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Zusammenfassung

Gegenstand dieser Arbeit sind zwei Experimente mit heteronuklearen Bose-Bose Gemi-
schen.
Das Ziel des ersten Experiments ist die kontrollierte Dotierung eines Rubidium-Bose-
Einstein-Kondensats mit einzelnen Cäsium-Atomen. Letztere können die Rolle einer
nicht-destruktiven Messsonde übernehmen um quantenmechanische Prozesse zeit- und
ortsaufgelöst zu untersuchen. Im Rahmen dieser Arbeit wird die Erzeugung und Spei-
cherung beider Komponenten, einzelne Atome und Kondensat, sowie deren Detektion
realisiert. In einem ersten Experiment werden bis zu zehn Cäsium-Atome als Messsonde
in Kontakt mit einer kalten Rubidium-Atomwolke gespeichert und aus der Einzelatom-
dynamik werden Wechselwirkungsparameter extrahiert. Damit ist ein wichtiger Schritt
auf dem Weg zur kontrollierten Dotierung eines Kondensats erfolgt.
Das Ziel des zweiten Experiments ist die Erzeugung und Spektroskopie ultrakalter he-
teronuklearer Kalium-Rubidium-Moleküle mit universellen Eigenschaften. Nahe zweier
magnetischer s-Wellen-Feshbach-Resonanzen werden schwachgebundene Kalium-Rubi-
dium-Moleküle in hohen Vibrationszuständen hergestellt und ihre Bindungsenergie sowie
die Position der zugehörigen Feshbachresonanz bestimmt. Zusammen mit zwei schmalen
d-Wellen-Feshbachresonanzen bilden sie die Grundlage für eine präzisere Parametrisie-
rung des Kalium-Rubidium-Molekülpotentials. Dessen genaue Kenntnis dient der Opti-
mierung der Transfermethoden um die Moleküle über kohärente Kopplung in den Rovi-
brationsgrundzustand zu bringen. Diese Moleküle besitzen ein permanentes Dipolmo-
ment, deren anisotrope, langreichweitige Dipol-Dipol-Wechselwirkung z.B. für Anwen-
dungen in der Quanteninformationsverarbeitung von Interesse ist.



Abstract

In this thesis two experiments with heteronuclear Bose-Bose mixtures are discussed.
The goal of the first experiment is a controlled doping of a rubidium condensate with
single caesium atoms. These undertake the task of a non-destructive probe to investi-
gate quantum mechanical phenomena time- and spatially resolved. In this thesis the
necessary methods to produce, store, and detect both components, single atoms and the
condensate, are realized. In a first experiment up to 10 caesium atoms are stored as a
probe in contact with a cold rubidium atomic cloud. The interaction parameters are
extracted from the dynamics of the single atoms. This is an important step towards the
controlled doping of a condensate.
The aim of the second experiment is the production and spectroscopy of ultracold het-
eronuclear potassium-rubidium molecules with universal properties. Close to two mag-
netic s-wave Feshbach resonances weakly bound molecules in high vibrational states are
created, and their binding energy and the position of the associated Feshbach resonance
are determined. These results in combination with two narrow d-wave Feshbach reso-
nances provide the basis for a more precise parametrization of the potassium-rubidium
molecular potential. The knowledge of this is important to identify a proper scheme
to transfer the molecules via coherent coupling into their rovibrational ground state.
These molecules offer a permanent dipole moment and thus are of particular interest for
e.g. quantum information processing due to their anisotropic, long-range dipole-dipole
interaction.
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Introduction

Ultracold atoms provide a framework to investigate a broad spectrum of quantum me-
chanical phenomena, not evident in nature. The invention of laser cooling [1] and evapo-
rative cooling [2] enabled to access a regime where all processes obey the laws of quantum
mechanics, and where the preparation, manipulation as well as read-out of well-defined
quantum states can be realized rather easily. Thus, this regime allows to experimentally
investigate fundamental questions and applications of quantum physics.

The experimental breakthrough has taken place with the first observation of the phase
transition to a Bose-Einstein condensate (BEC) [3, 4]. During the following years, plenty
of experiments all over the world have been set up building on these results. Their focus
is widely spread covering a wide range of applications and research directions.

First experiments investigated the wave nature of particles, the long-range phase coher-
ence and the properties of superfluidity of the novel state of matter by the observation
of interference between two BECs [5] and quantized vortices [6]. Different kinds of ex-
periments have studied single particle effects, e.g. Anderson localization [7, 8], where the
particle wave functions localize in the presence of disordered potentials. Similar exper-
iments exploiting single particle effects have been realized with single neutral trapped
atoms, such as the quantum walk [9].

However, many interesting quantum phenomena in nature rely on the interaction be-
tween particles, e.g., superconductivity [10], formation of dimer [11] and trimer states
[12] and entanglement [13]. Thus, ultracold neutral atoms have become even more impor-
tant by the observation of optical [14] and magnetic Feshbach resonances [15] providing
a tool to tune the interaction strength and its character in a controlled way.

This tunability of the interaction strength allows to enter a new regime of strongly
correlated systems occuring in strongly interacting and strongly confined gases. The
most prominent example is the phase transition of a superfluid to a Mott-insulator
state [16, 17, 18], where the long-range phase coherence of the superfluid is transformed
into particle correlations. The resulting perfectly periodic lattice of matter simulates a
defect-free solid, and thus is ideally suited to analyze fundamental processes in the field
of condensed matter. Strong correlations have also been induced in low dimensional
systems for example by realizing the Tonks-Girardeau gas [19, 20] or the super-Tonks-
Girardeau gas [21]. In these one-dimensional strongly interacting gases of bosons the
two-particle wave function exhibits a node and the bosons mimic some properties of
fermionic systems.
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Introduction

Ultracold gas experiments do not have to be restricted to single species. Extending
the quantum gas experiments to heteronuclear mixtures additional phenomena can be
studied. Despite the Pauli exclusion principle quantum degeneracy of fermions obeying
the Fermi-Dirac statistic can be achieved via sympathetic cooling [22, 23]. Feshbach
resonances can be exploited to tune the interaction strength between the mixture com-
ponents without effecting the interaction within one component. Depending on the
character of the interaction, two different regimes, i.e. the BEC and Bardeen-Cooper-
Schrieffer (BCS) regimes, emerge, connected via a Feshbach resonance. In the first
regime, fermions can form bosonic molecules enabling them to undergo a phase tran-
sition to a molecular condensate [24, 25, 26]. In the BCS regime superfluids of cooper
pairs have been realized [27], showing an energy gap in their excitation spectrum [28].

Bose-bose mixtures are less intensively studied so far. Two of the few experiments
explored the different topologies of heteronuclear condensates in different interaction
regimes ranging from phase separation to quenching or a collapse [29, 30].

In this thesis two different research directions of such bosonic double-species mixtures
are presented. Most of the time during my PhD I spent at the rubidium-caesium (Rb-
Cs) mixture experiment in the group of Prof. D. Meschede in Bonn. In-between I
worked six months at the potassium-rubidium (K-Rb) mixture experiment in the group
of Prof. M. Inguscio in Florence. Both experiments deal with ultracold heteronuclear
mixtures, where the inter-species interaction plays a crucial role. However, the respective
main focus of these experiments is very different.

Rb-Cs mixture

In Bonn we work with a strongly imbalanced mixture of Rb and Cs, motivated by striving
to control and analyze many-body physics on a single particle level. The minority species
can be regarded as an impurity. Two groups have studied imbalanced mixtures in which
the impurity concentration is one order of magnitude below the bulk density. The first
experiment, a fermionic imbalanced spin mixture, has shown a phase transition from
polarons, quasi-particles that form when impurities are dressed with atoms from the
majority, to molecules, as the interaction strength between the spin components increases
[31]. The second group investigated the quantum transport through a Tonks-Girardeau
gas with the impurity atoms as a probe [32]. The impurities are initially localized and
show a non-ballistic motion while propagating through the gas, and density fluctuations
in the Bose gas are observed.

In the extreme case of only one neutral atom immersed in a BEC, the impurity species
performs the task of a probe, which ideally does not disturb the many-body system, but
allows to analyze processes such as decoherence [33] or phase fluctuations of a BEC [34]
with high spatial and temporal resolution.

In addition, the intriguing field of quantum information processing can be explored with
such systems, as neutral atoms are promising candidates for quantum bits (qubits) due
to their relatively long coherence times [35]. Quantum information science requires large
systems, where coherent interactions can entangle particles and external manipulations
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can be performed with single particle and high spatial resolution. In two complementary
approaches so far only one of these requirements could be realized in each case:

In a top-down approach a Mott-insulator provides an array of qubits which can be entan-
gled in a parallel way via controlled cold collisions [13]. However, single-site addressing
and probing pose a challenge. Recently, single-atoms in two-dimensional optical lattices
have been imaged single-site resolved, utilizing fluorescence detection [36] or an electron
beam microscope ionizing the neutral atoms [37].

In the complementary approach, called bottom-up approach, single atoms can be pre-
pared [38], manipulated [39], and detected [40] with large spatial resolution, ideally with
single-site resolution. However, for single atoms the relatively large temperature still
makes the realization of coherent interactions challenging. Entangling of single atoms
has been realized by Rydberg blockades [41, 42], and is predicted to be obtained in high
finesse cavities [43], where the coupling is mediated by photons of the cavity light field,
or by controlled cold collisions analogous to the Mott-insulator case [13].

In our Rb-Cs experiment we will combine the two limits and extremes of single atoms
and the BEC taking the advantage of each system. This is on the one hand the high
control over the preparation, manipulation and detection of single atoms and on the other
hand the intrinsically coherent interaction in BECs. This combined system will offer us
the opportunity to study many new open questions. The numerous proposals made for
problems to be studied in such a system include: Using an atom in a superposition
state, the phase fluctuations of the BEC can be studied time dependently and non-
destructively [34]. Another opportunity is to measure the decoherence of the BEC [33].
Here, a controlled interaction between the two species will allow us to entangle an atom
in a superposition state with the BEC, while the decoherence is imprinted on the phase
between the two qubit states.

Besides probing the BEC, the quantum gas can act as a bath coherently cooling the
single atom, where the cooling mechanism relies on Bogoliubov excitations. This cool-
ing scheme is proposed to reduce the temperature of the single atom without destroying
its internal state, even a possibly present entanglement between different single atoms
remains undisturbed [44, 45]. Furthermore, the coherent interaction of BECs can be
exploited to transfer quantum information between two spatially separated atoms me-
diated by phonons due to Bogoliubov excitations in the BEC [46].

By continuously increasing the number of impurity atoms, their effect on the many-body
system becomes more and more prominent. This will allow us to investigate a transition
from the few-body to the many-body system, where the two species collectively interact.

In this thesis I present the experimental realization of the two components, single Cs
atoms and a Rb BEC, and their probing. We show, in a first experiment, one single
atom being applicable to probe a many-body system without disturbing it. Hereby, the
inelastic cold collision rate between Rb and Cs is determined by analyzing the trapped
single atoms dynamics. This way, our system provides an ideal starting point for the
controlled doping of a Rb BEC with a single Cs atom.
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K-Rb mixture

In Florence, we are aiming to produce deeply bound heteronuclear molecules in the
rovibrational ground state from a balanced bosonic K-Rb mixture. These molecules
are of broad interest, as they offer a significant permanent dipole moment due to their
difference in mass. Their long-range, anisotropic dipole-dipole interaction can be of the
same order of magnitude of or even exceed the contact potential interaction dominant
in highly excited states. This provides a starting point for producing dipolar conden-
sates [47], up to now only realized with atomic Cr [48], and for searching for predicted
new quantum phase transitions [49, 50]. Furthermore, dipolar samples may assist in the
search of fundamental constants, e.g. a permanent electric dipole moment of the electron
[51, 52]. Moreover, ultracold molecules open up the possibility of high precision molec-
ular spectroscopy, linking molecular physics to the field of ultracold chemistry. Trapped
in an optical lattice, these molecules in their rovibrational ground state can provide an
array of qubits. The long-range interaction of these dipolar ensemble can be used for
applications in quantum information science [53].

In comparison to atoms, diatomic molecules additionally have one translational and three
rotational degrees of freedom resulting in complex molecular spectra. Thus, the well-
known cooling techniques investigated in atomic physics cannot be efficiently applied
in molecular gases. Associating molecules directly from ultracold atoms overcomes this
challenge. By using different methods, such as photoassociation [11] and magnetoassoci-
ation [54, 55, 56] ultracold molecules have been created. Different technical approaches
to associate weakly bound molecules include crossing a Feshbach resonance from the
attractive to the repulsive interaction side, applying a radio frequency [57, 58], and mod-
ulating the homogeneous magnetic field [59] close to the Feshbach resonance. By means
of these methods, ultracold weakly bound homonuclear molecules [60, 61, 62, 63], as well
as fermionic heteronuclear molecules [64, 65, 58], and bosonic heteronuclear molecules
composed of two isotopes [66], have been generated. Applying stimulated Raman adi-
abatic passages the weakly bound molecules can be transferred into the rovibrational
ground state [67, 68].

In this thesis I present the association of KRb molecules, using the technique of mod-
ulating the magnetic field close to two different s-wave Feshbach resonances. These
ultracold weakly bound molecules are the first step to produce molecules in the rovi-
brational ground state. The determination of their binding energy allows to precisely
extrapolate the position of the two s-wave Feshbach resonances used. In addition, we
have performed Feshbach spectroscopy on two d-wave resonances. The combination of
these measurements allows to optimize the models of the KRb molecular potentials,
the knowledge of which is essential in order to identify a proper scheme to transfer the
molecules into the rovibrational ground state.
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1 Ultracold quantum gases

Already in 1925 S. Bose and A. Einstein predicted the phase transition of a thermal
gas to a Bose-Einstein condensate (BEC) [69]. Seventy years later the first BEC was
achieved experimentally with the alkali atoms rubidium and sodium [3, 4]. A BEC de-
scribes a state of matter in which the ground state for a system of indistinguishable
bosonic particles is macroscopically populated below a critical temperature. This quan-
tum mechanical phenomenon is based on the wave-like nature of atoms, in contrast to
classical systems where atoms are treated as point-like particles. According to Louis de
Broglie each particle with mass m can be represented as a wave packet characterized by
the so-called de-Broglie wavelength

λdB =
h√

2 π m kBT
. (1.1)

The wave-like nature becomes more and more prominent when the temperature T de-
creases. The phase transition to the BEC starts, when the de-Broglie wavelength be-
comes as large as the inter-particle distance.

1.1 BEC in ideal gases

Originally, the occurence of a phase transition to a BEC has been predicted for an ideal
gas of bosons. Here, ideal denotes the case of non-interacting particles. Bosons are
particles with an integer total spin, characterized by a symmetric wave function under
permutation of two identical particles. They obey the Bose-Einstein statistics, thus for
non-interacting bosons the population distribution for the n-th energy eigenstate with
energy En is given by the Bose-Einstein distribution

f(En) =
1

e(En−µ)/kB T − 1
. (1.2)

The chemical potential µ tends to the ground state energy E0, when the temperature
decreases. Hence, the occupation of the lower energetic states increases for a decreas-
ing temperature. For ultracold bosonic gases stored in a harmonic trap with trapping
frequencies ωi along the i-axis the density of states is given by [70]

g(E) =
E2

2 ~3 ωx ωy ωz

, (1.3)
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1 Ultracold quantum gases

where

V (~r) =
1

2
m (ω2

x x2 + ω2
y y2 + ω2

z z2) (1.4)

is the harmonic oscillator potential. Hence, the atom number of the excited energy states
can be calculated to be

Nex =

∫ ∞

E0

g(E) f(E) dE. (1.5)

Equation (1.5) is only valid for an average energy much larger than the energy difference
of two neighbouring energy states. Lowering the temperature for a fixed total num-
ber of atoms the chemical potential approaches the ground state energy. At a critical
temperature Tc corresponding to the limit µ = E0, the number of atoms in the excited
state significantly decreases below the total atom number Ntot leading to a macroscopic
population of the ground state which is given by

N0 = Ntot −Nex. (1.6)

Thus, for a bosonic gas stored in a harmonic trap with a mean trapping frequency of
ω = (ωx ωy ωz)

1/3 the critical temperature at which the phase transition occurs can be
written as [70]

kB Tc = hω

(
Ntot

ζ(3)

)1/3

≈ 0.94 ~ ω N
1/3
tot , (1.7)

where ζ(α) =
∑∞

n=1 n−α is the Riemann zeta function. In the case of a uniform gas
inside a box of volume V with a density of n = N/V the critical temperature is obtained
to be

kB Tc =
2π~2

m

(
n

ζ(3/2)

)2/3

≈ 3.31
~2 n2/3

m
. (1.8)

The latter equation can be rewritten in the commonly used form

n λ3
dB = ζ(3/2) ≈ 2.612, (1.9)

where the left side of equation (1.9) is denoted as the phase space density. It determines
the number of atoms located in a volume with an edge length given by the de-Broglie
wavelength. Regarding this condition in the wave picture, the criterion for the phase
transition (1.9) corresponds to an overlap of wavepackets with an extent of λdB. For
harmonic traps the uniform density n has to be replaced by the peak density of the
trap centre [71]. The number of atoms within the condensate varies for a given total
number of atoms with the temperature of the atomic cloud. The condensed fraction for
an atomic cloud stored in a harmonic trap is given by

N0

Ntot

= 1−
(

T

Tc

)3

. (1.10)
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1.2 BEC in weakly interacting gases

This relation is only valid for temperatures below the critical temperature.

In addition to the temperature of the cloud, the atomic density distribution is another
experimental observable which characterizes the atomic gases. In the case of a pure
condensate all atoms populate the ground state. Thus, the density distribution nideal(~r)
of a non-interacting condensate is given by the ground state wave function φ0 yielding
a Gaussian shape

nideal(~r) = N0 |φ0(~r)|2 (1.11)

=
N0

π3/2
∏

i Ri

e
−

∑
i

i2

R2
i . (1.12)

The magnetic trap used in Bonn for condensation of 87Rb is characterized by the trapping
frequencies ωx = ωz = 2π · 190Hz and ωy = 2π · 18Hz. A typical total atom number
after evaporative cooling is about 4 · 105 atoms yielding with equation (1.7) a critical
temperature of Tc ≈ 270 nK.

1.2 BEC in weakly interacting gases

In real atomic systems the interaction between atoms cannot be neglected anymore. The
interaction in ultracold gases can be described by a single parameter denoted as the s-
wave scattering length a. This parameter is introduced in more detail in chapter 2.1. In
typical ultracold atom experiments the mean distance n1/3 between two particles is much
larger than the interaction length. Atomic samples fulfilling the condition n |a|3 � 1 are
called dilute gases. The interaction of an atom belonging to such a trapped ensemble
can therefore be regarded as a two-body process, as processes involving more than two
atoms are unlikely due to the diluteness of the gas. Moreover, the details of the molecular
potential of the interacting particles are not crucial. Thus the interaction potential can
be treated as a pseudo-potential described by a delta function

Vint(~r) = g δ(~r − ~r0). (1.13)

The coupling constant

g =
4π ~2 a

m
(1.14)

characterized by the scattering length considers an effective interaction between one
atom and the residual atoms of the sample. Based on this mean field approach explored
by N.N. Bogoliubov in 1947 [72], E.P. Gross and L.P. Pitaevskii set up the non-linear
Schrödinger equation for a condensate in an external potential V (~r) considering only an
effective interaction

i ~
∂φ(~r, t)

∂t
=

(
−~2∇2

2 m
+ V (~r) + g |φ(~r, t)|2

)
φ(~r, t). (1.15)
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1 Ultracold quantum gases
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Figure 1.1: Density distribution of a BEC in a harmonic trap. The black line
indicates the Gaussian density distribution of a non-interacting BEC, whereas the red
line shows the typical parabola of the density distribution for a weakly interacting
BEC in the Thomas-Fermi approximation. Both distributions are plotted for our
trapping parameters and the Rb triplet s-wave scattering length a = 99 a0, assuming
4 · 105 Rb atoms in the ground state. Note the different scales.

Setting the condensate wave function as φ(~r, t) = φ(~r) e−µ t equation (1.15) yields the
time-independent Gross-Pitaevskii equation [73, 74, 75](

−~2∇2

2 m
+ V (~r) + g |φ(~r)|2

)
φ(~r) = µ φ(~r). (1.16)

The last term of equation (1.16) is also called mean field energy. The effect of the
interaction potential considered in the Gross-Piteavskii equation depends not only on
the strength of the interaction but also on the sign of the scattering length a. For
attractive interaction between the atoms (a <0) the density of the BEC increases and
three-body recombination becomes dominant due to its cubic dependence on the density.
This causes a collaps of the condensate if no counteracting force hinders the increase of
the density. BECs with attractive interaction can only exist in inhomogeneous systems
with a quantum pressure counteracting the attraction. This was already experimentally
investigated for 85Rb by Roberts et al. [29]. Repulsive interaction (a >0) decreases the
density in comparison with the ideal gas.

The density distribution of an interacting BEC can be written in the Thomas-Fermi
approximation

nTF(~r) =
µ

g

(
1−

3∑
i=1

r2
i

R2
i

)
(1.17)
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1.2 BEC in weakly interacting gases

yielding a parabolic shape. The spatial extent Ri = 2 µ/m ω2
i is called Thomas-Fermi

radius along the i-th direction. Equation (1.17) is only valid within the range of the
Thomas-Fermi radii. The explicit form of the chemical potential for a harmonic oscillator
potential can be determined by considering the normalization condition of the condensate
wave function and is obtained to be

µ =

(
15 N a

aho

)2/5 ~ ω

2
. (1.18)

Here, aho =
√

~/m ω denotes the mean oscillator length. Figure 1.1 shows a cut of the
condensate density distribution along the x-axis for an ideal and weakly interacting Rb
gas, respectively.

9
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2 Few-body interactions

For the investigation of few-body interactions it is essential to consider the tempera-
ture and density of the sample studied. In typical ultracold mixture experiments the
temperatures of the atomic clouds are in the range of 10 nK to 10 µK and their typical
mean densities n̄ are on the order of 1010 − 1015 cm−3. The interaction between the
atoms for such low temperatures can be described by a single parameter, the scattering
length a. This parameter strongly depends on the details of the short range molecular
potential. For alkali atoms such as rubidium (Rb), caesium (Cs), and potassium (K) the
intra-species scattering length is of the order of 100 a0. Therefore, the mean inter-atomic
distance n̄1/3 exceeds the interaction length given by a. Despite their low temperatures,
the atomic clouds are therefore dilute as n̄ a3 � 1. Hence, the dynamics of these samples
can be described by reducing the complex scattering theory to two-body interactions.
Three-body interactions are unlikely and play only a minor role.

2.1 Elastic scattering in the limit of low energies

This two-body process can be reduced to a one-body process by describing the system
in the centre-of-mass frame, where mred = (m1 m2)/(m1 + m2) is the reduced mass of
the two colliding particles. The stationary Schrödinger equation is then given by(

− ~2

2 mred

∇2 + V (~r)

)
Ψ(~r) = E Ψ(~r), (2.1)

where a system of two distinguishable particles is considered. The incoming wave can
be treated as a plane wave with wave vector ~k. For a short range potential V (~r) and
large distances the outgoing wave can be described by a superposition of a non-scattered
part, a plane wave, and the scattered part

lim
r→∞

Ψ(~r) ∼ ei~k·~r + f(k, Θ)
ei k r

r
. (2.2)

The scattering amplitude f(k, Θ) depends on the energy via the wave number k and
the angle Θ between the axis of detection and the incoming plane wave. In the experi-
ment the differential and total cross-sections dσ/dΩ and σ, respectively, are important
observables, both of them given by the scattering amplitude

dσ

dΩ
= |f(k, Θ)|2 (2.3)

σ =

∫
Ω

|f(k, Θ)|2 dΩ. (2.4)

11



2 Few-body interactions

Partial wave expansion

Usually, equation (2.1) cannot be solved analytically. As we will see, in the low energy
limit, only collisions of atom pairs with low angular momentum play a significant role.
Considering a spherical potential V (r), the total angular momentum has to be conserved
during a collision. The solution of the stationary Schrödinger equation may be expanded
in terms of spherical harmonics. As the scattering process is independent of the azimuth
angle, equation (2.1) can be reduced to a one-dimensional problem(

− ~2

2 mred

d2

d r2
+ Veff(r)

)
ul(r) = E ul(r), (2.5)

with the solution

Ψ(~r) =
∞∑
l=0

Pl(cos Θ)
ul(r)

r
. (2.6)

Here, Pl(cos Θ) are Legendre polynomials and ul(r) are the partial radial wavefunctions
for the angular momentum l. The effective potential

Veff(r) = V (r) +
l(l + 1)

2 mred r2
(2.7)

consists of the spherical potential V (r) and the centrifugal potential depending on the
angular momentum. For l=0 (s-wave scattering) the effective potential is given by the
spherical potential V (r) only. For higher order angular momenta an additional centrifu-
gal barrier is added to the potential. This barrier cannot be passed for low scattering
energies, which means the interaction region of small internuclear distance cannot be
reached. In ultracold atomic ensembles (T . 50 µK) as used in our experiments, only
the s-wave scattering is relevant. For distances larger than the range of the potential,
equation (2.6) can be written in the asymptotic form

lim
r→∞

Ψ(~r) =
1

k

∞∑
l=0

Pl(cos Θ) Al

(
(−1)l+1 e−i k r

r
+ e2 i δl(k) ei k r

r

)
. (2.8)

Notation (2.2) can be obtained by expanding the plane wave of the spherical harmonics.
This yields

lim
r→∞

Ψ(~r) =
1

2 i k

∞∑
l=0

(2 l + 1) Pl(cos Θ)

(
(−1)l+1 e−i k r

r
+

ei k r

r

)
+f(k, Θ)

ei k r

r
.

(2.9)

Comparing equation (2.8) with (2.9) gives the explicit form for the scattering amplitude

f(k, Θ) =
1

2 i k

∞∑
l=0

(2 l + 1) Pl(cos Θ)
(
e2 i δl(k) − 1

)
. (2.10)
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2.1 Elastic scattering in the limit of low energies

For elastic scattering the number of particles must be conserved. As at the same time the
angular momentum is conserved, the particle conservation must be satisfied separately
for each partial wave. Thus, only a phase shift may occur, whereas the modulus of
the amplitude remains constant. Both conditions are fulfilled in the above equation
with amplitudes Al by introducing a phase shift 2 δl(k) between the incoming and the
outgoing wave function. The resulting total cross-section is

σtot(k) =
∞∑
l=0

σl(k) (2.11)

=
∞∑
l=0

4 π

k2
(2 l + 1) sin2 δl(k). (2.12)

The maximum contribution to the total cross-section by each partial wave is given by

σtot,l(k) =
4 π

k2
(2 l + 1), (2.13)

which is called the unitarity limit.

Identical particles

In the case of identical particles the total cross section is by a factor of two larger than
in the case of distinguishable particles. An exchange of the two particles must yield
both a symmetric wave function and a symmetric scattering amplitude for bosons and
antisymmetric ones for fermions

d σ(k)

dω
= |f(k, Θ)± f(k, π −Θ)|2. (2.14)

Legendre polynomials fulfil Pl(cos Θ) = (−1)l Pl(cos π − Θ). Hence, only partial waves
with even angular momentum contribute to the bosonic cross-section and the partial
waves with odd l to the fermionic one

σtot(k) =
8 π

k2

∑
l even

(2 l + 1) sin2 δl(k) for bosons, (2.15)

σtot(k) =
8 π

k2

∑
l odd

(2 l + 1) sin2 δl(k) for fermions. (2.16)

In the limit of low energies where only the s-wave, i.e. the wave corresponding to an
angular momentum of l=0, has to be taken into account, the total cross-section is given
by

σ0(k) =
8 π

k2
sin2 δ0(k). (2.17)

In the limit of vanishing k the scattering phase δ0 vanishes, because δ0 ∝ k, yielding

σ0 = 8 π a2. (2.18)
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2 Few-body interactions

(a) The scattering length as a function of the potential depth
V0 of a potential well is plotted. The singularities of the scat-
tering length coincide with the appearance of a new bound
state.
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(b) A potential well with a range r0 sup-
porting four bound states is shown. The
red lines indicate bound states.

Figure 2.1: Evolution of the s-wave scattering length for finite potential wells.

Here, the s-wave scattering length a is defined as

a = − lim
k→0

tan δ0(k)

k
. (2.19)

For a finite but small collision energy the total cross-section is given by

σ0(k) ' 8πa2

(1− 1
2
k2 reff a)2 + k2 a2

, (2.20)

where reff denotes the effective range of the given potential.

The s-wave scattering length

Collisions in the s-wave regime can be described and characterized by a single param-
eter, the scattering length a, without the knowledge about the short-range interaction
potential. However, the absolute value and sign, determining the strength and character
of the interaction, depend strongly on the short-range potential. The asymptotic wave
function in presence of a potential V (r) is shifted by the amount of the scattering length
a along the radial axis with respect to the incoming wave. Sign and depth of the poten-
tial determine the absolute value of a. The scattering length belonging to a potential
barrier, which is a repulsive potential, is always positive corresponding to a repulsive
interaction. In the case of a potential well the situation is much more complicated. A
potential with a small depth not supporting a bound state yields a negative scatter-
ing length and thus an attractive interaction. If the potential depth increases until the
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2.2 Molecular potentials of alkali atoms

Rb [76] Cs [77] K [78] Rb-Cs [79] K-Rb [80]

at (a0) 99.0 2400 60.54 ≥ 150 -213.6

as (a0) 90.4 280 85.53 unknown -109.6

Table 2.1: Intra- and interspecies singlet- and triplet scattering lengths for the
isotopes 87Rb, 133Cs and 41K and the mixtures 87Rb-133Cs and 41K-87Rb.

first bound state coincides with the dissociation energy, the scattering length diverges.
Further increase of the potential depth leads to a positive scattering length resulting
in an effective repulsive interaction, although the potential is attractive. This trend is
repeated periodically for each additional bound state supported by the potential. The
scattering length in the special case of a potential well with a finite potential depth V0

is plotted in figure 2.1(a). Each singularity corresponds to the appearance of a new
bound state in figure 2.1(b). This behaviour of the scattering length is analogous to the
Feshbach resonance phenomenon described in section 2.3. The intra- and inter-species
scattering lengths of the magnetic field free triplet (at) and singlet potential (as) for
the bosonic species 87Rb, 133Cs and 41K and the mixtures1 87Rb-133Cs and 41K-87Rb are
listed in table 2.1.

2.2 Molecular potentials of alkali atoms

The complexity of the molecular interaction potentials does not allow ab initio predic-
tions on the s-wave scattering length. Alkali atoms such as Rb, Cs and K, which are used
in our two experiments, own only one valence electron. But even for this comparatively
simple system of alkalis the accurate determination of the corresponding molecular po-
tentials requires experimental data, e.g. the observation of Feshbach resonances, as an
input for theoretical models. In this section the contributions to this molecular potential
are discussed considering internal degrees of freedom.

Hyperfine interaction

All alkali atoms in the electronic ground state have one valence electron with spin ~s and
its projection s = 1/2. The nuclear spin~i depends on the atomic species. For the species
used within this thesis the projections of the nuclear spins are i = 3/2 for the ground
state 5 S1/2 of 87Rb, i = 3/2 for the 4 S1/2-state of 41K and i = 7/2 for the 6 S1/2-state
of 133Cs. In the absence of any external field, the hyperfine interaction occurring due
to the induced magnetic field from the valence electron at the position of the nucleus,
couples the electron and nuclear spin to the total spin ~f = ~s +~i for each single atom

1In this thesis the following notation is used: Atomic mixtures and heteronuclear molecules are denoted
with A-B and AB, respectively, where A and B are the participating atoms.
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2 Few-body interactions

in the ground state. In the case of alkalis the projected quantum number f is given
by f = i ± 1/2. This coupling is the origin of the hyperfine splitting. For the ground
states of the abovementioned species the hyperfine splittings ∆Ehf are h·6.8GHz for
87Rb, h·9.6GHz for 133Cs and h·254MHz for 41K. The hyperfine structures of the D2
line for the isotopes 87Rb, 133Cs and 41K are shown in Appendix A.

Zeeman interaction

By applying an external magnetic field, the hyperfine states are further split into mag-
netic substates mf , as the magnetic moment µ of the atom induced by the nuclear and
electron spins interacts with the magnetic field. Depending on the strength of the mag-
netic field, different coupling regimes have to be distinguished. In the limit of small
magnetic fields (mf -splitting � hyperfine splitting) the total spin ~f = ~s +~i interacts
with the magnetic field and the interaction potential is given by

VZ = −~µ · ~B (2.21)

= gf mf µB | ~B|. (2.22)

This anomalous Zeeman effect generates a mf state depending energy shift and removes
the degeneracy of the mf states. Regarding the species used in our experiments, equation
(2.21) is valid for magnetic fields of B � 2400G for Rb, B � 90G for K and B � 3300G
for Cs. For large magnetic fields which induce a Zeeman splitting of the order of the
hyperfine splitting, the separate interaction of the electron and nuclear spin with the
magnetic field dominates the hyperfine splitting. That means f is not a good quantum
number anymore. The energy shift in this region is described by the Paschen-Back effect.
The region in-between is more complicated. For alkalis the Zeeman shift of the magnetic
substates is well described by the Breit-Rabi formula2 [81]

E =
∆Ehf

2 (2 i + 1)
± ∆Ehf

2

√
1 +

4 (m i ± 1/2) x

2 i + 1
+ x2, (2.23)

with x = gJ µB B/∆Ehf. For typical magnetic fields used in our experiments equation
(2.21) is valid for Rb and Cs. However, for K at a field of 100G, the deviation is already
30%, hence the Breit-Rabi formula has to be applied. The Zeeman energy shifts of the
magnetic substates are mf ·0.7MHz/G for 87Rb and 41K and mf ·0.35MHz/G for 133Cs.

Molecular potential

So far only interactions of the internal degrees of freedom within one atom with external
fields have been considered. For the interaction of two colliding atoms their molecular
potential has to be examined. A typical molecular potential as a function of the distance

2Within this section i denotes the projection of the nuclear spin.
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2.2 Molecular potentials of alkali atoms
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Figure 2.2: Qualitative form of a typical molecular potential for the triplet state
a3Σ+

u (red solid line) and the singlet state X1Σ+
g (black solid line): The horizontal

dashed line indicates the dissociation threshold. The vertical dashed lines divide the
molecular potential into parts of different dominating interaction processes.

between two colliding atoms is qualitatively shown in figure 2.2. For different distances,
different interaction mechanisms dominate in the potential

V = VHF + VZ + VC + VSS + VSO. (2.24)

Equation (2.24) is valid within the Born-Oppenheim approximation, in which the density
distribution of the electron cloud is assumed to be given by the internuclear distance,
as the light electrons instantaneously follow the motion of the heavy nucleus. The first
two contributions, the hyperfine (VHF) and Zeeman (VZ) potentials, have already been
discussed above.

Coulomb and spin exchange interaction

The third term, the Coulomb interaction VC, dominates the typical shape of the molecu-
lar potential. In the limit of a vanishing atomic separation the Coulomb repulsion of the
nuclei is responsible for the steep slope of the repulsive potential. If nuclear distances of
the colliding atoms are larger than their mean atomic diameter, quantum fluctuations
of the charge distribution yield the dispersive multipole interaction

Vdisp = −C6

r6
− C8

r8
− C10

r10
. (2.25)

It is dominated by the van-der-Waals interaction −C6/r
6 where the van-der-Waals coef-

ficient depends on the particular atomic species. For K-Rb the van-der-Waals coefficient
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2 Few-body interactions

C6 has been determined to be 4238 Eh a0 [80]. The range of the van-der-Waals interac-
tion is described by the van-der-Waals length lvdW = 0.5 (m C6/~2)1/4, where m denotes
the atomic mass. In between these two regimes the two electron spins couple to the total
spin ~S = ~s1 +~s2 due to the overlapping electron clouds3. The spin-exchange interaction
underlies this spin coupling and leads to a potential which scales as

Vex ∝ e
− r

r0 . (2.26)

This spin coupling splits the molecular potential into a singlet (S = 0) and triplet
(S = 1) potential denoted by a3Σ+

u and X1Σ+
g . The singlet potential is always deeper

than the triplet. For small particle separation the total spins S and I are good quantum
numbers, however, for large distances the interaction strength within the atom exceeds
the inter-atomic interaction. Hence, for a large separation f1 and f2 are good quantum
numbers.

Dipolar Relaxation: Magnetic dipole and second-order spin-orbit
interaction

The interaction between the magnetic moments of the electrons ~µ1 ∝ ~s1 and ~µ2 ∝ ~s2

causes the spin-spin interaction Vss

Vss ∝ ~s1 · ~s2 − 3 (~s1 · ~e12) (~s2 · ~e12)

r3
. (2.27)

This long-range dipole-dipole interaction, which is proportional to 1/r3, is not spherical
symmetric, hence the orbital angular momentum is not conserved anymore. Spin changes
are allowed, where the selection rules for these dipolar collisions are ∆l = 0,±2 and
∆ml + ∆mF = 0. This corresponds to a redistribution of angular momentum. Also the
latter contribution to equation (2.24) allows the exchange of spin and orbital angular
momentum. The short range second order spin-orbit-potential VSO arises when the
electron clouds of the colliding atoms overlap [82]. The coupling of the ground state spins
is induced via excited electronic states. The signs of the two potential contributions VSS

and VSO are opposite. Their range differs strongly, but their selection rules are identical
due to the same tensor structure.

Three-body recombination

In two-body collisions the formation of a molecule is forbidden due to momentum and
energy conservation. A third atom is necessary to simultaneously fulfil both conditions.
The released binding energy is shared between the molecule and the atom according
to the mass ratio. The three-body recombination rate depends strongly on the s-wave

3Throughout this thesis properties of single atoms are denoted by lower case letters, whereas the
properties of two coupled atoms are specified by capital letters.
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2.3 Feshbach resonances and molecules

scattering length and is predicted to scale with a4 [83] in the limit of large a and ultralow
collision energies

K3 =
3 C ~ a4

m
, (2.28)

which was verified by several experimental observations [84, 85]. The dimensionless
factor C is predicted to be between 0 and 70 [83, 86, 87]. As three-body recombination
is the dominating process of atom loss in the vicinity of a Feshbach resonance, it is
treated in more detail in section 2.3.5, when loss mechanisms are discussed.

2.3 Feshbach resonances and molecules

Considering two molecular potentials belonging to two different internal states of col-
liding atoms, a so called Feshbach resonance [88] can occur, if a non vanishing coupling
between the different states exist. These resonances appear if the energy of a molecular
bound state of the higher energetic molecular potential (closed state in figure 2.3) co-
incides with the energy of two colliding atoms in a scattering state which is, in figure
2.3, denoted as the entrance channel. At the position of the Feshbach resonance the
s-wave scattering length diverges. Magnetic Feshbach resonances are of broad interest
in physics of ultracold gases: The scattering length can be tuned in a controlled way
over several orders of magnitude and even a change of the sign of the scattering length
is possible by applying an external homogeneous magnetic field. They are not only
used to tune the interaction between atoms of a single species or a mixture, but also
as a tool for the association of weakly bound molecules as a first step towards deeply
bound molecules in the rovibrational ground state, e.g. to create a molecular BEC. In
addition, Feshbach resonances give an important input in order to improve the detailed
description of molecular potentials. The theoretical model for a molecular potential is
based on adjusting the coefficients of all terms contributing to the potential, so that the
data, taken by photoassociation [89, 90] or Feshbach spectroscopy, are reproduced as
well as possible. Another application is the probing of Efimov resonances which are also
of broad interest for nuclear physicists [91]. These resonances thus offer a broad range
of new research directions.

2.3.1 Feshbach resonance

The Feshbach resonance phenomenon is explained by means of figure 2.3 showing two
molecular potentials corresponding to two different spin configurations of the colliding
atom pair. The energetically lower molecular potential is called entrance channel, as
we assume two asymptotically free atoms above the dissociation energy of this state
to scatter. Within this chapter the nomenclature of this kind of systems is as follows:
Molecular potentials, for which the dissociation energy is above the total energy of the
system of the scattering atoms are called ”closed channels”. A molecular potential with
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r

V r( )

closed channel

entrance channel

Eb

Figure 2.3: Schematic of the Feshbach resonance showing two molecular potentials
corresponding to different internal states of two colliding atoms. The red solid line
indicates the entrance channel. The black solid line shows the closed channel with
one bound state below the dissociation threshold of the entrance channel (dashed
horizontal line). The binding energy is denoted by Eb.

a dissociation threshold below the total energy is denoted as an ”open channel” including
the entrance channel.

To make it simple, we consider now a system composed of the entrance channel and only
one closed channel. Assuming that the closed channel contains a bound state close to the
dissociation threshold of the entrance channel and the coupling between the bound state
and the scattering state does not vanish, the bound state can be occupied temporarily by
the scattering atoms. This molecular state is not stable, as a coupling to the scattering
state exists. Hence, this kind of metastable molecular state is called a quasi-bound state.
If the energy of the free atoms coincides with the energy of this quasi-bound state, the
occupation of this state is resonantly enhanced. The s-wave scattering length diverges.
As in the well known case of an infinitely deep potential well, the sign of the scattering
length depends on the position of the bound state with respect to the scattering state.
For bound states above the scattering state the scattering length is negative and the
energy of the bound state lies within the scattering continuum of the entrance channel.
In the other case, when the molecular state is below the scattering state, the scattering
length is positive.

Experimentally this behaviour is of interest if the scattering length can be adjusted
controlledly by shifting the energies of the bound and the scattering state with respect to
each other. Considering internal degrees of freedom as the spin configuration of atomic
systems, the two molecular potentials belong to different spin systems. This results,
in general, in different magnetic moments for the different potentials. By applying an
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Figure 2.4: Two theoretically predicted s-wave Feshbach resonances of K-Rb in the
absolute ground states at a magnetic field of 39 G and 79 G [92].

external homogeneous magnetic field the energy may be shifted due to the Zeeman effect.
If the magnetic moments of the scattering and the molecular potentials differ because of
their different spin configuration, the energy difference between the scattering and the
bound state can be changed and thus the scattering length can be tuned continuously
from minus to plus infinity. In the vicinity of a Feshbach resonance the scattering length
a behaves as [93]

a = abg

(
1− ∆B

B −B0

)
. (2.29)

The width of the resonance ∆B is determined by the distance of the zero crossing
of the scattering length to the resonance position B0. It is inversely proportional to
the magnetic moments and proportional to the squared matrix element describing the
coupling strength of both states. The background scattering length abg is given by the
scattering length far off resonance. For the system 41K −87 Rb, both species in the
absolute ground state |1, 1〉, two s-wave Feshbach resonances occur below 100G, shown
in figure (2.4). The corresponding background scattering length is abg = 284 a0, where
a0 is the Bohr radius [92].

2.3.2 Classification and selection rules

The participating channels can be classified using different denotations. The entrance
channel is described by the quantum numbers |f1, mf1 , f2, mf2 , l, ml〉 of asymptotically
free atoms with a rotational quantum momentum l within a small magnetic field, in
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which fi is a good quantum number. As we are regarding heteronuclear Feshbach reso-
nances, no restrictions on the orbital quantum number l due to a (anti-) symmetry of the
wave functions have to be considered. In general the situation changes for a molecular
state as the short range potential becomes significant here. Therefore, the separated
spin quantum numbers S and I are good quantum numbers. As discussed in more detail
later on, Feshbach molecules are extremely weakly bound as Halo dimers. Hence, their
huge spatial extent allows to characterize the molecular channel as well as the entrance
channel with the separated quantum numbers of asymptotically free atoms according to
the molecular potential. The spins ~fi of the separated atoms couple to ~F . The molecu-
lar state can hence be described by the projected quantum numbers |F, mF , l, ml〉. The
coupling between the entrance and the closed channel occurs mainly due to the spin
exchange interaction, the relativistic magnetic dipole interaction, and the spin-orbit in-
teraction. The specified coupling mechanisms yield different selection rules. In the case
of spin exchange collisions no coupling between different partial waves occurs. Hence,
the angular momentum l and its projection ml, as well as the projection of the total
angular momentum, are conserved. Therefore, the rotational quantum number must
not change via the coupling of the entrance and the closed channel. Thus, for ultracold
atomic ensembles the rotational quantum number of the bound state has to be l=0.
These Feshbach resonances are called s-wave resonances. This coupling mechanism is
usually the origin of broad resonances. The much weaker spin-orbit and magnetic dipole
interactions cause the more narrow resonances. Here, a redistribution of the angular
momenta can take place, hence l is not conserved and the selection rules are given by
∆l = 0,±2 and ∆ml + ∆mF = 0. The two Feshbach resonances of the bosonic K-Rb
mixture shown in figure 2.4 are characterized as s-wave Feshbach resonances, where the
bound states are attributed to states with the quantum numbers |2, 2, 0, 0〉 and |3, 2, 0, 0〉,
respectively.

2.3.3 Universality

A remarkable property of Feshbach molecules is their universal behaviour. Universal
means in this context, that their properties only depend on the s-wave scattering length
and are independent of the details of their microscopic molecular potential [94]. How-
ever, the scattering length itself depends strongly on the short range potential. The
highly excited and weakly bound molecular states close to the dissociation threshold of
the entrance channel are characterized by a large spatial extent exceeding the classical
turning point rclass. The latter one can be deduced by the van-der-Waals interaction
(∝ C6/r

6) to be rclass = (a (2 lvdW)2)1/3. The scattering length in this regime is much
larger than the van der Waals length lvdW, which is 72 a0 for the K-Rb molecular poten-
tial. Therefore, the interaction is dominated by the s-wave scattering length in the case
of ultracold ensembles. The universal binding energy of the weakly bound molecules is
given by

Eb = − ~2

m a2
. (2.30)
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2.3 Feshbach resonances and molecules

The wave function of the bound state within the universal regime can be described as a
spherical wave

φ(r) =
1√
2 π a

e−r/a

r
(2.31)

only depending on the scattering length irrespective of the details of the short range
potential. Hence, the mean distance of the atoms forming the molecule is a/2. Feshbach
molecules are a special case of Halo dimers. The particular properties of these weakly
bound molecules are also valid for other diatomic Halo systems, such as the He-dimer
or the deuteron.

2.3.4 Theoretical approaches

To predict the resonance position theoretically, the details of the molecular potentials,
in particular the Born-Oppenheimer potentials as well as the van-der-Waals coefficient
of the participating atomic species, have to be precisely known. For an exact quantum
mechanical description of the Feshbach phenomena all closed and open channels and
their coupling among each other have to be included in the calculations. All theoretical
calculations are based on experimental data. References [93, 95] showed that a simplified
coupled channel approach considering two channels only, i.e. the entrance channel and
one closed channel, describes most of the measured data quite well. Due to the usually
strong coupling between the scattering state and the near threshold molecular state,
a further simplification is possible in which only one molecular state in the vicinity of
the dissociation threshold of the entrance channel is considered. For scattering lengths
within the universal regime the spatial extent of the dimer exceeds the classical turning
point as described in section 2.3.3. Hence, the closed channel admixture to the wave
function of the bound state becomes negligible and vanishes on resonance [96]. Therefore,
the exact properties of the resonance state need not necessarily be known to set up the
wave function of the dimer, but it is rather given by the entrance channel confirming
the validity of equation (2.31). Within the universal regime the resonance behaviour
can be treated in a single channel approach and a contact potential can be assumed.
Outside the universal regime the contribution of the admixture of the closed channel to
the dimer wave function is not negligible and the binding energy becomes proportional
to (B−B0). Hence, resonances can be classified to entrance (η � 1) and closed channel
(η � 1) dominated resonances, where [97, 98]

η =
ā

abg

~2

µres ∆B m ā2
. (2.32)

Here, ā ≈ 0.96 lvdW is the mean scattering length according to Gribakin and Flambaum
[99] and µres = ∂E/∂B denotes the difference in the magnetic moment of the bound
and the scattering state. The entrance channel dominated resonance, in which the ad-
mixture of the closed channels is small, is in general characterized by a large universal
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2 Few-body interactions

regime and usually results in broad resonances. These resonances are often predesti-
nated for investigation of Efimov resonances [91], because an easily accessible universal
regime is required to prove the remarkable universal behaviour of these trimer states.
In addition, broad resonances give the opportunity to control and adjust the scattering
length precisely over several order of magnitudes from 0 up to several 104 a0. The closed
channel dominated resonances are in general narrow leading to worse accessibility of the
universal regime. The range of the universal regime for a given resonance is given by
[100]: ∣∣∣∣B −B0

∆B

∣∣∣∣ � µres ∆B

2 ~2/(m a2
bg)

. (2.33)

The numerator µres ∆B yields the information on the coupling strength. Values much
larger than unity imply strong coupling and vice versa. The width of the Feshbach
resonance depends on the coupling mechanism. The Coulomb interaction leads to a
strong coupling and broad resonances. On the contrary dipole-dipole interactions, which
are comparably weak, cause narrow resonances. In addition the background scattering
length abg affects the range of the universal regime.

2.3.5 Loss mechanisms

Besides the elastic scattering properties the inelastic scattering processes also change
dramatically in the vicinity of a Feshbach resonance. Most of the real atomic systems
consist of more than one open and the closed channel. The existence of these additional
channels leads to two- and three-body losses.

Two-body losses

Two-body losses occur if the populated molecular state couples to an open channel other
than the entrance channel. The origin of these two-body losses are spin exchange pro-
cesses (∆mF = 0) and dipolar relaxation (∆mF + ∆ml = 0) as explained in section
2.2. The atoms gain the potential difference between the entrance and the final state
as kinetic energy. The amount of kinetic energy gained is of the order of the Zeeman
or hyperfine splitting depending on the final state. In the case of Rb and K, the Zee-
man splitting is 0.7MHz/G and the hyperfine splitting of the ground states h·6.8GHz
and h·254MHz, respectively. For a trap depth of several kB · 10 µK corresponding to
h·300 kHz, these inelastic processes results in trap losses. In the special case of magnetic
traps additional losses occur if atoms in the final state cannot be trapped magnetically.
Trap losses due to spin exchange interaction are forbidden for doubly polarized states
(|f = 2, mf = ±2〉 for Rb and K) due to the selection rule ∆mF = 0 and suppressed for
maximal elongated states (|f = 1, mf = ±1〉 for Rb and K), as in the low energy limit
a transfer to the higher energy hyperfine state is not possible.

Dipolar relaxation includes interactions due to the exchange of spin and angular mo-
mentum, which are called dipole-dipole-interaction and spin-orbit-interaction (section
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(a) Atom losses due to the Feshbach resonance:
The Gaussian fit yields a Feshbach position of
37.2(2)G. The width of the broad resonance is de-
termined to be 34 G.
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(b) Atom losses due to the Feshbach resonance:
The Gaussian fit yields a Feshbach position of
78.57(2)G. The width of this more narrow reso-
nance is determined to be 1.2G.

Figure 2.5: Enhanced three-body recombination losses at the position of two in-
terspecies s-wave Feshbach resonances of 41K-87Rb each in the ground state |f =
1,mf = 1〉.

2.2). The selection rules for both of these processes are ∆mF + ∆ml = 0 and l = 0,±2.
The coupling strengths for these processes are usually much weaker than for spin ex-
change interactions. For atoms initially prepared in the energetically lowest Zeeman
state (|f = 1, mf = 1〉 for Rb and K) no further open channel exist, which excludes
inelastic two-body collisions via a weakly bound molecular state. In contrast, for the en-
ergetically highest Zeeman state (|f = 2, mf = 2〉 for Rb and K) no Feshbach resonance
occurs as there is no near-threshold molecular state belonging to a closed channel.

Three-body losses

In addition to the two-body losses also three-body losses occur. In the vicinity of the
Feshbach resonance the three-body loss rate is strongly enhanced due to its a4 scaling.
For large scattering lengths two interacting atoms can form a deeply bound molecule,
while a third atom carries away the released binding energy for a simultaneous conser-
vation of momentum and energy. During this three-body recombination the binding
energy of the produced molecule is converted to kinetic energy and split up according
to the mass ratio of the molecule and the third atom to mmolecule/(mmolecule + matom) to
the atom and to matom/(mmolecule + matom) to the molecule. Typical binding energies
of several hundred MHz result in heating of the ensemble and also in trap loss of the
molecule and the third atom. Furthermore, for positive scattering lengths three-body
recombination populating the weakly bound molecular state can occur. By collisions
with unpaired atoms these shallow dimers decay into deeply bound dimers releasing the
difference in binding energy of the two molecular states. Hence, Feshbach resonances can
be detected via strongly enhanced atom loss from the trap, due to resonantly enhanced
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2 Few-body interactions

inelastic three-body collisions. Figure 2.5 shows two typical loss measurements in the
vicinity of the s-wave Feshbach resonances of the bosonic K-Rb mixture at about 37G
and 79G. The Feshbach resonance position is determined by the centre of the loss peaks.
In chapter 5 a more detailed discussion on these resonances is presented.
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3 Towards an ultracold mixture

Ultracold atomic gases form a highly controllable environment to study many-body
interactions. A well defined initial quantum state can be experimentally realized by
producing a BEC. The phase transition from a thermal gas to a BEC occurs when
the phase space density reaches a value of λ3

dB n ≈ 2.6. For typical systems, compatible
densities would correspond to a liquid or solid phase. In order to avoid a phase transition
to a liquid or solid, the gas has to be very dilute. Usually the atomic densities are of
the order of 1015 cm−3, several orders of magnitude lower than in liquids or solids. In
this regime, two-body collisions dominate, as the probability for three-body collisions
leading to molecule formation scales as n3. In order to still increase phase space density,
the temperature has to be lowered from room temperature to about 100 nK, thereby
increasing the deBroglie wavelength of the atoms to be of the order of the typical inter-
atomic distance.

For the investigation of inter-species interactions a well defined initial state of two atomic
species is required. In our experiments we produce ultracold Rb-Cs and K-Rb mixtures,
respectively. As the typical experimental steps are similar for both approaches, I will
explain the detailed experimental setup and sequence using the Rb-Cs experiment. For
the K-Rb experiment, minor differences will be mentioned, if necessary, in Chapter 5.

3.1 Vacuum system

The heart of the experiment is a vacuum system, in which atoms are cooled, trapped, and
manipulated by means of optical and magnetic fields. The vacuum serves as an isolation
from the environment to prevent collisions with hot (room temperature) background
gas particles. The Rb-Cs setup in Bonn features a double magneto-optical trap system
(double MOT), with the two MOTs operating in different background pressure regimes.
The first MOT is designed to cool and trap a large number of atoms from a relatively
large Rb partial pressure of 10−9 mbar, originating from a Rb vapour cell. The second
MOT is running in a high quality glass cell with ultra-high vacuum. Here, a pressure of
10−11 mbar maximizes the lifetime of the cold atomic sample by minimizing the number
of background gas collisions. In this region eventually the BEC is produced. Both
pressure regimes are connected by a differential pumping tube with a diameter of 3mm
and a length of 8mm. A near resonant laser beam is used to push atoms from the upper
MOT through the differential pumping stage into the second MOT.

The pumping system maintaining the ultra-high vacuum consists of an Ion getter pump
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3 Towards an ultracold mixture

Rb-MOT

Rb-UHV-MOT
& Cs-MOT

Cs-reservoir

Pushing beam

Ioffe coil

Figure 3.1: Double-MOT system: Rb atoms are loaded first in the upper vapour
pressure MOT. A pushing beam (orange) transfers the precooled atoms towards the
UHV-MOT in the glass cell (light blue). The Cs reservoir is attached at the UHV-
part of the vacuum system. The blue toroid and the red solid lines indicate one of
the quadrupole coils and the MOT beams, respectively.

with a pump speed of 230 l/s and an additional Ti-sublimation pump including a cryo-
panel that can be cooled by liquid nitrogen and increases the pumping rate for hydrogen,
oxygen, and water. This system replaced a turbomolecular pump with magnetic rotor
suspension, which spectacularly broke down during operation. The newly constructed
vacuum system has several advantages: It forms a completely closed system without any
direct connection to the atmosphere and is therefore less accident-sensitive. Finally it
is free from acoustic vibrations. An uninterruptible power supply protects the system
against power failures to avoid a shutdown of the ion getter pump. In contrast to the
previous setup the ion pump produces strong magnetic field gradients and stray fields.
Therefore, the distance between the ion getter pump and the atomic sample must be
sufficiently large. A large distance between pump and glass cell, however, reduces the
effective pumping rate at the position of the atoms. We chose a distance of 100 cm, as
a compromise between a relatively small maximum magnetic field gradient of 2mG/cm
at the position of the glass cell and an effective pumping rate of 184 l/s at the position
of the turbomolecular pump1 previously used. The residual gradient is not expected
to have a noteworthy effect on the experimental sequence. In particular, it is of the
same order of magnitude as typical ambient magnetic field fluctuations. An additional

1The pumping rate of this turbomolecular pump was 180 l/s.
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3.2 Laser system for trapping and detection

magnetic field shielding of µ-metal or other materials with a high permeability are thus
not required.

In order to not spoil the vacuum of the main chamber including the glass cell, the new
pumping section was installed and baked while a linear valve sealed the main chamber
against atmosphere pressure. After establishing ultra-high vacuum in the pumping sec-
tion, the valve was opened, resulting in a disappointing large final pressure of 10−10 mbar.
In order to avoid baking out the whole chamber, which would have implied removing
the existing optical setup and coil system, we cooled the cryopanel with liquid nitro-
gen, while the valve was open. Thus residual contaminations freezed out at the walls
of the cryopanel, effectively reducing the pressure in the main chamber. After closing
the valve, a large fraction of the contaminations was contained in the pumping section
and removed by subsequent bake out. Repeating this procedure several times, a final
pressure of 1.2 · 10−11 mbar was achieved.

As we aim for working with a few or single Cs atoms, only a low partial background
pressure is necessary to load a Cs MOT from the background pressure, as will be ex-
plained in chapter 4. Therefore, the Cs vapour cell is directly attached to the UHV
region without differential pumping stage. Most of the time this reservoir is closed by a
valve, ensuring the required background pressure of 10−11 mbar.

3.2 Laser system for trapping and detection

The atom traps mentioned in the previous section require near-resonant laser light to
drive a closed atomic transition. Such transitions exist for alkali atoms on the S 1

2
−→ P 3

2

transitions, i.e. on the D2 lines. For Rb and Cs these transitions at wavelengths of 780 nm
and 852 nm, respectively, can be addressed by diode lasers. The hyperfine structure of
the D2 line of both species is depicted in Appendix A. In both cases, the transition
between the upper most hyperfine states of the ground and excited states are cycling
transitions (f = 2 → f ′ = 3 for 87Rb and f = 4 → f ′ = 5 for 133Cs). Nevertheless, one
out of every 10000 scattered photons excites the atom to the f ′ = 2-state (f ′ = 4-state)
from where it can decay into the f = 1-state (f = 3-state). Thus it decouples from the
cycling transition. A second laser (called repumping laser) tuned to the f = 1 → f ′ = 2
(f = 3 → f ′ = 4) transition is therefore necessary to transfer these atoms back to
the cycling transition. In addition, laser light is needed for spin polarization (optical
pumping), to probe the atoms by absorption imaging, and to transfer them from the
vapour cell MOT to the UHV-MOT by radiation pressure. All lasers have to be frequency
stabilized within the linewidth of the transition driven. During different stages of the
experimental cycle, the detuning of the cooling laser light has to be varied by up to
70MHz.

Cs laser system

In 2006, the experimental setup was moved to a new laboratory, and the Cs laser system
had to be re-built. The frequency stabilization scheme of the old setup employed the
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Figure 3.2: New setup of the Cs laser system: Three lasers (optical pump-
ing/probing laser, repumping laser, TA) provide the light for the MOT, the optical
pumping and the imaging. The red, green, and blue solid lines indicate the laser beam
path of the TA, repumping laser, and optical pumping/probing laser, respectively.

dichroic-atomic-vapor laser lock (DAVLL) [101]. The frequency of the laser light was
changed by adjusting the external grating of the Littrow-type diode lasers used. For such
mechanical processes, the bandwidth is of the order kHz, which is too low for some ap-
plications. In addition, the DAVLL-scheme is based on Doppler broadened spectroscopy
and therefore not as precise as subdoppler spectroscopies. Moreover, it is very sensitive
to even small changes of the polarization [102] and thus exhibits relatively large drifts
in frequency. In particular correlations with changes of the room temperature could be
observed. Therefore, the re-built laser system is based on a polarization spectroscopy
[103] which does not suffer from the aforementioned drifts. A schematic of the new setup
is shown in figure 3.2. The laser systems and the associated spectroscopies have been
designed to fulfil certain requirements.

First of all, sufficiently high laser power at the experiment is needed. In practice this
amounts to about 50mW for the cooling laser. In addition, frequency fluctuations of
the laser must be smaller than the linewidth of the excited state (2π · 5.22MHz). This
corresponds to a relative stability of 10−8. Furthermore, we need the possibility to tune
the frequency of the cooling light during the experimental run by 60MHz in 500 µs.
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3.2 Laser system for trapping and detection

The dispersive signal of the newly implemented polarization spectroscopy shows steep
slopes, which lead to a more precise frequency stability. However, the tuning range of
the frequency is limited to only a few MHz. Thus, for detuning the frequency about
60MHz, an acousto-optical modulator (AOM) in double-pass configuration is integrated
in the beam path. In this configuration, the radio frequency (RF) modulation of the
AOM with a frequency ν leads to an effective change of the laser frequency by 2 ν.

Typical modulation bandwidths of AOMs are about ±1/4 of their centre frequency.
Hence, for our purpose a custom-made AOM with a relatively large centre frequency of
225MHz with a bandwidth of ±50MHz is implemented. This centre frequency is chosen
to match the frequency difference of 450MHz between the f = 4 → f ′ = 3 and the
cycling transition f = 4 → f ′ = 5. In addition the bandwidth allows a continuously
detuning of the laser frequency over 100MHz.

The cooling laser frequency is therefore locked on the transition f = 4 → f ′ = 3.
Due to retro-reflection of the first order of diffraction, the difference of the diffraction
angle at different RFs is compensated. Thus no beam displacement occurs, and the
coupling efficiency of the optical fibre for spatial filtering and guiding the laser light to
the main setup remains constant. The advantage of this frequency changing method:
fast switching times (160 ns) and a high precision as well as high reproducibility and
stability. A further advantage is the possibility to variably choose the cooling laser
power for different stages during the experimental run (see section 3.5) by varying the
RF power of the AOM. The single-pass diffraction efficiency of the AOM of about 80% in
the 1st diffraction order leads to a double-pass efficiency of 64% . Therefore, a tapered
amplifier system (TA) consisting of a self-made seed laser and a commercial TA-unit
(Sacher Lasertechnik: SYS-400-0850-0500) with an output power of 500mW replaces
the formerly used diode laser.

A further improvement compared to the former setup is the re-routing of the optical
fibres used guiding the light from the laser table to the table of the vacuum system.
Efficient loading and trapping of atoms in a MOT requires efficient repumping of the
atoms from the hyperfine ground state f = 3 to the ground state of the cooling transition
f = 4. This requires a good overlap of the spatial modes of the repumping and cooling
light. In the old setup, the two beams were overlapped at the vacuum table. In contrast,
both beams are now overlapped on a polarizing beam splitter cube (PBS) before they
are coupled into the same optical fibre. Hence, they share the same spatial mode, but
are orthogonally polarized when they leave the fibre.

The laser light for repumping, probing, and optical pumping is generated by two Littrow-
type diode lasers. Their frequency is locked on the transitions f = 3 → f ′ = 4 and
f = 4 → f ′ = (4, 5) (cross over peak), respectively. The former is directly resonant to
the repumping transition. The light of the latter passes through an AOM with a RF
frequency of 130MHz. The laser frequency of the first order diffraction is shifted close
to the cooling transition, providing the imaging light. The zero order is retro-reflected
and after passing through the same AOM a second time, the -1st order of diffraction is in
resonance with the f = 4 → f ′ = 4 transition. This, together with the repumping light
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3 Towards an ultracold mixture

forms the optical pumping light. Two separate fibres for optical pumping and imaging
guide the laser light to the vacuum table.

Rb laser system

The laser system of Rb has to fulfil the same requirements as the one for Cs.

Cooling light: The cooling laser system consists of a commercial TA (Toptica: TA-100)
using a 1W tapered amplifier chip (M2K), providing sufficient laser power to simulta-
neously operate two MOTs. Therefore, the output beam is split into two beams by a
PBS. Analogous to the Cs laser system the formerly used DAVLL-scheme was replaced
by the more precise subdoppler polarization spectroscopy. The laser frequency is locked
on the f = 2 → f ′ = 1 transition and shifted by 400MHz using AOMs in double pass
configuration. This yields an effective red detuning of 12MHz with respect to the cycling
transition f = 2 → f ′ = 3. In order to obtain independent control over the frequency
of both MOTs during the experimental cycle, an AOM with a RF centre frequency of
200MHz and a bandwidth of ±50MHz was inserted into each beam. Each beam is
then coupled into an optical fibre for spatial mode filtering, and guided to the vacuum
chamber.

Repumping light: A home made Littrow-type diode laser produces the repumping
light with an output power of about 50mW. Its frequency is stabilized by polarization
spectroscopy on the f = 1 → f ′ = 2 transition. By means of a PBS, the repumping
light is also split into two beams to operate both MOTs.

Imaging light: In order to probe the atoms on the cooling transition, a commercial
diode laser (Toptica) with an output power of 25mW is used. The laser frequency is
locked on the f = 2 → f ′ = (2, 3) crossover peak. An AOM with a RF frequency of
130MHz is integrated in the beam path, shifting the laser frequency in resonance with
the cooling transition. This configuration offers the possibility to switch the probe beam
rather fast in about 160 ns.

Pushing light: A third Littrow-type diode laser creates the laser light to transfer the
atoms from the vapour cell MOT to the MOT in ultra high vacuum region. For this
purpose the performance of the DAVLL scheme is sufficient, as stability is not as critical
as for the other lasers. The frequency detuning with respect to the cooling transition is
optimized to be about 40MHz.

3.3 Magneto-optical trap

On the way to ultracold mixtures and BECs atoms have to be trapped, cooled and
their phase space density has to be increased by about 20 orders of magnitudes. MOTs
provide a widespread and relatively simple realization of laser cooling and trapping of
neutral atoms, especially alkali atoms as Rb, Cs, K etc. The combination of a velocity
and position dependent restoring force allows to trap 1 to 1010 atoms depending on
the chosen trapping parameters (e.g. magnetic field gradient, light intensity, partial
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(b) Schematic of a MOT in three dimensions:
A quadrupole field is generated by two coils in
anti-Helmholtz configuration. In combination
with a 3D molasses, the net force exerted on
the atoms is directed towards the magnetic field
minimum.

Figure 3.3: Schematic of a MOT

pressure). Although MOTs are well known, I will yet present the basic mechanism in
order to point out the difference between the two regimes of a many-atoms and the
single-atom MOT. This will also show the challenge in setting up a single-atom MOT,
which is introduced in chapter 4. A detailed description of typical MOTs can be found
in [104].

Consider an atom in the light field of two counter-propagating laser beams, the frequency
of which is red detuned with respect to the atomic transition. The atom absorbs prefer-
ably photons of the laser beam which counter-propagates its motion, as the Doppler
effect tunes them closer to resonance. The photon momentum ~ k is transferred onto
the scattered atom reducing the atomic velocity by the amount ~ k/m, called recoil ve-
locity. Thus, about 104 photons have to be scattered to cool the atoms down from room
temperature (≈ 300K) close to absolute zero temperature. This requires a closed optical
transition. Averaging over many scattering processes, the net transfer of the following
spontaneous emission in a random direction vanishes in a first approximation. The re-
sulting force counteracts the motion of the atom and leads to damping. This corresponds
to a frictional force which, in the limit of low velocities, is proportional to the velocity
~v of the atom. Extension to three orthogonal pairs of counter-propagating red detuned
laser beams forms a so-called three dimensional optical molasses [105], cooling atoms in
all directions. Although the time averaged momentum due to spontaneous emission of
photons vanishes, similar to Brownian motion, the time sequence of momentum kicks
causes fluctuations of the momentum around its average value. This leads to a heating
of the ensemble. The equilibrium of cooling and heating corresponds to the temperature
TD = ~ γ/2 kB, referred to as Doppler limit. For Rb (Cs) TD is 146 µK (125 µK). As
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3 Towards an ultracold mixture

real atoms are multi-level systems, different types of subdoppler cooling schemes using
polarization gradients overcome this temperature limit [106].

Overlapping the centre of a magnetic quadrupole field with the intersection of the three
pairs of laser beams forms the so-called MOT. In this configuration an additional posi-
tion dependent force arises from the position dependent Zeeman shift [107]. The basic
mechanism is illustrated in figure 3.3(a), considering two counter-propagating orthogo-
nally circular polarized laser beams and a linear magnetic field gradient. For an atomic
transition jg = 0 → je = 1 the magnetic sublevels me = +1 and me = −1 of the excited
state experience a Zeeman shift changing linearly with position. Atoms in the state
me = +1 at positions z > 0 in a red detuned (δ < 0) laser beam scatter more likely σ+

polarized light than σ− pushing the atom towards the minimum of the magnetic field.

Extending this scheme to three dimensions, atoms can be simultaneously trapped and
cooled in all spatial directions. In MOTs, the density of the trapped gas is typically
limited to 1012 cm−3 due to two effects: First, for large atomic densities, re-emitted and
thus resonant photons are reabsorbed by the trapped atoms with a high probability
before leaving the atomic cloud. This mechanism is called radiation trapping [108].
Second, light induced collisions between atoms in the ground and excited states lead to
atom loss from the trap. In this process, the excited atom is de-excited, releasing large
amounts of kinetic energy effectively removing the colliding atoms from the MOT. This
leads to heating and trap losses as collisions for higher densities become more and more
probable [109].

Experimental realization

In our experiment four different types of MOTs are operated at two different positions
for the two species Rb and Cs. The MOT parameters differ depending on the regime of
the number of atoms.

Producing a Rb BEC requires a large initial number of Rb atoms. Thus, a Rb double-
MOT scheme is used, as mentioned in section 3.1. The first MOT, a vapour cell MOT,
serves as a cold atom source providing fast loading of up to 1010 Rb atoms from the
background. This MOT is formed by the optical molasses of three retro-reflected laser
beams in combination with two coils in anti-Helmholtz configuration. A near resonant
laser beam (pushing beam) with a power of 800 µW and a detuning of ∆ = 2π · 40MHz
with respect to the cooling transition is focused into this MOT. Thus, the precooled
atoms are transferred by radiation pressure to the UHV-MOT in the glass cell, which
is 60 cm below the first one. The UHV-MOT is designed as a standard six-beam MOT,
allowing for a careful alignment and power balancing of the counter-propagating beams.
The repumping light for both MOTs propagates only along the z-axis to avoid repumping
and thus accelerating the atoms in the atomic beam. This setup allows us to trap about
109 Rb atoms in about 25 s at a temperature of about 100 µK.

The second species (Cs) is directly trapped at a vapour cell MOT in the UHV region,
where the partial Cs pressure is at most 10−10 mbar. The partial background pressure
of Cs can be increased for a short time by switching on ultra-violet light (395 nm)
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3.3 Magneto-optical trap

Rb Cs

vapour cell
MOT

UHV-MOT standard
MOT

single atom
MOT

dBquad/dz (G/cm) 12 10 10 300

w (mm) 10 8 8 1

Pcool (mW) 30 15 5 0.1

∆ -2.5 ΓRb -2.5 ΓRb -2 ΓCs -1.5 ΓCs

Prep (mW) 3 3 4 0.3

number of atoms 1010 109 107 1− 10

Table 3.1: Parameters of the four different MOTs operated in our experiment.
Here, Pcool and Rrep denote the cooling laser power per each beam and the total
repumping laser power, respectively. The line width of the D2-lines for Rb and Cs
are ΓRb = 2π · 6.07 MHz and ΓCs = 2π · 5.22 MHz, respectively.

which removes Cs atoms from the walls of the vacuum system by light-induced atom
desorption (LIAD) [110, 111]. Depending on the particular experiment we work with
either few (1 . . . 10) or many (107) Cs atoms. The latter one is used for experiments
investigating the inter-species interaction properties. Here, the MOT parameters are
similar to that of Rb (see table 3.1). In contrast to the Rb MOT, for Cs the repumping
light is present in each beam.

When operating a single Cs atom MOT, the MOT parameters differ in order to reduce
the mean number of trapped atoms. Atom numbers between 1 and 10 can be obtained by
a 30-fold increase of the magnetic field gradient dBquad/dz, and a one order of magnitude
smaller MOT beam waist w, whereas the light intensity remains constant. Here, the
alignment is more critical due to the much smaller beam waists resulting in a smaller
intersection region of the MOT beams. In addition, the MOT performance is more
sensitive to the overlap of this intersection point with the magnetic field minimum, due
to the high gradient quadrupole field. Typical loading rates are thereby reduced to
approximately 1 s−1. Details on the operation of the single atom MOT are discussed in
chapter 4.

The laser beams for the MOTs of both species are overlapped using the same optical
components. Wavelengths selective λ/2-retardation plates allow to control the power
balancing for both wavelengths independently.
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3 Towards an ultracold mixture

3.4 Magnetic trap

Atom traps based on the scattering of light are always associated with the energy scale
of the recoil energy ~2 k2/(2 m), which is much larger than the energy scales of degen-
erate quantum gases. Thus, a different kind of trap has to be used. In our case, the
atomic cloud is purely magnetically trapped. Magnetic traps form conservative poten-
tials by exploiting the interaction between the magnetic moments of the atoms with
an inhomogeneous magnetic field and are thus free from photon scattering. The force
exerted on the atoms is given by ~F = ∇(~µ · ~B), where, due to the Zeeman shift, the

potential for a given magnetic substate is U = −~µ · ~B = gf mf µB | ~B|. As a consequence
of the Maxwell equations, no magnetic monopoles exist in free space. Thus, only static
magnetic field minima can be created. In such field configurations, atomic states with
a positive magnetic moment (gf mf µB > 0) are magnetically trappable, called low field
seeking states [112]. Again, quadrupole fields provide such a magnetic field minimum
where atoms can be trapped.

It is important to note that, while the atom moves in the trap, the magnetic moment
must adiabatically follow the orientation of the magnetic field. Otherwise, the atom can
loose its spin polarization and become a high field seeker which is expelled from the trap.
This implies that the Larmor precision rate ωL = µ B/~ has to be larger than the change
of the magnetic field ωL � |dB/dt|/B. At the centre of the trap, where the magnetic
field vanishes, this adiabaticity condition is not satisfied anymore. At low temperatures,
however, the density in the vicinity of the trap centre increases, leading to trap losses
due to so-called Majorana spin flips which occur when the adiabaticity is violated [113].

In order to overcome the leakage of atoms close to the zero of the magnetic field, a
potential minimum with a non-zero field value has to be realized. Different types of
traps overcoming this problem have been established in quantum gas experiments [114,
4, 115, 116]. In our experiment, the so-called QUIC-trap [116] is used. Here, a third coil
(Ioffe coil) is added orientated perpendicularly to the quadrupole coils. The magnetic
field in the far field can be described by a magnetic dipole field

~B(~r
′
= ~r − yI~ey) =

3 p y
′
~r

′ − p~r
′2~ey

r′5
, (3.1)

where the centre of the Ioffe-field is shifted by yI with respect to the quadrupole centre
and p denotes the dipole moment of the Ioffe coil. Taking into account both magnetic
fields of the quadrupole and the Ioffe coils, the total potential close to the magnetic field
minimum can be described in first order approximation by

U = µ B (3.2)

=
1

2
m
(
ω2

ρ (x2 + z2) + ω2
ax y2

)
+ µ B0, (3.3)

36



3.4 Magnetic trap

z

x

y

quadrupole
coil

quadrupole
coil

Ioffe coil

dipole trap
beams

Figure 3.4: Schematic of the main part of the Rb-Cs apparatus: The two large coils
(brown cylinders) provide the quadrupole field. Perpendicularly to the quadrupole
coils an additional coil (brown, tapered cylinder) complements the magnetic field
system to form the QUIC configuration. Within the coil system the glass cell is
positioned. The beams of the crossed dipole trap (red) pass through the different
coils, crossing at the centre of the quadrupole trap.

where

ωρ =
3

2
ξ

√
µ

m B0

(3.4)

ωax =
2

61/8

√
µ ξ5/4

m p1/4
. (3.5)

are the trap frequencies along the radial and the symmetry axes, respectively, includ-
ing the quadrupole magnetic field gradient 2 · ξ = dBquad/dz. Thus the trap is to a
good approximation harmonic. An increasing offset field B0 leads to decreasing trap
frequencies. Too small trap frequencies, however, are unwanted as they lead to an inef-
ficient re-thermalization during the next cooling step, the evaporative cooling described
in section 3.6. Therefore, the offset field must be chosen as a compromise between the
reduction of Majorana spin flips and sufficiently large trap frequencies.

The QUIC trap realized in Bonn [117] consists of two coils (208 windings each, inner
radius = 14.9mm) in anti-Helmholtz configuration, forming the quadrupole field for the
MOT. The Ioffe coil (103 windings, inner radius = 3.1mm) has a hole with a radius
of 2mm which allows optical access to the atoms for a dipole trap beam. The coils
are electrically connected in series to compensate for magnetic field fluctuations due
to the noise of the current supply. At a current of 16.9A the trap frequencies are
ωρ = 2 π · (190 ± 2)Hz and ωax = 2 π · (18 ± 1)Hz, where the offset field is about 1G.
The spatial overlap of the MOT and the quadrupole trap is trivially given as the same
coils are used for both traps. However, the centre of the QUIC trap is shifted by 7mm
towards the Ioffe coil.

37



3 Towards an ultracold mixture

3.5 Transport of the atoms from the MOT to the QUIC
trap

Efficient transfer of the atoms from the MOT to the magnetic trap without reducing the
phase space density requires a dense, cold atomic sample in a well defined spin state.
A combination of first a compression stage with an increased quadrupole gradient field,
second a molasses stage with no magnetic field applied, and third, optical pumping
ensure a transfer to the magnetic trap at constant phase space density.

After loading a sufficient number of atoms into the UHV-MOT (109 of Rb and 107 of Cs)
the magnetic field gradient is ramped up from 6G/cm to 18G/cm in the compression
stage. This leads to a larger restoring force towards the trap centre and therefore an
increased atomic density. In order to avoid radiation trapping, the cooling laser is
detuned further to the red. Within 10ms the detuning is swept from -15MHz to -
25MHz with respect to the cooling transition.

This experimental stage is followed by a three dimensional molasses stage, taking about
8ms. This effectively reduces the temperature of the atomic cloud by subdoppler cooling
to about 50 µK. The cooling laser detuning of Rb (Cs) is experimentally optimized to
be about -70MHz (-60MHz).

Subsequently, the sample is spin polarized. Both species are optically pumped into their
doubly polarized states, i.e. |f = 2, mf = 2〉 for Rb and |4, 4〉 for Cs. These states are
magnetically trappable. In addition, inelastic collisions due to spin exchange (see section
2.2) are suppressed because these states cannot further increase their spin quantum num-
ber2. Furthermore, doubly polarized states are ideally suited to experimentally measure
the intra- and inter-species triplet scattering length, as only the triplet scattering length
contributes to elastic scattering between these states. Rb (Cs) is optically pumped by
means of circularly polarized laser light driving the σ+ transitions |f = 2〉 → |f ′ = 2〉
and |f = 1〉 → |f ′ = 2〉 (|f = 4〉 → |f ′ = 4〉 and |f = 3〉 → |f ′ = 4〉). Atoms in
the doubly polarized states are not resonant with the light field anymore and therefore
experience no further heating. Here, the quantization axis is oriented in parallel to the
laser beam propagation axis. It is given by an additional magnetic field originating from
a single coil in parallel to the Ioffe coil, which creates a magnetic field of the order of 1G
at the centre of the quadrupole coils. As the Larmor frequency is much faster than the
slow spatial variations of this inhomogeneous magnetic field experienced by the oscillat-
ing atoms, the atomic spin follows the changes of the quantization axis. This part of
the sequence is time critical as the atoms are not trapped during this stage. The optical
pumping takes 1.5ms, while the repumping light is switched off 250 µs after the cooling
laser beam, to ensure that all the atoms are pumped into the f = 2 (f = 4) state.

The spin polarized sample is subsequently transferred into the magnetic quadrupole
trap. The magnetic field gradient must be large enough (> 15.2G/cm (> 23.2G/cm)

2Inelastic collisions including mechanisms which do not conserve the total angular momentum, cannot
be fully avoided in a magnetic trap, as the absolute ground state of both species is not magnetically
trappable.
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3.6 Evaporative cooling

for Rb (Cs)) to hold the atoms against gravity. In order to avoid the atomic ensemble
being heated due to centre-of-mass oscillations, the centre of the MOT/molasses and
the magnetic quadrupole trap must coincide. As the magnetic coils used for both of the
traps are the same, fine adjustments have to be done by the alignment and the power
balancing of the MOT beams. Experimentally, the transfer into the quadrupole trap
is performed by increasing the magnetic field gradient to 51G/cm in 300 µs. At this
gradient the cloud size and temperature in the quadrupole trap match the ones of the
cloud in the optical molasses. In order to increase the atomic density and hence the
collision rate, the magnetic field is increased adiabatically to 104G/cm. During this
adiabatic process the phase space density remains constant, but the temperature of the
ensemble increases, while the increased collision rates provide good starting conditions
for the evaporative cooling stage. In the next experimental step, the current of the Ioffe
coil is slowly ramped up to the same final value as the current of the quadrupole coils.
Thus Majorana spin flips at the trap centre as well as magnetic field fluctuations due to
the noise of the power supply are prevented. In this configuration the atoms are 7mm
displaced from the quadrupole coils centre towards the Ioffe coil. Typically 5·108 (1·107)
Rb (Cs) atoms at a temperature of 200µK are initially stored in the QUIC trap.

3.6 Evaporative cooling

The quantum phase transition to a BEC occurs at a phase space density of about
λ3

dB n = 2.61. Another cooling stage of the atomic ensemble in the magnetic trap is nec-
essary therefore. A well-known and commonly used cooling technique in quantum gas
experiments is the so-called forced evaporative cooling [2], which is up to now the only
cooling mechanism leading to quantum degeneracy. This technique is based on remov-
ing atoms with a kinetic energy larger than the average energy of the atomic ensemble.
The remaining atoms rethermalize by elastic collisions, reaching an equilibrium with a
reduced temperature. The energy distribution of the atomic cloud in the QUIC trap can
be described by Maxwell-Boltzmann statistics. Removing all atoms with an energy Ekin

larger than a preset threshold (Ekin > Ecut) corresponds to cutting the high energy part
of the Maxwell-Boltzmann distribution. If this threshold Ecut is continuously lowered,
the process is called ”forced evaporative cooling”. Assuming that during the evapora-
tion only atoms with an energy above η kB T are evaporated, where η is a fixed ratio
Ecut/kB T , the efficiency of the evaporation process can in principle be arbitrarily en-
hanced by increasing η. However, in real experiments the efficiency and the time scale of
the evaporation process are determined by the elastic and inelastic scattering properties.
While the elastic collisions lead to the important thermalization of the sample, inelastic
scattering leads to heating of the sample and atom loss. Therefore a compromise has
to be found where, on the one hand, the evaporation process is fast enough to neglect
inelastic scattering and, on the other hand, it is slow enough so that rethermalization
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of the hottest atoms are removed. After rethermal-
ization, the Boltzmann distribution becomes more
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Figure 3.5: Boltzmann distribution during the evaporation process

can take place. The rethermalization rate τreth is given by

1

τreth

∝ n T 1/2 σel, (3.6)

where n denotes the atomic density, T the temperature of the cloud and σel the elastic
scattering cross section. Large trap frequencies, which correspond to strong confinement,
increase the rethermalization rate and hence speed up the cooling process.

In magnetic traps, forced evaporative cooling is realized by applying radio frequency
or microwave radiation driving Zeeman or hyperfine state transitions, respectively, to
magnetically untrapped or anti-trapped states. The kinetic energy of an atom oscillating
in the trap is converted to potential energy due to the position dependent Zeeman shift,
while the atom moves away from the trap centre. The kinetic energy of the atom
is thereby transformed into oscillation amplitude and hence into an energy dependent
Zeeman splitting. This offers the possibility to remove atoms energy selectively to un-
or anti-trapped states.

We use a microwave frequency of 6.83GHz, which drives the ground state hyperfine
transition of Rb. Because of the selection rules, Rb atoms in the doubly polarized
state can only be transferred to the anti-trapped |1, 1〉 state. Initially, the microwave
field is resonant to the outer regions of the trap, removing only atoms with relatively
large kinetic energy. Subsequently, the microwave frequency is continuously decreased,
removing atoms with less and less kinetic energy, thereby realizing the forced evapora-
tion. For efficient cooling we use a microwave power in the Watt range. In this power
regime, coupling between the |2, 2〉 and |1, 1〉 states is too strong to be treated as a
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Figure 3.6: Experimental realization of the forced evaporative cooling of Rb: Spatial
dependent Zeeman splitting of the two Rb hyperfine ground states in the QUIC trap
are shown. The red, black, and blue lines indicate the trapped, non-trapped, and
anti-trapped Zeeman states, respectively.

small perturbation. The coupled system of the atom and microwave field can then be
described in the dressed atom approach [118]. The transition probability is proportional
to the microwave radiation power and inversely proportional to the atomic velocity. As
the microwave field approaches the resonance condition at the trap center, the effective
trap frequency is reduced due to the strong coupling of the two states. At the end of
the evaporation process the microwave radiation power is reduced in order to ensure a
sufficiently strong confinement of the atoms.

The Cs atoms are unaffected by the microwave radiation, as the hyperfine splittings
of Rb and Cs differ by 2.8GHz. Thus, the forced microwave evaporative cooling is
species selective. However, due to elastic collisions between Rb and Cs, the latter one is
sympathetically cooled by the actively cooled Rb. This provides an efficient cooling of
Cs without a significant loss of Cs atoms [79].

The microwave setup consists of a modular source, an amplifier, and an antenna. The
heart of the source is a local oscillator (MITEQ BCO-010-06830-05), phase stabilized
by a frequency generator (Rohde & Schwarz) at a frequency of 10.008MHz, yielding a
frequency of νlo = 10.008 MHz · 683. In addition, a frequency generator (Tabor) is used
to generate an arbitrary frequency modulation waveform in the range of 1 to 50MHz.
This frequency generator replaces two arbitrary waveform generators (Agilent 33120A
and 33250A) of the former setup. Mixing the signal of the frequency generator with the
local oscillator output, two sidebands with frequencies of ν = νlo ± νTabor are produced.
The upper sideband is used as evaporation knife. A pin-diode attenuator (MITEQ
MPAT-64072-60-20-1F/1F) with an attenuation between 10 and 60 dB allows adjusting

41



3 Towards an ultracold mixture

Figure 3.7: Density distribution of the atomic Rb cloud after different evaporation
stages: The phase transition occurs between the left picture (thermal cloud) and the
one in the centre, which shows a partially condensed cloud. Further evaporation leads
to a quasi pure BEC with 4 · 105 atoms (right picture).

the microwave power during the sequence. The microwave radiation is amplified to about
8W in two stages (preamplifier: MITEQ AMF-3B-040090-25P, power amplifier: Kuhne
KU684XL). Finally, the microwave radiation is fed into a wave guide, which directly
points to the position of the atomic cloud.

In the former setup using the two arbitrary waveform generators, the spectral width of
the sideband was about 10 kHz. For comparison, the chemical potential of a BEC in a
typical magnetic trap is about h · 10 kHz. Thus, a controlled and precise evaporative
cooling in the vicinity of the phase transition was not possible. For the new setup,
however, the frequency spectrum of the evaporation sideband shows a sharp peak with a
width of less than 10Hz. The broad background spectrum with a width of 10 kHz is still
present, but it is suppressed by 30 dBm. The final stage of the evaporation ramp can
therefore be controlled much more precisely and it results in BECs of about 4 ·105 atoms,
which are twice as many atoms as in the former setup.

Experimentally we have observed atoms in the magnetic trapped state |2, 1〉, most prob-
ably due to a transfer of the atoms from the anti-trapped state |1, 1〉 as the atoms leave
the trap, thereby crossing regions where the transition to |2, 1〉 is resonant [79]. Atoms in
|2, 1〉, however, have decoupled from the cooling process but still can collide with atoms
in the |2, 2〉 state, resulting in heating and atom loss. In order to avoid population in
|2, 1〉, we tune the carrier frequency to the |2, 1〉 → |1, 1〉 transition in the trap centre,
efficiently depleting the |2, 1〉 state.

The theory of evaporative cooling discussed so far is also valid in optical dipole traps, in
which all magnetic substates can be trapped. Optical dipole traps will be introduced in
the next section. Here, forced RF or microwave evaporation is not applicable. Instead,
evaporative cooling is realized by reducing the laser power which leads to a reduction of
the trap depth.
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3.7 Optical dipole trap

3.7 Optical dipole trap

In contrast to magnetic traps, optical dipole traps allow to store all magnetic substates,
in particular the absolute ground state, where inelastic collisions are strongly suppressed.
The trapping mechanism relies on the electric dipole interaction. In an oscillating electric
field, a dipole moment is induced in a neutral atom. The interaction of the induced dipole
moment with the external electric field leads to a force on the atom.

As these traps can be operated with far-detuned light, they can feature low photon scat-
tering rates. Hence, long storage times with low heating rates are achieved. Furthermore,
an external magnetic field can be applied as a free parameter. Therefore, this trap is
well suited for experiments in which magnetic Feshbach resonances are investigated or
used as a tool for tuning the scattering length.

A detailed discussion of dipole traps can be found in [119]. In a simplified system of
a two-level atom the electric dipole force in the classical picture can be described by
considering the atom to be an oscillator in a classical light field. Hence, the dipole
potential is given by

U = −1

2

〈
~p ~E
〉

(3.7)

= − 1

2 ε0 c
Re(α) I, (3.8)

where ~p and I denote the induced dipole moment of the atom and the intensity of the
light field given by I = 2 ε0 c |E|2, respectively. The complex polarizability α, which
depends on the frequency ω of the driving field, can be written as

α = 6 π ε0 c3 Γ

ω2
0

(
ω2

0 − ω2 − i ω3

ω2
0
Γ
) . (3.9)

For two-level systems the decay rate Γ of the excited state is given by the dipole matrix
element between the ground | g 〉 and the excited state | e 〉

Γ =
ω3

0

3 π ε0 ~ c3
|〈 e |µ | g 〉|2. (3.10)

The imaginary part of the polarizability corresponds to a Lorentzian absorption function.
This gives rise to a scattering rate

Γsc(~r) = − 1

~ ε0 c
Im(α) I(~r). (3.11)

This dissipative photon-atom interaction leads to heating of the ensemble due to photon
recoil and for finite trap depths even to atom loss. In typical dipole traps the detuning is
small compared to the transition frequency ω0 (|∆| ≡ ω − ω0 � ω0), hence the rotating
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wave approximation, where ω
ω0
≈ 1, can be applied and gives the simple result

U(~r) =
3 π c2

2 ω3
0

Γ

∆
I(~r) (3.12)

Γsc(~r) =
3 π c2

2 ~ ω3
0

(
Γ

∆

)2

I(~r). (3.13)

Depending on the sign of the detuning ∆, the dipole potential of an intensity maximum
can be attractive (for ∆ < 0) or repulsive (for ∆ > 0). The most simple realization
of such a dipole trap is a focused, red detuned (∆ < 0) Gaussian laser beam. Here,
atoms are stored in the focus at maximum intensity. Long storage times require low
scattering rates in order to avoid heating of the atomic cloud. To combine a sufficiently
deep trap depth with low scattering rates, the detuning can be increased. For a chosen
trap depth the ratio I(~r)/∆ is fixed, where the scattering rate can be reduced by in-
creasing the detuning. Blue detuned dipole traps overcome the unwanted heating due to
photon scattering as the atoms are trapped in the intensity minimum of the light field.
Nevertheless blue detuned traps are rarely found, as an additional confinement, e.g., a
magnetic field has to be implemented.

In reality atoms are multi-level systems and substates have to be considered. In the
dressed state picture the second order perturbation theory can be used to calculate
the energy shift of each substate [119]. The potential for different magnetic substates
depends also on the polarization of the light field. In the case of linearly polarized light
the energy shifts for all substates are the same equals the one for a two-level atom

∆E = ± 3 π c2

2 ω3
0

Γ

∆
I. (3.14)

This so-called AC-Stark shift corresponds to the dipole potential of a two-level atom.
For detunings larger than the hyperfine splitting of the excited state only the AC-Stark
shift of the ground state plays a role.

In our experiment a crossed dipole trap at a wavelength of 1064 nm is realized to store
atoms in a purely optical trap. The optical power of each dipole trap beam is about
2W. The focal points of both beams spatially coincide and the waist is chosen to be
w0 = 86 µm, while the beams propagate perpendicularly to each other in the horizontal
plane (figure 3.4). This yields a total trap depth of U0 = kB · 45 µK. Along both axes of
the two beams the trap depth decreases to half the potential depth at a distance of one
waist from the trap centre. Thus the effective potential depth of the crossed dipole trap
can be deduced to be Ueff = U0/2 = kB · 22.5 µK. The trap frequencies

ωy,z =

√
2 U0

m w2
0

= 2 π · 173 Hz (3.15)

ωx =

√
4 U0

m w2
0

= 2 π · 244 Hz (3.16)
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Figure 3.8: Density plot of the crossed dipole trap: Two orthogonal beams along
the y- and z-axis are focused to a waist of 86µm.

are obtained by a harmonic approximation of the potential. In contrast to the weak
confinement along the laser beam axis in a single beam dipole trap, they are of the
same order of magnitude for each direction in the crossed dipole trap, resulting in a
more isotropic atomic cloud. The strong confinement along the axis of gravitation ωx =√

2 ωy,z increases the efficiency of evaporative cooling in the optical trap, as it maintains
large elastic scattering rates and thus enables short rethermalization times. In addition,
a strong confinement reduces the gravitational sag. In mixture experiments the species
dependent sag can lead to a reduced or vanishing overlap of the clouds and thus the
thermal contact.

Experimental setup of the dipole trap

In order to realize an optical dipole trap, we use an arc-lamp pumped Nd:YAG laser
(Quantronix, model 116EF-OCW-10) with an output power of 10W emitting a linearly
polarized Gaussian beam. The longitudinal modes are reduced from more than 30 to
about 4 modes by an etalon inserted within the laser cavity. The setup of the laser
itself is described in more detail in the thesis of Wolfgang Alt [120]. The output beam
is split into two beams for both dipole trap branches using a polarizing beam splitter
cube in combination with a λ/2-retardation plate. In each beam an AOM with a centre
RF frequency of 80MHz is used for fast switching (160 ns) and continuously adjusting
the laser beam power. The frequencies of both branches are slightly detuned with
respect to each other using the 1st and -1st diffraction order of the AOM. This destroys
the fixed phase relation between the beams and thus avoids cross interference at the
position of the atoms. The diffracted laser beams are guided to the experiment by high
power, polarization maintaining single mode fibres and are collimated to a 1/e2-radius
of 1.9mm. Two aspheric lenses (doublets) with a focal length of 500mm each focus the
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Figure 3.9: Block diagram of the servo loop to control the dipole trap laser power.
The red and green solid lines indicate the laser light and the electrical connections,
respectively. Details are described in the text.

beam along the Ioffe axis and the imaging axis to the centre of the quadrupole coils
to a waist of 86 µm. The near infrared light is spatially overlapped with the 780 and
852 nm light used for imaging and the molasses on dichroic mirrors. At the position of
the atoms, each beam has a power of about 2W.

3.7.1 Power stabilization of the dipole trap beams

The experimental reality poses stringent requirements on the stability and control of
the laser beam power for the dipole trap: During the experimental sequence, ultracold
clouds are stored in the dipole trap for several seconds. In order to reach condensation,
the precooled atomic cloud shall be evaporatively cooled in the optical trap by lowering
the laser beam power. Furthermore, we plan to transport the atoms by 7mm from
the QUIC trap position to the centre of the quadrupole coils to use the quadrupole
coils in Helmholtz configuration, thereby creating a homogeneous Feshbach field, and to
spatially overlap the cold cloud with a single atom loaded into the MOT. During this
magnetic transport the dipole trap beam along the Ioffe axis is supposed to keep the
radial trapping frequencies ωx and ωz constant. Thus, stable and well controllable laser
power is crucial for a reliable operation of the experiment. Fluctuations of the laser
light power can be caused by e.g. polarization changes upon passing the fibre, resulting
in a variation of power after a PBS. In addition, a non-perfect pointing stability of the
laser beam in front of the fibre modifies the coupling efficiency. A power stabilization is
therefore built up in order to compensate long time as well as short time fluctuations of
the power. Furthermore, noise at frequencies below the bandwidth of the controller can
be reduced. In our case, the constructed proportional-integral-controller (PI-controller)
features a bandwidth of 30 kHz.

The servo loop is schematically drawn in figure 3.9. The controlled system consists of
the abovementioned AOM allowing to adjust the power of the beam by changing the
voltage controlled radio frequency power. The ±1st order diffracted beam is coupled into
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a fibre and guided to the experiment. After passing through the glass cell of the vacuum
chamber, a dichroic mirror (reflectivity of 99% at 1064 nm, reflectivity of 1% at 780 and
850 nm) separates the dipole trap beam from the optical pumping and imaging light. A
second dichroic mirror with a poor reflectivity of only 90% reflects most of the dipole
trap light into a beam dump. The remaining 10% of the laser light is attenuated by
neutral density filters and focused on a fast photodiode (bandwidth >1MHz), followed
by a transimpedance amplifier. To minimize the noise, the transimpedance resistor
R is chosen to be as low as 30 kΩ. Thermal resistor noise, also denoted as Nyquist
noise and generated by the Brownian motion of the charge carriers, scales with

√
R

[121, 122]. In addition, the relative shot noise of the photocurrent is proportional to√
P/P , where P is the detected laser power. Hence, in order to minimize the noise, a

low resistance value is desirable, thereby reducing the amplification and the sensitivity
of the amplified photodiode. A lower limit for the resistance value is given by the output
current of the used operational amplifier (OPA655). Its output signal is compared with
a control signal (setpoint) given by the computer or a waveform generator using an
instrumentation amplifier (AD624). The difference of these two signals is amplified by
the PI-controller. A schematic of the control board is shown in Appendix B. A diode (SB
120) in combination with a voltage divider ensures the output voltage to be in the range
of 0 to 1V to drive the amplitude modulation input of the voltage controlled oscillator
(VCO). Hereby, the RF power entering the AOM is regulated.

The settings of the PI-controller are optimized by measuring the transfer function of
the open servo loop. A typical Bode diagram of one of our two power stabilizations is
shown in figure 3.10. The 0 dB crossing of the gain of the transfer function defines the
bandwidth (gain crossover frequency). The phase margin at this frequency determines
the transient effect. A vanishing phase margin would lead to an undamped oscillation,
a phase margin of 90 degrees corresponds to the critical damping condition. For phase
margins in-between, a damped oscillation around the final value occurs. An optimal
compromise between a short transient time on the one hand and a relatively small (4%)
overshoot on the other hand is obtained for a phase margin of 60 degrees. In a first
approach, the 0 dB crossing is chosen by the proportional amplification. In order to
minimize the difference of the final value from the setpoint, an integral amplifier is
added. Here, the gain for low frequencies below a cut-off frequency is increased, whereas
the phase is decreased by at most −90 degrees. For a proper critical frequency the gain
crossover frequency is not influenced by the integral part, if the critical frequency is
much lower than the frequency of the 0 dB crossing. For frequencies approaching 0Hz
(dc) the gain tends towards infinity leading to a vanishing offset with respect to the
setpoint.

Optimizing this configuration, the open-loop transfer function is measured and plotted in
figure 3.10. The bandwidth is determined to be 30 kHz. As the transfer function depends
on the setpoint, we have to make sure that the phase margin does not go below 60 degrees
in order to ensure a stable, not oscillating servo loop for the entire controlled range. We
choose a phase margin of 100 degrees, thereby shifting the compromise mentioned above
to a regime where overshoots are negligible at the expense of larger transient times. As
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Figure 3.10: Bode-diagram for a power stabilized Nd:YAG laser: The black and red
lines indicate the measured magnitude and phase of the open servo loop, respectively.
The 0 dB crossing of the magnitude defines the bandwidth, which is about 30 kHz.
The phase margin given by the phase at the bandwidth is determined to be about
100 degrees.

a higher bandwidth is not required for our purpose, we renounce the implementation
of a derivative part, which would increase the phase and gain for high frequencies. For
comparison, the trap frequencies of the dipole trap are 2 π ·173Hz and 2 π ·244Hz. Thus,
noise at these frequencies and their first harmonics are suppressed by the servo loop,
which could otherwise lead to parametric heating and/or atom loss.

As a final analysis of the locking scheme and also to show the importance of such PI-
controllers, the noise of the locked system is compared to the one of the unlocked system.
Figure 3.11 shows these noise measurements. The noise of the fast amplified photodiode
is measured (black graph) by blocking the laser beam. Here, the 1/f-noise as well as
the power line resonance at 50Hz and all its higher harmonics are visible. The blue
graph shows the noise of the laser light along with the photodiode. In particular for
low frequencies, the noise level has grown by 60 dB. A resonance at 1.5 kHz can be
observed. We attribute this resonance to relaxation oscillations of the Nd:YAG-laser.
They occur in laser systems in which the lifetime of the excited state of the active
medium is much larger than the damping time of the cavity. Variations of the pump
power lead to oscillations around the equilibrium, when the system relaxes. Typical
oscillation frequencies of a Nd:YAG-laser are in the range of 1 to 10 kHz depending on
the cavity and the present pumping rate [123].

When the servo loop is closed and thus the laser beam power stabilized, the noise
is clearly reduced within the bandwidth of the circuit. The amount of this decrease
corresponds to the gain measured in the Bode-diagram. Particularly for low frequencies
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Figure 3.11: Noise measurement for a power stabilized Nd:YAG laser: The black,
blue, and red lines indicate the noise of the amplified photodiode, the noise of the
open loop system (photodiode and laser) and the noise of the closed servo loop, where
the power is stabilized by the PI-controller, respectively.

the noise is considerably reduced, e.g. by 60 dB at 10Hz. Above the bandwidth the
unlocked and locked systems behave the same way. The resonance at 1.5 kHz is also
suppressed but still visible. In the Bode-diagram it manifests itself as increased phase
fluctuations at the resonance frequency. Two other dominant noise features in the Bode-
diagram at 82 kHz and 240 kHz can be measured in the noise spectra. The origin of these
resonances are unknown, we even detect them by an open BNC cable, however.

3.8 Absorption imaging

We obtain all information about the atomic system at the end of the experimental run
by the well-known technique of absorption imaging [124]. This kind of imaging is based
on Beer’s law for light absorption and yields information about the number of atoms,
the temperature of the cloud as well as the atomic density distribution at the time of
imaging. A resonant laser beam passes through the atomic cloud casting a shadow of
the cloud onto the chip of a CCD camera, thereby measuring the intensity distribution
IT(x, y), integrated along the line-of-sight z. In order to determine the optical density, a
second picture (Ilaser(x, y)) of the laser beam without the cloud is required. Additionally,
to eliminate ambient background light, a third picture (Ib(x, y)) without the laser beam
is taken. From these images the column density distribution of the atomic cloud along
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3 Towards an ultracold mixture

the line-of-sight can be obtained

nz(x, y) =
1

σ

Ilaser(x, y)− Ib(x, y)

IT(x, y)− Ib(x, y)
, (3.17)

where σ denotes the scattering cross-section. Hence, for a CCD chip with i × j pixel
and a surface A of each pixel the atom number is given by

N =

∫ ∫
nz(x, y) dx dy (3.18)

=
∑

Pixel(i,j)

A

f 2
m

nz(i, j) (3.19)

where fm denotes the magnification of the imaging system.

Thermal cloud

The temperature of the thermal atomic cloud can be determined by a time-of-flight
(TOF) measurement. Switching off the magnetic or dipole trap, the atomic cloud falls
down due to gravity and expands ballistically. The density distribution after an expan-
sion time t is given by

n(x, y, z, t) =
1

λ3
dB

3∏
i=1

√
1

1 + ω2
i t2

g3/2

(
e

(
µ−m

2

∑3
i=1

(
xi ωi

1+ω2
i

t2

))
/kB T

)
. (3.20)

For t � ω−1
i , equation (3.20) describes the spatial density distribution inside the trap.

When the TOF exceeds the inverse trap frequencies ωi, the thermal cloud expands
isotropically and mirrors the momentum distribution in the trap. For thermal clouds
much larger than the critical temperature the density distribution is Gaussian and the
temperature of the thermal cloud is given by

T =
m

2 kB

σ2
i ω2

i

1 + ω2
i t2

, (3.21)

where σi denotes the 1/e2-width of the Gaussian distribution along axis i.

Bose-Einstein condensate

The density distribution of a weakly interacting BEC trapped in a harmonic potential
is described by the Thomas-Fermi distribution, explicitly given in equation (1.17) in
section 1.2. The expansion during TOF of the BEC is independent of the temperature,
as all condensed atoms occupy the motional ground state of the trap, but rather given
by the mean field energy in a specific direction. Thus, the expansion is anisotropically
for non-isotropic trap geometries (ωx,z � ωy), because the repulsive interaction between
two atoms counteracts the force due to the trapping potential. Hence, the stronger the
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3.8 Absorption imaging

Figure 3.12: Absorption image of a BEC after a TOF of 25 ms. The horizontal axis
corresponds to the axial direction of the QUIC trap. The vertical axis corresponds
to the direction of gravity and to one of the radial directions of the trap.

confinement the larger the mean field energy. Therefore, the expansion along the radial
axis with frequencies ωx,z exceeds the axial one for TOFs larger than the inverse radial
trap frequency. The Thomas-Fermi radii after a TOF time t are

Rx,z(t) = Rx,z(0)
√

1 + (ωx,z t)2 (3.22)

Ry(t) = Ry(0)

(
1 +

(
ωy

ωx,z

)2(
ωx,z t arctan(ωx,z t)− 1

2
ln
(
1 + ω2

x,z t2
)))

.(3.23)

Thus, the aspect ratio for times larger than the inverse radial trap frequency is reversed
with respect to the cloud geometry inside the trap.
In our experiment a CCD camera from Apogee with a chip of 512 × 768 pixels and a
pixel size of 9×9 µm2 is employed. A 200 µs circular polarized, resonant laser pulse with
a power of 200µW images the atomic cloud through a lens system with a magnification
of fm = 1.8. A typical false-colour absorption image of a BEC after a TOF of 25ms is
shown in figure 3.12.

51



3 Towards an ultracold mixture

52



4 Single Cs atoms in a cold cloud of
Rb atoms

Single Cs atoms immersed in a BEC can be used to resolve the dynamics of the quantum
degenerated gas. This kind of experiment requires a controlled loading and trapping of
single atoms as well as their detection. In most of the ultracold atoms and mixture
experiments, a MOT is used to load between 107 to 109 atoms. The number of atoms
can be determined by a simple fluorescence detection setup or by absorption imaging. For
a single atom, the absorption image technique is not applicable, as intensity fluctuations
of the probing laser exceed the absorption of one atom [125]. However, detecting the
fluorescence of a single atom is possible [126], if several requirements are fulfilled. In the
next two sections trapping of a single atom in a MOT and detecting its fluorescence are
discussed. In the last section of this chapter we present our first imbalanced mixture
experiment in which the dynamics of single Cs atoms in a MOT interacting with cold
Rb atoms is investigated. The single Cs atom probe allows determining a precise value
of the cold collision rate between Rb and Cs in a MOT.

4.1 Single Cs atom MOT

The total number of trapped atoms in a MOT depends on the loading rate, on the
collision rate with atoms from the background gas and on the cold collision rate of
trapped atoms. Hence, to trap only single atoms, the loading rate of the MOT has
to be reduced significantly from about 109/s of a standard MOT to about 1/s. The
loading and collision rates are determined by the magnetic field gradient dB/dz, the
partial background pressure ni, and parameters of the laser beams, such as beam waist
ri, detuning ∆i from the resonance, and intensity.

The dependence of the loading rate Ri on the abovementioned parameters is given by
[127, 126]

Ri ∝ ni Si v̄i

(
vcap,i

v̄i

)4

, (4.1)

where Si, v̄i, and vcap,i denote the surface of the irradiated volume, the mean velocity of
species i in the background gas, and the capture velocity, respectively. The maximum
capture radius rcap,max ∝ |∆i/(dB/dz)| determines the upper limit of the surface to be
Si = 4 π r2

cap,max. If ri < rcap,max the surface of the capture volume Si ∝ r2
i increases
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Figure 4.1: Schematic of the experimental setup to trap and detect single atoms:
The MOT position in the glass cell (light blue) is marked by a red dot. Two MOT
beams along the x′- and y′-axis are indicated with black solid lines. Additionally,
some critical first order reflections (dotted black lines) on the glass cell are drawn.
The third MOT beam is aligned along the z-axis. The high numerical aperture
objective for Cs (blue lens) and the collecting lens for Rb (red lens) are located below
and on the Ioffe axis, respectively. The Ioffe coil is indicated in grey. The dipole trap
beam runs along the y- and z-axes.

quadratically with the beam waist. Since in the limit of ri > rcap,max we have vcap,i ∝
(dB/dz)−2/3 and Si ∝ (dB/dz)−2, the strongest dependence of Ri is on the magnetic
field gradient and it scales as [128]

Ri ∝
(

dB

dz

)−14/3

. (4.2)

Hence, a high magnetic field gradient of 300G/cm, which is one order of magnitude
larger than in a standard MOT (10G/cm), is chosen for our measurements, reducing
the loading rate by seven orders of magnitude with respect to common traps. This is
supplemented by a low partial Cs background pressure. Standard MOTs are operated
either as vapour cell MOTs with a partial background pressure of about 10−9 mbar
or as UHV-MOTs loaded from an atomic beam. In our experiment, a low partial Cs
background pressure of much less than 10−11 mbar is achieved by a MOT loading from
the background of the UHV region. The third parameter differing from the standard
MOT is the laser beam radius. It is chosen to be about 1mm which is one order of
magnitude lower than in the standard MOT setup in order to reduce the capture range
and therefore the loading rate. Additionally, the laser beam power is reduced to 100µW
per beam corresponding to an intensity of 4.5mW/cm2 which is comparable to the
intensity in a standard MOT. Combining all these parameters results in a loading rate
of about 1 atom/s.

During the experimental run a single Cs atom will be loaded when a BEC is already
present. In the doubly polarized state the lifetime of the BEC is about 1 s. Thus, in the
aforementioned trapping configuration the loading time of single atoms is of the same
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order of magnitude, which is not favourable to work with. To overcome this challenge,
the loading sequence is optimized and composed of a short low gradient loading and high
gradient storage stage [129]. In the first stage, the magnetic quadrupole field is ramped
up to a gradient of 110G/cm. Once the magnetic field has reached this relatively low
gradient value, the laser light is switched on. Here, the loading rate is 170-fold increased
compared to the rate at the final magnetic field gradient of 300G/cm. After 20ms the
magnetic field is ramped up to its final value in about 20ms in order to enhance the
confinement and prevent further loading. The mean number of atoms stored after this
sequence can be chosen by adjusting the loading time at the low magnetic field gradient.
Besides, the large magnetic field gradient also reduces the maximum diameter of the
MOT volume to about 30 µm. In comparison, the extension of a BEC in the dipole trap
configuration used in our experiment is about (7 × 10 × 10) µm3. To investigate the
interaction of a Rb BEC with a Cs atom, the spatial overlap of the MOT volume with
the Rb BEC volume is supposed to be as large as possible. Hence, a better localization
of the single atom, e.g. by reducing the MOT volume, is advantageous.

4.2 Fluorescence of single Cs atoms

The challenge of detecting a single neutral atom in a MOT becomes apparent if the
photon scattering rate Γsc of the atom trapped in a MOT is considered. For typical
single atom MOT parameters, see above, each Cs atom scatters about 1.6 ·107 photons/s
corresponding to an optical power of 3.8 pW. For comparison the power of each MOT
laser beam used in our trap is about 100µW. Even reflections of 4% of the MOT beams
at the glass cell walls exceed the fluorescence power of one atom by 6 orders of magnitude.

To probe this extremely low fluorescence level, a very sensitive avalanche photodiode
(SPCM-AQRH-12FC from PerkinElmer) with a quantum efficiency of 42% at 852 nm
and a low dark count rate of 500Hz is used. The damage threshold of the so-called
Single-Photon-Counting-Module (SPCM) is specified to be at a photon count rate of
30MHz. This shows the importance of removing any stray and ambient light to ensure
a reliable operation of the SPCM even for more than one atom loaded. Thus, our
demand on the detection system is to concurrently collect a maximum amount of the
atomic fluorescence and as few background light as possible, thereby optimizing the
signal to noise ratio. This ratio is mainly limited by a small solid angle from which the
fluorescence light can be detected. Our fluorescence detection setup is positioned below
the glass cell (figure 4.1). This position offers a good optical access and it is at the same
time compatible with the already existing experimental setup. The MOT centre is 3 cm
above the bottom of the cell. The fluorescence light is collected by a high numerical
aperture objective (NA=0.29) at a working distance of 42mm with respect to the MOT
position. This results in a solid angle of 0.084 π.

Figure 4.2 shows a schematic of the detection setup including all different components.
The task of this optical setup is to efficiently collect the atomic fluorescence and to
guide it to the SPCM, while stray light is suppressed by several orders of magnitude
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Figure 4.2: Fluorescence detection setup to probe single Cs atoms. A high numerical
aperature objective collects 2.1 % of the Cs fluorescence light. A pinhole and two
interference filters remove the stray and ambient light from the detected signal.

using a combination of spatial and spectral filters. Details and analysis of the optical
properties of each component used in the setup can be found in the diploma thesis of
Tatjana Weikum [130]. The collected fluorescence light is focused by an achromatic
lens (f = 250mm) into a 300µm pinhole to spatially filter stray light, occurring, e.g.,
due to back reflections at the glass cell, which is not propagating on the optical axis
of the imaging system. Small MOT beams as used for single atom MOTs support
the suppression of stray light by reflections. Behind the pinhole two interference filters
(FF01-832/37-25 from Semrock: transmission T ≥ 93% at 852 nm and an optical density
of 107 (106) at 780 nm (1064 nm) each) remove the Rb laser and fluorescence light, as well
as residual ambient light and the stray light of the dipole trap beams propagating along
the optical axis, from the spectrum. As the Rb-Pusher beam with a power of 700µW
propagates along the imaging axis, two edge filters are necessary to protect the SPCM
by suppressing the Rb photon count rate by 14 orders of magnitude from initially about
1015 photons/s. In addition, a small shutter from a common digital camera is inserted
to mechanically interrupt the optical path in the sequence during the preparation of the
BEC. Behind the interference filters, the divergent fluorescence light is focused using
an aspherical lens doublet (C230260P-B) into a multimode fibre (50µm core radius)
guiding the fluorescence light to the fibre coupled SPCM. The entire optical setup is
surrounded by a tube system to shield the detection system from any kind of stray and
ambient light. About 60% of the initially collected fluorescence light reach the SPCM
after passing through all components. Due to the quantum efficiency of 42% of the
SPCM the estimated detected photon rate for one atom is about 80 kHz. In the SPCM,
each detected photon produces a TTL pulse. These pulses are detected by a counter
card (NI 6023 E from National Instruments) and are binned in time intervals of 10 to
100ms depending on the measurement.

Figure 4.3(a) shows two typical fluorescence signals recorded by our detection system.
A step function can be observed in which each step corresponds to one atom. As each
atom scatters, on average, the same amount of photons, the step size is constant. Here,
the four equidistant dashed lines indicate the discrete steps corresponding to zero to
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(a) Two typical fluorescence signals of single atoms
loaded in a high gradient MOT. The detected
pulses are binned in time intervals of 100 ms. After
a detection time of 3 s the cooling light is switched
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Figure 4.3: Detection of single atoms in a MOT.

three atoms, where a binning time of 100ms is chosen. Therefore, the count rate per
atom can be deduced to be 10 kHz. The discrepancy between the theoretically expected
count rates and the measured ones can be mainly attributed to a non perfect alignment
of the imaging optic, including the fibre coupling. In particular, the position of the high
numerical objective along the optical axis is critical. A deviation of its position from the
optimal working distance results in an increased spot size at the position of the pinhole.

The experimental sequence for the traces as shown in figure 4.3(a) starts with loading
atoms in a shallow MOT for 20ms, followed by ramping up the magnetic field gradient
in 20ms to 300G/cm, as described in section 4.1. After a 3 s high gradient magnetic field
stage the cooling light is switched off by an AOM, followed by switching off the magnetic
field 10ms later. The background scattering light due to the MOT laser (cooling and
repumping laser) in addition to the dark count rate is inferred from the last 500ms of
the detected traces, when both lasers are on again. This yields a typical background
light level of about 20 kHz.

Besides the loading of atoms also a two-atom loss event is observed in figure 4.3(a). This
loss process is attributed to a cold collision, dealt with in the next section.

Figure 4.3(b) shows a histogram of 499 traces as shown in figure 4.3(a). For each data
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Figure 4.4: Poissonian distribution corresponding to the histogram of figure 4.3(b):
The experimentally measured probability distribution (red dots) is compared with
the theoretical Poissonian distribution (black squares) for an expectation value of
2.15± 0.09. The statistical error for the measured probability is below the resolution
of the graph.

set the background rate has been subtracted separately to eliminate long time drifts.
Each peak can be attributed to an atom number N indicated by the vertical dashed
lines. Up to 6 peaks can be clearly distinguished. The probability distribution of the
detected number of atoms is described by a Poissonian function

P (N) =
λN

N !
e−λ, (4.3)

describing a distribution with discrete events N and large repetition rates. The Poisso-
nian distribution for the histogram in figure 4.3(b) is plotted in figure 4.4. The expecta-
tion value λ is calculated to be 2.15±0.09 and the corresponding theoretical distribution
is plotted for comparison. The desired expectation value of the Poissonian can be ex-
perimentally adjusted by changing the loading time and the magnetic field gradient of
the shallow trap stage. Additionally, the detuning of the cooling laser light during the
shallow trap stage as well as during the high gradient trap stage affects the distribution.
However, the detuning during the detection time also has an effect on the count rate per
atom. Hence, the detuning is optimized to yield a large scattering rate, whereas the first
stage of the experimental run (shallow trap) is used to adjust the expectation value.

Shot noise limit

The count rate for each peak is Poissonian distributed, too. However, for the large
expectation values of the Poissonian of the order of 2000 counts/100ms, it can be well
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Figure 4.5: Width of the count rate distribution in comparison with the shot noise
as a function of the atom number: The shot noise limit is plotted as black squares.
The red dots indicate the measured standard deviation of the raw data. The blue
triangles correspond to the width of the peak after subtracting the background from
each trace, independently.

described by a Gaussian function. The width of the peak should be as small as possible
to ensure that neighbouring peaks do not overlap, and thus to enable the distinction of
the number of trapped atoms. The lower limit is given by the shot noise occurring due
to statistical fluctuations of the light field. The shot noise is proportional to

√
NPhoton,

where NPhoton is the average count rate of the considered peak. In figure 4.5 the shot
noise and the standard deviation for each peak of the histogram are plotted. A clear
deviation of the experimentally measured widths and the theoretical lower limit can be
observed. To distinguish between short- and long-term drifts the noise of the raw data is
compared to the background adjusted values. For zero and for a low number of atoms the
measured width is thereby reduced by about 25%. This fraction of the noise is caused
by long-term instabilities of the laser power. The measured background fluctuations
are about 5% within 5min, whereas a measurement of 500 experimental runs including
the cooling time for the magnetic coils takes 30min. This drift of the background light
can also be observed in figure 4.3(a) between the two traces during the last 500ms. It
arises because of polarization changes of the MOT light while passing through the fibre
resulting in power fluctuations due to a PBS after the fibre. The residual deviation
from the shot noise limit for no atoms loaded can be attributed to short time power
instabilities changing the amount of stray light. For an increasing number of atoms, the
discrepancy between the measured noise and the shot noise limit grows as the power
instabilities result not only in stray light variations but also in a fluctuating photon
scattering rate per atom.
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4 Single Cs atoms in a cold cloud of Rb atoms

The main contribution (45%) to the background light is given by the stray light of beam
−x’ (figure 4.1). Each beam separately shows the same fraction of noise as the measured
width of the peak corresponding to no atoms (figure 4.3(b)). In order to approach the
shot noise limit, the power of the cooling and the repumping light can be actively
stabilized using the power stabilization setup of the dipole trap beams explained in
section 3.7.1. This would allow to shorten the binning time without loosing information
about the trapped atom number. In addition, interferences between counter-propagating
or orthogonally oriented beams can occur in each MOT. Even if in one dimension there
are no interferences, due to the orthogonal polarization of the counter-propagating MOT-
beams, the situation changes in the complex case of three dimensions [131]. Then atoms
can jump between the maxima of the interference pattern. The interference can be
omitted by wiggling one mirror in each beam with different modulation frequencies using
piezoelectric stacks. Thereby, the fixed phase relation of the MOT beams is disturbed.
This decreases the standard deviation of each peak by about 5%.

Furthermore, the fluctuations in the count rate can be reduced by a stronger confinement
of the single atom in the MOT: The constructed detection setup offers a field of view of
60µm given by the magnification factor of 5 of the imaging system in combination with
the 300µm pinhole. In comparison, the maximum MOT diameter was determined in
section 4.1 to be 30µm. Thus the alignment of the detection setup with respect to the
MOT is critical. Short-time or day-to-day variations of the MOT beam power balancing,
resulting in position changes of the trap centre, may lead to a non-centred image of the
MOT at the pinhole. Thereby, the atom oscillating in the trap may temporarily leave
the field of view causing count rate fluctuations. Decreasing the MOT volume the
detection setup is less prone to the MOT alignment and the count rate is more stable.
To reduce the MOT volume the magnetic field gradient can be increased. In our setup
the maximum magnetic field of 300G which can be applied is limited by the power
consumption of approximately 300W of the coil system.

4.3 Cold collisions

The lifetime of a single atom in a MOT is determined by the collision rate with the
background gas. For a background pressure of 10−11 mbar the lifetime is up to 100 s. For
more than one atom, inelastic collisions can take place, where two atoms simultaneously
leave the trap. The black graph in figure 4.3(a) shows such a two atom loss after a
detection time of 500ms. The rate of these inelastic collisions depends quadratically on
the number of trapped Cs atoms. These so-called cold collisions are discussed in detail
in several review articles [132, 133] and have already been analyzed in a single Cs atom
MOT in reference [134]. However, this kind of inelastic collisions can also take place as
heteronuclear collisions. In the next section, the inter-species collision rate of Rb and
Cs is investigated in a strongly imbalanced Rb-Cs mixture. Before, I will introduce the
origin of inelastic cold collisions in a MOT.

These inelastic cold collisions can be differentiated into ground state and light-induced
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4.3 Cold collisions

Figure 4.6: Schematic of the molecular potentials corresponding to ground state
and light-induced collisions for alkalis.

collisions. The first class of collisions is not limited to MOTs but is also present in pure
magnetic traps. Here, the dominating processes are hyperfine state changing collisions
occuring due to the spin exchange or dipolar relaxation interactions. Both of them are
explained in detail in chapter 2. Therefore, only light-induced collisions are discussed
here.

We assume two colliding alkali atoms such as Rb and Cs trapped in a MOT. Figure 4.6
schematically shows three molecular potentials corresponding to ground state collisions
(S + S) and light-induced collisions (S + P1/2 and S + P3/2), where the ground state
and the two excited states of the D1- and D2-lines are denoted with S, P1/2 and P3/2,
respectively. Driving the D2-transition by resonant laser light with a frequency ω, an
atom can be excited to the P3/2-state. Simultaneously, a collision between this atom
and a ground state atom can take place. The homonuclear molecular potential for these
excited states is characterized by a long-range interaction potential scaling with −C3/r

3

occuring due to dipole-dipole interaction. The quasi-molecules are accelerated by this
attractive potential towards the potential minimum leading to a decreasing internuclear
distance of the atom pair.

If the collision time exceeds the spontaneous decay time, the quasi-molecule can relax
to the S + S ground state by emitting a photon with energy ~ ω − ∆, which is red
detuned with respect to the excitation photon. Here ∆ denotes the potential difference
between the potential energy during the excitation and the one during the de-excitation.
The amount of ∆ is converted to kinetic energy and shared between the colliding atoms
according to their mass ratio. This exoergic process is called radiative escape [135].
Depending on the absolute value of ∆, it results either in heating, if the capture velocity
is larger than the velocity of the atoms, or in trap loss.
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4 Single Cs atoms in a cold cloud of Rb atoms

Quasi-molecules can reach the short range potential, if they do not relax into the ground
state during the collision time. Here they can undergo a change in fine structure due
to the intersection of the molecular potentials S + P1/2 and S + P3/2, and leave the
short-range interaction region. The energy difference corresponding to the fine splitting
is also converted into kinetic energy. For Cs (Rb) the D1 and D2-lines differ by 17THz
(7THz) in frequency corresponding to a kinetic energy of kB · 800 K (kB · 340 K), shared
between the colliding atoms according to their mass ratio. In any event, this collision
process changing the fine structure results in a loss of atoms. These cold collisions were
theoretically modelled for the first time by [136]. The homonuclear loss rate constants
for Rb and Cs are determined to be βRb = 1.2 · 10−11 cm3/s and βCs = 5 · 10−12 cm3/s,
respectively [137].

4.4 Single Cs atoms in the presence of Rb

In a first experiment we use single Cs atoms in a MOT to probe a Rb MOT. Information
is deduced from the dynamics of the Cs atoms detected through the fluorescence signal.
I have determined the inter-species coefficient for heteronuclear cold collisions in an
imbalanced Rb-Cs-MOT thereof.

For these experiments both species have to be trapped simultaneously. To ensure a low
loading rate and trapping of only single Cs atoms, a high gradient MOT is required as
explained in section 4.1. This implies that also Rb has to be stored in a high gradient
magnetic field. Hence, the number of Rb atoms is reduced with respect to standard
MOTs. However, the number of trapped atoms of the two species can differ by one to
three orders of magnitude, the final magnetic field gradient being the same, though.

Using equation (4.1) the following parameters are adjusted to operate the Rb and Cs
high gradient MOTs in two different regimes of the atom number: For the Rb MOT
the radius rRb is 7 times larger than in the case of a single Cs atom MOT, increasing
the loading rate by a factor of about 50. In addition, the Rb-UHV MOT is loaded by
transferring atoms from a vapour cell MOT (chapter 3). This atomic beam provides
precooled Rb atoms (v̄Rb < v̄Cs) and a local enhancement of the Rb atomic density
(nRb > nCs). Hence, the loading rate as well as the equilibrium Rb atom number can be
adjusted by changing the atomic flux. Experimentally, it can be realized by changing the
power and detuning of the MOT beams of the vapour cell MOT. As a trade-off, during
the experimental run, the final magnetic field gradient is chosen to be 270G/cm, which
allows trapping and probing single atoms by adjusting the detuning of the cooling laser
light with respect to the cycling transition, but at the same time increases the loading
rate of the Rb atoms.
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4.4.1 Determination of the number of Rb atoms

Detection of atom numbers down to several tens of atoms cannot be realized by stan-
dard photodiodes. Instead, we use an APD (C30902EH from PerkinElmer, responsivity
ResAPD = 40A/W) operated below the breakdown voltage. Assuming 50 Rb atoms,
trapped in the MOT, the fluorescence power can be estimated to be approximately
240 pW. The only optical access available for detection of the atoms is along the Ioffe
axis (y-axis in figure 4.1), as for these experiments neither optical pumping light nor
the dipole trap beams are used. A convex lens with a focal length of 40mm is chosen
to collect the fluorescence light. The resulting solid angle Ω is calculated to be 0.056 π
reducing the detected fluorescence of 50 atoms to 3.4 pW. This corresponds to 1.4% of
the entire fluorescence power. An interference filter for 780 nm (transmission TIF=90%
at 780 nm) removes the ambient light as well as the Cs fluorescence light. A lens doublet
(F810FC-780 from Thorlabs) with a focal length of 35.9mm couples the fluorescence
light into a multi-mode fibre with a numerical aperture of NA=0.29. Afterwards, the
light is focused by an aspheric lens pair (C230220P-B from Thorlabs) on a 0.2mm2 chip
of the APD, followed by a transimpedance amplifier. The quantum efficiency QE of the
APD is specified to be 77%. In order to increase the output voltage a transimpedance
resistor RTI of as large as 10MΩ is chosen. Afterwards the signal is again amplified by
a factor of G = 22. To suppress high-frequency noise caused by the electronics used, the
signal is low-pass filtered by inserting a RC-filter with a cutoff-frequency of 10Hz which
considerably improves the signal to noise ratio.

The number NRb of Rb atoms is given by

NRb =
PMOT

PRb

, (4.4)

where PMOT denotes the fluorescence light of a MOT with NRb atoms and PRb =
~ ω ΓRb/2 is the fluorescence power of one atom, assuming a saturation parameter much
larger than unity, which can be assumed for MOTs [138]. The MOT fluorescence PMOT

is proportional to the detected voltage Udet taking into account the following corrections

PMOT =
Udet

Ωeff · TIF · Tfibre ·G ·RTI · ResAPD ·QE · (1− L)
. (4.5)

Here, Ωeff is defined as the effective solid angle considering the numerical apertures of
the lenses and the fibre, and L denotes the entire loss at the optics used. The correction
factor L includes the reflectivity of the optical surfaces and the absorption. Thus, an

Ωeff TIF Tfibre G RTI ResAPD QE L

8 0/00 90% 60% 22 10MΩ 40A/W 77% 33%

Table 4.1: The correction factors included in equation (4.5) are listed.

63



4 Single Cs atoms in a cold cloud of Rb atoms

loading of the
Rb MOT

detection
of both MOTs

ramping up
magnetic

field

MOTs
off

b
ac

k
g
ro

u
n
d

SPCM

Rb cooling
light

Cs cooling
light

1000 1500 3000 400
200100

time (ms)

magnetic
field 0 G/cm

270 G/cm

Rb and Cs
repumping
light

Figure 4.7: Experimental sequence to load an imbalanced Rb-Cs-MOT. The blue,
red, yellow, and green bars indicate the Cs and Rb cooling light, the repumping light
of both MOTs, and the SPCM detection time, respectively. The black solid line
shows the time evolution of the magnetic field.

output voltage Udet = 1 V corresponds to an atom number of NRb = 11000. The main
uncertainty of this relation is given by the responsivity of the APD, which depends non-
linearly on the operating voltage and on the fibre coupling efficiency Tfibre, which is only
estimated to be 60%. Therefore, the total atom number is only precise to a factor of 2,
however, the fluctuation of the relative atom number is less than 2%.

4.4.2 Experimental sequence

The detailed experimental sequence to load an imbalanced Rb-Cs-MOT is schematically
drawn in figure 4.7. Initially, the magnetic field is ramped up within 8ms to the final
gradient of 270G/cm. The Rb-MOT is loaded for 2.5 s by the atomic beam from the
vapour cell MOT. Afterwards the Cs cooling laser light is switched on by means of an
AOM. Simultaneously, the detection of the single Cs atoms by the SPCM is started and
the fluorescence is recorded for 3 s. Then, the cooling light of both MOTs is switched off
and 100ms later the magnetic field is lowered to zero. Here, all atoms are lost. Switching
on the cooling light at the end of the sequence allows to determine the background light
(stray and ambient light) for each trace separately. The repumping light for both MOTs
and the Rb atomic beam is present during the entire sequence. The latter one ensures
a constant number of trapped Rb atoms.

The D2-lines of the two species are separated by 72 nm. Investigating the influence of
the laser beams on the non-resonant species we have observed that the laser light does
not affect the non-resonant species.
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(a) Two typical Cs fluorescence signals (red and
black solid lines) in the presence of about 110 Rb
atoms.
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(b) Two typical Cs fluorescence signals (red and
black solid lines) in the presence of about 1200 Rb
atoms.
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(c) Two typical Cs fluorescence signals (red and
black solid lines) in the presence of about 2300 Rb
atoms.
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(d) Two typical Cs fluorescence signals (red and
black solid lines) in the presence of about 3000 Rb
atoms.

Figure 4.8: Fluorescence signals of single atoms loaded in a high gradient MOT
for four different numbers of Rb atoms: The detected pulses are binned in time
intervals of 20 ms. Within the grey region, the cooling light and the magnetic field
are switched off. During the last 200 ms all MOT beams are switched on again to
determine the background light level (yellow range). The horizontal dashed lines
indicate the fluorescence steps, each corresponding to one additional atom. Note the
different scale.

4.4.3 Dynamics in the single Cs atom MOT in the presence of Rb

Cs fluorescence traces have been recorded for Rb atom numbers in the range of 0 and
3300Rb atoms, where the Rb atom number was determined by equation (4.4) and (4.5).
All data are sorted by NRb, which is binned in steps of 220Rb atoms. Different dynamics
of the single Cs atom MOT can already be seen in the single recorded traces. An example
of two typical traces for four different Rb atom numbers is plotted in figure 4.8. For an
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4 Single Cs atoms in a cold cloud of Rb atoms

almost negligible Rb atom number (figure 4.8(a)) a fast loading of Cs can be observed
with only few loss features. In contrast, only a few loading events can be found for large
Rb atom numbers (figure 4.8(d)). Moreover, loss processes are much more frequent and
dominated by single-Cs collisions. All the loading events are followed, within 100ms, by
an atom loss. Within this range of the Rb atom number many traces do not show an
event at all. The dynamics of the single Cs atom MOT in the presence of Rb can be
described by the following rate equation

dNCs

dt
= R(NRb)− γ NCs − βRbCs

∫
nRb(r, t) nCs(r, t) d3r, (4.6)

where γ, βRbCs and R(NRb) denote the background collision rate of Cs, the inelastic
inter-species collision rate constant, and the loading rate of Cs as a function of the Rb
atom number, respectively. Cs-Cs collisions leading to a simultaneous loss of two Cs
atoms rarely occur due to the low Cs density. In particular, the probability of Cs-Cs
collisions is proportional to N2

Cs. Thus, the more Rb atoms the less Cs-Cs collision
events, as the Cs atom number decreases with the number of Rb atoms increasing. An
event as shown in figure 4.8(a) is one of the very few observed ones. Therefore, Cs-Cs
collisions can be neglected. The density distributions of the two clouds are given by

nCs(r, t) = n0
Cs(t) · e

− r2

w2 , (4.7)

nRb(r, t) = n0
Rb(t) · e

− r2

(4·w)2 , (4.8)

here, w being defined as the 1/e-radius of the Cs-cloud. For Rb the size of the cloud
is four times larger, mainly due to the larger MOT beam size and the different cooling
light detuning. The peak densities can be calculated to be

n0
Cs(t) =

NCs(t)

π3/2 w3
, (4.9)

n0
Rb(t) =

NRb

64 π3/2 w3
. (4.10)

Here, the Rb atom number is assumed to be time-independent. Single Cs atoms do not
affect the Rb cloud with several hundred Rb atoms. However, Rb-Rb cold collisions and
collisions with background particles limit the lifetime of the Rb MOT, thereby reducing
the Rb atom number, if there is no reloading. Experimentally an equilibrium between
the loading and the loss rate is achieved by continuously loading the Rb-MOT using the
atomic beam from the vapour-cell MOT, to make the total Rb atom number to remain
constant. After integrating the last term in equation (4.6) the rate equation can be
rewritten as

dNCs

dt
= R(NRb)− γ NCs(t)− βRbCs

NRb NCs(t)

(17 π)3/2 w3
. (4.11)

In order to determine the first term, the loading rate of the detected traces is plotted
as a function of the Rb atom number. Figure 4.9 shows a linearly decreasing loading
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Figure 4.9: The loading rate of Cs as a function of the Rb atom number. The red line
is a linear fit to the data yielding R0 = (1.48±0.06) s−1 and α = (2.3±0.3) ·10−4 s−1

corresponding to equation (4.12).
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Figure 4.10: The loss rate of Cs as a function of the Rb atom number. The vertical
dashed lines devide the graph into three sections. Section I, II and III denote the
regions with increasing, constant and decreasing loss rate. Details are explained in
the text.
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Figure 4.11: The ratio of the loading and loss rate of Cs as a function of the Rb
atom number. According to figure 4.10 the vertical dashed lines devide the graph in
three sections.

rate for an increasing number of Rb atoms. Hence, the loading rate R can be written as
a function of the Rb atom number

R(NRb) = R0 − α NRb. (4.12)

Here, R0 denotes the loading rate of Cs without Rb and α is the proportionality factor.
The parameters can be determined from a fit to be R0 = (1.48 ± 0.06) s−1 and α =
(2.3± 0.3) · 10−4 s−1.

In contrast, the loss rate, plotted in figure 4.10, does not show a monotonic behaviour,
but it can be divided into three sections: Within the first section (I) covering the range
of zero to 1000Rb atoms, the loss rate increases with a rising number of Rb atoms.
A constant loss rate of 1.9 atoms/s follows for higher Rb atom numbers up to 2300Rb
atoms (section II). For even larger Rb atom numbers the loss rate decreases (section
III).

The evolution of the loss rate depending on the number of Rb atoms can be explained
by regarding the ratio of the loading to the loss rate presented in figure 4.11. Here,
within section I the loading rate dominates the dynamics of the single Cs atom MOT.
However, although the loading rate decreases, leading to less captured Cs atoms, the
loss rate is seen to increase. Hence, the enhancement of losses has to be a two species
effect and can probably be attributed to cold collisions between Cs and Rb discussed in
section 4.3. In this range of Rb atom numbers, where the loading rate exceeds the loss
rate, the mean Cs atom number depends on the loading and detection time, which can
also be seen in the fluorescence traces of figure 4.8(a). The Cs atom number increases
continuously with time until the MOT is switched off.
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(a) Histogram of the single Cs atoms fluorescence
signal in the presence of about 110Rb atoms.
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(b) Histogram of the single Cs atoms fluorescence
signal in the presence of about 1200Rb atoms.
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(c) Histogram of the single Cs atoms fluorescence
signal in the presence of about 2300Rb atoms.
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(d) Histogram of the single Cs atoms fluorescence
signal in the presence of about 3000Rb atoms.

Figure 4.12: Histogram of the single Cs atoms fluorescence signal for four different
Rb atom numbers: The detected pulses are binned in time intervals of 20ms each.
The red lines are Gaussian fits to the peaks.

For higher Rb atom numbers, entering section II and III, the ratio between loading and
loss rate tends to unity as shown in figure 4.11. Therefore, the evolution of the loss rate
is determined by the loading rate. Within these two sections each loaded atom leaves
the MOT again during the detection time. Thus, the loading and loss rates are identical
in this region. In this regime the Cs system is in steady state. Steady state implies that
the average Cs atom number does not change with an increasing loading and detection
time.

Thus, for a Rb atom number larger than 1000, the time derivative of NCs can be set
to zero and the steady state number of Cs atoms is given by a simplified version of
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Figure 4.13: Expectation value of the Cs Poissonian distribution as a function of
the Rb atom number. The red solid line is a fit of equation 4.13 to the data within
the steady state regime. The red dashed line is the extrapolation to the non-steady
state regime of the Cs MOT.

equation (4.11) as

NCs =
R0 − α NRb

γ + βRbCs
NRb

(17 π)3/2 w3

. (4.13)

The steady state Cs atom number corresponds to the expectation value of Poissonian
distributed Cs atom numbers measured for one set of experimental parameters. From
the change of the mean Cs number as a function of the number of trapped Rb atoms,
the inter-species collision rate constant βRbCs can be deduced.

Four histograms of Cs are shown in figure 4.12 for a different amount of Rb present. The
Cs atom number decreases obviously for an increasing NRb. In figure 4.12(a) for about
NRb = 110 seven peaks corresponding to up to six atoms can be observed, whereas in
figure 4.12(d) at most one atom is detected. The expectation values of these Poissonian
distributions as a function of the Rb atom number are plotted in figure (4.13). A strong
decay of the expectation value with increasing NRb is observed. The red solid line shows
the fit of equation (4.13) to the data, where only γ and βRbCs are free parameters and
the others are fixed from the results of equation (4.12). Following [104] and averaging
about all Zeeman states, the mean radius of the Cs cloud is calculated to be w = 6.6 µm
considering the magnetic field gradient and the laser beam parameters, such as intensity,
waist, and detuning. Within the steady state regime the fit well reproduces the data.
Extrapolating the fit to the region below 1000Rb atoms, where the Cs system is not
in steady state, the data and the fit deviate. Here, the equilibrium Cs atom number
given by the extrapolation exceeds the measured expectation value, as the measured Cs
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atom number is limited by the detection time. The inelastic inter-species collision rate
constant is determined to be βRbCs = (1.7±0.6) ·10−10 cm3/s. It includes all mechanisms
of inelastic cold collisions summarized as ground state and light-induced collisions. Our
measured value is in good agreement with measurements of the Rb-Cs collision rate
constant done in a balanced Rb-Cs MOT by [139]. The main uncertainty of the collision
rate constant is given by the determination of the absolute value of the Rb atom number,
which is only precise to a factor of 2. Thus, the systematic error of βRbCs is obtained to
be
(
+1.7
−0.85

)
· 10−10 cm3/s.

This measurement represents a significant step towards controlled doping of a BEC and
already illustrates the use of single neutral atoms as a non-destructive probe to investi-
gate many-body systems, where the overall state of the Rb cloud remains unmodified.
The dynamics of the single atoms has enabled us to extract the inelastic inter-species
collision rate constant. As both species are stored in presence of near resonant light,
these cold collisions are dominated by light-induced interactions. In further experiments
we aim on constraining the interaction to ground state collisions by storing both species
in far-off resonant dipole traps. The ground state collisions are of interest in, e.g.,
applications for quantum information processing.
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5.1 Ultracold heteronuclear molecules

Associations of ultracold molecules in the vicinity of a Feshbach resonance are of broad
interest as these weakly bound molecules can be used as a first step to produce molecules
in the rovibrational ground state. In particular, heteronuclear molecules in the rovibra-
tional ground state offer new research perspectives due to their relatively large per-
manent dipole moment. These polar molecules are characterized by strong long-range
dipole-dipole interactions. Hence, they provide a basis for many further experiments,
e.g. the investigation of new quantum phases [49] or the production of dipolar BECs
[47]. The permanent dipole moment of the bosonic 41K87Rb molecule is predicted to
be about 0.8Debye [140]. In addition, spectroscopy measurements of these Feshbach
molecules yield new information to improve the molecular potential, which is of partic-
ular importance in order to transfer these molecules to the rovibrational ground state.
A remarkable property of these near-threshold molecules is their universal behaviour,
which has been discussed in section 2.3.3.

So far a number of different homonuclear shallow dimers have been produced as 133Cs
[60, 61], Na [62], 87Rb [63] and also fermionic heteronuclear 40K87Rb molecules [64, 65,
58]. The only bosonic heteronuclear molecules have been generated by the two isotopes
85Rb and 87Rb [66]. Due to their small difference in mass the dipolar moment of these
molecules is negligibly small.

Different kinds of association techniques have already been developed in the field of
ultracold gases. The most common technique is to produce the molecules by ramping
the homogeneous magnetic field across a Feshbach resonance from the negative to the
positive scattering length side [54]. The strong coupling between the atomic and molec-
ular state leads, in the dressed atom picture, to an avoided level crossing. Sweeping the
magnetic field adiabatically across the resonance allows the efficient conversion of atoms
to weakly bound molecules. Remaining atoms are removed by a resonant laser pulse.
Afterwards the pure molecular ensemble is dissociated to atoms by rapidly sweeping the
magnetic field across the resonance to the negative scattering length side. The number of
atoms after this experimental procedure gives information on the number of associated
molecules. The disadvantage of this method is a heating of the ensemble which occurs
due to three-body recombination losses close to the resonance. This can be avoided using
alternative methods which either couple the entrance and molecular state by applying a
radio frequency [57, 58] or modulate the homogeneous magnetic field [59]. As the latter
association method is used in our experiment, this method will be introduced in more
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(a)

(b)

Figure 5.1: (a) Scattering length in the vicinity of a Feshbach resonance. (b) Bind-
ing energy of Feshbach molecules. The dashed vertical line indicates the Feshbach
resonance position. The dashed horizontal line marks the background scattering
length. The dissociation threshold of the two colliding atoms is indicated by the solid
horizontal line.

detail.

In the universal regime, for positive scattering lengths the binding energy of the weakly
bound molecules depends quadratically on the magnetic field (figure 5.1). An additional
sinusoidal magnetic field modulates the Feshbach field and hence the binding energy with
the corresponding modulation frequency. Feshbach molecules can be created when the
modulation frequency is resonant to the binding energy of the molecules at the chosen
background magnetic field. This assumption is only valid for zero temperature atomic
clouds. For a finite temperature the atoms populate different continuum states. The
population of the continuum states follows the Boltzman distribution. The resonance
frequency for an atomic ensemble of temperature T at a magnetic field B is modified to
be

ω =
Eb(B)

~
+

kB T

~
. (5.1)

The technique of molecule association by modulation of a dc-magnetic field allows not
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only for the production of molecules, but at the same time provides a spectroscopy
measurement of the binding energy which gives important information on the form of
the molecular potential. Furthermore, short association times without crossing the res-
onance reduce the heating effect due to minimizing three-body recombination losses.
Equation (5.1) directly shows different properties. Inside the universal regime the res-
onance modulation frequency is proportional to the square magnetic field due to the
quadratic dependence of the binding energy on the magnetic field. For a fixed magnetic
field the resonance frequency is shifted to larger values for increasing temperature. More
precisely, a finite temperature results in a kinetic energy distribution which is described
by the Boltzmann distribution and discussed in the next section. The higher the tem-
perature the broader the energy distribution. The resonant behaviour of the modulation
frequency is washed out and the association efficiency decreases for a fixed frequency
with increasing temperature. Hence, ultracold ensembles with temperatures as low as
possible are required to efficiently produce molecules.

5.2 Association of ultracold bosonic KRb molecules

As described above, the association of weakly bound molecules requires low temperatures
and an accessible and sufficiently broad Feshbach resonance. In the following section the
preparation of an ultracold 41K-87Rb mixture is introduced. This experimental setup is
similar to the Rb-Cs experiment described in more detail in chapter 3. Hence, only a
short overview of the experimental sequence and some specific characteristics are given.
The detailed description of the bosonic K-Rb experiment in Florence can be found in
the thesis of Jacopo Catani [141].

5.2.1 Experimental preparation of an ultracold K-Rb mixture

Both bosonic species Rb and K are initially trapped in two separated two-dimensional
magneto-optical (2D-MOT) traps [142] and transferred, by radiation pressure, to a com-
mon three-dimensional MOT (3D-MOT) in the main chamber of the ultra high vacuum
system. The 2D-MOTs present atom sources of high flux of the order of 1011 atoms/s
and thereby facilitate short loading times of the two-species 3D-MOT of about 10 s.
The laser setup of Rb is similar to the one in chapter 3 consisting of a tapered amplifier
(Toptica: TA-100) and a diode laser in Littrow configuration to provide the cooling and
repumping light. In the case of 41K the cooling scheme is more complicated as a differen-
tiation between a cooling and repumping transition is not possible due to the marginal
hyperfine splitting of the excited electronic state1, which is at most 13MHz [143]. Hence,
cooling and repumping light are of the same significance. However, during this thesis the
same notation for the transitions is used as for Rb. The laser light is provided by a high
power laser diode with an external cavity (DLX110 from Toptica) delivering an output

1The hyperfine structure of K is depicted in Appendix A.
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Figure 5.2: Simplified schematic of the experimental setup: Atoms are trapped in
the centre of the crossed dipole trap beams (red). Two coils in Helmholtz config-
uration (brown cylinders) provide the homogeneous offset field. An additional coil
(green cylinder) produces the magnetic field modulation.

power of 800mW. An array of AOMs generate the required frequencies. The cooling
laser frequency is detuned by -1 ΓK, whereas the repumping light is detuned by -4 ΓK with
respect to the corresponding transition2. For both wavelengths (780 nm and 767 nm) the
same optics and polarization maintaining fibres are used. Special dichroic retardation
plates allow to independently adjust the polarization. As in the Rb-Cs-system, both
species are optically pumped into the doubly polarized states |f = 2, mf = 2〉 after a
compression and molasses stage. The spin-polarized mixture is transferred into a purely
magnetic trap. A unique feature of this experimental setup is the millimetric Ioffe trap,
which is a kind of Ioffe-Pritchard trap on the scale of 1× 2 cm2 implemented directly in
the vacuum [144]. Large trap frequencies as obtained by the millimetric trap, which are
ωρ = 2π · 204Hz and ωax = 2π · 16.5Hz for 87Rb in the doubly polarized state, ensure
strong confinement and evaporation times as low as 15 s. According to their mass ratio
the trap frequencies of 41K are given by ωK =

√
87/41 ωRb ≈ 1.4 ωRb. The trap centres

of the quadrupole and the millimetric trap are separated by 27mm. The two quadrupole
coils of the MOT system mounted on a translation stage move the atomic clouds towards
the millimetric trap. Further reduction of the temperature and increase of the phase
space density are achieved by species selective forced evaporative microwave cooling act-
ing on Rb. Due to the difference in the hyperfine splitting of more than 6GHz no atomic
transitions of K are driven. However, K is simultaneously cooled sympathetically via
elastic collisions with the cold bath of Rb. Due to a large inter-species s-wave scatter-
ing length of 164 a0 the K temperature decreases efficiently. The evaporation process is
manually stopped at about 1.5 µK and the atomic mixture is transferred to a crossed

2The natural linewidth and the wavelength of the D2-transition of K are ΓK = 2 π · 6.2 MHz and
λK = 766.5 nm, respectively.
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far-detuned optical dipole trap, as in this kind of trap all magnetic substates can be
trapped. In addition, it provides the possibility of using an external magnetic field as a
free parameter. A Yb-fiber laser with a wavelength of 1064 nm and an output power of
20W provides a far detuned dipole trap with respect to the D1 and D2 lines of Rb and
K. Using a PBS the output beam is split up for both dipole trap branches. After passing
AOMs, both laser beams, with an initial power of 3W each, are focused to the centre of
the millimetric trap to a waist of 90 µm resulting in a total effective initial trap depth
of 30µK with a trap frequency of 2π·270Hz along the gravitational axis. The power of
the dipole trap beams is ramped up by increasing the RF power of the AOMs within
250ms. After a short overlapping time, in which both, optical and magnetic, traps are
present, the magnetic field is switched off.

Subsequently an adiabatic passage transfers both species to the magnetically anti-
trapped absolute ground state |f = 1, mf = 1〉 to enable the access of Feshbach res-
onances, absent in the |2, 2〉 state and to additionally reduce inelastic collisions. Spin-
exchange collisions are suppressed, as for atomic ensembles at a temperature of 1.5 µK
the kinetic energy of the order of several kHz is not sufficient to change the hyperfine
state: the hyperfine splitting of Rb (K) being h·6.8GHz (h·254MHz). At a magnetic
field of about 7G the Rb sample is transferred adiabatically to the ground state |1, 1〉
by microwave radiation. Remaining Rb atoms in the doubly polarized state are removed
by a resonant light pulse to avoid atom loss due to K-Rb collisions. Afterwards K is
transferred by radio frequency radiation to the |1, 1〉 state. For K atoms no cleaning
light pulse is required.

Further evaporative cooling by lowering the trap depth of the crossed dipole trap reduces
the temperature to about 200 nK. Although the purely optical trap depth for K is smaller
than for Rb, if gravity is included, the combined potential for K is deeper than for Rb due
to their different masses. Therefore, efficient cooling of K is achieved by thermal contact
with Rb. The evaporation process was optimized by tuning the inter-species scattering
length to about 200 a0 applying a homogeneous magnetic field of about 78G, next to a
K-Rb s-wave Feshbach resonance [30]. This increases the elastic collision and thus the
thermalization rate. The magnetic field is produced using the former quadrupole coils
in Helmholtz configuration.

With this configuration at a temperature of 200 nK about 4 · 104 Rb atoms and 3 · 104

K atoms are stored. Further cooling is not successful as, due to the species-dependent
gravitational sag, the spatial overlap of the mixture components vanishes and K is not
in thermal contact with the Rb cloud anymore. Atom number and temperature are
determined after a time-of-flight between 5 and 15ms by absorption imaging.

5.2.2 Association and detection of KRb molecules

To produce ultracold shallow KRb-dimers two s-wave Feshbach resonances are accessible
below 100G. A broad resonance can be observed at about 37G with a width of 34G
and a more narrow one at 79G with a width of 1.2G. The weakly bound molecules are
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Figure 5.3: A typical molecule association spectrum at a magnetic offset field
Bdc=78.25G is shown. A RF modulation pulse of 30 ms was applied. The data
are fitted (red solid line) by the analysis described in section 5.2.

associated by sinusoidally modulating an external homogeneous field. After preparation
of an ultracold mixture in the crossed optical dipole trap the homogeneous magnetic
field is set to a value next to one of the Feshbach resonances at the positive scattering
length side, where weakly bound molecular states exist. Parallel to the Helmholtz coils
a third coil of only eight windings is assembled as shown in figure 5.2. A sinusoidal
signal in the frequency range of 50 to 200 kHz produced by a frequency generator is
amplified using a 200W audio operation amplifier. This leads to a typical modulation
amplitude of 130mG. The pulse has a square envelope and its duration to measure
the lineshapes shown in the following figures varies in the range of 10 to 30ms for the
narrow resonance and up to 1 s for the broad resonance. Throughout this thesis the
modulation is referred to as RF modulation. After this RF pulse and subsequently
ramping down the magnetic field, the remaining atoms are released from the dipole
trap. After a time-of-flight of 5ms and 10ms for K and Rb, respectively, the remaining
atom number is determined separately by absorption imaging. The association of the
heteronuclear molecules is indirectly proved by observing significant atom losses of both
species. As the molecules are associated inside the two thermal clouds of Rb and K,
the dimers may decay into deeper molecular bound states by collisions with unpaired
Rb or K atoms. The difference in binding energy of the shallow and deeply bound
molecular states, which is typically in the range of 100MHz to 10GHz is released and
converted to kinetic energy of the colliding particles. According to the mass ratio of
the atom and molecule, the KRb molecule gains 1/4 or 2/5 of the released energy
depending on the species of the scattered single atom. In general, the trap depth of the
crossed dipole trap, which is about kB · 10 µK, is not sufficient to hold the deeply bound
molecule and the scattered atom. Both of them are lost from the trap. Additionally
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dimer-dimer collisions can take place, but due to the low molecular density atom-dimer
collisions are more probable. Hence, atom loss is a signature of molecule production.
The intrinsic lifetime of Feshbach molecules and the apparent atom loss are discussed in
more detail in the next section. The remaining number of atoms determined after the
modulation pulse at a fixed dc-homogeneous magnetic field depends on the modulation
frequency and yields information on the molecule association efficiency, the lifetime and
the binding energy. Figure 5.3 shows a typical loss feature measured for a dc-magnetic
field of 78.25G and a RF modulation time of 30ms. A broad, asymmetric loss signal can
be observed. The strong asymmetry is attributed to the kinetic energy distribution of
the two thermal atomic clouds. The binding energy is measured for different magnetic
fields for both s-wave Feshbach resonances. The magnetic field calibration is done by
microwave spectroscopy with a resolution limited to about 20mG. In the next section
the analysis of the measured loss features will be described in detail.

5.3 Experimental results and analysis

5.3.1 Association spectrum

For a precise determination of the binding energy the asymmetric lineshape of the
measured loss features has to be analyzed. Quantum mechanically, the association of
molecules can be described by a time-dependent Hamiltonian

H(t) = H0 + HI(t), (5.2)

consisting of the unperturbed part H0 and the interaction part HI(t). The first term
describes the kinetic energy of the atoms and molecules with mass mi separately. The
interaction part HI(t) considers the coupling between the scattering and the molecular
state by RF modulation. It is time-dependent as a time-dependent sinusoidal modulation
is applied. Assuming two non-interacting atomic species K and Rb and the corresponding
heteronuclear molecules KRb, the undisturbed Hamiltonian of this system reads

H0 =
~2 k2

2 mK

â†K âK +
~2 k2

2 mRb

â†Rb âRb −
(
Eb(t)− i

γ

2

)
â†KRb âKRb, (5.3)

where â†K, âK, â†Rb, âRb, â
†
KRb and âKRb are the creation and annihilation operators for a K

or Rb atom and a KRb molecule, respectively. Setting the energy level of the scattering
channel to zero, only the kinetic energy of the incoming colliding atoms contribute to the
Hamiltonian, which corresponds to the centre-of-mass frame of the two colliding atoms
with momentum ~~k and −~~k. The last term of equation (5.3) accounts for the finite
lifetime of the molecules by inserting the decay constant γ. The coupling between the
entrance and closed channel is induced by a sinusoidal modulation with frequency ω of
the applied dc external magnetic field

B(t) = Bdc + b sin(ω t). (5.4)
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Taking this into account the time-dependent interaction Hamiltonian HI(t) becomes

HI(t) = Ω(B(t))
(
âK âRb â†KRb + â†K â†Rb âKRb

)
(5.5)

using the definition of [145] for the coupling strength Ω(B(t)). Considering equation (5.4)
together with the time-dependent Schrödinger equation, coupled amplitude equations
are obtained in [145]. These yield the coupling strength given by the derivative of the
projected eigenstates with respect to the magnetic field

Ω(B(t)) = b ω
∂

∂B′ 〈ΨK-Rb(B)|ΨKRb(B)〉 cos(ωt), (5.6)

where the time-independent part of equation (5.6) Ω0(B) = b ω ∂
∂B′ 〈ΨK-Rb(B)|ΨKRb(B)〉

is called Rabi frequency. If the amplitude b of the magnetic field modulation is small
compared to the width of the Feshbach resonance, the time dependence of the coupling
strength is negligible. Furthermore, the time-dependent modulation of the binding en-
ergy Eb of the shallow molecule in equation (5.3), induced by the oscillating magnetic
field, can be neglected. Equation (5.2) can be rewritten in the Heisenberg form

dâi

dt
=

i

~
[H, âi], (5.7)

which gives differential equations for the annihilation operators âi. As the operators for
different species commute and [â†K, âK] = [â†Rb, âRb] = [â†KRb, âKRb] = 1, three coupled
differential equations can be obtained. Substituting the operators by complex-numbers
(âi → αi) the following non-linear Bloch equations are found

i
dαKRb

dt
=

(
−Eb

~
− i

γ

2

)
αKRb + Ω0 cos(ωt) αK αRb, (5.8)

i
dαK

dt
=

p2

2 ~ mK

αK + Ω0 cos(ω t) αKRb α∗
Rb, (5.9)

i
dαRb

dt
=

p2

2 ~ mRb

αRb + Ω0 cos(ω t) αKRb α∗
K. (5.10)

The experimental observable is the remaining atom number of the two species after
a chosen interaction time. Theoretically, the total remaining atom number at time
t is given by Ntot(t) = NK(t) + NRb(t) = αK(t) α∗

K(t) + αRb(t) α∗
Rb(t). For solving

equation (5.8) the slowly varying amplitude functions αK = α̃K exp(−i ~ k2/(2 mK) t),
αRb = α̃Rb exp(−i ~ k2/(2 mRb) t) and αKRb = α̃KRb exp(i (ω−Ekin/~) t) are introduced,
with Ekin = p2/(2 mRb) + p2/(2 mK). The time derivative of the atom number Ni can
then be written as

Ṅi(t) = αi α̇
∗
i + α∗

i α̇i = α̃i
˙̃α∗
i + α̃∗

i
˙̃αi. (5.11)

Assuming a fast molecular decay the amplitude α̃KRb follows adiabatically the evolution
dictated by the slower RF coupling. In the limit of dα̃KRb/dt = 0 and applying the
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Figure 5.4: Total remaining number of atoms as a function of the RF modulation
time. The solid line is a fit of equation (5.13) to the data, confirming the non-
exponential decay.

rotating wave approximation which neglects all fast oscillating terms, the time derivative
of the total atom number can be written in the simple form

Ṅtot(t) = −Γ N2
tot(t), (5.12)

where an equal number of atoms for both species, K and Rb, is assumed. Equation
(5.12) is equivalent to the well-known rate equation describing two-body loss. Solving
equation (5.12) gives the time evolution of the total number of atoms

Ntot(t) =
N0

N0 Γ t + 1
, (5.13)

where N0 is the total initial atom number and the loss coefficient Γ is defined as

Γ =
γ
2
Ω2

0

4
(
ω − Eb

~ − Ekin

~

)2
+ γ2

. (5.14)

The non-exponential decay of the total atom number is experimentally confirmed. Figure
5.4 shows the remaining total atom number as a function of the RF time described by
equation (5.13).

So far only a fixed value for the relative kinetic energy of the participating particles
was assumed. In real systems the kinetic energy of an atomic ensemble with a non-zero
temperature T is Boltzman-distributed. Therefore, different continuum states of the
scattering channel are populated. In theory, this kinetic energy distribution is taken
into account by convolving the loss rate by the energy distribution ((Γ ∗ g)(E)). The
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energy distribution can be obtained by rewriting the well-known Boltzmann velocity
distribution for a temperature T as

g(E) dE =
2
√

E√
π (kB T )3/2

e
− E

kB T dE. (5.15)

Hence, for a finite temperature the resonance condition is not sharp anymore and the
resonance behaviour is washed out. Including this fact in the calculations by convolving
the effective decay rate with the kinetic energy Boltzman distribution, the observed
asymmetric line shape is well described. The larger the temperature the broader the
distribution. This fact strengthens the importance of working with ultracold atomic
clouds for efficient molecule association. The lifetime γ, the coupling strength Ω and the
binding energy are chosen as free parameters to fit the remaining atom number to the
observed loss feature. To optimize these parameters, the function

χ2 =
∑

i

(Nmeas,i(t)−Ntheo,i(t))
2

Ntheo,i(t)
(5.16)

is minimized (solid lines in figure 5.5). To emphasize the effect of the decay constant
γ, figure 5.5 shows, in addition, a fit (red dashed line) to the measured data where the
molecules are assumed to be stable. The smooth low frequency part of the loss feature
is well described by including the finite lifetime. The sharp step-like behaviour of the
energy distribution can, in addition, be washed out by technical instabilities such as
fluctuations of the magnetic field.

5.3.2 Spatial overlap

It is favourable to further reduce the temperature in order to more efficiently produce
molecules. However, storing two species with different masses in an optical dipole trap
implies different gravitational sags. This leads to a partial overlap of the clouds. As
the gravitational sag is proportional to g/ω2

x, the overlap fraction depends on the trap-
ping frequencies along the gravitational axis and the temperature of the cloud, which
determines, together with ωx, the size of the cloud. Figure 5.6 shows the overlapping
fraction depending on the temperature of the Rb and K cloud for five different effective
trap depths Ueff of the dipole trap. The overlapping fraction can be determined by

nKRb =

∫
V

nK(r) nRb(r) dr∫
V

n2
Rb dr

, (5.17)

assuming a similar density for Rb and K. The density distribution nj(r) of the atomic
clouds in a harmonic potential with trap frequencies ωi is given by

nj(r) =
Nj m

π3/2 dx dy dz

e
−

 y2

d2
y

+ z2

d2
z
+
(x−g/ω2

x)
2

d2
x


, (5.18)
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Figure 5.5: Measured atom loss signals for three different atomic cloud temperatures
in the range of 280 to 600 nK. The remaining atom numbers are measured after a
fixed modulation time of 30 ms around a dc magnetic field of 78.2 G. The asymmetric
lineshapes are well reproduced by the analysis (red solid line). The blue dashed lines
indicate a fit with γ = 0.
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Figure 5.6: The overlapping fraction of two thermal clouds as a function of the cloud
temperature is plotted for five different trap depths, which corresponds to different
trapping frequencies. The experimental data have been taken for a trap depth of
about kB · 9 µK corresponding to an overlap fraction indicated by the red solid line.

where the characteristic length di is defined by

di =

√
2 kB T

mRb ω2
i

. (5.19)

The molecular association data have been taken for an effective trap depth of about
9µK, which corresponds to the red line in figure 5.6. The minimum temperature in our
dataset is about 150 nK corresponding to an overlapping fraction of 60%. The higher
the temperature the larger the overlap fraction. During the experiment the temperature
of the ensemble is adjusted by stopping the evaporation in the dipole trap. Hence,
larger cloud temperatures correspond also to deeper trapping potentials and larger trap
frequencies, resulting in a better overlap. The densest part of the cloud is in the centre
where also the coldest atoms are located. Hence, spatial separation of the atomic clouds
reduces effectively the efficiency of the molecule production. During the data analysis
this is taken into account by adjusting the coupling strength Ω0.

The association efficiency can be optimized by increasing the spatial overlap, e.g., by
increasing the trap frequencies. Another perspective is to add a dipole trap using an
appropriate wavelength which compensates the gravitational sag [146]. This occurs when
the ratio of the potential depths is the same as the inverse ratio of their masses.
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Figure 5.7: Remaining atom number and corresponding temperature of Rb for a
molecular association spectrum. An increase of the Rb temperature on resonance of
the association peak is observed. The Gaussian fit to the temperature data is only a
guide to the eye.

5.3.3 Lifetime of the KRb dimers

The lifetime of weakly bound molecules depends strongly on the specific loss mecha-
nisms dominating in a particular experimental system. Neglecting collisional decay of
molecules, the typical intrinsic lifetime of the dimers ranges between several tens of mi-
croseconds up to tens of milliseconds. The limited lifetime is a result of the molecule’s
coupling to the entrance channel as well as to a spontaneous decay into energetically
lower open channels. The latter decay process occurs due to inelastic spin relaxation
and scales within the universal regime with a−3 [147]. This is a direct consequence
of the large spatial extension of the wave function (rmean=a/2) caused by universality.
The increasing stability when approaching the Feshbach resonance was experimentally
shown for 85Rb [148]. For molecules associated from atomic ensembles in the lowest
energy state as done in our case, an inelastic decay of the molecular state into an open
channel other than the entrance channel is not possible, as the entrance channel is the
only open channel in such systems. Therefore, the intrinsic lifetime of dimers created
by ground state atoms is given by the decay in their entrance channel. As in our system
molecules are not directly imaged, this kind of decay cannot be observed, as no atom
losses are induced. Much longer lifetimes are observed in systems with high rotational
molecular states (l > 0). For a non-zero orbital quantum number the centrifugal bar-
rier arises, which is proportional to l (l+1). This barrier suppresses the decay into the
entrance channel in the same way, as for ultracold atoms only s-wave scattering occurs.
Metastable molecules with lifetimes up to 1 s were recently observed for 133Cs dimers in
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a l -wave state (l=8) [149].

In our experiment, in which the dimers are produced inside an atomic cloud, the pre-
dominant decay process is caused by collisions with further dimers or unpaired atoms.
The molecules associated in the vicinity of the two s-wave Feshbach resonances used, are
in high vibrational states of the rotational ground state. The abovementioned collisions
lead to relaxation into energetically lower vibrational states. This process is referred to
as vibrational quenching [150, 151]. The time derivative of the dimer number nd is then
given by the rate equation

ṅd = −Kad na nd −Kdd n2
d. (5.20)

Here, K ad and K dd denote the loss rates of the atom-dimer and dimer-dimer collisions,
respectively. The dimer density nd during our experimental sequence is much lower than
the atomic density na, which is about 5 ·1011 cm−3 for each species. Hence, the first term
dominates the loss process. The molecules inside the cloud of unpaired atoms undergo
dimer-atom collisions thereby decaying into deeply bound states as explained in section
5.2.2. The released difference in binding energy is converted to kinetic energy and the
colliding particles leave the trap. In addition, secondary elastic and inelastic collisions
with further trapped atoms may occur before the colliding particles leave the trap.
Kinetic energy which is transferred to these additional scattered atoms will heat up the
atomic clouds and therefore leads to additional trap loss. The atom-dimer loss rate scales
with the scattering length a [152, 153], which leads to increasing inelastic atom-dimer
collision rates when approaching the Feshbach resonance. A heating of the remaining
atomic ensemble is experimentally observed as shown in figure 5.7. This heating can
originate from inelastic collisions as described above. It proves that a significant decay of
molecules takes already place during the RF pulse of 10ms due to vibrational quenching.

Experimentally the decay was investigated by measuring the total number of atoms as
a function of the storage time after the molecule association. A K-Rb mixture with a
temperature of 500 nK was produced in the crossed dipole trap for both atomic species in
the |1, 1〉-state. At a fixed magnetic field of 78.02G, the association peak is determined.
Molecules are associated at a radio-frequency of 225 kHz using a RF pulse of 32ms. After
switching off the radio-frequency the storage time is varied. Figure 5.8 shows a fast decay
of the atomic mixture with a time constant of (220± 40) µs. This value is only a lower
limit of the intrinsic lifetime of the shallow dimer, as this graph describes the molecular
decay in presence of unpaired atoms, which by collisions can lead to an enhanced decay
of the molecules. Therefore, the decay rate apparent in figure 5.8 strongly depends on
the density of the unpaired atoms. Hence, most of the KRb dimers associated within the
32ms RF pulse may decay due to the above discussed collisions and their coupling to the
entrance channel already during the RF pulse. The remaining molecules at time 0 s of
the storage time in figure 5.8 decay with the time constant of (220±40) µs. Atom loss due
to the Feshbach resonance can be neglected on this timescale, as the decay measurement
is taken at 78.02G outside the loss feature of the Feshbach resonance, which is plotted
in figure 2.5(b). This Feshbach loss measurement is taken after a storage time of 500ms.

The molecular decay rate can be reduced by lowering the atomic densities, which can be
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Figure 5.8: Decay of the total atom number after association of molecules. At a
magnetic field of 78.02 G molecules are associated by a radio frequency pulse of 32 ms.
The cloud temperature is about 500 nK. After switching off the RF-modulation the
atom number is measured varying the storage time.

achieved by shallow traps or by association of molecules after switching off the trap. A
further method exploits the Stern-Gerlach effect by applying a magnetic field gradient
after the association [63, 60]. The molecular and atomic clouds are separated due to
their different magnetic moments and the decay rate decreases. However, the last method
needs an effective association as well as a sufficiently low decay time. In our case, with a
decay time of about 200µs, it is not applicable. Almost complete suppression of inelastic
collisions could be achieved in principle in three-dimensional lattices with a filling factor
of one atom per each species [154, 155]. Atom-dimer collisions are reduced as well
as dimer-dimer collisions due to the finite potential barrier between two neighbouring
potential wells. In such systems the intrinsic lifetime can be measured directly.

5.3.4 Modulation amplitude dependence

As shown in section 5.1, Feshbach molecules are associated when the modulation fre-
quency ω is resonant to the binding energy Eb = ~ ω of the molecules assuming an
atomic cloud with zero temperature. However, the measured binding energy for a fixed
dc-magnetic field shows a dependence on the modulation amplitude shown in figure
5.9. This can be easily understood by regarding the quadratic behaviour of the binding
energy in the universal regime, which is Eb = κ (B − B0)

2 with curvature κ. The time-
dependent magnetic field including a sinusoidal modulation around the dc-magnetic field
Bdc is given by B(t) = Bdc + b sin ω t according to equation (5.4). The effective binding
energy is given by the time average of the binding energy considering the modulated
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Figure 5.9: Resonance frequency for a fixed dc-magnetic field Bdc of 78.30 G in
dependence on the amplitude b of the magnetic field modulation. A quadratic be-
haviour is observed due to the quadratic dependence of the binding energy on the
magnetic field in the universal regime. The red solid line represents a parabolic fit.

magnetic field

〈Eb〉 = Eb(Bdc) + κ b2/2. (5.21)

The frequency shift induced by the modulation is proportional to the square of the
modulation amplitude b. Experimentally the quadratic dependence of the binding energy
on the modulation amplitude is proved. Figure 5.9 shows the resonance position for the
same magnetic field depending on the modulation amplitude. Hence, to determine and
plot the binding energy depending on the magnetic field in figure 5.10(a), the measured
binding energy of each dataset is extrapolated to a zero modulation amplitude.

5.3.5 Binding energy and Feshbach position

Taking into account all the different corrections and systematic effects affecting the bind-
ing energy, it can be determined for different magnetic fields. The result is plotted in
figure 5.10(a) and 5.10(b) as blue triangles for both of the s-wave Feshbach resonances
[156]. In the experiment we also observe loss features at half the resonance frequency.
Numerical integration of equation (5.8) confirms the observed occurrence of molecule
association at fractional resonance frequencies. This effect is used to extend the ac-
cessible association range to frequencies above the bandwidth of the modulation coil.
In addition to the measured binding energy values, the theoretically predicted binding
energy is plotted in figure 5.10(a) and 5.10(b). The black dashed line corresponds to
the results of the collisional model published in [92]. The measured binding energies
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(a) Binding energy of the KRb dimers in the vicinity of the broad Fesh-
bach resonance at 38 G
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(b) Binding energy of the KRb dimers in the vicinity of the narrow
Feshbach resonance at 79 G

Figure 5.10: Binding energy of the KRb dimers in the vicinity of two Feshbach
resonances at around 38 G and 79G, respectively: The blue triangles are the measured
binding energies and the red dots the remaining number of atoms of a three-body loss
measurement. The black dot-dashed line and the blue solid line show the theoretically
predicted binding energy and the same line shifted by -1G for the FR at 38 G and
by -0.24 G for the FR at 79 G, respectively. The solid red line represents a Gaussian
fit to the remaining number of atoms. The Feshbach positions, determined by the
loss and binding energy measurement, are indicated with the vertical red and blue
dashed lines, respectively. The yellow region marks the universal regime for a > 0.
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deviate obviously from the theoretically predicted ones. Shifting the theoretically pre-
dicted resonance position by −1 G for the broad Feshbach resonance and by −240 mG
for the narrow resonance without changing the shape of the binding energy curve, the
measured data are well described by the theory. Extrapolating the binding energy to its
zero crossing, the Feshbach resonance positions are determined to be 38.4G and 78.67G,
respectively, with an uncertainty of ±30 mG. In addition, the two graphs show the three-
body loss measurements according to the Feshbach resonances. The resonance positions
resulting from the centre of a Gaussian fit deviate by 1G and 100mG, respectively,
from the binding energy measurements. The latter one is in-between the three-body
recombination and the theoretical predictions. We have not systematically analyzed the
dependence of the Feshbach resonance position on an AC-Stark shift [157]. However,
assuming an almost perfect linear polarization of the dipole trap beams, the differential
AC-Stark shift is of the order of several tens of Hz and thus may be neglected.

Considering the measured binding energy evolution as a function of the magnetic field,
the Feshbach resonances can be characterized more precisely. As discussed in chapter 2.3,
Feshbach resonances are divided into entrance and closed channel dominated resonances.
Applying equation (2.32), the dimensionless parameter η is about 15 for the broad
resonance at B0 = 38.4G and about 5 for the narrow resonance at 78.7G. Hence,
none of the two resonances can be unambiguously attributed to one of the classes, but
tend to be closed channel dominated. Although the width of the resonance at 38.4G
exceeds the one at 78.67G by one order of magnitude, the parameter η is even larger
in the first case due to the small magnetic moment µres = 4.4 · 10−3 µB compared to
µres = 0.53 µB for the narrow resonance. This information already gives a hint at the
coupling strength of both resonances. The smaller η and the larger µres the stronger
the coupling between the entrance and the closed channel will be. Experimentally, the
RF modulation time for the broad resonance was about two orders of magnitude larger
than for the narrow one, in addition to a three times larger modulation amplitude. For
verification we calculate the universal regime of both resonances which is estimated by
equation (2.33) of section 2.3.4. Here, the universal regime of the positive scattering
length side is approximately limited to the magnetic field region from 33.9G to 38.4G
and 78.1G to 78.67G respectively. Hence, all data taken for the broad resonance are
obviously outside the universal regime, whereas the data points of the narrow resonance
are within or close to the universal regime. Regarding figure 5.10(a) and 5.10(b), this
fact is confirmed as the data points of the narrow resonance are located within the
region of the quadratic dependence of the binding energy on the magnetic field, whereas
the other data set is taken in the linear regime, in which the closed channel admixture
becomes significant and the coupling strength decreases.

5.3.6 Conclusion

A precise knowledge of the molecular potentials is required to produce rovibrational
ground state molecules. Information and input to theoretical calculations are usually
given by Feshbach spectroscopy measurements. Additionally, also the binding energy
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(a) Atom losses due to the d-wave Feshbach reso-
nance: The fit of a Gaussian line shape on a linear
pedestal yields a Feshbach resonance position of
44.58G with a FWHM of 100mG.
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(b) Atom losses due to the d-wave Feshbach res-
onance: The fit of a narrow Gaussian line shape
on a broad Gaussian pedestal yields a resonance
position of 47.96G with a FWHM of 80mG.

Figure 5.11: Enhanced three-body recombination losses at the position of two inter-
species d-wave Feshbach resonances of K-Rb each in the ground state |f = 1,mf = 1〉.

measurements of weakly bound dimers in the vicinity of these Feshbach resonances give
important information on the resonance position. As discussed above, the Feshbach
resonance position can be extrapolated by the zero crossing of the vanishing binding
energy. This measurement method is much more precise as systematic shifts can be ne-
glected. In particular, for broad Feshbach resonances, loss measurements are inaccurate.
For large scattering lengths the unitarity limit comes into play, which corresponds to a
constant scattering length above a threshold value. In addition, a temperature depen-
dent shift of the Feshbach resonance has to be considered. Shallow dimers produced
on the positive scattering length side by three body recombination can undergo elastic
collisions in the presence of a large potential trapping depth before they leave the trap.
During this process the kinetic energy gained due to the binding energy difference is
shared to the colliding particles. This leads to a heating of the ensemble and due to the
finite trap depth to evaporation and additional atom losses. An asymmetric loss feature
results, which hampers a precise determination of the resonance position. Hence, the
results from associating KRb molecules can be used to improve the collisional model.
Additional information can be obtained by including further resonances belonging to
different closed channels as well as by including higher order Feshbach resonances.

5.4 Higher order Feshbach resonances

In the experiment we observe two narrow loss features at magnetic fields of 44.58(0.05)G
and 47.96(0.02)G [80]. At these magnetic fields, no s-wave Feshbach resonances are
expected. These resonances are measured at temperatures of about 400 nK and 450 nK
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Figure 5.12: Molecular levels scheme calculated by A. Simoni [80]: Molecular lev-
els crossing the dissociation threshold of two Rb and K atoms each in the atomic
|f,mf 〉 = |1, 1〉 state. Considered are s-wave (black solid line), p-wave (red dashed
line) and d-wave (blue dashed-dotted line) of the molecular state. The relevant region
is highlighted yellow.

respectively. The mixture of K and Rb is produced as described in detail in section
5.3. Both species are stored in the crossed optical dipole trap in their absolute ground
states |f, mf〉 = |1, 1〉. The remaining total number of atoms (NK + NRb) is measured
after 100ms holding time at a fixed magnetic field. To prove this loss being due to a
heteronuclear effect, these measurements are also done for both species separately, with
no loss peaks being detected. The width of these resonances is 100mG and 80mG,
respectively. The magnetic field resolution is 20mG, and the day-to-day fluctuation is
about 50mG. The latter limits the reproducibility, whereas a daily calibration of the
magnetic field by microwave-driven hyperfine transitions can reduce this uncertainty.
More narrow features can not be detected and resolved.

For Feshbach resonances a coupling of the closed and entrance channel occurs due to
different interaction types, which are spin exchange and dipolar relaxation interactions.
As a preselection, incoming atom pairs with an angular momentum l � 1 can be ex-
cluded in our system. For a non-vanishing orbital quantum number a centrifugal barrier
proportional to l(l+1) arises. Hence, higher order partial wave collisions are suppressed
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entrance
channel

molecular state

|f, mf , l, ml〉 |F ′, mF ′ , l′, ml′〉

spin-
exchange
interac-
tion

dipole-dipole interaction

∆l = 0 ∆l = 0 ∆l = 2

∆ml = 0 ∆ml = 1 ∆ml = 0 ∆ml = 1 ∆ml = 2 ∆ml = 3

|1, 1, 0, 0〉 |3, 2, 0, 0〉 |2, 2, 2, 0〉 |2, 1, 2, 1〉 |2, 0, 2, 2〉

|3, 2, 2, 0〉 |3, 1, 2, 1〉 |3, 0, 2, 2〉

|1, 1, 1, 0〉 |3, 2, 1, 0〉 |2, 1, 1, 1〉 |2, 2, 3, 0〉 |2, 1, 3, 1〉 |2, 1, 3, 1〉 |2,−1, 3, 3〉

|3, 1, 1, 1〉 |3, 2, 3, 0〉 |3, 1, 3, 1〉 |3, 1, 3, 1〉 |3,−1, 3, 3〉

|1, 1, 1, 1〉 |3, 2, 1, 1〉 |3, 3, 1, 0〉 |2, 2, 3, 1〉 |2, 1, 3, 2〉 |2, 0, 3, 3〉

|3, 2, 3, 1〉 |3, 1, 3, 2〉
|3, 3, 3, 0〉

|3, 0, 3, 3〉

Table 5.1: A selection of possible coupled channels for ultracold incoming 41K and
87Rb atoms, each in the atomic state |f,mf 〉 = |1, 1〉. The ultralow temperature of
the two species restricts the scattering of the incoming particles to be s-or p-wave.

for temperatures in our case, as discussed in chapter 2. P -wave Feshbach resonances
(l=1) of the colliding atoms were already observed in fermionic 6Lithium down to a
minimum temperature of 6 µK [158]. These considerations restrict the possible entrance
channels to be |f1, mf1 , f2, mf2 , l〉=|1, 1, 1, 1, 0〉 or |1, 1, 1, 1, 1〉, where ml=0..l. A selec-
tion of possible entrance-closed channel combinations and the corresponding coupling
mechanism are listed in Table 5.1. Using the model of [92], Andrea Simoni calculates
the molecular level scheme for 41K87Rb relative to the dissociation threshold of the two
atoms in the atomic |1, 1〉-state plotted in figure 5.12. The calculations predict four
different level crossings between 40 and 50G. All of them belong to molecular states
with l ’=1 or 2. According to section 2.1 the selection rules for spin exchange collisions
are ∆l=0 and ∆mF = 0. The spin-spin and spin-orbit collisions obey |∆l| = 0, 2 and
∆mF + ∆ml = 0 which corresponds to a redistribution of the angular momenta. Hence,
molecular states with an orbital quantum number of two can only couple by spin ex-
change interaction to l=2 or by dipolar relaxations to l=0, 2. An angular momentum of
l = 2 for the incoming atoms can be excluded for ultracold temperatures. Therefore, the
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feature at 44.6G is attributed to a d-wave resonance which occurs due to dipole-dipole
interactions, whereas the molecular state can be |F, mF , l′, ml′〉=|2, 2, 2, 0〉 or |2, 1, 2, 1〉
according to figure 5.12. The second feature can be attributed to the d-wave resonance
with the molecular state |2, 0, 2, 2〉 or to the p-wave resonance belonging to the state
|3, 3, 1, 0〉. The latter possibility occurs due to a spin-spin collision with ∆l = 0, which
would couple the molecular state to an initial state of |f, mf , l, ml〉=|1, 1, 1, 1〉. In this
case the stronger spin exchange coupling should lead to a further loss peak at about 52G,
which cannot be observed. Moreover, the typical doublet structure of p-wave Feshbach
resonances generated by the magnetic dipole-dipole interaction is not visible. The reso-
nance feature would split up to two peaks belonging to |ml| = 1 and ml = 0, as Ticknor
et al. proved in [159]. This leads to the conclusion that both narrow resonances are
attributed to d-wave resonances.

These newly observed resonances, together with the binding energy measurement, are
used for an improved collision model of the inter-species interaction potential. In com-
bination with the results of the two isotopic pairs [92], 40K87Rb and 39K87Rb, we thus
obtain for the singlet scattering length as = −109.6(2) a0, for the triplet scattering length
at = −213.6(4) a0 and for the van-der-Waals coefficient C6 = 4288(2) Eh a6

0, where Eh is
the Hartree energy.

The improvement of the parametrization of the KRb molecular potential and the pro-
duction of weakly bound KRb dimers provide a good starting point to create dipolar
KRb molecules in their rovibrational ground state.
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6 Conclusion and outlook

6.1 A single Cs atom immersed in a Rb BEC

Significant steps have been achieved towards a controlled immersion of single Cs atoms
in a Rb BEC. This final goal requires to simultaneously store both species with a consid-
erable overlap of their wave functions, to independently manipulate them in a controlled
way, and to detect them. In particular a strong confinement of the Cs atom is nec-
essary in order to precisely localize the atom within the BEC, enabling the atom to
position-dependently probe the properties of the BEC. In addition, adjusting the intra-
and inter-species interaction is an essential demand for further experiments.

In this thesis I have presented the realization of the first experimental steps. Both
components have been trapped and detected: a Rb BEC and a probabilistic single
atom source. Furthermore, we have employed single atoms and their dynamics in a
MOT as a non-destructive probe to extract the inter-species interaction parameters of
a two-species MOT. Although single Rb atoms are lost due to collisions with single Cs
atoms, the overall state of ≈ 103 Rb atoms remains unaltered. Here, the interaction is
dominated by light induced collisions which involve higher electronic states [160]. In
further experiments we aim on investigating and utilizing ground state collisions which
are of interest in, e.g., quantum information processing.

So far, the Rb BEC and the single atom MOT are spatially separated by 7mm due
to the different magnetic field minima of the quadrupole and QUIC traps. Meanwhile,
the trap centres of both species have been spatially overlapped by a combination of
magnetic transport and an overlapped dipole trap at the centre of the quadrupole trap,
which corresponds to the position of the Cs atoms in the MOT. Here, the Rb atoms
are stored in a purely optical trap and are transferred into a magnetic insensitive state.
Thus, it is possible to load Cs atoms into a high gradient MOT, without deforming or
disturbing an already existing condensate.

In contrast, control over the position of the atom and the inter-species interaction is still
lacking. The former we plan to achieve by storing the Cs atoms in a species-selective
optical lattice. Here, a strong confinement and large trapping frequencies will enable
us to localize the atoms inside one potential well corresponding to a volume with an
extent of less than λ/2 in the case of a three-dimensional lattice. In the ideal case, the
species-selectivity implies that the lattice does not affect the BEC, thus allowing to probe
the undisturbed BEC. This poses an enormous challenge, as the temperatures of both
components differ by three orders of magnitude. They are of the order of TCs = 100 µK
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for Cs and TRb = 100 nK for Rb. Thus, we have to find trapping parameters which
offer a sufficient depth for Cs without affecting Rb, thus URb/UCs � TRb/TCs, where Ui

denotes the trap depth of species i. Two different types of species selective traps have
been identified by LeBlanc et al. [161]. The first type uses a near red detuned wavelength
close to the Cs D1- and D2-line, the second exploits a magic wavelength in-between the
D1- and D2-lines of Rb, where the dipole potential for Rb vanishes. In the first case
a small but non-zero potential for Rb remains resulting in a periodic structure of the
condensate. From the second type, however, ideally no dipole potential for Rb arises.
Nevertheless, the scattering rate of Rb is not negligible and can be estimated to be about
500Hz for a trapping depth of 500µK for Cs. Furthermore, the lattice laser wavelength is
blue detuned with respect to the Cs D1- and D2- transitions. Thus, Cs is trapped in the
antinodes, thereby decreasing the photon scattering. However, an additional transverse
confinement is inevitable here to ensure a stable trapping configuration.

Storing Cs and Rb purely optically allows us to use the magnetic field as a free parameter
and to make use of magnetic Feshbach resonances to tune the inter-species interaction
strength and choose its character. K. Pilch et al. [162] investigated a series of Rb-Cs
Feshbach resonances within the magnetic field range of 30 to 300G. Here, for both
species in the ground state the observed resonance at 180G is of special interest, due to
its relatively large width of 3G. Probably, this will allow us to tune the Rb-Cs scattering
length continuously about several orders of magnitude including changing its sign.

6.1.1 Cooling a single Cs atom to its motional ground state

Various theoretical proposals in quantum information processing and quantum computa-
tion suggest a single atom to be prepared as a quantum bit (qubit) with two logic states
|0〉 and |1〉. Experimentally, these qubit states may correspond to different spin states.
As the qubit can interact with the environment, the quantum information stored, i.e. the
internal state and/or the relative phase between the two states, can be lost. The typical
time period in which the coherence of the quantum system decays should therefore be as
long as possible. In our system, one of the main decoherence sources of trapped single
atoms is related to the temperature of the atom [35]. A possible cooling scheme has
been proposed, where a qubit (single Cs atom) is immersed in a BEC, thereby cooling
the qubit to the motional ground state of the trap [44, 45]. In this case, the BEC acts as
a cooling bath for the single atom. Recently, Daley et al. [44] have predicted a type of
sympathetic cooling of the single atom without changing its internal state. The kinetic
energy of the atom is decreased by creating Bogoliubov excitations inside the BEC.
Assuming the single atom to be confined in a potential well of a standing wave or a
three-dimensional lattice with a trapping frequency ω, the energy of the nth vibrational
level is given by n ~ ω. Depending on the ratio between the energy spacing in the trap
~ ω and a typical energy scale of the superfluid mRb u2/2 given by the sound velocity,
Daley et al. [44] distinguish between two cooling regimes, the subsonic ~ ω � mRb u2/2
and the supersonic ~ ω � mRb u2/2.
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hw

Figure 6.1: Sympathetic cooling of a single atom by a BEC (red): A single atom
(blue dot) is confined in a standing wave with a trapping frequency ω. Via Bogoliubov
excitations the atom is cooled from a highly excited vibrational state to the motional
ground state. The black lines indicate the vibrational energy levels of the standing
wave.

In the supersonic regime, the single atom oscillation velocity exceeds the speed of sound
u in the BEC, resulting in particle-like Bogoliubov excitations. Here, the single atom
in an initially high vibrational level can be de-excited by more than one level spacing
into the motional ground state. In contrast, in the subsonic regime, an atom can only
be de-excited to the next lower vibrational level. Within this regime the Bogoliubov
excitation of the condensate is phonon-like and corresponds to the low energy part of
the Bogoliubov spectrum. This situation is similar to the Raman side band cooling of
ions [163] within and beyond the Lamb-Dicke regime [164, 165]. In order to enter the
supersonic regime to efficiently cool the atom, the trapping frequency of our Cs trap
must exceed 2π · 400 Hz by far.

The minimum temperature obtained by such a cooling process is given by the condensate
temperature. Thus, the temperature of the cooling bath has to be well below ~ω to make
sure the atom can be cooled down to the vibrational ground state of the trap. Hence,
assuming a BEC temperature of 100 nK, the trapping frequencies should be chosen to
be even larger than 2π · 2 kHz in order to cool the atom into the motional ground state.

The time scale of the cooling process can be adjusted by the interaction strength between
the single Cs atom and the Rb BEC. The larger the inter-species s-wave scattering length,
the more efficient the cooling.

Furthermore, this technique might not only allow to cool a qubit without changing
its internal state, but also to cool entangled atom pairs while their entanglement is
preserved. For these experiments, appropriate initial internal qubit states have to be
chosen, so that the respective inter-species interaction strengths between each of the two
qubit states and the BEC are the same. If this requirement is not met, the asymmetric
interaction leads to entanglement of the single qubits with the bath which results in
apparent decoherence of the two entangled qubits.

6.1.2 Probing the decoherence of a Rb BEC by a single Cs atom

Another intriguing application of a single atom immersed in a BEC is to employ the
single atom as a probe, e.g. to investigate the decoherence of the Rb BEC [33]. The
decoherence of a system originates from interaction with its environment, which can
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be, e.g., inelastic collisions with background atoms and photon scattering. H. T. Ng
et al. [33] proposed a decoherence detection method, where a single atom prepared in
a superposition of two qubit states |0〉 and |1〉 is immersed in a BEC. The BEC is
predominantly coupled to one of the two qubit states. The ensuing time evolution leads
to an entanglement between the atom and the BEC. Assuming an ideal system without
decoherence the two components periodically entangle and dis-entangle, similar to the
entanglement oscillations observed in a Mott-insulator [13]. The oscillation period is
inversely proportional to the inter-species interaction strength. For decoherence, the
oscillation period remains constant, thus the dis-entanglement occurs after the same
probing time. However, the decoherence of the BEC is imprinted on the phase between
the single atom qubit states. A π/2-pulse maps the phase information between the two
states onto the populations. This decoherence measurement requires the coherence time
of the probe, the single atom, to exceed both the coherence time of the BEC and the
interaction time by orders of magnitude. In order to reduce the interaction time, the
inter-species s-wave scattering length can be increased via a Feshbach resonance. By
means of a Feshbach resonance also temporal limits of the interaction time can be set
by tuning the interspecies interaction strength to zero.

6.2 Heterospecies dimers and trimers

6.2.1 Molecules in the rovibrational ground state

Heteronuclear molecules in the rovibrational ground state of the singlet and triplet po-
tentials provide a permanent dipole moment. Their anisotropic, long-range dipole-dipole
interaction forms the basis for further experiments, such as the investigation of new quan-
tum phases [49] or the production of dipolar BECs [47]. The associated KRb dimers
presented in this thesis provide the first step towards these dipolar molecules. In order
to transfer the weakly bound molecules to their ground state a sufficiently long life-
time of the weakly bound molecular ensemble is required. Associating the molecules in
the overlapping regime of the two atomic clouds, their lifetime is limited by inelastic
atom-molecule collisions. This limit can be overcome if the two species are trapped in a
three-dimensional lattice with a filling factor of unity per species, meaning one atom of
each species per lattice site [154, 155]. After the association of molecules in this Mott-
insulator-like system there will be exactly one KRb molecule per lattice site. A sufficient
potential barrier between two neighbouring sites suppresses tunnelling, thereby avoiding
inelastic atom-dimer and dimer-dimer collisions. Thus, the lifetime of these molecules
is only limited by internal relaxation.

These molecules can be transferred to the rovibrational ground state from their initially
highly excited state by, e.g., the application of a stimulated Raman adiabatic passage
[166] (STIRAP). This technique is much more robust than Rabi pulses and has been
already successfully applied for 87Rb2-dimers [67] as well as for fermionic 40K87Rb-dimers
[68]. It is based on the coherent coupling between the weakly bound state and the rovi-
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Figure 6.2: Schematic of the STIRAP technique: The blue and the black line in-
dicate the singlet and triplet potential of the electronic ground state, respectively.
An electronically excited state providing the required dark state is drawn as a red
line. The dashed lines denote the weakly bound molecular state (black), the rovibra-
tional ground states (green) and the dark state (red). The arrows mark the driven
transitions.

brational ground state via an electronically excited state applying a counter-intuitive
pulse sequence [166]. A cold molecular cloud is obtained with a temperature corre-
sponding to the initial temperature of the weakly bound molecules. While the molecules
are coherently transferred, the phase space density remains constant. The molecular
potentials of K-Rb have to be precisely known to select appropriate frequencies to ef-
ficiently drive the transfer. Strong coupling is achieved if the frequencies match the
resonance frequencies of the driven transitions close to a turning point. This results
in a large Franck-Condon factor given by the overlap integral of the wave functions.
This emphasizes the importance of an improved collisional model, as already mentioned
above, by a more precise determination of the s-wave Feshbach resonance positions and
by detecting higher order Feshbach resonances.

6.2.2 From dimer to trimer states

Already in 1970, V. Efimov predicted the existence of an infinite series of weakly bound
trimer states when the two-body scattering length approaches infinity [91]. These trimer
states appear for a system of three particles with pairwise resonant two-body interac-
tions. Figure 6.3 schematically shows an energy diagram of the trimer states in the
vicinity of a Feshbach resonance. The trimer states connect the positive and negative
scattering length sides by crossing the singularity of the Feshbach resonance. For a
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Figure 6.3: Schematic of an energy diagram with Efimov states for a K-Rb mixture
around a K-Rb Feshbach resonance. The position of the Feshbach resonance corre-
sponds to the singularity at 1/a = 0. The green line shows the dissociation threshold
of three free atoms for a < 0 and the atom-dimer threshold for a > 0. Two series of
Efimov states, i.e. KRbRb and KKRb are indicated by the blue and red line, respec-
tively. Here, 1/a? and 1/a− mark the Efimov resonances occurring at the atom-dimer
threshold for a > 0 and at the dissociation threshold of three free atoms for a < 0.
The blue and red spheres indicate the Rb and K atoms, respectively.

vanishing trimer binding energy, the trimer state intersects the dissociation threshold
of three free atoms on the negative scattering length side. On the positive scatter-
ing length side, the same trimer state intersects the dimer-atom threshold featuring a
parabolic behaviour as a consequence of the a−2 dependence of the dimer binding energy
in the universal regime. Similar to the weakly bound molecules, the trimer states also
exhibit universal properties. As in the two-body system this means that their properties
are independent of the short-range interaction potential. More precisely, increasing the
two-body scattering length, these Efimov states periodically appear in powers of the
universal scaling factor exp(π/s0), whereas their binding energy decreases in powers of
exp(−2π/s0). The dimensionless parameter s0 is predicted to be 1.00624 in the case
of three identical particles [167]. Experimentally, these trimer states can be detected
as increased three-body recombination losses, when the trimer state intersects the dis-
sociation thresholds. Here, the occupation of the trimer state is resonantly enhanced.
The extremely weakly bound trimers quickly decay into deeply bound dimers, thereby
converting the released difference in binding energy into kinetic energy. It is shared
between the constituents, leading to trap loss. On the positive scattering length side an
oscillating behaviour of the three-body recombination rate, with a minimum between
two intersection points, is predicted [86, 169] and has already been experimentally ob-
served [12, 170]. Here, weakly bound dimer states exist, as seen in chapter 5. Hence,
the trimer can decay into shallow as well as deeply bound dimers.
The first Efimov resonance for a < 0 and a three-body recombination minimum for a > 0
have been detected by T. Krämer et al. [12] using ultracold bosonic Cs atoms, although
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(a) Inelastic atom losses due to an Efimov reso-
nance at 38.8G attributed to a KKRb trimer
state. The remaining total atom number of
both species after a hold time of 100 ms is plot-
ted as a function of the scattering length. The
temperature of the atomic cloud is measured to
be 300 nK. The inset shows the linear combina-
tion 2 NK−NRb to support the channel assign-
ment.

(b) Inelastic atom losses due to an Efimov res-
onance at 57.7 G attributed to a KRbRb trimer
state. The remaining total atom number of
both species after a hold time of 500 ms is plot-
ted as a function of the scattering length. The
temperature of the atomic cloud is measured to
be 400 nK. The inset shows the linear combina-
tion 2 NRb−NK to support the channel assign-
ment.

Figure 6.4: Two Efimov resonances observed for negative scattering length in the
vicinity of the K-Rb Feshbach resonance at 38 G. The solid lines refer to the numerical
calculations in [168].

the trimer states were originally predicted in the field of nuclear physics. However, in
these systems the observation of the resonances is hampered by the strong long-range
Coulomb interaction. In contrast, ultracold gases provide a clean and well-controllable
system, in which the interaction is described by the s-wave scattering length a and it is
widely tunable. Recently, M. Zaccanti et al. could measure a first series of Efimov states
[170].

Efimov trimers are not limited to three pairwise resonant interactions, but can also ap-
pear for two pairwise resonant interactions of a three-body system [94]. This implies the
existence of heteronuclear Efimov resonances in two-component mixtures, as our system
of bosonic K and Rb. As a consequence, there are two series of heteronuclear Efimov
resonances, namely KKRb and KRbRb, next to an inter-species Feshbach resonance.
The intra-species scattering lengths of K and Rb remain constant and are below 100 a0.
The universal scaling factors of these heteronuclear systems differ from the homonuclear
case and are predicted to be exp(π/s0) = 3.51 · 105 for KKRb and 131 for KRbRb [94].
We have already observed two Efimov resonances for a < 0, at a magnetic field of 38.8G
and 57.7G in the vicinity of the broad Feshbach resonance at 38G, which we attribute
to the KKRb and KRbRb series, respectively [168]. Both three-body recombination loss
peaks can be seen in figure 6.4. To make sure that inter-species three-body collisions
are responsible for these loss peaks, we proved that the peaks do not appear for single
species stored. In addition, for the KRbRb peak we have measured the time evolution
of the decay of the two species showing an atom loss ratio of NRb/NK = 1.7. Thus,
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this verifies that the peak occurs due to three-body recombination and belongs to the
KRbRb series of the Efimov spectrum.

In addition, we have observed one loss feature on the positive scattering length side,
which we attribute to the KRbRb channel, as more Rb than K atoms are lost. Follow-
ing [170] this loss peak occurs if secondary collisions between atoms and dimers produced
during the three-body recombination are resonantly enhanced. By observing heteronu-
clear Efimov resonances we confirm that only two resonant pairwise interactions are
required.

Choosing an atomic mixture with a mass ratio larger than 10, the universal scaling
factor can be reduced to less than 10 [94]. Therefore, heteronuclear systems as Li-Cs
and Li-Rb would allow to observe a large series of Efimov resonances.

In addition, performing the measurements within a lattice, controlled atom-dimer colli-
sions can be investigated [171, 172].

102



A Properties of 87Rb, 133Cs and 41K

A selection of the physical properties of the alkalis 87Rb, 133Cs and 41K is given in table
A.1. Figure A.1 shows the hyperfine structure of the D2 transition of the aforementioned
species.

87Rb 133Cs 41K

mass m (kg) 1.4 · 10−25 2.2 · 10−25 6.8 · 10−26

nuclear spin i 3/2 7/2 3/2

wavelength of the
D1-transition

λD1 (nm) 795.0 894.6 769.9

wavelength of the
D2-transition

λD2 (nm) 780.2 852.3 766.5

linewidth of the
D1-transition

ΓD1 (MHz) 2 π · 5.75 2 π · 4.56 2 π · 6.1

linewidth of the
D2-transition

ΓD2 (MHz) 2 π · 6.07 2 π · 5.22 2 π · 6.2

Table A.1: Selection of the physical properties of 87Rb, 133Cs and 41K taken from
[138, 173, 174].
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sponding transition.

Figure A.1: Hyperfine structure of the D2 transition of 87Rb, 133Cs and 41K. The
red and green arrows indicate the cooling and repumping transitions, respectively.
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B Power stabilization

A power stabilization of the dipole trap beams is built up to compensate fluctuations of
the laser power as discussed in section 3.7. Figure B.1 shows a schematic of the control
board of the constructed PI-controller.
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Figure B.1: Electronic schematic of the PI-controller for the Nd:YAG-laser using an
AOM. Here, R, C, and L denote a resistor, a capacitor, and an inductor, respectively.
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[78] S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, Potas-
sium ground-state scattering parameters and Born-Oppenheimer potentials from
molecular spectroscopy, Phys. Rev. A, 78 (2008), p. 012503.

112



Bibliography

[79] M. Haas, V. Leung, D. Frese, D. Haubrich, S. John, C. Weber, A. Rauschenbeutel,
and D. Meschede, Species-selective microwave cooling of a mixture of rubidium and
caesium atoms, New Journal of Physics, 9 (2007), p. 147.

[80] G. Thalhammer, G. Barontini, J. Catani, F. Rabatti, C. Weber, A. Simoni, F. Mi-
nardi, and M. Inguscio, Collisional and molecular spectroscopy in an ultracold
Bose–Bose mixture, New Journal of Physics, 11 (2009), p. 055044 (12pp).

[81] G. Breit and I. I. Rabi, Measurement of Nuclear Spin, Phys. Rev., 38 (1931),
pp. 2082–2083.

[82] F. H. Mies, C. J. Williams, P. S. Julienne, and M. Krauss, Estimating Bounds on
Collisional Relaxation Rates of Spin-Polarized 87Rb Atoms at Ultracold Tempera-
tures, J. Res. Natl. Inst. Stand. Technol., 101 (1996), p. 521.

[83] P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov, Three-Body Recombina-
tion of Ultracold Atoms to a Weakly Bound s Level, Phys. Rev. Lett., 77 (1996),
p. 2921.

[84] J. Stenger, S. Inouye, M. R. Andrews, H.-J. Miesner, D. M. Stamper-Kurn, and
W. Ketterle, Strongly Enhanced Inelastic Collisions in a Bose-Einstein Condensate
near Feshbach Resonances, Phys. Rev. Lett., 82 (1999), pp. 2422–2425.

[85] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm, Three-Body Recombi-
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[96] T. Köhler, K. Góral, and P. S. Julienne, Production of cold molecules via magnet-
ically tunable Feshbach resonances, Rev. Mod. Phys., 78 (2006), p. 1311.
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An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich während meiner
Promotionszeit in Bonn und in Florenz unterstützt haben.
An erster Stelle danke ich Prof. D.Meschede, der mir die Möglichkeit gegeben hat an
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