field at sub-micrometre distances from the fibre surface. Chapters 1 and 2 provide the theoretical foundations of this work. Chapter 1 describes the propagation of light in optical fibres. The general solution of the Maxwell’s equations in the fibre that complements the description is provided in Appendix A. In Chapter 2, the theory of the interaction of atoms with time-varying electric fields is described. In Chapter 3 the resonant interaction of laser cooled caesium atoms with the evanescent field of a probe laser launched through a 500-nm diameter fibre is studied. A detailed analysis of the atomic absorption at sub-micrometre distances from the fibre surface is given. I have performed Monte-Carlo simulations of atomic trajectories inside the cold atom cloud surrounding the fibre. From the simulations, the atomic density at the vicinity of the fibre is deduced and the absorbance profiles of the atoms measured during the experiments can be modelled. By carefully investigating the linewidths of these profiles, clear evidence of dipole forces, van der Waals interaction, and a significant enhancement of the spontaneous emission rate of the atoms is found. The atomic spontaneous emission into the guided mode of a 500-nm diameter optical fibre is the focus of Chapter 4. Here, I show that the fibre can be used as an efficient tool to collect and guide the spontaneous emission of the atoms. The dipole force induced by the evanescent field on the atoms is the central idea of the experiments performed in Chapter 5. I have built a new version of the experimental setup that opens the route towards atom trapping in the evanescent field in an array of surface microtraps around the fibre. Such traps are created by the combination of two laser fields with opposite sign of the detuning with respect to the excitation frequency of the atoms. The first experimental results reporting the influence of the two-colour evanescent field on the spectral properties of the atoms are presented.}, Author = {Sagué, G.}, Journal = {}, Pages = {}, Title = {{Cold atom physics using ultra-thin optical fibres}}, Volume = {}, Year = {2008} }