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Abstract

The experimental realisation of electric quantum walks, i.e. quantum walks that are
subject to a force, is presented with individual caesium atoms. Hereby, the behaviour of
a charged quantum particle in a static electric field is simulated in a time as well as space
discrete system. Building on previous achievements [1], the demonstration of ordinary
quantum walks of up to 100 steps is shown. Further thorough theoretical studies expose
the underlying simulator properties of such a quantum walk system experiencing a force.
Similarities to the continuous time analogon as well as characteristic features that are
indebted to the discrete evolution of the system are presented. The implementation
of a direct digital synthesizer allows the experimental application of discrete forces in
the system by employing frequency ramps, and thus leads to the realisation of electric
walks. Results are given for selected force parameters, showing the phenomenon of
Bloch oscillations. Additionally, pure ballistic transport of the electric quantum walk
due to strong Landau-Zener tunnelling in the strong force regime is demonstrated.
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Chapter 1.

Introduction

Ever since the dawn of quantum mechanics the world of physics has come to face more
and more counter-intuitive characteristics of nature. After the one-century lasting
efforts to understand and describe this theory thoroughly, people finally started to
make use of it by artificially constructing desired systems. However, increasing size
and complexity of these make it very challenging - if not impossible - to test models
and theories sufficiently. This is owing to the exponentially increasing demands of
classical computation. Already in 1985 Richard P. Feynman, therefore, raised the idea
of a quantum computer [2]. Throughout the years much work has been done on this,
steadily advancing both on the theoretical and technological side, which has eventually
opened the hunt for such a machine.

Closely related to this goal is the concept of quantum simulations. This encompasses
the idea of mimicking quantum behaviour of complex, hardly controllable quantum
systems with other well-controlled, decoherence-reduced ones. The aim is to get a
deeper insight into characteristics and properties of the initial system by studying the
artificially created one only. A very important role plays the field of cold atoms in this
context. The invention of the laser technology in the 60’s and later the development of
laser cooling methods [3] have allowed scientists to work in a regime where atomic and
molecular systems can be controlled and manipulated very precisely. Further cooling
and trapping techniques [4] made it possible, for instance, to achieve a Bose-Einstein
condensate - a quantum phase of matter [5,6] -, and to test exciting phenomena such as
superfluidity by investigating vortices [7]. An optical lattice loaded with an ultracold
gas of neutral atoms is able to reproduce periodic potentials which are typical for
crystalline solids. For example, such a system could demonstrate the superfluid to
Mott insulator transition [8]. Very importantly, an optical lattice also holds the chance
to manipulate and investigate few-body systems, where usual approximations relying on
a large number of particles are not applicable any more. A very fruitful accomplishment
has been the manipulation and control of single-atom systems. This so-called bottom-
up approach allowed the implementation of a conveyor belt for single atoms [9] or more
recently a single atom interferometer [10], for instance.

In the race for realising a quantum simulator, a promising candidate is the so-called
quantum walk. This is the quantum mechanical counter part to the well known classical
random walk. Owing to quantum interferences during the walk steps, the distribution
as well as other properties exhibit different behaviour than classically expected. Par-
ticularly the ballistic spreading of this kind of walk reflects the potential advantages
over the diffusive classical one [11]. A positive aspect is the believed exponential speed
up regarding classical algorithms [12, 13]. Experimental proposals and realisations are
manifold, ranging from trapped ions [14,15] over atoms in an optical cavity [16] to pure
photonic systems [17]. At the focus of this thesis is the quantum walk which was previ-
ously realised in Prof. Meschede’s group by means of single neutral Caesium atoms in
a one-dimensional optical lattice [18]. Improved results of this experimental quantum
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Chapter 1. Introduction

walk are presented in chapter 4.
Experimentally, quantum walks are in general still very challenging, and only recently

they could be extended to two dimensions in an optical fiber network [19]. Theoretically,
however, the investigations have developed to a considerable state. It became apparent
that quantum walks are not just interesting in the light of quantum algorithms, but can
serve as a quantum simulator of complex systems in its own right due to the discreteness
of the system [20]. It could be shown that the quantum mechanical interaction of two
”walkers” lead to a novel molecular binding mechanism [21]. Furthermore, quantum
walks in a random environment reveal the effect of Anderson localisation [22]. Even
the topic of topological phases can be tackled with quantum walks [23].

The main focus of this thesis is on quantum walks that are subject to a force. Due
to its formal resemblance to an electron in a static electric field this shall be called
electric quantum walk. A detailed theoretical treatment of such a quantum walk system
is outlined in chapter 5, showing also the quantum transport phenomenon of Bloch
oscillations that is typically exhibited by associated electrons. Usually, low coherence
times make it impossible to observe these oscillations in solid materials directly. They
have therefore first been demonstrated by using ultracold atoms in optical lattices just
a couple of decades ago [24–26]. Quantum walks make it possible to simulate, and
to study this continuous time effect also in a discrete time and space environment.
Building on previous achievements in Prof. Meschede’s group, electric quantum walks
shall now be shown experimentally in single-atom systems. The necessary force is
induced in the set-up by acceleration of the 1D optical lattice. This is achieved by
controlling the dynamics of both lattice arms independently by means of a direct digital
synthesizer (see chapter 3). The high reliability of this device allows for a textbook-
like application of the force, herewith realising the first electric quantum walks with
individual atoms. Corresponding results can be studied in chapter 5.
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Chapter 2.

The theory of 1D quantum walks

The classical random walk is a crucial concept in the realm of stochastic. Subsequently,
the idea found its way to other areas such as economics [27] or biology [28], for example.
The random walk describes a trajectory in which the walker makes consecutive left-
or-right decisions. For the one-dimensional case, the resulting distribution is of well-
known Gaussian form, and hence has a diffusive temporal spreading [29]. This walk
can generally occur in a discrete as well as in a continuous fashion. Depending on the
circumstances the respective model is chosen.

The quantum version of the random walk works analogously to its classical counter-
part. Here, however, instead of probabilities, quantum mechanical probability ampli-
tudes have to be considered. The idea is to utilise internal states in order to bring the
system into a coherent superposition, and subsequently to delocalise the system over
the spatial structure depending on its internal state. Both operations are individually
described by a unitary operation acting on the quantum system. While being coher-
ently delocalised, the system’s probability amplitudes can interfere, hereby causing
classically unexpected behaviour. The most pronounced feature is a ballistic expansion
of the walk’s spatial distribution. The quantum walk (QW or ”walk”) was first intro-
duced by Aharonov et al. in 1993 [11]. Henceforth, it has drawn some considerable
attention on the theoretical as well as experimental side. The reason for this can be
found in its potential regarding quantum information processing, i.e. its possible con-
tribution to quantum algorithms [13]. The quantum walk can generally be performed
in a many-dimensional space. In the following only the discrete and one-dimensional
case shall be at the focus of interest. First, the mathematical setting shall be lined out
followed by an example of a system performing the quantum walk in position space.
Afterwards, the remarkable properties of a quantum walk are explained more funda-
mentally by considering the underlying mathematical system in its momentum space
representation.

2.1. Quantum walks in position space

The system under consideration has two internal quantum states, and is often abbre-
viated as qubit or two-level spinor. For reasons that will become apparent below, the
two-fold Hilbert space spanned by the spinor basis states {| ↑〉, | ↓〉} is called coin-space,
with Hcoin = C2. On top of that, the system is confined to a one-dimensional line with
discrete positions. So let Hspace = `2(Z) be the Hilbert space spanned by the position
basis states {|n〉 : n ∈ Z}. The total Hilbert space Htot connects both subspaces via
their tensor product, i.e. Htot = Hspace ⊗Hcoin. The full states existing in this Hilbert
space are of the form |ψ〉 = |n〉 ⊗ |s〉1, where s = {↑, ↓}. It is noteworthy at this point
that real physical systems are described by spatially continuous wavefunctions rather

1Define |n〉 ⊗ |s〉 = |n, s〉 in favour of abbreviation.
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Chapter 2. The theory of 1D quantum walks

than discretised states. This picture, however, remains a very good approximation for
quantum particles of small finite width confined to particular points in space. This, for
instance, is the case for cold atoms in optical lattices. So in favour of simplicity one
shall stick to the outlined mathematical model, as also presented in [13].

At each step the walker has to make a decision on going into one of the two possible
directions with a certain probability. The idea is to store the information within the
internal states of the system. In the formalism of quantum mechanics an operator
determines the properties of such a system. Hence, the probability of moving right
or left is induced by the so-called coin-operator Ĉ, which represents a unitary trans-
formation. The name resembles the classical case situation of flipping a coin at each
position in order to make a directional decision. The action of this operation can be
understood as a rotation in the coin-space Hcoin. Geometrically, this Hilbert space is
interpreted as a sphere - the so called Bloch sphere [30]. Every spinor state of the sys-
tem is represented by a point on this sphere and its corresponding Bloch vector. The
spin observable is commonly expressed in terms of a linear combination of the three
Pauli matrices and the identity matrix, since the set {σi : i = 0, 1, 2, 3}, where σ0 = 1,
spans the full vector space of two-dimensional Hermitian matrices [31]. So a rotation
in the coin-space can be understood as a rotation of the Bloch vector that is generated
by the Pauli matrices. The resulting unitary coin operation can therefore be written
as Ĉgen(θ) = e−iγe−iθr·σ/2, where r is the axis about which the system is rotated by
θ, σ is the vector of Pauli matrices, and e−iγ represents a global phase accumulation.
This rotation can be alternatively expressed in matrix form. Following the unitarity
conditions one can define the most general coin as

Ĉgen(θ) = e−iγ
(

cos(θ/2) eiα − sin(θ/2) e−iβ

sin(θ/2) eiβ cos(θ/2) e−iα

)
, (2.1)

where (α, β, γ, θ) ∈ R, and 0 ≤ (α, β, γ) ≤ 2π, 0 ≤ θ ≤ π. In the Bloch sphere picture
the parameters α, β, γ describe the orientation of the axis of rotation and θ is the angle
by which the system is rotated. The latter is equivalent to a statement about the
imbalance of the coin. To obtain an unbiased (or balanced) coin the system needs to
be rotated by θ = π

2 . For the walker this means to have equal probabilities in going to
the left and right, respectively, and therefore imitating in a single event the classical
balanced coin-flip.

After having set the spinor- or spin states, the actual translation of the system has
to be performed. A unitary shift operator Ŝ can be formulated in such a way that it
coherently translates the system exactly one position state to the right or left according
to its spin state, respectively. The mathematical form reads

Ŝ =

{
|n, ↑〉 → |n+ 1, ↑〉
|n, ↓〉 → |n− 1, ↓〉

. (2.2)

Consecutive application of coin- and shift operator results in one quantum walk step.
So the unitary walk-operator Ŵ acting on the total Hilbert space Htot, which combines
both actions, can be formulated as

Ŵ = Ŝ ·
(
1̂space ⊗ Ĉ

)
, (2.3)

where 1̂ represents the identity-operator, reflecting that Ŝ acts on Hspace as well as
Hcoin, whereas Ĉ acts on Hcoin only. A full quantum walk of N steps is obtained by
iteratively applying the one-step operator Ŵ N times to an initial state |ψ0〉, i.e.

|ψN 〉 = ŴN |ψ0〉 . (2.4)
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2.1. Quantum walks in position space

(a) Random Walk
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(b) Quantum Walk
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Figure 2.1.: Spatial probability evolution of (a) the classical random walk and (b) the
quantum Hadamard walk for 5 steps. Already after 3 steps the distribution of (b) reveals
a signature of the quantum world. The probabilities that deviate from the classical values
are highlighted: orange for higher and green for lower values than the classical counterpart.

The real space distribution of this walk can then be acquired by projecting the state
|ψN 〉 onto every position state |n〉. Owing to the system’s spinor structure, ones needs
to perform the projection for both spin states in order to gain a total probability
distribution.

Clearly, the properties of the walk strongly depend on the initial state |ψ0〉, and more
importantly on Ĉ. According to (2.1) all sorts of coin-operators can be realised. In the
following, however, a standard example of the quantum walk in the unbiased case shall
be presented. This also allows for direct comparison with the balanced classical random
walk. A frequently used operator in this context is the so-called Hadamard -coin ĈH,
and is defined as

ĈH =
1√
2

(
1 1
1 −1

)
or ĈH =

{
| ↑〉 → 1√

2

(
| ↑〉+ | ↓〉

)
| ↓〉 → 1√

2

(
| ↑〉 − | ↓〉

) , (2.5)

where the latter might give a more demonstrative picture of the effect on the system.
One can see that this form can be obtained from (2.1) by setting α = π/2, β = π/2,
and γ = π/2.

In order to get a better intuition of the evolution of a quantum walk with Ĉ = ĈH,
position probabilities for the first five steps of a walker with initial state |ψ0〉 = |0, ↑〉
are explicitly presented in table 2.1. Discrepancies between the quantum and the clas-
sical random walk are visible for such small numbers of N . After the first two steps the
quantum walk is identical to the classical version. However, this changes after the third
step. The coin operation Ĉ then causes the spinor states located in the same position
state to interfere. Consequently, this gives rise to an altered spatial probability distri-
bution compared to the classical analogon. Looking at quantum walks in position space
for a larger number of steps, one can clearly see distinct characteristics (see figure 2.2).
It becomes immediately apparent that the quantum walk peaks at off-center positions
of the distribution. For a well defined initial spin state the walk shows a strongly
asymmetric behaviour, where the orientation of the initial spin determines also the ori-
entation of the asymmetry (see figure 2.2(b)). The intuitive picture of this behaviour
is the following: since the Hadamard coin does not treat the two spinor states equally,
the walker experiences constructive interference in the one and destructive interference
in the other direction. Alternatively, an initial state of equal, but complex superposi-
tion of both internal states is considered, e.g. |ψ0〉 = 1√

2
(|0, ↑〉+ i|0, ↓〉). Owing to the

real structure of the Hadamard coin the real part of the walker never mingles with the
complex part, and vice versa. Consequently, no interference can occur between those
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Figure 2.2.: Distribution of a 50-step quantum walk with (a) an equal, but imaginary
superposition of the two qubit states, and (b) a spin-up configuration. The symmetric
classical distribution is plotted in both cases in gray for comparison. The evolution of
the respective quantum walk probability distribution is shown in (c) and (d), respectively.
Here, the confinement of the walk to the N/

√
2 region for the Hadamard walk as well as

the almost homogeneous spreading between the peaks can be nicely observed. Probabilities
are plotted for even, i.e. non-zero, position numbers only.

two parts, leading to two independent asymmetric walks in opposite directions (see
figure 2.2(a)).

As touched on before, the standard deviation of a classical random walk is well-
known to follow a diffusive behaviour, namely σ =

√
N . Here, σ denotes the standard

deviation. Contrary to this, the quantum walk displays a ballistic relation, i.e. σ ∝ N .
For example, analytical analysis of the balanced quantum walk proves a spreading over
an interval [−N/

√
2, N/

√
2] (see section 2.2). This linear dependence is the origin for

a potential speed up of algorithms based on quantum rather than classical random
walks. The confinement can be visually confirmed by looking at figure 2.2. Generally,
the exact details of a certain quantum walk are determined by the form of the chosen
coin operator Ĉ and the initially prepared state |ψ0〉. A closer look at the dynamics of
such a general quantum walk shall be taken in the following.

2.2. The Fourier picture of quantum walks

To obtain deeper insight into characteristics and properties of the described quantum
walk, it is useful to look at the underlying discrete evolution operator Ŵ . Due to
the discreteness of space, the spatial translational invariance of the system is also
discretised, which naturally demands a momentum representation of the system. The
spatial periodicity results in a finite-sized k-space. To be able to describe the dynamics
of a system, one typically calculates the dispersion relation, i.e. the energy as a function
of the momentum. Conceptionally, it is crucial to realise that the evolution described by
the step operator is approximately equivalent to the evolution generated by an effective
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2.2. The Fourier picture of quantum walks

time-independent Hamiltonian Ĥeff. It holds that

Ŵ = e−iĤeff∆t/~ , (2.6)

where ∆t corresponds to the time duration of a single step. So a walk of N steps
stroboscopically simulates the evolution generated by the Hamiltonian Ĥeff at times
N∆t. From this relation it can be seen that the eigenvalues of Ĥeff are defined only
up to 2π (define ~ = ∆t = 1). It can then be proven that the spectrum of Ĥeff indeed
describes the asymptotic dynamics of the quantum walk [32]. Note that similar to the
fact that momentum becomes quasi-momentum in the presence of a spatial periodic
structure, energies become quasi-energies in the case of a temporal periodicity [23].

The momentum representation is gained by using common Fourier transformation
going from the initial real state basis {|n〉 : n ∈ Z} to the momentum state basis
{|k〉 : k ∈ K}, i.e. transforming Hspace = `2(Z) into Hk = L2(K), where K = [-π, π].
The corresponding algebraic operations are

|n〉 =
1√
2π

∫
dk e−ikn |k〉 and |k〉 =

1√
2π

∑
n

eikn |n〉 . (2.7)

In order to apply this transformation to the system Ŵ , one needs to express Ĉ and Ŝ
(see (2.1) and (2.2)) explicitly in terms of the position states |n〉. The coin operation
only acts on Hcoin, i.e. is diagonal on Hspace and thus also diagonal on Hk. Conse-
quently, even in the momentum basis the coin operation is fully represented by a 2× 2
unitary matrix. The shift operator, however, acts on both subspaces of the Hilbert
space Htot. The Fourier transformation of Ŝ into Ŝk yields

Ŝ =
∑
n

|n+ 1〉〈n| ⊗ | ↑〉〈↑ |+
∑
n

|n− 1〉〈n| ⊗ | ↓〉〈↓ | , (2.8)

FT
=⇒ Ŝk =

∫ k

-k
dk |k〉〈k|︸ ︷︷ ︸
1̂k

⊗
[
e−ik| ↑〉〈↑ |+ eik| ↓〉〈↓ |

]
︸ ︷︷ ︸

Ŝspin
k

. (2.9)

While in the position state basis Ŝ naturally couples two adjacent states, in the mo-
mentum representation the shift operator couples the momentum variable k to the spin
state, but is diagonal in the state |k〉. The resulting walk operator Ŵk acting on the
new total Hilbert space Htot = Hk ⊗Hcoin can then conveniently be written as

Ŵk = Ŝk ·
(
1̂k ⊗ Ĉ

)
= 1̂k ⊗

(
Ŝspin
k · Ĉ

)︸ ︷︷ ︸
Ŵ spin
k

. (2.10)

Hence, the quantum walk in the momentum representation can be reduced to a system
acting on the spinor states only. Using matrix formalism, the system reveals a diagonal
form composed of 2× 2 block matrices given by the product

(
Ŝspin
k · Ĉ

)
. Assuming Ĉ is

of general form (2.1), the system can now be explicitly expressed in its reduced version

Ŵ spin
k =

(
e−ik 0

0 eik

)
· Ĉgen(θ) = e−iγ

(
cos( θ2) eiαe−ik − sin( θ2) e−iβe−ik

sin( θ2) eiβeik cos( θ2) e−iαeik

)
. (2.11)

The analysis of the quantum walk boils down to diagonalising the matrix given in
(2.11). Owing to its unitary nature, the matrix’ eigenvalues are points on the complex
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Figure 2.3.: Quasi-energy bands for (a) the experimental Hadamard- and (b) the standard
Hadamard-coin as defined in the text. The latter is rescaled in order to be centred about
the x-axis. The coin angles are θ = 9π/10, π/2 and π/10, and corresponding bands are
assigned by the labelled band gaps in (b). Respective bands of (a) and (b) are shifted
against each other, but they describe the same dynamics. This is robust against any
change of the coin.

unit circle. By bringing the eigenvalues into the form λ = eiω, the quasi-energies of the
system are solely determined by ω. One can then show that

ω± = γ ± arccos
[

cos(k − α) cos(θ/2)
]
. (2.12)

The corresponding eigenvectors of the system in the spinor-basis are given by

ê±ω (k) = N(k)

(
1

eiβ

sin(θ/2)

[
cos(θ/2) eiα − eiγeikeiω±

]) , (2.13)

where the normalisation constant N(k) can be calculated to be

N(k) =
1[

2 + 2
tan2(θ/2)

− 2
tan(θ/2) sin(θ/2) cos(ω± + k + γ − α)

]1/2
. (2.14)

The quantum walk is asymptotically described by a pair of quasi-energy bands. Fo-
cussing first on the eigenvalues, it can be seen that the dynamics are fundamentally
the same for all coins that are equally biased, i.e. have a fixed angle θ. Although
the rotation parameters α and γ enter the relations, they only cause a horizontal or
vertical shift of the bands, respectively. The latter can even be fully neglected by
rescalling the quasi-energy appropriately. The off-diagonal parameter β does evidently
not have an impact on the dispersion relation at all. Contrary to this, the angle θ
dominates the shape of the curves. In figure 2.3 the quasi-energy ω is plotted as a
function of k for two coin realisations: The angle-dependent Hadamard coin ĈH(θ)
with α, β, γ = π/2, and one that imitates the Euclidean space rotation matrix2 result-
ing from setting α, β, γ = 0. The latter shall also be referred to as the experimental
Hadamard coin ĈEH(θ). For both coins the balanced version for θ = π/2 as well as
the cases θ = π/10 and θ = 9π/10 are shown. The latter angles describing the situa-
tions in which the spin is nearly flipped or untouched, respectively. The corresponding

2Euclidean rotation matrix: R(θ) =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
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2.2. The Fourier picture of quantum walks
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Figure 2.4.: In (a) quasi-energy bands of a balanced quantum walk are plotted. Shaded
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system |ψ0〉 = |0, ↑〉 onto ê±ω . Hereby, the quantum walk’s shape (inset) can be explained.
In (b) the plane is shown in which the Bloch vector rotates, while going along the bands.
Selected points are marked accordingly. Due to the orthogonality of the bands both Bloch
vectors are always π out of phase.

quasi-energies (2.12) approach a linear or constant form in these limits accordingly.
When scanning the angle θ, one can see that the dispersion relations’ crossing opens
up and forms a band gap. This gap steadily equals twice this angle in magnitude and
maximises for θ = π.

In order to investigate the details of a specific initial system performing the quantum
walk, its projection onto the ”walk”-system is considered. Assuming the system is
initially localised in space, Fourier transformation reveals an equal population of all k-
states (see (2.7)). Consideration of the spin degree of freedom shows that the eigenstates
of a quantum walk are linear combinations of the original spinor eigenstates, and that
they have an intrinsic k-dependence (see (2.13)). Therefore, for a given k an initial
spin state |s〉 maps itself onto the two branches of the dispersion relation with varying
individual amplitudes a and b, hereby respecting a ê+

ω (k) + b ê−ω (k) = 1√
2π
|s〉, where

a, b ∈ C. Nonetheless, the eigenstates ê±ω are still represented as points on the same
Bloch sphere as before. In fact, when following one of the bands, the k-dependence of
the eigenstate lets the Bloch vector follow the trajectory of a circle in a plane cutting
the Bloch sphere under an angle of θ/2 as illustrated in figure 2.4(b) [23].

Ultimately, finding |a|2 and |b|2 gives a quantitative picture of the projection. In
figure 2.4(a) these quantities are represented by the color above and underneath the
bands. Here, the coin was chosen to be ĈEH(π/2) and the initial state was |ψ0〉 = |0, ↑〉.
The intensity of the color is proportional to the magnitudes of a and b, indicating the
expected non-uniform projection. The dynamics of the corresponding quantum walk
can now be directly understood by considering the band structure of the underlying
static effective Hamiltonian. From figure 2.4(a) it can be seen that most of the initial
state projects onto one side of a respective band only. The bands share the same
tangential direction at those sides. Knowing that the group velocity of the system is
given by ∂ω

∂k , and realising that most of the system is located on the band where ∂ω
∂k is

largest in magnitude, leads to the understanding that most of the wave packet travels
with maximally allowed speed. The direction of movement is governed by the sign
of the tangent. This is indeed what can be observed from the inset of figure 2.4(a),

9



Chapter 2. The theory of 1D quantum walks

0 Π
2 Π 3 Π

2
2 Π

0.0

0.2

0.4

0.6

0.8

1.0

coin angle Θ

sp
ee

d
�p

os
iti

on
�s

te
p�

Figure 2.5.: Plotting the quantum walk’s RMS speed vRMS (blue) as well as the maximum
speed |vmax

g | (red) as a function of the coin angle θ. Both graphs show a very strong coin
dependence, where the two extrema are represented by not having a coin at all (0, 2π) and
causing full spin-flips (π).

and what was shown previously (figure 2.2). It explains on a dynamical level why the
distribution shows peaks close to its edges, therefore explaining the ballistic nature of
the walk.

Furthermore, the analytic form of the bands allow for a more quantitative analysis
of the dynamics. Differentiation of (2.12) results in an expression of the velocity, i.e.

vg(k) =
∂ω±
∂k

= ± cos(θ/2) sin(k − α)√
1− cos2(k − α) cos2(θ/2)

, (2.15)

which in turn allows for the calculation of the maximum speed of the walk, yielding

vmax
g = ± cos(θ/2) . (2.16)

The units of these quantities are position number per step. For a balance walk (θ = π
2 )

the maximal speed is therefore 1/
√

2. The peak of the walk is consequently at around
N/
√

2 as already stated above. Additionally, by integrating the squared velocity over
the entire k-space the speed of the root-mean-square value (RMS) can be obtained as
follows

vRMS =

√
1

2π

∫ π

−π
v2
g(k) dk =

√
1− sin(θ/2). (2.17)

Figure 2.5 shows the RMS speed as well as the maximum speed as a function of the
coin angle. The strong dependence on the angle originates from the fact that a change
in θ translates into an in-/decrease of the band gap, which in turn leads to flatter or
steeper flanks of the bands, respectively. It shall be again stressed that this picture
applies only in an asymptotic context. A few number of steps are not represented by
this very clearly.

In conclusion, the Fourier picture allows to see the quantum walk as a quantum
mechanical simulator in its own right. The effective description of this time-discrete
system by energy-bands allows for investigations of associated quantum mechanical
effects. Thus, it is not only worthwhile to experimentally realise a quantum walk
(see chapter 4), but also to probe the properties of the predicted energy bands. One
associated effect is called Bloch oscillations [33] and deals with the transport properties
in such a system. Entering the momentum space description by applying a force to the
system, allows to test the corresponding motional behaviour. This shall be subject to
further theoretical and experimental investigations in chapter 5.
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Chapter 3.

Experimental control of single atom
systems

The usage of individual atoms as quantum mechanical objects of study requires ex-
perimental access to internal as well as external degrees of freedom. The experimental
setup presented here utilises single caesium atoms and a one-dimensional optical lattice
for spatial trapping. Previously, this has led to the realisation of an atom interferome-
ter [10] and also to the first demonstrated quantum walks in such a system [18]. This
chapter first introduces the general setup, before methods for internal state control
and the employed spin-dependent transport scheme are outlined. This is followed by a
section on a newly installed technology which enables to control the global motion of
the system.

3.1. Experimental setup

The general setup was installed in the past and is presented in great detail in [1, 34].
Although most features have been maintained, changes to the apparatus have been
made in favour of improvement and experimental capability. The most noteworthy
being the change from a one arm arrangement, in which the laser beam was retro-
reflected to form the lattice, to a configuration where the optical standing wave is now
formed by two individual counter propagating light beams. The latest layout of the
apparatus can be seen in figure 3.1. All experiments described in the following were
done using this arrangement.

The setup is based on a titanium:sapphire laser (Ti:Sa) which provides the optical
power for the used one-dimensional lattice. The emitted light has a frequency of about
865.9nm. The initial laser beam is split into two individual arms. Both of them are
guided through acousto-optic modulators (AOM) that allow for intensity stabilisation
and frequency control settings in the MHz-range. Subsequent coupling into optical
fibres guarantee a good wavefront quality in the following. Standard λ/4 and λ/2 wave-
plates are used to gain linearly polarised beams up to a purity1 of 10−5, before they
enter the vacuum cell and form the one-dimensional optical lattice with a characteristic
spacing of λ/2 = 433nm. Before atoms are trapped to the lattice, they are pre-cooled
by means of a magneto-optical trap. With a microwave antenna the two ground states
of caesium can be coherently coupled via electro-magnetic radiation in order to perform
qubit manipulation operations (see section 3.2). An electro-optic modulator (EOM) is
used to allow for qubit state-dependent transport by rotating one of the arms linear
polarisation (see section 3.3). Finally, trapped atoms are illuminated for imaging with
the same beams that also serve as optical molasses. The imaging can occur in a spin-
dependent or -independent fashion, respectively. The former requires the so called

1The EOM limits this purity to 10−4 in the respective dipole trap arm.
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Figure 3.1.: Experimental setup. Adapted from [1].

push-out technique [35]. Numerical post-analysis of images crucially allows single site
detection of the atoms.

MOT The MOT has become the standard tool to (pre-)cool and trap dilute atom
gases. It is therefore intensively studied in the literature, see [3, 36, 37]. The work-
ing principle is based on radiation pressure generating a velocity-dependent damping
force (molasses). An additional quadrupole field lets this force become directional by
exploiting the intrinsic spin of the photons and the associated selection rules in the
light-matter interaction process. The MOT employed in the presented experiment uti-
lizes the D2-Caesium transition line at 852.3nm [38] to cool down the atoms by means of
appropriate spectroscopically frequency stabilised laser beams. For the actual cooling
process the |F = 4〉 → |F ′ = 5〉 cyclic transition is used. Additional rempumping needs
to be operated on the |F = 3〉 → |F ′ = 4〉 to guarantee the compensation of undesired
decaying processes. From the very dilute background gas (∼ 3 × 10−11 mbar) suffi-
ciently many caesium atoms are caught and subsequently cooled below 100µK. Once
this temperature is achieved, further spatial trapping by the optical lattice becomes
possible. Here, the quantities depend in detail on the adjustment of the experimental
parameters.

1D optical lattice Optical lattices are based on the fact that off-resonant light-matter
interaction causes a conservative potential [39]. The attractive or repulsive nature of
the resulting force depends on the sign of the detuning. The trap employed here is red-
detuned, and hence attracts atoms to regions of high light intensity. The operated Ti:Sa
has a typical output power of about 3.2W at an operation wavelength of λ = 865.9nm.
The phase- as well as frequency stability is achieved by internal electronics, plus the use
of an external cavity in the latter case. Frequency tuning can be achieved by changing
the characteristics of the internal resonator and/or altering the RF-signal controlling the
AOMs. The installed two-arm setup requires phase stability of the signals driving the
respective AOMs. This is achieved by a direct digital synthesizer (DDS), which phase
locks its two individual outputs, and additionally allows for efficient frequency ramping
(see section 3.4). At the same time, the AOMs are used to set the intensities of the
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3.1. Experimental setup

individual lattice arms, and are utilised for the intensity stabilisation of such. A fraction
of each arm’s laser power is extracted and monitored with a fast photodiode (1MHz
bandwidth). Home-built servo amplifiers combined with voltage-controlled attenuators
(VCA - ZX73-2500+ by minicircuits) are then able to correct the RF-signal’s amplitude,
and thus the intensity of the diffracted light with a bandwidth of about 50kHz. The
set point is assigned by either the computer control or a manual voltage source. The
overlap of both beams, which ultimately leads to the lattice inside the vacuum chamber
is gained by optimising the coupling of one lattice arm into the opposite fibre coupler.
Furthermore, the linear polarisations of both arms need to be aligned such that their
relative angle is as close to zero as possible (see section 3.3). Just before the vacuum
chamber the beams are focused by means of a respective telescope. The resulting beam
waist is w0 = 18µm for both dipole trap arms. However, it could be measured that
the corresponding intensities vary in the usual trapping region of the atoms. Due to a
relative shift of the focii, dipole trap arm 1 (DT1) provides twice as high intensities in
this region than DT2 for identical beam powers. Moreover, while the DT1 laser arm
only has to pass the glass cell before hitting the atoms, the DT2 beam needs to traverse
a vacuum chamber window. It could be measured that the window has a considerable
impact on the purity of the linear polarisation due to a strain-induced birefringence.
The optical retardation is about λ/50. An optimal angle of orientation with respect to
the optical table was found to be about 58◦ (plus multiples of 90◦), corresponding to
the eigenaxes of the glass window.

Atoms are initially loaded into an optical trap with a depth of about 0.4 mK. Addi-
tional molasses cooling allows to decrease the atoms’ temperature further to ∼ 10µK.
By collecting the fluorescing photons, imaging of the system can be performed (see
below). For the actual experimental sequence the trap depth is adiabatically lowered
to about 100µK by decreasing the light intensities accordingly. Next to these intensi-
ties, the trap frequencies of the lattice depend on the waist for the radial, and on the
wavelength for the axial direction, respectively [39]. The usually employed beam power
of 6 mW in both arms then leads to a radial trap frequency of about 1 kHz. The axial
trap frequency can be measured to be 80 kHz.

Detection system The correct analysis and interpretation of the presented single
atom system requires the measurability and detection of such atoms with a resolu-
tion below a single lattice site. As mentioned above, the imaging processes comprises
the collection of fluorescence photons. The used self-assembled objective of numerical
aperture NA = 0.29 has an intrinsic diffraction limit of ∼ 5 lattice sites. The fluores-
cence signal is viewed by an EMCCD camera which allows single photon detection.
The pixel-to-meter calibration constant is ≈ 1.47 (pixel/lattice site). The amount of
collected photons is clearly dependent in detail on the characteristics of the molasses
beams, but the detection rate for the usually employed settings is about 75000 counts/s.
For single-site resolution imaging the camera exposure time2 is usually 1 s. Numerical
post-processing of the taken image is then carried out by means of an advanced de-
convolution algorithm respecting the discrete spatial separation of the atoms and their
fluorescence strength. Hereby, single-site resolution detection is finally achievable with
an efficiency of up to 99%. Again, a description at length of all components of this
imaging set-up can be found in [1].

2In preliminary characterisation measurements such as determination of the spectrum, a Ramsey-
sequence or atom survival test, for example, single site resolution is not necessary, and hence the
exposure time can be chosen considerably shorter (∼ 0.2 ms).
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Chapter 3. Experimental control of single atom systems

3.2. Qubit preparation and manipulation

The general aim is not just to trap single caesium atoms, but to reduce them to an
effective two-level system, the so called qubit. Hereby, the simplest quantum mechan-
ical system can be achieved. Having said this, no real atomic system provides a pure
two-level structure. Nonetheless, by choosing states carefully regarding experimental
preparation capability, intrinsic lifetime and experimental coupling efficiency, the atom
can effectively be reduced to the desired system. Generally, a detailed view on engi-
neering single atoms in the presented system can be found in [1]. Figure 3.2 shows the
hyperfine structure of both ground states of the employed caesium atom. The energy
splitting results from an externally applied quantisation field of about |B0| = 3 G. The
states of interest are |F = 4,mF = 4〉 and |F = 3,mF = 3〉 which shall be denoted as
| ↑〉 and | ↓〉 in the following, respectively. The σ+-polarised optical pumping beam,
which is nearly overlapped with the DT1 lattice arm (see figure 3.1), manages to prepare
the system in the | ↑〉 state with an efficiency of > 99%. This high value is measured by
a spin-dependent detection scheme. Here, a sufficiently strong laser beam couples only
the |F = 4,mF = 4〉 to an excited state, and literally pushes the corresponding atoms
out of the trap [35]. The natural lifetime of the qubit states is extremely long since they
only decay via their magnetic dipole moment. However, here the lifetime is limited by
the so called longitudinal relaxation time T1 [40], which is given by spontaneous photon
scattering of the atoms, and occurs with a rate of one every 100 ms. This is on a much
larger time scale than all experimental qubit operations as well as typical experimental
sequences, and can henceforth be neglected. In other words, the effective reduction to
a two-level system described by the Hilbert space3 Hqubit = C2 is hereby justified.

The two qubit states can be brought into any arbitrary superposition a| ↑〉+ b| ↓〉,
a, b ∈ C. This takes place by coherent coupling via a microwave radiation field of appro-
priate frequency. The necessary devices are shown in figure 3.2(b). A signal generator
is pre-programmed to output a certain frequency (typically ∼ 159.8MHz) upon a pulse
trigger. This signal is mixed with another signal that is fixed in frequency (9.04 GHz) to
reach the actual transition frequency. Before the amplification, an attenuator allows to
generally switch on/off the signal, or to dynamically shape its amplitude, respectively.

As stated in chapter 2, any superposition of two qubit states can be represented as
a point on the so called Bloch sphere with a corresponding three-dimensional Bloch
vector u. By considering the semi-classical interaction picture of a near resonant light
field with a two-level system, the dynamics can be sufficiently approximated by the so
called Bloch equations. When a radiation field of the form Arf cos(ωrft+φrf) is assumed,
where Arf is the amplitude, ωrf the frequency and φrf denotes the phase, then the Bloch
equations can be written in the simplified form4 [40, 41]

u̇ = −Ω× u , (3.1)

where Ω = (ΩR cosφrf,−ΩR sinφrf, δ), with ΩR being the Rabi-frequency and δ denotes
the detuning between the actual transition frequency of both qubit states and ωrf.
Assuming a rectangular microwave pulse of duration trf, the rotation angle θrf resulting
from this action is then defined as the temporal integration of the Rabi-frequency ΩR

over trf. Experimentally, ΩR is usually fixed and trf adjusted as desired. To calibrate the
pulse length the qubit population transfer is monitored for an on-resonance light field.
For a full population transfer to the other state a rotation angle of θrf = π is necessary.

3Hqubit = Hqubit
4Here, the rotating wave approximation (RWA) has been applied.
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Figure 3.2.: (a) Level scheme showing the split hyperfine substructure of the two caesium
ground states. (b) Experimental realisation of a microwave application to perform qubit
operations. Adapted from [1].

The corresponding pulse time has a length of tπ ∼ 11µs. Note that in order to find the
correct resonance frequency a microwave spectrum is taken. Here, the detuning δ is
varied across the resonance, and the resulting sinc-function behaviour of the population
probability is recorded. In free space, i.e. without the presence of the dipole trap, the
resonance is measured to be ω4↔3

0 = 2π × 159.810MHz(+9.04GHz). In principle, this
value should be the same for the systems within the trap. However, due to differential
light shift effects a state dependent energy shift will occur, thus altering the resonance
frequency accordingly. During actual experimental sequences only resonant microwave
fields are used.

To be able to express the general action of the microwave pulse in terms of a uni-
tary operator Û , the Bloch vector picture is transformed into Dirac notation. The
corresponding matrix representation yields [1]

Ûθrf,φrf
=

(
cos(θrf/2) i sin(θrf/2) eiφrf

i sin(θrf/2) e−iφrf cos(θrf/2)

)
. (3.2)

This expression can also be compared to the coin operator Ĉgen(θ) as defined in (2.1). It
becomes apparent that the abstract parameters α, β, γ have now a concrete connection
to experimental quantities, which can be easily controlled. In fact, by setting the phase
to φrf = π

2 the experimental Hadamard coin is recovered (see section 4.2) . Generally,
any superposition of both qubit states | ↑〉 and | ↓〉 can be achieved very reliably by
carefully tuning the characteristics of the microwave, giving rise to the realisation of
the coin-operator.

Once the desired state is prepared and the radiation field switched off, the system
precesses in the horizontal plane according to (3.1). However, this behaviour will be
influenced by dephasing or decoherence mechanisms. There are two different kinds
of such processes: homogeneous and inhomogeneous dephasing. These are quantified
by the transversal relaxation times T2 and T ?2 , respectively [40, 42]. To probe these
decoherence times, a standard Ramsey sequence is performed [43]. Here, the initially
prepared | ↑〉-state is coherently driven into an equal superposition of both spin states
by means of a resonant π

2 -pulse. The system then precesses in the equatorial plane for
a duration τ until a second π

2 -pulse is applied. By scanning the phase of the second
pulse the population is sinusoidally varied. Spin-dependent measurements can then
record the so-called Ramsey fringe. The contrast drops in size when τ is increased,
though. The decoherence time is defined as the value of τ for which the contrast is
50%. Inhomogeneous dephasing can be removed by applying a spin-echo, i.e. a π-pulse,
halfway through the sequence. The corresponding benchmark times are T2 = 200µs and
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T ?2 = 400µs, respectively. Decoherence processes can be manifold and their impact on
the Ramsey fringe contrast is discussed in depth in [42]. Fluctuations of magnetic fields
generally cause a temporal changing Zeeman splitting, and hence a slightly changing
resonance frequency, which results in dephasing. However, characterisation measure-
ments have shown that fluctuating magnetic fields can be excluded as the main source
of limitation here5. Another possibility is dephasing due to excitation processes within
the trap. This could be caused by jitter which would mainly result from electronic
phase noise on the RF-signal controlling the AOMs. In section 3.4.3 it is shown that
the negative effects due to this can also be neglected. Clearly, instabilities in all other
lattice properties can cause negative effects. However, the main reason for the upper
limitations on the coherence times in the optical lattice is believed to be the occurrence
of differential light shift effects which can be associated with polarisation impurities.
This gives rise to internal- and vibrational state-dependent potentials, which subse-
quently leads to dephasing, because atoms occupy a range of different radial states.
The lattice polarisation impurities can originate from the birefringence of the vacuum
window (see above) or a misaligned EOM. Particularly the latter has strict technical
limitations to the purity. In fact, reducing the effects to a minimum to guarantee a
sufficient coherence time has been experimentally very challenging.

3.3. Spin-dependent transport

Next to the preparation of internal qubit states, it is also very interesting to consider a
coherent spatial preparation of such. In order to achieve controlled coherent delocali-
sations of a single atom, which ultimately can lead to interference effects of the system
with itself, a spin-dependent transport mechanism is required. Such a scheme has been
developed and successfully implemented in the past [1, 44]. The working principle is
based on the light polarisation-dependent interaction of each qubit state, and shall be
sketched in the following.

For reasons of simplicity, first the fine-structure of caesium is considered. In this pic-
ture the qubit states are given by the two possible ground state levels |J = 1/2,mJ = 1/2〉
and |J = 1/2,mJ = −1/2〉, and are denoted by | ↑′〉 and | ↓′〉, respectively. The mech-
anism is explained by recalling the scalar as well as vectorial nature of the light-matter
interaction. The former reveals that blue detuned light causes a repulsive potential,
and red detuning light an attractive one [39]. The vectorial property then constrains
the coupling between states of different magnetic quantum number mJ depending on
the polarisation, i.e. ∆mJ = +1 for σ+-, and ∆mJ = −1 for σ−-polarised light (see
figure 3.3(a)). It shall be assume that only the two excited states 62P1/2 and 62P3/2

contribute to the energy shift. When putting all this together, it becomes apparent that
for a correctly tuned light frequency halfway between those excited states, the contri-
butions of the couplings to the excited mJ = ±1/2 sates cancel out (dashed lines).
Therefore, an individual qubit state couples to one, but different polarisation only, and
hence transport of systems depending on their internal state is possible by spatially
shifting an optical lattice of respective polarisation.

As a matter of fact, tuning the frequency exactly halfway between the two fine states
does not quite reveal the desired result. A correct treatment requires the transfer of
the intuitive picture above to the actually chosen qubit basis. Hereby, the method of
expanding the hyperfine states in terms of the fine structure- as well as the nuclear
spin states by using Clebsch-Gordan coefficients is used [45]. This basis transformation

5The coherence time T2/T
?
2 in free space, i.e. without a lattice, exceeds 0.5/1 ms.
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Figure 3.3.: (a) Level scheme showing the fine substructure of the caesium ground state
and the first two excited states. (b) experimental implementation of the EOM. Adapted
from [1].

then leads to

| ↑〉 = |I = 7/2,mI = 7/2〉 , (3.3)

| ↓〉 =

√
7

8
|I = 7/2,mI = 7/2〉 ⊗ | ↓′〉 −

√
1

8
|I = 7/2,mI = 7/2〉 ⊗ | ↑′〉 , (3.4)

where I represents the nuclear spin of the caesium atom and mI the corresponding
magnetic quantum number. So while the | ↑〉 state purely couples to σ+ light, the | ↓〉
experiences a slight mixture of σ−- and σ+-polarised light. This impurity has to be
taken into account in the experimental realisation (see below). The potential U|↑〉(λ) for
the | ↑〉 state and chosen σ+ polarisation, respectively, can be analytically determined
as a function of the wavelength λ [44]. In order to guarantee pure coupling of this spin
state to the chosen polarisation, the potential needs to drop to zero, i.e U|↑〉(λ) = 0.
Calculations yield the magic wavelength of λ|↑〉 = 865.9nm.

Imagining a lattice composed of linearly polarised light as employed in the experi-
ment, the intensity I can be decomposed into the sum of two individual lattices of σ+-
and σ−-polarisation, respectively, i.e.

I(r) = Iσ+(r) + Iσ−(r) . (3.5)

If the angle θ between the linear polarisations of both lattice arms is zero, both lattices
coincide and no spin-dependent effect is visible. Spatial rotation of one of the polarisa-
tions brings the system into the so called lin-θ-lin configuration. It can be shown that
this angle induces a relative shift of both lattices. The spatial intensity distribution is
now given by

Iσ±(r, θ) = A2(r) cos2(f(r)∓ θ/2) . (3.6)

So changing the angle θ will translate both spin-dependent lattices in opposite direc-
tions, hereby realising the spin-dependent transport. Experimentally, the rotation of θ
is achieved by an electro-optic modulator (350-150 by Conoptics), which is placed in the
beam path of DT2 (see figure 3.3(b)). Applying a voltage to this device in combination
with a λ/4-plate between EOM and vacuum chamber rotates θ as required. To make
the transport sufficient, the relative shift needs to be at least λ/2, i.e. a rotation of
π, such that the lattices coincide again. This shall be referred to as a single transport
step in the following. However, the installed EOM model does not allow this amount of
rotation at room temperature6. Therefore, one of the EOM’s end caps is connected to

6Note that this was not the case in the previous single-arm configuration, where due to the double
pass only half of the rotation needed to be performed.
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a peltier element and a CPU water cooling system to reduce the temperature to 17◦C.
The temperature is stabilised by a standard PID controller. In order to minimise tem-
perature gradients the EOM is additionally covered in foam rubber. For translating one
lattice site, the EOM needs to be ramped up to about Vλ/2 = 700V. In fact, one step is
the most the EOM can do. The subsequent decrease of the applied voltage causes the
lattices to shift in opposite directions than before. Hence, in order to keep the system’s
transport direction a spin flip is required after a single transport step. Furthermore,
the ramping time can not be arbitrarily chosen. The discussed intrinsic impurity of
the coupling results in a wobbling of the respective trap during the transport. This
causes excitation of higher vibrational states, and destroys coherences of the system
accordingly. This effect, however, can be compensated if the transport is done in a
certain time. This magic transport time depends in detail on the characteristics of the
trap, but is around 24µs for a typically employed trap depth of 100µK. Generally, the
EOM offers a maximum polarisation purity of 10−4, which limits the coherence time
as stated above. This value depends delicately on the EOM’s alignment.

3.4. Acceleration of trapped atoms in an optical lattice

3.4.1. Principle of operation

While the spin-dependent transport scheme is able to shift atom systems depending on
their internal state, it is unable to move the system globally. For this the entire lattice
needs to be translated. This can be achieved by detuning the two lattice arms relatively
to each other. An immediate understanding is delivered by the familiar picture of a
Doppler shift: Imagining an atom moving at a velocity of

v =
λ

2
δν (3.7)

in the presence of two counter-propagating light fields at frequency ν1 and ν2 = ν1 + δν,
respectively. In the moving frame of the system both frequencies are shifted by an equal,
but opposite amount such that the two frequencies coincide. The result is a static
standing wave potential in the moving frame of the atom. In the static or laboratory
frame, however, this potential, and likewise a trapped atom, moves at speed (3.7) along
the lattice axis. This picture holds firmly in the case of two Gaussian laser beams as
used in the presented setup [35].

Assuming that the frequency detuning has an intrinsic time dependence, i.e. δν(t),
the trapped atoms experience an acceleration according to

a =
dv

dt
=
λ

2

d (δν)

dt
. (3.8)

So by ramping the frequency of one of the lattice arms (or both simultaneously in
opposite directions) leads to corresponding acceleration and deceleration processes of
the system. However, it is necessary that the ramping takes place in a phase con-
tinuous fashion to ensure that no atoms get literally kicked out of the trap. As long
as the acceleration stays below a certain threshold the atoms will remain trapped in
one potential minimum and will follow the dynamics of the lattice. The maximum
acceleration acr is approximated by the value for which the potential generated by the
acceleration over a distance λ/4, i.e. Uacc = M aλ/4 exceeds the trapping potential U0,
where M is the mass of a single caesium atom. For a typical value of U0 = kB × 100µK
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this values can be calculated to be acr ≈ 2.9 · 103g, with g being the standard acceler-
ation due to free fall. Gaining control over the precise adjustment of the lattice arms’
frequencies gives rise to an experimental control of movement and acceleration of the
optical lattice system. This also allows to deliver atoms deterministically to positions
of interest, hereby creating an optical atom conveyor belt, whose functionality has been
shown before [35, 46, 47]. More importantly though, the acceleration can be used to
test the quantum transport properties of a quantum walk as motivated in chapter 2.
For that purpose, a home-built device employing a direct digital synthesizers has been
constructed, which is able to control and detune both frequencies relative to each other.

3.4.2. The Direct Digital Synthesizer

Direct digital synthesizers (DDS) are nowadays a standard tool for creating analogue
signals depending on digital inputs. Their high frequency precision and low phase-noise
features up to the GHz-range make them very suitable for being RF-sources. Here, a
dual output DDS has been installed. Unlike the previously used voltage controlled os-
cillator (VCO), the DDS allows precise tuning of the signals’ frequencies which operate
the acousto-optic modulators (see figure 3.4). Thus, it allows to dynamically control
the frequencies of the laser arms in the MHz regime. Consequently, the DDS offers the
possibility to move and accelerate the optical lattice at will, as discussed above.

The AD9954 DDS Chip

The offer of DDS chips are manifold and they vary with respect to resolution, maximum
output frequency and performance qualities. Here, the DDS chip AD9954 from Analog
Devices shall be introduced. This chip was utilised and ultimately implemented in the
setup in its evaluation board version. It offers two synchronised AD9954 chips, allowing
for a double frequency output.

Working principle The AD9954 generates a sinusoidal waveform up to 160 MHz by
means of a 14-bit digital-to-analog converter (DAC) with an output power of about
-5dB. All information about the used DDS chip as well as associated schematics can be
found in [48]. Generally, the evaluation board takes digital input signals and converts
them with the aid of internal logic circuits into a function which can be represented as
a digital ”phase wheel”. An external reference clock discretely takes the system around
this wheel according to the clock’s frequency. Every point on the phase wheel represents
one sampling point of the sinusoidal output signal. The latter is finally achieved by
the mentioned DAC7. The AD9954 allows for a clock frequency of up to 400 MHz. The
frequency precision at this value is 0.1 Hz. Although the device is equipped with an
internal clock multiplier, in order to keep residual phase stability at a maximum a
400 MHz source is used to support the DDS board. The clock employed is a Hewlett
Packard 8640B signal generator, which is phase stabilised by an internal microwave
cavity [50]. A high quality reference is needed for the DDS, since noise properties
would directly propagate into corresponding characteristics of the output signal. The
clock’s input power is specified by the board to be around 0.0 dBm, i.e. 220 mVrms.

The communication with the DDS board takes places via a serial interface. Tuning
words describing the information, e.g. for frequency or phase (32-bit or 14-bit), are
transmitted to the chip where they address chosen registers. The binary form of any

7Detailed information about the working principles of a DDS in general can be found in [49].
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frequency tuning word, for example, is given by

BF = F × 2N

clock
, (3.9)

where F is the frequency quantity in physical units of Hz, N is the fixed binary length of
the tuning word and clock denotes the frequency of the external reference. Internal logic
then accesses respective registers, and uses their stored information to shape the output
properties of the AD9954. As a matter of fact, the device’s information processing
speed is fundamentally limited by the duration of four cycles of the reference clock, i.e.
tfund = 4/(400× 106) s = 10 ns. In the default running mode of the chip the frequency
output is static. By exploiting intrinsic synchronisation functions of the evaluation
board, the two frequency output channels (Ch1, Ch2) can be phase locked to each
other (for an analysis of the residual phase noise see section 3.4.3). Usually the DDS is
operated at simultaneously emitted output frequencies of 80 MHz. Higher harmonics
and other emitted higher frequencies are suppressed with a built-in low-pass filter by
at least 65 dB.

Frequency ramping One of the main reasons to have chosen the AD9954 among the
offered DDS chips is its ability to drive frequency ramps. There are two main ramp
operation modes: The linear sweep mode and the RAM mode. The linear sweep mode
only needs information about the start- and end-frequency as well as the temporal fre-
quency gradient. Upon the software activation of this mode and an additional trigger,
the DDS automatically changes discretely the frequency output until the end-frequency
is reached. The RAM mode on the other hand is based on 1024 32-bit frequency ad-
dresses to which information needs to be written. When activating this mode the DDS
jumps from one frequency address to the next after a pre-defined time-step. Whereas
the sweep mode only allows for linear ramps, the RAM mode offers the opportunity
to realise any kind of customized ramp-shapes. However, the huge drawback of the
latter is the duration of a potential rewriting process, which, assuming that all 1024
addresses get new information, lasts tRAM = 1024 × 32 × tfund ≈ 0.33 ms. Despite the
differences, both modes allow for bi-directional ramping of the frequency, which in turn
offers acceleration and movement of the optical lattice in both directions along the lat-
tice axis. Additionally, both modes crucially fulfil the requirement of phase continuous
ramping. Due to the mentioned time delay of the RAM mode, though, all frequency
ramps presented in this thesis are based on the linear sweep mode. The general method
is to fix the frequency of one of the channel outputs (Ch2) and to simultaneously use
the linear sweep mode on the other chip (Ch1).

DDS box

In order to make the DDS technology implementable, the sole evaluation board is not
sufficient. Hence, a box has been constructed that contains all necessary components to
handle the DDS board and its outputs in a convenient way. Figure 3.4 shows the layout
of this DDS box. The casing (Feltron 2008-0705) was chosen such that all components
could fit into the box in one plane. Most importantly, the communication to the
DDS chips via a serial connection is obtained by using a microcontroller (mbed NXP
LPC1768) that can be addressed by a computer via a standard USB-port. The power
connection is a typical ±15V input, which is then regulated down to 5V, 3.3V and 1.8V
by voltage regulators, respectively. While the last two voltages are needed to supply
the evaluation board, 5V are used to internally supply the mbed microcontroller. The
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Figure 3.4.: Schematics of the home-built DDS box. The core of this box is the AD9954
evaluation board and an mbed microcontroller, allowing to control the desired RF-output
by means of a USB-connection. Different colors indicate different signals and their func-
tions.

reference clock signal is equally split inside the box by a power splitter (Minicircuits
ZMSC-2-1W), since both DDS chips require an individual clock input. Because the
power splitter causes losses in the clock signal, the total input power of the reference
clock needs to be adjusted to the required 0.0 dBm at the evaluation board. This leads
to a necessary total input power of Pclock,total ≈ 1Vrms = 4 dBm. The initial signal is
fed to the box by a standard BNC connector. Furthermore, the mbed microcontroller
communicates with the DDS evaluation board via its serial peripheral interface bus
(SPI). All tuning words are written by this means. Additional digital pins are used for
triggering or specific addressing purposes. A full picture of the mbed-DDS connection
can be found in Appendix A. Further, see [48] for a detailed description of each pin.
The microcontroller’s software code can be easily programmed by using the associated
online ”C++” compiler. The desired file is then transferred via the USB connection.

In order to facilitate a high timing-resolution of frequency ramps, the box does not
only rely on the USB connection to a computer, but can be triggered by an extra
TTL signal. The box offers two options: Either the microcontroller can be triggered
or the respective pulse reaches the DDS board directly. In both cases the 5V input
trigger signal is reduced to the working voltage of 3.3V by a buffer (MC14050BCP).
Depending on the trigger’s nature, this signal is fed to the mbed (microcontoller trigger)
or to an OR-gate (HEF4071), where it is combined with a corresponding signal from
the microcontroller. The output of the buffer then serves as the DDS trigger. Buffer
and OR-gate have a typical delay time of 100ns and 55ns, and therefore cause a trigger
delay of 100ns and 155ns of the mbed- and DDS trigger, respectively. However, these
delay times can be neglected as they are much smaller than the time resolution of
the experiment control (∼ 2µs). Finally, the DDS output channels are connected to
SMA-connection sockets.
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Implementation into the current setup

The DDS box was implemented in the current setup as shown in figure 3.5. The
400 MHz reference source is connected to the box via its designated port as described
above. Whereas the communication connection from computer to DDS box is direct,
the box receives the trigger pulses from a waveform generator which can be programmed
prior to the experimental sequence. By this it is ensured that the trigger is sent with
the desired timing. The two phase-locked outputs of the new RF-source are embedded
in the present setup by means of a combination of attenuators and a pre-amplifier
(Minicircuits ZHL-03-5WF), which replace the previously used arrangement of VCO
and power splitter. The final signal is then sent to a voltage controlled attenuator
(VCA - Minicircuits ZX73-2500-S+). Here, the amplitude of the signal is modified
depending on a control voltage. This voltage is either applied in a static way, or by
means of a servo controller. The latter allows to vary the voltage according to some
error signal, hereby intensity stabilising the lattice beams. The outputs of the VCAs
are finally guided to a high power amplifier that increase the signals’ power by 30dB up
to 1W. This is the maximally allowed power input of the AOMs, which complete the
line of devices. The initially introduced attenuators and the pre-amplifier are chosen
in such a way that when the VCA transmits the full power, the signal never exceeds
this figure of 1W.

In order to get the desired output signals, and particularly to drive precise frequency
ramps, the communication of the DDS box with the controlling computer is key. Gener-
ally, global parameters like the clock frequency or the default static output frequencies
of both channels as well as the type of frequency ramp mode used (see section 3.4.2) are
intrinsically embedded in the programmed source code. The compiled programme is
run from the mbed’s flash memory, and causes an output of two 80 MHz signals as soon
as the device is switched on, for example. This, however, is not sufficient to change pa-
rameters ad hoc. For that purpose a separate serial connection is emulated allowing to
communicate live with the mbed via the USB line. Parameters for detuning one of the
frequencies, and thereby inducing dynamics to the lattice can then be changed via an
interface8 on the run. The interface is able to send and receive information to and from
the mbed, respectively. The general working principle for frequency ramps is that the

8The interface is formed by the online available software ”HTerm”, which is a terminal programme
featuring serial ports.
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3.4. Acceleration of trapped atoms in an optical lattice

mbed waits until all necessary parameters are filled, before going into a loop where it
can receive trigger signals. Upon sending such a trigger to the mbed the programmed
ramp is activated. This implements the idea of preventing possible time delays by
transferring the main information to the microcontroller and transforming all internal
parameters into tuning words before the actual sequence. Clearly, the exact form and
structure of the code is adjusted to the respective experimental circumstances. A more
detailed example of a used programme code is given in section 5.2.1.

3.4.3. Characterisation and performance of the DDS box

Heating atoms due to phase noise

Despite the fact that the two AD9954 DDS-chips’ outputs are phase stabilised to each
other, there is a remaining and inevitable relative phase noise due to small imperfections
of the respective signal paths. Since this residual phase noise translates directly into
associated properties of the standing wave potential formed by the two light waves
passing through the AOMs, a quantitative analysis of the noise is necessary. Common
noise of the signals, on the other hand, is not reflected in the optical lattice.

The phase noise of two signals with respect to each other can be measured by mixing
them. The disturbance becomes then visible as amplitude noise of the mixed signal.
In general, multiplication of two waves generates a superposition of two new waves:
one oscillating at the frequency difference of the initial two and the other one at their
sum. Applying low-pass filtering processes to this signal leaves only the low-frequency
component which can be described by

V∆f (t) = V0 cos [2π∆f t+ ∆φ0 + ∆φ(t)] , (3.10)

where V0 describes the amplitude of the signal, ∆φ0 is the relative phase difference
between the two mixed signals and ∆φ(t) represents the time-depending residual phase
noise. When tuning both frequencies to the same value, the remaining signal has
dominantly a DC nature according to ∆φ0, but fluctuates due to the phase noise. In
addition, by setting the relative phase to exactly 90◦ the cosine function in (3.10) can
be linearly approximated, i.e. V∆f (t) ≈ V0 ∆φ(t). Determining V∆f (t) plus finding V0

independently gives the possibility for a direct measurement of the residual phase noise
which is commonly characterised in its root mean square value (rms):

∆φrms =
V∆f,rms

V0
. (3.11)

Here, the two 80 MHz DDS output signals were mixed by a phase detector (minicir-
cuit RPD-1). The relative phase difference could be conveniently adjusted exploiting
the phase offset features of the DDS board. The phase detector’s output was then am-
plified by a low noise amplifier (Stanford Research Systems SR560) in order to better
distinguish the actual noise signal from intrinsic noise of the measurement device. After
an applied low-pass filter, a spectrum analyser (Agilent Technologies N9010) was able
to detect the frequency spectrum of the phase noise in units of volts. In order to convert
this signal into radians, V0 was measured with an oscilloscope by deliberately detuning
one of the two channels by 1kHz. Paying attention to necessary calibration factors the
phase noise spectrum ∆φ(ν) could be finally found in its desired units. An important
quantity that can be deduced from this is the one-sided noise spectral density function
Sφ(ν), where Sφ(ν) = ∆φ2

rms(ν) [51]. For this expression it holds that

∆φ2
rms =

∫ ∞
0

Sφ(ν) dν , (3.12)
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Figure 3.6.: Measured spectral noise density as a function of frequency. The Sφ(ν) of
mixed DDS-box output signals (black) is compared to the previously employed single VCO
source (red). The green curve represents measured noise without any input signal. The
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owing to the additive nature of the power quantity. Sφ(ν) is plotted in figure 3.6, and
by numerical integration the DDS’ rms-noise value was calculated according to (3.12)
to be ∆φrms ≈ 10−4 rad over a range of [0, 1MHz]. The noise almost shows a pure
1/f -dependence. For comparison also the noise from the previously employed VCO
circuit is plotted. Since in this case the signal is created by one source only, the phase
noise can only result from the used signal splitting device. The overall VCO noise is
therefore strongly suppressed compared to the DDS noise.

To determine the impact of the measured noise on the optical lattice, it is essential
to realise that the phase of the trap changes exactly in the same way as the electronic
signals. So a fluctuating electronic phase is equivalent to a spatially shaking standing
wave, where the exact correspondence can be deduced from

∆φ(t)

2π
=

∆x(t)

(λ/2)
→ ∆x(t) =

∆φ(t)

2k
, (3.13)

with k being the size of the lattice’ wavevector. The small position fluctuation give
rise to a force in the co-moving frame according to F = M∆ẍ(t). Assuming that the
trapping regions can be approximated by a one-dimensional harmonic oscillator, the
resulting Hamiltonian yields9

Ĥ =
p̂

2M
+

1

2
Mω2

axx̂
2︸ ︷︷ ︸

Ĥ0

−M∆ẍ(t)x̂︸ ︷︷ ︸
Ĥ1(t)

, (3.14)

with ωax being the axial trap frequency and M is the mass of a caesium atom. As long
as the fluctuations are small, i.e. E1 � E0 (energies of the associated Hamiltonian),
first order perturbation theory can be used to calculate the excitation rate of the system
to a different eigenstate of the harmonic trap [52]. The interaction picture yields for
the excitation rate

Γm←n =
1

T

∣∣∣∣−i~
∫ T

0
〈m|H1(t)|n〉 eiωaxt

∣∣∣∣2 , (3.15)

9Note that only shaking along the lattice axis is assumed. Hence, the radial motion is neglected and
the problem becomes one-dimensional.
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where m and n represent different states of the harmonic oscillator. When computing
this expression the occurring autocorrelation function of ∆x(t) can be expressed in
terms of the noise spectral density (3.12) via the so-called Wiener-Khinchin theorem
[51]

Sx(ν) =

∫ ∞
−∞
〈∆x(t)∆x(t+ τ)〉 e−2πiντ dτ . (3.16)

Assuming that the atoms are sufficiently cooled such that they initially occupy the
ground state only, the excitation rate to the next higher level can be calculated to
be [53,54]

Γ1←0 =
2π3

~
Mν3

axSx(ν) . (3.17)

By converting the measured Sφ(ν) into Sx(ν) by means of (3.13), the excitation rate can
be plotted as a function of the axial trap frequency νax (see figure 3.7). It can be seen
from this graph that an excitation rate of about 0.1 s−1 can be expected for a typically
employed trap frequency of νax ≈ 80 kHz. As this is on a time scale that is much longer
than a scattering event for example (10 s−1), it can be deduced that excitation processes
and hence also the atom’s lifetime in the optical lattice are not limited by electronic
phase noise. Prove of the latter statement delivers the measurement of lifetimes in a
lattice controlled by the DDS or a VCO, respectively. Without the presence of cooling
molasses the survival is about 5 s in both cases. As the residual phase noise of the
DDS exceeds that of the VCO by many orders of magnitude, both outcomes should be
clearly distinguishable if the phase noise was a limiting factor. Nonetheless, a correct
prediction of an atom’s lifetime limited by this heating mechanism is not possible with
the used method since the harmonic approximation does not hold for higher excited
states. Ultimately, the length of a typical experimental sequence is ∼ 1 ms, and thus the
effect of excitation due to electronic phase noise can be neglected. Note that heating
processes might occur due to other fluctuation behaviour such as intensity or pointing
instabilities, for example. The analysis of those, however, is beyond the scope of this
thesis.
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imaging time of 1 s smears out moving atoms halfway through the sequence.

Accelerating trapped atoms

The effect of an accelerated lattice shall now be explicitly demonstrated by imaging
trapped atoms. As explained in section 3.4.2, arbitrary shapes of frequency ramps are
technically possible, but due to timing issues solely linear ramps, i.e. constant acceler-
ations are employed. Generally, idle times between ramping steps can be introduced,
or consecutive applications of ramps in the same direction are possible. The only re-
quirement is that the system needs to be brought back to a static case in the end,
in order to allow for single-site detection imaging. The simplest of such sequences is
where the detuning follows the shape of a triangle, i.e. is composed of two consecutive
equal, but opposite ramps. To give a proof of principle, this triangular detuning ramp
is sufficient. The corresponding behaviour of the experienced acceleration, velocity and
position of an atom according to (3.7) and (3.8) can be seen in figure 3.8(a)-(c). In
order to make the dynamics of the atoms visible, a low detuning gradient of 1Hz/s
was realised over a deliberately chosen long single ramp time of τ = 10 s. Atoms were
imaged live during this ramp sequence. Note that this was possible since the imaging
time (1s) was short compared to the entire sequence length of 2τ . Figure 3.8(d) shows
images of the moving atoms, and nicely reveals the quadratic path that is followed by
them. The end-position agrees fully with the theoretically expected one.

Here, meeting theoretical predictions means a deterministic delivery of atoms with
a precision exceeding the single-site resolution limit. This performance is to be in-
dependent of the ramp time and acceleration strength as along as the latter is chosen
sufficiently below the critical acceleration acr (see section 3.4.1). Potential error sources
preventing this precision might be found in software flaws caused by rounding problems
or temporal trigger instabilities, for example. However, the efficiency could be mea-
sured to be > 98% for performed transports of moderate accelerations (<100g). This
transport efficiency will significantly drop when approaching acr, though. At this point
atoms start to hop between lattice sites during the ramp or might even get lost.
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Assuming that one will always stay well below acr, the system might still be nega-
tively influenced. So far the internal states of the lattice have been neglected. However,
excitation processes might occur upon acceleration, which destroy coherent evolutions.
The theoretical treatment of this excitation is completely analogous to section 3.4.3.
Here, however, the force is not caused by an oscillating phase noise, but rather by a
constant acceleration over a certain single ramp duration τ , meaning that the perturb-
ing Hamiltonian Ĥ1 in (3.14) can de facto be seen as time-independent over the interval
[0, τ ], i.e.

Ĥ =
p̂

2M
+

1

2
Mω2

axx̂
2 −Ma0Π(tτ ) x̂ , (3.18)

where a0 is the constant acceleration strength, Π(t) denotes the Heaviside pi-fuction10

and the time tτ is here given in units of τ . Using again the form of (3.15), the corre-
sponding excitation probability can be computed to be

P acc
0→1 =

2Ma2
0

~ω3
ax

sin2

(
ω2

axτ

2

)
. (3.19)

Usually, the acceleration itself is not the parameter of interest, but rather one that
couples acceleration a0 and ramp time τ . Here, this parameter shall be the maximal
detuning ∆ν at the end of a single ramp, i.e. at time τ . When employing a linear ramp,
the acceleration can be described as a0 = λ∆ν/(2 τ) according to (3.8). Evidently,
by decreasing τ the acceleration needs to become larger to guarantee the same final
detuning, and vice versa. By substituting the expression into (3.19), it can be seen that
this inverse proportionality causes the excitation probability to asymptotically decay
as 1/τ2. However, the oscillatory behaviour of the sin2-function also allows to find local
excitation minima for a certain acceleration at short ramp durations. Figure 3.9 shows
the excitation probability of different detunings ∆ν as a function of τ . Although the
1/τ2 dependence varies strongly, the local minima all coincide. An optimal transport
time, which minimises duration as well as excitation probability, is given by ∼ 12.5µs
for a typically used trap frequency of ωax = 2π × 80 kHz. Below this ramp time

10 Π(t) =

{
1 for 0 ≤ t ≤ 1

0 else
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the excitation probability approaches a considerable value quite rapidly. In fact, the
perturbation theory approach breaks down in cases where the excitation probability
significantly exceeds one, as it is the case for very short acceleration times. Despite the
fact that an excitation minimum can always be found for longer ramp times, for a final
detuning of about 10 kHz (and below) the excitation probability is close to zero, and
therefore negligible for any value of τ above the minimal time of ∼ 12.5µs.

Note that the presented discussion is based on the assumption that the ramp is purely
continuous. However, since the DDS switches frequencies discretely during the ramp,
this is strictly speaking not the case. The typical time11 after which the frequency is
changed by a pre-defined size is 100ns. This is on a much smaller time scale than what
is given by the trap frequencies. It is therefore presumed that the atoms do indeed
experience a continuous ramp, and hence that the discussion above firmly holds.

11The smallest possible value is 10ns. However, this would strongly constrain the range of possible
acceleration strengths a0 due to the discrete nature of the DDS.
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Chapter 4.

Quantum walks with individual atoms

After having introduced all necessary experimental tools, the realisation of quantum
walks with single Caesium atoms shall be presented in this chapter. Such quantum
walks have already been achieved previously [1]. However, the results presented here
show qualitative as well as quantitative improvement. This chapter leads through the
applied experimental sequence and gives a suggestion for an applicable decoherence
model, before finally demonstrating the measured results.

4.1. The experimental walk operator

An ideal quantum walk is described by the walk operator (2.3). As described in section
3.2 the state preparation of the atom and the microwave coupling between the |3, 3〉
and |4, 4〉 states is so efficient that the coin operation can in principle be experimentally
achieved to a very high reliability. However, due to the alternating shift directions of
the two spin-dependent lattices, the realisation of the shift operator cannot occur as in
the ideal theoretical picture. The different actions rather describe two shift operators
that translate into opposite directions. Extending the definition of (2.2), these are
given by

Ŝ� =

{
|n, ↑〉 → |n+ 1, ↑〉
|n, ↓〉 → |n− 1, ↓〉

and Ŝ� =

{
|n, ↑〉 → |n− 1, ↑〉
|n, ↓〉 → |n+ 1, ↓〉

. (4.1)

Both shift operators always appear in pairs. Consequently, this leads to an extension
of Ŵ to form the experimental walk operator

Ŵexp =
[
Ŝ� ·

(
1̂space ⊗ Ĉ

)
· Ŝ� ·

(
1̂space ⊗ Ĉ

)]
. (4.2)

As before, the full quantum walk is obtained by consecutively applying Ŵexp to an
initially prepared system |ψ0〉. The state after N ′ = 2N steps reads

|ψN 〉 = ŴN ′
exp|ψ0〉 . (4.3)

It can be shown that Ŵexp reveals the same dynamics as the textbook operator Ŵ .
However, the probability distribution is found to be mirror-inverted. This can be
fundamentally explained by expressing the walk again in its Fourier picture. Proceeding
analogously to section 2.2, by fixing Ĉ to the form of a balanced experimental Hadamard
coin ĈEH, the k-space representation reads

Ŵ spin
exp,k =

(
eik 0
0 e−ik

)
· 1√

2

(
1 −1
1 1

)
·
(
e−ik 0

0 eik

)
· 1√

2

(
1 −1
1 1

)
. (4.4)
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Chapter 4. Quantum walks with individual atoms

Evidently, this has the same form as Ŵ spin
k applied twice, with the only difference that

the last acting shift operator is rotated by π in matrix representation. It can further
be shown that for the specific coin angle of θ = π/2

Ŵ spin
exp,k = − R̂π

(
Ŵ spin
k

)2
R̂−1
π , (4.5)

where R̂π =
(

0 −1
1 0

)
. So the rotation of the last shift operator swaps the eigenvalues

of the ideal walk operator. As a result the mapping of a given state onto the bands
as discussed in section 2.2 is reversed. This leads to flipping the sign of the associated
group velocity, hence giving rise to a mirror-inverted probability distribution. Note
that this is generally true for all initial states |ψ0〉, but might not be observed due to
intrinsic mirror symmetry such as in the |s0〉 = 1√

2
(| ↑〉+ i | ↓〉) spin configuration.

4.2. Experimental procedure

The successful realisation of a quantum walk with the presented experimental setup is
composed of two parts. First, after optimising all experimental parameters, the trapped
atoms need to be prepared and characterised. Only then the actual experimental
quantum walk sequence can be run in a second step. Table 4.1 lists in a chronological
fashion the steps to be undertaken in order to guarantee experimental success.

At the very beginning the survival of atoms in the trap is measured. Here, the trap
depth is varied just as in the later performed sequence from initially 0.4mK (trapping,
cooling, imaging) over 0.1 mK (sequence) back to 0.4 mK (imaging). The survival prob-
ability should be close to unity, but might drop a little due to atom miscounting or
rare cases of losses. The allowed tolerance figure is just a few percent, though. The
preparation of the atom in the |4, 4〉 ground state is done by optical pumping. A sur-
vival measurement after the application of a push-out beam is used to determine the
efficiency of this state preparation. Ideally, all atoms should be removed from the trap
after this sequence. These two test measurements are the basis of all experimental
sequences. Then, one can embark on characterising the atoms’ properties with respect
to the trap, the qubit manipulation and the spin-dependent transport. First, the reso-
nance frequency between the |4, 4〉 and the other qubit state |3, 3〉 must be determined.
As mentioned in section 3.2, the free space resonance ν4↔3

0 is altered by differential light
shift effects. A precise measurement of the actual value of this frequency is inevitable
for appropriate knowledge about the form of the coin-operator applied later. Once the
correct resonance frequency is known, a typical Ramsey sequence can be executed as
introduced in section 3.2. This measurement serves as a monitor for the reigning co-
herence times. Achieving the presented benchmark values of T2 = 200µs / T ?2 = 400µs
have been the biggest experimental challenge due to many reasons (c.f. chapter 3).

The next step then focusses on the spin-dependent transport. To increase the trans-
port efficiency it is ensured that atoms are axially cooled to their ground state. The
method here is to directly couple to the lower vibrational state via microwave radiation.
To achieve an overlap of both intrinsically orthogonal quantum states, the EOM is used
to shift the two spin-dependent lattices slightly apart. A detailed description of this
cooling mechanism is given in [34]. The signature of successful cooling is the disappear-
ance (< 3 %) of the blue sideband in a recorded microwave spectrum. The cooling is
later implemented as a part in the entire quantum walk sequence. Thereafter, the sys-
tem is tested for maintaining its coherences while being transported spin-dependently.
Associated dephasing issues are indebted to excitation processes during the transport.
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4.2. Experimental procedure

step procedure comment
1 survival & push-out test values to obtain: ∼ 100% & 0%
2 microwave spectrum free space resonance: 159.810 MHz(+9.04GHz)
3 coherence time test benchmarks: T2 = 200µs / T ?2 = 400µs
4 axial sideband cooling blue sideband is to decrease below ∼ 3 %
5 magic transport time test typical magic transport time ∼ 24µs
6 performing QW sequence see figure 4.1

Table 4.1.: Necessary preliminary characterisation and preparation measurements to per-
form experimental quantum walks. The procedures are given in chronological order and
associated benchmarks are noted.

However, the magic transport time of τλ/2 ∼ 24µs for a trap depth of 100µK suppresses
vibrational excitations, and thus maintains the length of the coherence times. The
optimisation process is done by maximising the Ramsey contrast, hereby utilising a
single atom interferometer [10]. After performing these preliminary characterisation
measurements the apparatus is in principle in a state to perform quantum walks.

Figure 4.1 summarises the experimental steps of a single quantum walk sequence.
It consists of five parts: Trapping and cooling of the atoms, initial imaging, state
preparation of the atoms, performing the quantum walk and final imaging. Initially,
there are about 5 atoms on average loaded to the lattice in order to increase the
statistics. The atoms must be well separated from each other in order to be able
to correctly identify them before and after the sequence. If atoms happen to appear
too close to each other, i.e. the initial separation is less than the transport length
caused by the following sequence, they will be sorted out by a post-processing software
programme. The trapping itself and the spreading of the atoms can be optimised
by tuning the MOT parameters. After the loading process the atoms are imaged
for 1s in order to guarantee sufficient photon counting for the single-site resolution
deconvolution. The position of every loaded atom functions in the following as the
zero point. The atoms are then optically pumped into the qubit state | ↑〉, and axially
cooled as described above. Finally, the atoms’ desired initial quantum state is set.
Typically, either the atoms are left in | ↑〉 or are brought into the 1√

2
(| ↑〉+ i| ↓〉) spin-

state upon application of an according microwave pulse. Hereby, the initial preparation
and imaging of the atoms is completed.

During the actual sequence, triggering the resonant microwave pulse of certain length
and phase, which realises the coin, as well as the conditional shift operation by means of
the EOM is achieved by pre-programmed waveform generators. Let a single operation
block be composed of two coin and two (opposite) shift operations (see (4.2)), then the
time length of this is given by twice the sum of microwave pulse, transport time and a
small settling time (τset = 3µs) in between. Although any unitary qubit operation can
in principle be realised, for a typical quantum walk sequence the phase of the microwave
pulse is set to π/2 and the length to a corresponding 3π/2 rotation. According to (3.2)
the experimental coin operation reads

Ĉexp =
−1√

2

(
1 −1
1 1

)
= −ĈEH. (4.6)

A similar unbiased coin would be accomplished by a π/2-pulse. However, experimental
data has shown that the 3/2π-pulse results in a more robust1 overall system. Since

1It is believed that a consectivte application of this kind of pulse results in an effective multiple
spin-echo process.
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Figure 4.1.: Schematics showing the realisation of quantum walks with caesium atoms.
The necessary alternating occurrence of the two shift operators only allows for an even
step size of the walk. The length of a single sequence is ∼ 90µs.

the length of such a coin is τ3π/2 ≈ 3/2× 11µs = 16.5µs, the entire length of the ex-
perimental walk operator is according to above ∼ 90µs, and the length of a single step
∼ 45µs. A repetition of this sequence block of N’ times results in a 2N-step quantum
walk.

After completion of the sequence the lattice depth is increased, and the still coherently
distributed atom is now probed with near resonant imaging light. Upon fluorescing,
i.e. photon scattering, the atomic wave function collapses into one of the lattice sites
with the corresponding probability. The atom is then again imaged for 1s, i.e. for
the same time as before the sequence. The initial and final image is analysed, and
the knowledge about the transport length is used to deliberately exclude unwanted
data. The maximal possible distance defines a radius of interest. If there happen
to appear more than one atom within this radius in two consecutive pictures, those
detections will be neglected, since an unambiguous identification is not guaranteed.
The repetition number of the sequence is chosen such that after this selection process
about 200 atoms on average contribute to the final data set. Comparing the measured
position to the initially measured starting point finally reveals the travelled distance
of every individual system. Repeating the entire sequence for sufficiently many times
allows for the reconstruction of the quantum walk’s probability distribution.

4.3. Spin-decoherence model

Despite the fact that measured coherence times are much longer than the typical length
of a single quantum walk step, decoherence effects are not at all avoidable nor negligible.
As mentioned in section 3.2 these are mainly believed due to the radial motion of the
atoms in the presence of differential light shifts. It is therefore inevitable to included
these unwanted effects in a quantitative analysis.

Generally, decoherence can be understood as the irreversible disappearance of quan-
tum coherences due to a coupling of a respective quantum system to an environ-
ment [55]. Their consecutive interactions lead to a non-unitary evolution of the system,
e.g. the quantum walk in the present case. This non-unitarity requires the formalism
of density matrix operators instead of the quantum state picture used before [56]. The
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4.3. Spin-decoherence model

quantum walk density matrix operator is defined as follows

ρŴ =
∑

n,n′,s,s′

ρn,n′,s,s′ |n, s〉〈s′, j′| , (4.7)

where n and s indicate the position and spin states, respectively. An application of
the walk operator (2.3) to a present quantum state needs to be replaced in this picture
by an operation U that maps the present density matrix operator to a new one. More
explicitly this can be written as

UρŴ =
∑
i

UiρŴU†i , (4.8)

where U is the so called Kraus operator describing the non-unitarities, and i denotes
an index that runs over the evolutionary instances. In the unitary case U is just the
standard quantum walk operator (2.3). In the non-unitary case, however, an associ-
ated projection operation Pi is added, which can be seen as a measurement process.
Coherences are not fully removed from the system after every application of U , though.
Decoherence processes rather occur only with a certain probability p. Consequently, the
one-step evolution can be broken into a unitary part and a non-unitary part according
to2

ρŴ (N + 1) = (1− p) Ŝ Ĉ ρŴ (N) Ĉ† Ŝ† + p
∑
i

Pi Ŝ Ĉ ρŴ (N) Ĉ† Ŝ† P†i . (4.9)

In fact, the projection Pi and its associated probability does not have to be necessarily
seen as a discrete event, but can equivalently describe a quantum system coupled to a
Markovian environment with coupling strength p. This picture might be more appro-
priate for the actual experimental situation. In the following, two different models of
decoherence shall be considered for comparison: position- and spin-decoherence. The
quantum walk evolution (4.9) is adjusted accordingly by setting the sum index i to the
respective position state index n or spin state index s, respectively. While the latter
only runs over the two spin states {↑, ↓}, n needs to consider all possible position states,
i.e. n = {−N, ..., N}.

Here, it is refrained from attempting to find an analytical solution to (4.9), but in-
stead the individual effects of the decoherence are presented in form of numerical results.
Figure 4.2 shows simulations of a 50-steps quantum walk under the presence of differ-
ent decoherence paramters p for an initially chosen spin-state of |s0〉 = 1√

2
(| ↑〉+ i| ↓〉).

It can be seen that for increasing p the quantum walk loses its characteristic features
rather rapidly, and approaches the classical Gaussian distribution. Nevertheless, the
two kinds of decoherences reveal distinct behaviours. Under the presence of spin-
decoherence the distribution maxima shrink, and a simultaneous rise of a central peak
can be notice. Contrary to this, the spatial decoherence first lets the edge peaks dis-
appear almost completely, before the typical classical footprint emerges. Recalling the
expected physical origins of the decoherence, it is assumed that the system only ex-
periences spin-decoherence on the time scale of a quantum walk. Scattering events,
which would lead to spatial decoherence, only occur with a rate of 10Hz. In addi-
tion, previous atom interferometer measurements support the assumption that spatial
decoherence can be neglected [10].

As a first estimate, one would expect the level of decoherence to be comparable to
the ratio of the duration of a single quantum walk step and the measured coherence

2Note that for reasons of abbreviation, here (1̂space ⊗ Ĉ)→ Ĉ
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Figure 4.2.: Simulations of a 50-step unbiased quantum walk under the presence of (a)
spin- and (b) spatial decoherence for an initially localised spin state of 1√

2
(| ↑〉+i| ↓〉). The

spatial probability distribution is plotted for different decoherence parameters p. For both
cases the predominant edge-peak feature of the quantum walks vanishes quite rapidly, and
the classically expected middle peak emerges.

time. Calculating p for T2 and T ?2 using the benchmark values above yields 0.23 and
0.11, respectively. This, however, assumes a simple exponentially decreasing coherence
contrast (objections to this are found in [42]) and neglects possible additional spin-echo
effects due to coin-pulses. Hence, the actual value of p is believed to be smaller than
the ones presented above. In fact, figure 4.2 shows that this is inevitable if one wants
to successfully accomplish an experimental quantum walk showing all characteristic
features. It shall be anticipated at this point already that decoherence effects are
indeed not strong enough to qualitatively change the features of a quantum walk up to
step numbers of N = 100 (see section 4.4). The presented model is still a very general
approach to describe the effect of decoherence. A future task should involve the precise
identification of the sources and mechanisms of decoherence, and implementing the
knowledge about them into (4.9), i.e. expressing p in terms of physical quantities.

4.4. Results

Probability distribution

Following the experimental procedure as outlined in section 4.2, recordings of the quan-
tum walk’s probability distributions could be achieved. Figure 4.3 shows different re-
alisations of such. Initial state conditions and step sizes are deliberately varied here in
order to show the success of the quantum walk with respect to these parameters. Fur-
thermore, the presented data was taken with considerable temporal separation, proving
reproducibility. Again, about 200 atoms contribute to a single probability distribution.
The error bars for every position were calculated by means of the Clopper-Person
method [57]. The size of the binomial confidence intervals was chosen such that it
resembles the typical σ of a corresponding normal distribution, i.e. ∼ 68% confidence.
The measured position information is converted into discrete separations of multiples of
a single lattice site λ/2. In the following, however, all spatial information is described
in terms of a single relative walking distance of λ/4 , which intuitively compares more
clearly to the presented theoretical model.

When looking more closely at the shape of the measured probability distribution
one could first realise some deviations from the theoretical expectations: For some
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Figure 4.3.: Probability distributions showing the realisation of experimental quan-
tum walks for different parameters. In (a) and (c) an initial spin configuration of
|s0〉 = 1√

2
(| ↑〉+ i | ↓〉), and in (b) and (d) |s0〉 = | ↑〉 was chosen. Ideal theoretical curves

(red) take an associated coin angle error into account, which is described by η. Estimating
the level of decoherence leads to an adjusted curve (green) in every case. Errors on the
state preparation in (a) and (c) can be observed in a resulting asymmetry of the probability
distribution.

measurements the peaks of the distribution were observed to be closer to the center,
and for others farther away for what can be expected from a coin of the form (4.6).
This can be explained by an unexpected error on the coin angle. The real applied form
of the coin rather reads

Ĉexp(η) =

(
cos(η3π/4) − sin(η3π/4)
sin(η3π/4) cos(η3π/4)

)
, (4.10)

where η is a factor describing the experimental deviation from the desired value of
θ/2 = 3π/4. For η = 1 the ideal situation is recovered. As could be seen from section
2.2, and more precisely from (2.17) and figure 2.5, the spreading speed of the walk
depends on the coin angle. Since the EOM shift direction alternates, enlarging the
angle, i.e. η > 1, will decrease the spreading speed, and η < 1 will increase it (a
systematic description as well as test of this behaviour will be shown below). Due to
the strength of this dependence, even slight deviations in the low percent range cause
significant differences in the outcome. Although the qubit resonance ν4↔3

0 as well as
the pulse duration are calibrated on a daily basis by means of a microwave spectrum,
it seems that the walk still sees a slightly different coin than desired. The length of
the microwave pulse is typically varied in steps of 0.1µs. The coin calibration takes
place using the value for a full π rotation (∼ 11µs). This combined could explain
a deviation of about 1%. A more dominant origin might be that the correct pulse
was not determined carefully enough. Next to these systematic calibration errors, a
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potential cause could also be found in the side-effects of the EOM. In its ”ramped-up”
configuration, the EOM might have a different polarisation impurity than in its 0V-
status. This leads to varied differential light shift effects, which in turn give rise to an
altered resonance frequency. Hence, every second microwave pulse would be slightly
non-resonant, i.e. perform a different coin rotation. A double quantum walk step (4.2)
then effectively yields a different angle θ per step. This effect could be investigated by
comparing two spectra which had to be taken for both end-configurations of the EOM,
respectively.

Nonetheless, the quantum walk’s position information can be used to correctly post-
calibrate the coin with an accuracy of 1%, i.e. η±0.01. This is done by fitting the theo-
retical expectations to the collected data, and minimise the sum of squares by adjusting
η. The procedure is typically applied for reasonably small step sizes (∼ 10−16), where
decoherence processes can be generally still neglected (see below). Additionally, an
error on the measured π pulse not only effects the coin, but also the initial state prepa-
ration. When trying to bring the system into the spin state |s0〉 = 1√

2
(| ↑〉+ i | ↓〉), an

error puts it rather to |s0〉 = cos(η′ π4 )| ↑〉+ i sin(η′ π4 )| ↓〉. This leads to an imbalance of
the qubit amplitudes, and hence to an asymmetric probability distribution of the walk.
Making the assumption that the pulse error originates solely from systematic charac-
terisation errors, i.e. that the outlined potential impact of the EOM is neglected, then
η′ ≈ η, and the imbalance is directly correlated with the spreading speed. In other
words, the imbalance is a statement about the quality of the desired microwave pulse.
The spin state |s0〉 = | ↑〉, on the other hand, is purely prepared by means of optical
pumping, and therefore does not show this effect at all.

Figure 4.3 shows the theoretical prediction corresponding to the true coin of the
quantum walk (red solid lines) as well as takes into account associated state prepara-
tion faults. Comparing these expectations with the data taken, it can be stated that
quantum walks up to 20 steps can be performed with a very high reliability. Particu-
larly for smaller step sizes, the probability distribution seems to almost fully agree with
the theoretical curve. Moreover, in figures 4.3(a) and (c) the effect of a pulse error on
the initial state preparation can be observed. Here, the assumption η′ ≈ η seems to
fit quite well. Turning the argumentation around, the sensitivity regarding coin shape
and initial state configuration allows the quantum walk to be in fact a good quantum
measuring tool of such, assuming that sufficiently statistics are provided.

The spin-decoherence model presented in section 4.3 has been applied as well (green
dashed lines). Nevertheless, in the cases (a) and (b) this seems negligible, and even in
the higher step example (c) it only plays a minor role. In (d), though, the effect seems
to become stronger. For walking steps above N ∼ 20, decoherences start to affect the
system considerably, and thus have be taken into account. The estimation of this is
described below.

Spin-decoherence model in action

The decoherence mechanisms in the presented system are not understood to a level
that would allow parameter-free fitting of the model outlined in section 4.3. Hence,
adjusting the amount of spin-decoherence to the experimental results requires empirical
quantification of the decoherence parameter p. In general, this is done by using the
determined value for η, and decreasing the sum of all squared probability differences
between model and real data by raising p until a minimum is reached. This procedure
is usually applied to quantum walks of large enough step sizes (N & 20), where de-
coherences do have a significant impact. By doing this for different step numbers of
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Figure 4.4.: Effect of the spin-decoherence model on an 40-step experimental quantum
walk. The paramters η and p were found according to the description in the text.

the same measurement set, a value for p is found with a usual confidence interval of
±0.01. Figure 4.4 shows exemplarily the effect of the spin-decoherence model on taken
data for a quantum walk of 40 steps (η = 0.96 ± 0.01). It can be observed that the
discrepancies between measurement and ideal theoretical curve can be nicely explained
by this model. All quantum walks of appropriate step size show in general the char-
acteristics of spin-decoherence: The outer peaks shrink, while a central peak emerges.
This gives reason that the right model is indeed chosen here, and that the collected
data is explained considerably well by this.

Clearly, the level of decoherence depends strongly on the daily performance of the
experiment, its calibration and alignment. However, by using the outlined procedure to
find p, the value was steadily determined to be around 0.05 for an optimised setup. This
contradicts the first a priori guess from section 4.3 that the value should be comparable
to the fraction of sequence- and coherence time. In fact, p seems to be smaller, i.e.
better, by a factor 4(2) than what would have been assumed from T2(T ?2 ). The reason
for this should indeed be found in the relatively rapid application of 3π

2 -pulses, mimick-
ing some kind of spin-echo effect as already suggested. In detail, however, the origin of
this phenomenon remains concealed. Finally, by introducing idle times between single
walk steps, i.e. intentionally making the system more accessible to decoherences, the
transition from quantum to classical behaviour can also be experimentally observed
just as in figure 4.2.

Ballistic transport

An alternative way to present the remarkable features of quantum walks is to express
the measured probability distributions (as in figure 4.3) in terms of their second mo-
ment. The transformation into the corresponding root-mean-square value (RMS3) as
well as the associated error propagation happens by standard means. In this picture the
global transport property becomes clearly evident. Chapter 2 has shown that an ideal
quantum walk should show ballistic spreading. Figure 4.5(a) presents RMS data for a
measured quantum walk of up to 100 walking steps for an initial intended spin-state of
|s0〉 = 1√

2
(| ↑〉+ i | ↓〉). The corresponding evolution of the probability distribution is

shown in figure 4.5(b) for a selection of walk lengths. The error bars increase strongly

3Here, the RMS-value and not the standard deviation σ was deliberately chosen to be the quantity
of interest. The reason is that this value is independent of the initial spin configuration |s0〉 and
allows for testing the spreading speed.
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Figure 4.5.: The RMS sizes of an experimental quantum walk for up to 100 steps are
shown in (a). Coin imbalance is given by η = 0.92 ± 0.01 and the decoherence parameter
was found to be p = 0.05 ± 0.01. Plotted curves respect these uncertainties. Up to ∼ 20
steps the quantum walk follows nicely the ballistic expansion. Only then decoherence
processes become substantial. In (b) corresponding probability distributions, and hence
the real space spreading of the walk is exemplarily presented. Here, shaded regions are
experimental data, and the theoretical expectation is given by a black solid line.

while moving to larger sequences due to the fact that the number of individual walkers
was kept approximately the same. For step sizes of up to about 20 the walk follows
very accurately the expected linear behaviour, confirming what has been stated above.
Then, however, decoherence processes changes the pure linear relationship. A typical
square-root behaviour is superimposed, representing the quantum-to-classical transi-
tion. Nonetheless, this effect is far away from destroying coherences completely. This
can be seen when comparing the experimental data to the classical RMS-curve (black
dashed line). The ideal quantum walk is plotted for a measured coin correction factor of
η = 0.92± 0.01. The decoherence parameter was determined to be p = 0.05±0.01. The
upper boundary of the spin-decoherence curve corresponds to a smaller coin angle and
lower decoherence level (η = 0.91, p = 0.04), and vice versa for the curve’s lower bound
(η = 0.93, p = 0.06). It can then indeed be observed, that all experimental data points
agree within their error bars with the expectation. Since for very high step numbers
the range of uncertainty as well as the error bars of the taken data are rather large,
a more precisely determined coin and the acquisition of many more measurements is
suggested. Nevertheless, the system’s dynamics are described very well by the assumed
model.

In comparison to previously achieved quantum walks with single caesium atoms [1,
18], the results presented here exceed qualitatively as well as quantitatively what has
been shown before. It was possible to observe experimental quantum walks for step
sizes that are four times larger than what was done in the past. The coherences could
be maintained significantly longer such that almost decoherence-free walks are possible
up to almost 20 steps. This, however, has to remain a qualitative statement, since
the decoherence model described here was not applied in the previous case. Reasons
which might support the improvement can be found in the newly installed two-arm
setup and in the enhanced focusing of the dipole trap, respectively. Lowering the
beam waist increases the radial trap frequency, and hence narrows the vibrational
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Figure 4.6.: Dependence of the quantum walk’s spreading speed on the coin angle. (a)
shows the RMS values of 12-step walks as a function of θ. The corresponding probability
distributions are seen in (b). The theoretical curves (red) is given without the effect of
decoherence.

state population density distribution. Inhomogeneous dephasing might be suppressed
accordingly. Attempts to improve the general set-up on all fronts such as magnetic stray
field suppression or the Ti:Sa phase- and frequency stabilisation, for example, certainly
further explains the raised quality of the results. Another aspect is the fact that the
experiment was performed in a shallower lattice than before. This reduces generally
all negative effects associated with the optical potential, and should also give rise to a
larger coherence time. The presence of decoherence does not need to be necessarily seen
as a pure negative effect, though. Detailed knowledge of the decoherence mechanisms
provided, quantum walks could serve as a powerful tool to study the quantum-to-
classical transition in more detail.

Spreading speed

The sensitive behaviour of the quantum walk’s spreading speed on the coin angle is
a direct consequence of the properties of the underlying energy bands describing this
system (c.f. chapter 2). The different measured speeds have so far been identified
as unwanted effects. But it is also worthwhile to systematically investigate the RMS
spreading as a function of the angle. Figure 2.5 already shows the theoretically expected
behaviour for an ideal quantum walk. However, due to the EOM properties it can be
shown that for the consequential experimental quantum walk operator (4.2) this curve
is shifted in θ by π, i.e. vrms

exp (θ) = vrms(θ+π). An intuitive picture is quickly obtained by
realising that the system has to remain localised for pulses that do not change the spin
state (θ = 0, 2π), and has to travel at maximum speed for those that do (θ = π). Now,
by varying the length of the applied microwave pulse intentionally, this dependence
can be experimentally investigated. Due to the expected symmetry, the corresponding
angle is only altered between π and 2π (or equivalently η ∈ [2

3 ,
4
3 ] ).

Figure 4.6 presents the experimental data for different values of the angle θ. Here, 12-
step quantum walks of an initially prepared spin-up state were recorded. This particular
step size was chosen since it is long enough to determine the spreading speed sufficiently,
but is still in the range where decoherence effects can be conveniently neglected. Thus,
the theoretical curve is presented without the impact of the spin-decoherence model.
In figure 4.6(a) this is depicted together with the experimental RMS values. The
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Chapter 4. Quantum walks with individual atoms

corresponding spatial probability distributions are shown in figure 4.6(b). It can be
observed that the RMS data as well as the measured distributions agree very nicely
with the expected relation. In fact, the deviation to the ideal theoretical curves is
minimal. By this, not only the quantum walk’s dynamics, but also the properties of
the underlying energy bands could be systematically investigated and controlled. It
can be concluded that they indeed behave as expected. The next step will be now
to test these bands not ”statically”, but rather to introduce additional dynamics by
applying a force to the system. The consequences and effects revealed by the quantum
walk system are at the focus of the following chapter.
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Electric quantum walks

After having presented the experimental realisation of quantum walks in the previous
chapter 4, the next step is to explore more the fundamental features of such a system. As
shown in section 2.2 the properties of the quantum walk are governed by an underlying
band structure. Such systems are very well known from the field of solid state physics,
where distinguished bands are the result of interactions between the electrons and nuclei
in the solid [58]. The formal similarity to the quantum walk allows to simulate long
known and investigated phenomena with the latter. One question that was already
addressed by Felix Bloch in 1929 deals with the consequences for a system consisting
of energy bands under the presence of a static force. It could be shown that the
dynamics are described by an oscillatory motion in this case, resulting in a localised
quantum particle. This effect is known as Bloch oscillations. Though low coherence
times and the lack of accessibility make it impossible to witness this phenomenon in
solid materials, it was first demonstrated by the cold atom community in the mid
90’s [24–26]. Despite revealing some distinctions, quantum walks make it now possible
to study this continuous time effect also in a temporal discretised environment. Since
the considered force on electrons is typically caused by an electric field, the quantum
walk system experiencing a similar force shall be referred to as an electric quantum
walk. The concept presented is based on discrete accelerations of the system. This
chapter is composed of a theoretical view on the idea of an electric quantum walk and
its experimental realisation, including results.

5.1. Theory

5.1.1. Bloch oscillations

Periodic systems can be conveniently viewed in the momentum space representation,
since the Brillouin zone has a finite size. The dispersion relation, i.e. the behaviour of
the system’s energy as a function of the momentum parameter k, can then be entirely
folded into this region. This leads to the formation of the so called Bloch bands or
energy bands, which are continuous over this interval. The interactions of the system
with its environment causes the transition between bands to lose their continuity, and
band gaps are the consequences. This situation is most prominently known for electrons
in solid materials, where spatially fixed ions create the periodic potential. As long as
there is no impact on the quantum particle, the system remains in a given momentum
state on a band. However, if an external force is present, e.g. a static electric field
on electrons, the system gets accelerated and the momentum experiences a change
according to

~ dk/dt = −F , (5.1)

with F being the force applied [58]. Note that (5.1) is a semi-classical approach not
allowing for any quantum mechanical tunnelling effects. The system gets dragged
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force

��
d

moving frame of atomstatic

d

Figure 5.1.: Periodic potential with a characteristic lattice spacing of d shown a) in
the static case and b) presented in the co-moving frame of the trapped system while
being accelerated. This force lifts the degeneracy of the lattice energy states by an energy
differences of ∆E = Fd.

along the energy band in which it is located. Hereby, the particle experiences the
full dynamical properties offered by the band. Once the system reaches the edge of
the Brillouin zone at π/d it gets reflected and appears at the other edge at −π/d.
Assuming a simple sinusoidal form of the energy band, e.g. ε = ε0 [1− cos(kd)], where
d is the lattice spacing, allows to analytically calculate the velocity v and position x of
the particle. The expressions yield

v = (dε0/~) sin(kd) , x = −ε0/F [cos (-Fdt/~)− 1] . (5.2)

It is clear that the quantum particle shows oscillatory behaviour regarding velocity
as well as position called Bloch oscillations. The motional oscillation happens at a
frequency of ωB = Fd/~, the so-called Bloch frequency. So the weaker the force, the
larger the oscillations (in time). In conclusion, the behaviour of a quantum particle
confined to a periodic potential is tremendously different to the free particle case in
which the system is accelerated in a constant fashion.

5.1.2. Electric quantum walks in position space

In general, a force can be understood as the derivative of a potential according to
F = −∇Φ. So the presence of a static force superimposes a linear potential onto the
existing one. For a given crystalline structure the consequence is a tilt of the lattice.
This picture remains the same both for electrons in a solid experiencing an electric
field and for neutral atoms in an optical lattice being accelerated by the lattice itself
(see section 3.4). As can be seen from figure 5.1, the tilt lifts the degeneracy of the
energy levels of the lattice. The shift is proportional to the exerted force. According
to the laws of quantum mechanics, the time evolution of a system bound to a static
potential depends on its energy state. Here, this evolution will be position-dependent
and identical systems on adjacent sites pick up a relative phase according to

Û = ei∆Et/~ = eiFd t/~ = eiφτ with φ =
2π

m
, (5.3)

where ∆E is the energy difference between adjacent lattice sites, F is the applied force,
d is the lattice constant1 and τ denotes the dimensionless time unit. Additionally,
the assumption ~ = 1 shall be made from now on. So in the presence of a crystalline

1Note that this has to be set to d/2 in the presented experimental quantum walk system. The reason
is that a single shift operation translates the spin-dependent lattices by only half a lattice site.
However, as long as this effective lattice constant is later taken into account (see section 5.2) the
theory and its associated conclusions remain the same.
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Figure 5.2.: Simulated Bloch oscillations in discrete Hadamard quantum walks for dif-
ferent force parameters m and an initially localised spin-up state |ψ0〉 = |0, ↑〉. (a) shows
the position space evolution of an ordinary quantum walk as defined in equation (2.3). In
(e)-(g) the evolution of a quantum walk under the presence of an even force parameter
for m = 10, 20, 30, 50 can be seen. The odd values m = 5, 15, 25 are presented in (b)-(d).
The corresponding RMS values are plotted in (i) and (j), respectively. Contractions are
generally better for higher values of m. For odd m-values a proper revival occurs after 2m,
hence an even number of steps. The insets show a double logarithmic plot up to 1000 steps
to reveal the asymptotic ballistic nature of every accelerated walk. Here, only the points
of local minima at every m for even or 2m for odd are plotted, respectively.

potential an applied static force can be reduced to a lattice site-dependent phase ac-
cumulation of the system, which can be expressed as a fraction of 2π. In the following
the fraction parameter m will be referred to as the force parameter. In general, m can
be any real number, but for now it will be chosen to be an integer.

This picture can now be used to formulate the mathematical framework for the
acceleration of quantum walks. To maintain the discreteness of the system and its
evolution, the force shall be represented by a discrete unitary operator as well. The
idea is to multiply the lattice-site dependent phase to the system, hereby simulating
the force. The operator is then newly defined as follows

F̂ =
∑
n

e−iφn|n〉〈n| ⊗ 1̂coin , (5.4)

where the dimensionless time τ is set to one for a single application of F̂ . It is clear
from the form of (5.4) that the force only acts on the orbital degrees of freedom, i.e.
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Chapter 5. Electric quantum walks

Hspace, and treats both spin states equivalently. The quantum walk as introduced in
(2.3) can now be extended to an accelerated system by subsequently letting F̂ act on
the system. The evolution operator of the ”electrified” system can then be formulated
as

Ŵel = F̂ · Ŝ ·
(
1̂space ⊗ Ĉ

)
, (5.5)

where Ŝ and Ĉ are generally defined according to (2.2) and (2.1), respectively. Itera-
tive application of (5.5) to an initially chosen system yields an accelerated or electric
quantum walk after N steps, i.e.

|ψN 〉el = ŴN
el |ψ0〉 . (5.6)

As it was the case for the ordinary quantum walk, the exact shape of this kind of
walk depends severely on the precise form of the coin Ĉ. Here, the force parameter
m plays an even bigger role. Different behaviour to the normal ”walk”-system is ex-
pected due to quantum interferences of the relative phases accumulated. In order to
obtain a qualitative as well as quantitative picture, one shall fix Ĉ in the following
to the form of the previously defined experimental Hadamard coin ĈEH (see section
2.2). Spin-independent quantum measurements reveal a spatial probability distribu-
tion. Simulations of electric quantum walks in position space are shown for different
values of m in figure 5.2(a)-(f) for an initial state of |ψ0〉 = |0, ↑〉. One can clearly see
that the presence of the additional force operator results in an oscillatory behaviour of
the probability distribution, which can be analogously seen to the phenomenon of Bloch
oscillations. For the first few steps the wave packet travels into the same direction as it
is the case without any force applied. Then, however, the peak starts to disappear and
to simultaneously emerge on the opposite side. Subsequently, keeping its direction of
movement there will be a contraction of the walk. The period of oscillation is given by
the value of m. However, only an even number of steps quite clearly allows the system
to return to its initial position again. This leads to the fact that for m even a revival at
the starting point occurs after m steps, but for odd m values this can only take place
after 2m steps. It can also be seen that the revivals of the latter case are qualitatively
better at 2m. Nonetheless, despite showing oscillations the walk seems to spread out.
The stronger the force, i.e. the smaller the value of m, the faster this spreading occurs.

An alternative way to observe the general oscillatory behaviour is to find the width
of the distribution in form of the second moment. In figures 5.2(i) and 5.2(j) the RMS
values are plotted against the step number for even and odd m-values, respectively.
The predominant feature of revival can be nicely observed in this picture as well. The
true periodicity of 2m in the odd case can also be noticed. On top of that, by plotting
only the revival minima for a larger number of steps in a double-logarithmic fashion
(insets), it becomes apparent that electric walks do not experience pure refocussing.
They rather asymptotically maintain a ballistic expansion, which is evident from the
consistency of all slopes in the log-log plot. This behaviour is totally unexpected from
the continuous time example. Nevertheless, in the presence of a force this expansion
is much slower than in the non-accelerated case and depends strongly on m. In fact,
the dynamics for odd values of m and corresponding even values of 2m reveal a very
peculiar behaviour: besides the fact that revival position coincide every 2m steps, it
can be shown that the asymptotic behaviour is exactly the same. Motivation and prove
of all these characteristics and peculiarities can be found below.
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Figure 5.3.: Folded energy states of an accelerated periodic potential into the Floquet-zone
[0, 2π] as a consequence of the temporal discreteness of the system. The effective potential
caused by the acceleration is sawtooth-like rather than purely linear. The new periodicity
of md allows for resonant tunnelling and explains the asymptotic ballistic expansion of any
commensurate electric quantum walk.

5.1.3. Resonant tunnelling

An ideal periodic potential being accelerated becomes tilted according to figure 5.1,
and, hence, the translational invariance gets broken. In the continuous time case,
Bloch bands are broken into Wannier-Stark ladder states in the presence of such a
washboard-like potential [26]. This results in a full localisation of the particle, and is
the origin for the oscillatory motion of a quantum particle in such a system. Despite
the fact that the mentioned potential forms also the setting for the quantum walk
under consideration, full localisation can not be observed, and every electric quantum
walk exhibits ballistic expansion in the asymptotic limit. The insets of figures 5.2(i)
and 5.2(j) show electric quantum walks for a large number of steps. To get a physical
understanding of this phenomenon it is essential to recall the consequences of having a
time discrete system. As explained in chapter 2, energies are only defined up to 2π in
rescaled units, i.e. become quasi-energies. This feature requires to fold all energy states
into the so-called Floquet-zone [59], which spans from 0 to 2π. The wrapping process
of the energy states is illustrated in figure 5.3. The potential generated by the force is
locally linear, but after the folding resembles a new periodicity of m lattice sites.

The ballistic expansion originates from the quantum tunnelling occurring across sites
sharing the same energy. In the continuous time case the system can tunnel through the
potential barriers, hereby causing the transition to another band. This is called Landau-
Zener tunnelling [26]. Here, tunnelling processes would also be possible, but owing to
the energy wrapping this would occur in a resonant fashion. This in turn would allow
the system to coherently delocalise in the presence of a force. So keeping the language
of continuous time systems, this resonant tunnelling process can be identified as the
mechanism causing the ballistic expansion of a quantum walk. Since the tunnelling
is more likely if the period of wrapping is smaller, faster expansion generally occurs
for stronger forces, i.e. smaller values of m. Note again that in this analogy with
continuous time systems tunnelling is not a real process, but rather simulated due to
the underlying structure of the quantum walk under acceleration.
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Figure 5.4.: Dispersion relations of the non-accelerated quantum walk Ŵ showing the
translations in k associated with force parameters m = {5, 10}. The system is assumed to
be initially localised at i and then translated by 2π

m . Full circles in (a) correspond to a
relative shift of 2π

5 . Halving the shift adds additional points indicated by fainter ones in
(b). Due to the symmetry of the bands and the underlying eigenvectors, projecting a given

state on i or ii , respectively, reveals the same dynamics of the system.

5.1.4. The force effect in k-space

The impact of the force shall be studied more fundamentally by looking again at the
quantum walk’s dispersion relation as shown in figures 2.3 and 2.4. A system that is
well localised in momentum space on a given energy band shall be considered. As shown
above, in a continuous time system an applied force steadily translates the system along
the band until a Bragg reflection occurs. Here, however, the system would be shifted
in the momentum parameter k due to the discreteness of the force. According to (5.3)
the shift equals 2π

m in size such that the Brillouin zone is scanned stroboscopically only
depending on the force parameter m (see figure 5.4). Clearly, after m steps a total shift
of 2π is acquired and a full revolution within the Brillouin zone is experienced. The
scanning of the bands allows the system to exhibit different velocities with different
directions. This, analogously to the continuous example, explains why a revival of the
quantum system takes place after one revolution.

It is crucial to realise now that this picture is not at all complete, since the spin
component has been so far neglected. As illustrated in chapter 2, particularly in equa-
tion (2.13) and figure 2.3, the spin eigenstates corresponding to the energy bands have
an intrinsic dependence on the momentum parameter k. Thus, translating the system
in momentum space projects it onto a different set of spin eigenstates. However, the
force operator (5.4) only acts on the position space Hspace and leaves the coin space
Hcoin untouched, i.e. preserves the real spin of the system. This means that the pop-
ulation of both bands must have been (partially) exchanged after the application of
the force. This population transfer requires tunnelling between the two bands, which
again can be interpreted as Landau-Zener tunnelling. The entire size of the Brillouin
zone corresponds to exactly one revolution of the Bloch vector around the given axis
in figure 2.3(b), meaning that the system stays fully in the same band only when its
translated by 2π (m = 1), which is equivalent to no shift at all. For all other cases
there will be a (partial) mapping to the other band. Owing to the symmetry of the
energy bands, switching to the quantum state on the other band means also reversing
the group velocity. Hence, there will be a certain part of the system that does not
experience all different velocities while being discretely transported through the band,
but rather remains moving in a particular direction. As a result the system can escape
and is not purely localised. In the extreme case of shifting by π, i.e. m = 2, the system
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is mapped from one to the other band as a whole2. This goes hand in hand with map-
ping onto exactly the same dynamics as before the force was applied. Consequently,
this leads to the fact that quantum walks under the presence of a force corresponding
to m = {1, 2} show identical behaviour to ones that are not subject to a force at all.

Additionally, by using a similar argument it might be explained why odd values of m
should reveal the same asymptotic dynamics as even values with 2m. Figures 5.4(a) and
(b) shall give an explicit example for the cases m = {5, 10} which would be generally
applicable. Consider a system that is initially localised at i . Upon applying F̂ it will
be translated by 2π

5 or 2π
10 , respectively, and the overlap with the two bands changes

accordingly. For the odd case there will never be an overall shift of exactly π after a
certain number of application steps. Since only shifting by π fully maps the state onto
the other band, and therefore maintains the same velocity, in the odd case every total
shift 2πNm in k produces a unique projection onto the bands. When halving the force
now, i.e. doubling m, there appear twice as many positions in the Brillouin zone where
the system is shifted to. Hereby, ”mirror-positions” to the existing ones in the odd case
emerge, meaning that after m/2 further steps the system is in total translated by π.
An example is given by ii , which is a mirror position to i . Projecting the same state
onto i and ii , respectively, produces the same velocity. This identity effect which
was already shown for the m = 2 case, could then also be found in any even m case.
Thus, from a dynamics point of view it would be fully equivalent to go around twice
the Brillouin zone for m being odd or just once for 2m. Consequently, these two cases
would asymptotically always reveal the same behaviour. When doubling an even m
there will also be more shift positions in the k-space, but no complementary emerging
ones. This would lead to the fact that here the effect of an equivalent dynamic cannot
be observed. However, this intuitive picture still needs mathematical proof.

5.1.5. Spectrum of the electric walk operator

A quantitative treatment of the quantum evolution of electric quantum walks requires
the energy spectrum of the newly defined system (5.5) to be determined. It is clear that
the presence of the force (5.4) does not allow to treat the system as a 2x2 problem any
more as done in chapter 2. Nevertheless, there is a way to keep the problem tractable by
redefining the unit cell of the lattice, hereby extending it from one site to m sites. This
also regains the property of translational invaricance of the system. The corresponding
mathematical process shall be called regrouping. Here, this regrouping can be either
performed spatially or temporally.

Spatial regrouping

As mentioned above the presence of a commensurate force enlarges the unit cell3 of the
system from 1 to m. So the position state |n〉 can be conveniently re-defined as

|n〉 −→ |nm+ j〉 = |nm〉 ⊗ |j〉 (5.7)

where n ∈ Z and j = {1, ...,m}. The Hilbert space Hspace spanned by these position

states can subsequently be understood asHspace = Hnspace⊗H
j
space. The subspaceHjspace

describes the new unit cell.

2recall that the two Bloch vectors representing both bands are π out of phase with respect to the
plane shown in figure 2.3b

3Note that the lattice constant d has been set to 1 for reasons of convenience.
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When Fourier transforming Hspace into Hk the corresponding basis states can be
expressed in terms of each other as

|nm〉 ⊗ |j〉 =
1√
2π

∫
dk e−iknme−ikj |k〉 , (5.8)

|k〉 =
1√
2π

∑
n

eiknm |nm〉 ⊗
∑
j

eikj |j〉 = |k〉n ⊗
∑
j

eikj |j〉︸ ︷︷ ︸
|j〉k

. (5.9)

Here, the momentum state is also described as a direct product. This is formed by the
Fourier-transformed position state |nm〉 and a newly defined basis state |j〉k. In the
next step the operators Ĉ, Ŝ and F̂ shall be Fourier-transformed using these basis sets.
The analytical expressions read

Ĉk =

∫ π/m

-π/m
dk |k〉n〈k|n ⊗

∑
j′

|j′〉k〈j′|k ⊗ Ĉ , (5.10)

Ŝk =

∫ π/m

-π/m
dk |k〉n〈k|n⊗[

eik
∑
j′

|j′ + 1〉k〈j′|k ⊗ | ↑〉〈↑ |︸ ︷︷ ︸
Ŝj,↑k

+ e−ik
∑
j′

|j′ − 1〉k〈j′|k ⊗ | ↓〉〈↓ |︸ ︷︷ ︸
Ŝj,↓k

]
, (5.11)

F̂k =

∫ π/m

-π/m
dk |k〉n〈k|n ⊗

∑
j′

e−iφj
′ |j′〉k〈j′|k︸ ︷︷ ︸
F̂ jk

⊗
[
| ↑〉〈↑ |+ | ↓〉〈↓ |

]
. (5.12)

The momentum k is defined over the Brillouin zone which spans over the range [-π/m, π/m].
Due to the regrouping all operators are diagonal in |k〉n, and thus can be reduced to
systems of the subspaces Hjk ⊗ Hcoin only. They can then be represented by unitary
matrices of dimensionality 2m× 2m, i.e.

Ĉ =

(
C1,1 1̂

j
k C1,2 1̂

j
k

C2,1 1̂
j
k C2,2 1̂

j
k

)
, Ŝ =

(
Ŝj,↑k 0

0 Ŝj,↓k

)
, F̂ =

(
F̂ jk 0

0 F̂ jk

)
. (5.13)

The accelerated walk operator can now also be written in the Fourier picture. The
form of Ŵel,k that acts on Htot = Hnk ⊗H

j
k ⊗Hcoin is given by

Ŵel,k = 1̂
n
k ⊗

[(
F̂ jk ⊗ 1̂coin

)
· Ŝj,spin

k ·
(
1̂
j
k ⊗ Ĉ

)]
= 1̂

n
k ⊗ Ŵ j,spin

el,k , (5.14)

meaning that the accelerated walk reduces to the product of the matrices defined in
(5.13). Hence, the accelerated walk is sufficiently described by a 2m × 2m matrix as
well. The explicit expression of the reduced form yields

Ŵ j,spin
el,k = Ĉ · Ŝ · F̂ =

(
C1,1 Ŝ

j,↑
k F̂ jk C1,2 Ŝ

j,↑
k F̂ jk

C2,1 Ŝ
j,↓
k F̂ jk C2,2 Ŝ

j,↓
k F̂ jk

)
(5.15)
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Ŵ j,spin
el,k =



0 a1 0 b1
0 a2 0 b2

. . .
. . .

. . .
. . .

. . . am−1
. . . bm−1

am 0 bm 0
0 c1 0 d1

c2
. . . d2

. . .
. . .

. . .
. . .

. . .

cm−1 0 dm−1 0
cm 0 dm 0



, (5.16)

with an = C1,1e
−ikei2πn/m , bn = C1,2e

−ikei2πn/m ,

cn = C2,1e
ikei2πn/m , dn = C2,2e

ikei2πn/m .

Diagonalising matrix (5.16), i.e. finding the eigenvalues, reveals the form of the quasi-
energies of the accelerated quantum walk. A derivation of the eigensystem requires the
characteristic polynomial. In Appendix B it is shown how a general recurrence relation
for this characteristic polynomial is found. By repeatedly determining this specifically
for different values of the force parameters, one can deduce a generalised form for any
value of m. In order to simplify the problem one shall assume that all elements of the
coin Ĉ are real. The general characteristic polynomial is

det
[
Ŵ j,spin

el,k − λ 1̂2m

]
=

{
λ2m − 2Cm1,1 cos(mk) λm + 1 m odd

λ2m + 2Cm1,1

[
cos(mk) + im

(
1

Cm1,1
− 1
)]
λm + 1 m even

(5.17)
It becomes immediately apparent that the solution in both cases can be reduced to a
simple quadratic equation when undertaking a change of variables such as Λ = λm.
This structure leads also to the fact that there are only two characteristic eigenvalues
of the system, though they occur m times, i.e. one for every mth root of unity. Since
the energy is represented by the exponent, taking the root only results in a shift along
the energy axis by 2π

m . Appropriate rescaling allows to always center the set of eigen-
values around zero quasi-energy. In order to obtain a more quantitative picture one
shall further specify the form of the coin. Here, a potentially imbalanced experimental

Hadamard coin of the form ĈEH(θ) =
( cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)
is assumed (c.f. 4). Finally,

the mathematical expression of the eigenvalues can be calculated to be

ω±,j(m) =

(
2j −m− 1

m

)
π ± εm

m
, (5.18)

with

cos(εm) =

{
cosm( θ2) cos(mk) for m odd

− cosm( θ2) cos(mk) + im
[

cosm( θ2)− 1
]

for m even
. (5.19)
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Temporal regrouping

Instead of looking at the new spacial periodicity, one can also choose the temporal
approach. The mth power of the accelerated quantum walk operator (5.5), i.e. Ŵm

el , is
again translational invariant. Knowing that the force operator causes a shift in k by φ,
it can be shown that the Fourier transformation of the defined translational invariant
operator reads

Ŵm
el,k = Ŵk(k + φ) · Ŵk(k + 2φ) · · · Ŵk(k +mφ) . (5.20)

Recalling that Ŵk = 1̂k ⊗ Ŵ spin
k , the translational invariant operator Ŵm

el,k is fully
described by a 2× 2 matrix according to (5.20). This allows to find the characteristic
polynomial following the standard form of

det
[
Ŵm

el,k − Λ 1̂

]
= det

[
Ŵm

el,k

]
− Λ Tr

[
Ŵm

el,k

]
+ Λ2 (5.21)

Using (2.11), it can be shown that

det
[
Ŵm

el,k

]
=
(

det Ĉ
)m

= 1 , (5.22)

since Ĉ ∈ SU(2). So the eigensystem of (5.20) is purely determined by its trace. It
can be proven4 that this trace generally simplifies depending on the parity of m to

Tr
[
Ŵm

el,k

]
= (−1)m+1

[(
Ŵ spin
k(1,1)

)m
+
(
Ŵ spin
k(2,2)

)m]
+ Θm (5.23)

with Θm =

{
0 m odd

(−1)
m
2

+1 2
[(

det Ĉ
)m

2 −
(
Ŵ spin
k(1,1)Ŵ

spin
k(2,2)

)m
2

]
m even

, (5.24)

where again the definition of (2.11) has been used. By substituting this into (5.22) the
eigenvalues can be determined. By specifying the coin in the same way as above, it can
be confirmed that the form of the characteristic polynomial is identical to (5.17), i.e.
the one found in the spatially regrouped case. Thus, both techniques lead to the same
set of eigenvalues ω±,j(m).

An additional strength of the temporal picture is a mathematical explanation for the
revival. For this to happen after m steps in the even, and 2m steps in the odd case
the corresponding total operator Ŵm

el and Ŵ 2m
el , respectively, should be close to the

identity in operator norm, i.e.

0 ≈

{
‖Ŵ 2m

el − 1̂‖op for m odd

‖Ŵm
el − 1̂‖op for m even

. (5.25)

To make a quantitative estimate, the operator is to be replaced by its eigenvalue.
Recall that Λ± = λm± = e±imω = e±iε, where ε is defined as in (5.19). For a sufficiently
large value of m, the appearing arccos function can be approximated such that

Λ2
odd ≈

[
e±i(

π
2
−cos(ε))

]2
≈ − 1 , (5.26)

Λeven ≈ e±i arccos(1) ≈ 1 , (5.27)

4To be published by Prof. R.F. Werner’s group (Institut für Theoretische Physik, Leibniz Universität
Hannover)
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Figure 5.5.: Quasi-energy bands of an electric quantum walk Ŵel for an experi-
mental Hadamard coin as defined in the text and different force parameters m =
3 (a), 5 (b), 7 (c) and 9 (d). Increasing m reduces the Brillouin zone, increases the number
of bands accordingly and lets the bands approach a Wannier-Stark ladder configuration.
The flattening of the bands reflects the slower asymptotic ballistic transport.

since | cos(ε)| → 0 in the odd and | cos(ε)| → 1 in the even case, respectively. Because
the minus sign in the odd case is undetectable, the expectation of (5.25) indeed holds
true. Hence, it is shown that good revival occurs for m in the even and 2m in the odd
case. In fact, since the approximation applied in (5.27) holds firmer for larger values of
m, the revival is expected to be better for smaller forces. Moreover, the small deviation
from the identity adds up after every period causing the revival to become worse for
higher step numbers. This supports was has already been shown above.

To continue with an analysis of the asymptotic behaviour of the system, the eigenval-
ues ω±,j(m) are now plotted as a function of k to reveal the dispersion relations. Figure
5.5 shows these for different force realisations, and an angle set to θ = π

2 , i.e. an exper-
imental Hadamard coin. As it was the case for the non accelerated quantum walk, the
mere existence of these bands gives rise to the ballistic expansion of the system. The
changing shapes of the bands then asymptotically explain the lower expansion velocity,
and hence the better refocussing, of the system for smaller forces: From figure 5.5 it
can be seen that with increasing m-values the bands start to flatten out rather rapidly.
This directly translates into a decrease of the corresponding group velocities accord-
ing to vg = ∂ω

∂k , and ultimately, leads to localisation. For these cases, the system is
believed to adiabatically follow the bands, hence suppressing Landau-Zener tunnelling
and mimicking a continuous time system that is exposed to a weak force. In the latter
case the localisation effect of quantum particles is also described by flat bands. The
arrangement of those is known as the so-called Wannier-Stark ladder [25].

Looking closer at the bands one can further show that forces with m and 2m must
reveal the same asymptotic behaviour if m is odd. In figure 5.6 the dispersion relations
for the specific cases of m = 3 and m = 6 are plotted. It can be seen that the bands
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Figure 5.6.: Dispersion relations of two accelerated quantum walk systems for force pa-
rameters m = 3 (blue), 6 (red). It can be seen that corresponding bands perfectly overlap.
As the Brillioun zone is exactly halved for m = 6 the bands are folded accordingly.

fully overlap. Since the doubling of m halves the Brillouin zone, the bands are forced
to fold into the designated area, still describing the dynamics. By considering (5.18)
and (5.19) this equivalence can also be demonstrated analytically. Alternatively, one
can focus on the corresponding group velocities vg = ∂ω/∂k, where the same property
should be seen. In fact, by looking at v2

g the non-differentiability at the edges of the
Brillouin zone can be removed. Explicit formulas are obtained for

odd m

(
∂ω(m)

∂k

)2

=
cos2m( θ2) sin2(mk)

1− cos2m( θ2) cos2(mk)
, (5.28)

even m

(
∂ω(m)

∂k

)2

=


cosm( θ2) sin2(mk2 )

1− cosm( θ2) cos2(mk2 )
for

m

2
odd

− cosm( θ2) sin2(mk2 )

1 + cosm( θ2) cos2(mk2 )
for

m

2
even

. (5.29)

Hence, it is easily seen that

(
∂ω(2m)

∂k

)2

=

(
∂ω(m)

∂k

)2

for m odd . (5.30)

This result confirms that both cases present the same asymptotic dynamics. Further-
more, by using (5.28) and (5.29) one can find the maximum velocity of the system to
be ∣∣vmax

g

∣∣ = cosm (θ/2) . (5.31)

The impact of changing the angle θ can again be understood as a closing or opening
mechanism, respectively, of the band gaps in figure 5.5 (c.f. section 2.2). Consequently,
also the bands’ curvature gets altered, thus influencing the maximal velocity according
to (5.31). This is equivalent to a statement about changing the probability of Landau-
Zener tunnelling to occur. It should be noted that (5.31) is highly non-linear for large
values of m, i.e. a slight change in θ will have a considerable impact on the dynamics
of the accelerated quantum walk.
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5.2. Experimental realisation

While the achievement of ordinary quantum walks (chapter 4) required only the exper-
imental tools of coherent internal state manipulation (section 3.2) and spin-dependent
transport (section 3.3), the electric version additionally exploits the possible lattice ac-
celeration by means of the home-built DDS box (section 3.4). The precise and flexible
way of controlling the output frequencies allows to execute the force operation in a text-
book fashion as in (5.4). Further, it can be numerically shown that the experimental
operator Ŵel,exp, which is analogously defined to Ŵexp, i.e.

Ŵel,exp =
[
F̂ · Ŝ� ·

(
1̂space ⊗ Ĉ

)
· F̂ · Ŝ� ·

(
1̂space ⊗ Ĉ

)]
, (5.32)

produces the same results as the theoretical one Ŵel applied twice for an initially chosen
spin-up state5. So a distinguishable effect due to the alternating shift operation as seen
for the ordinary quantum walk is not expected here.

5.2.1. Procedure

The general procedure of an accelerated or electric quantum walk (EQW) is exactly
the same as for the walk without a force present. Thus, all experimental details stated
and described in chapter 4 also apply here. In contrast to the ordinary quantum walk,
though, the initial spin configuration is steadily chosen to be |s0〉 = | ↑〉, which re-
moves the possible error on the state preparation. This is believed to be particularly
advantageous here, because the effect on the spatial distribution is not as clearly to
distil as for the ordinary quantum walk, where it manifests itself in an imbalance of the
distribution. But the major difference of this experimental sequence is, of course, the
implementation of the additional force operation. As defined in (5.5), this occurs in a
discrete fashion in every cycle of a single EQW step. Figure 5.7 shows schematically
the layout of the actual main sequence. The force, i.e. the corresponding frequency
ramp, is exerted upon a trigger received from a waveform generator (similar to trig-
gering the other two operations). The length of an acceleration period τacc was set
to 12.5µs due to an expected minimum of the vibrational state excitation (c.f. 3.4.3).
Since the acceleration only affects the position degree of freedom, i.e. lets the spin-state
untouched, consecutive force- and coin-operations can actually be performed simulta-
neously in favour of keeping the sequence length at a minimum. Thus, the length of a
single EQW step is the same as for an ordinary experimental quantum walk step, i.e.
∼ 45µs (recall that τacc < τ3π/2).

All necessary parameters characterising the strength of the force are already trans-
ferred to the microcontroller before the actual experimental sequence is run. In gen-
eral, it is desired to express also the experimental system in terms of the unit-less force
paramter m. However, the DDS box needs to work with physical quantities, eventually.
Using (5.3) the conversion yields

m =
2π ~

F d τacc
=

16π ~
Mcs λ2 ∆ν

, (5.33)

where Mcs is the mass of a Caesium atom, λ is the Ti:Sa wavelength and ∆ν denotes
the final detuning after a single linear frequency ramp. Note again that d is not the

5This statement does not hold for a complex superposition state such as 1√
2
(| ↑〉+ i| ↓〉). Contrary to

the ordinary quantum walk, here, the possibly complex entries of the force operator matrix cause
interferences of both initial parts in the course of the accelerated walk.
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Figure 5.7.: Schematics of an experimental sequence that realises electric quantum walks.
The consecutive application of operations and their decomposition into blocks is given in
(a) and (b). The behaviour of the total detuning of both lattice arms is given in (c).

real lattice spacing here, but rather the spatial separation between two neighbouring
positions before and after an EOM shift operation, i.e. σ/4. It shall be noted that the
limited frequency resolution of the DDS causes a small rounding error when converting
the desired m into detuning units. This effect is usually in the sub-percent range, and
thus can be neglected. So when employing a linear frequency ramp, the only quantity
determining the phase accumulation is the final detuning. However, this immediately
lets a problem become apparent: after every acceleration the two laser beams have a
non-zero detuning, leading to a constant velocity. This imposes additional dynamics
onto the lattice that need to be taken into account when analysing the taken images.
It also complicates the necessary behaviour of the detuning over the range of the entire
EQW sequence. In the following the associated behaviour of the DDS is outlined in
detail.

Frequency ramp As explained in section 3.4.2 the linear sweep mode of the DDS is
employed to drive the frequency ramps. The device is programmed such that upon a
received trigger it ramps up to a predefined end-frequency and dwells at this value. But
this works only for a single step. Since returning to the initial frequency is not possible
as the relative phase accumulation would be reversed, the subsequent step requires a
ramping to a higher frequency. To ensure the same operation as before, the relative de-
tunings need to be identical. So every step of the sequence adds an additional detuning
of ∆ν (figure 5.7(c)). The DDS box allows this shape of frequency ramp nicely by its
internal functions. It is assumed that the DDS dwells at its programmed end-frequency.
Changing this frequency to a higher value, instantly forces the DDS to continue the
ramp with identical parameters as before, and crucially in a phase continuous fashion.
Hence, the desired ramp shape is achieved by reprogramming the end-frequency after
every step. In fact, the microcontroller is programmed such that the DDS receives the
corresponding frequency word for the next cycle already when performing the current
ramp. The information, however, is only written into the internal buffer, and thus will
not be executed until the next trigger. This ensures that the communication delay be-
tween the mbed microcontroller and DDS board is eliminated. The only remaining time
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lag is then the internal handling of the 32-bit frequency tuning word. Recalling that the
fundamental processing time of a single bit is 10 ns, one would assume a remaining de-
lay of about 300 ns, and this is indeed what can be experimentally confirmed. Because
this is well below the experiment control’s 2µs time resolution, no further attention has
to be paid to this. By performing the whole frequency ramp as shown in figure 5.7, a
considerable total detuning N ′∆ν can be picked up at the end of a sequence, depending
on the sequence’s length and the defined force strength. The associated velocity of the
entire system makes it impossible to determine the position with single-site resolution
(c.f. smearing effect in figure 3.8). In order to ultimately end up in a static situation,
the DDS automatically receives an additional command which changes the direction of
the ramp after the actual sequence. Now, the DDS ramps the output frequency from
the final value back down to its initial value. The frequency gradient is the same as for
the ascending ramps. Once the 80 MHz are recovered, the lattice is static again, and
correct imaging of the atoms is possible. Evidently, the initial position of the atom has
shifted because of the acceleration process. In order to identify the atoms properly and
to interpret their measured positions accurately, this shift has to be known to a preci-
sion below the single site resolution limit. For this purpose, a preliminary measurement
testing the end position is usually performed. In this test the atom is treated as a scalar
particle, and no coin- or shift operations are applied, while the timing sequence is the
same as in the actual sequence. The determined final position is then later used to
recalibrate every second picture. This, however, can only work as long as the travelling
distance is still considerably smaller than the width of the imaging window. For too
long sequence lengths or very strong forces, respectively, the atoms start to leave the
imaging region, and the presented method is inapplicable. A way around this problem
is to run the same frequency ramp a second time after the lattice has come to a halt,
but on the other frequency channel. This inverts the effect of movement, and brings
the lattice back to its initial position. This opens the door for sequences implementing
sensible force strengths, which are only limited by the coherence times of the system.

5.2.2. Results

Testing the phase imprint

Before the acceleration operation is implemented in the sequence as outlined above, it
shall be experimentally demonstrated that it indeed gives rise to the intended relative
phase accumulation. Generally, the best way to detect phases is an interferometer. So
by performing an atom-interferometer measurement [1,10], one is capable of detecting
the induced phase. For this, a simple two-step interferometer is realised. This leads to
a spatial separation of two lattice site, i.e. λ, of the two coherent atom parts. The force
parameter m gives the relative phase of φ = 2π

m over a distance of λ/4. Thus, applying
the force operation after the atom has been separated results in a total relative phase
accumulation of Φ = 4φ. For a multiple consecutive application of the force of n times,
the total phase difference is given by nΦ. A subsequent closing of the interferometer,
followed by a final π

2 -pulse results in an effective Ramsey sequence and allows for
probing the accumulated relative phase of both atom parts, which is given by the
measured phase of the Ramsey fringe.

Putting the force parameter exemplarily to m = 20, the expected phase to be gath-
ered becomes Φ = 2π

5 . The corresponding detuning per step is about ∆ν = 1.6 kHz.
Figure 3.9 reveals that excitation processes for such detunings can be generally ne-
glected. Figure 5.8 shows the measured Ramsey phase for different application num-
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Figure 5.8.: Measured Ramsey phase of a 2-step atom interferometer measurement for
an intended phase imprint of Φ = 2π

5 per acceleration.

bers n. Individual acceleration ramps are separated by an idle time of about 25µs.
Moreover, π-pulses are applied to compensate for inhomogeneous dephasing effects. It
can be observed that the measured data follows very nicely the expectations. Addi-
tionally, the contrast of the individual Ramsey fringes is unaltered by the acceleration
operations. By this, confirmation is gained that not only a single acceleration process,
but also a consecutive repetition of such produces indeed a coherent phase imprint, and
hence proving the desired functionality of the DDS. All pieces are finally gathered to
perform electric quantum walks.

Even force parameter

Proceeding as outlined in section 5.2.1 allows to experimentally investigate quantum
walks in the presence of a discretised force as defined in (5.5). Two explicit examples
of an even force parameter m shall be presented and discussed in detail. The strengths
were chosen to be m = 8 and m = 20, respectively. Figure 5.9 shows the measured
results for these two realisations. Just as for ordinary quantum walks (chapter 4) the
amount of contributing individual atoms is about 200, and the errors are calculated
and propagated by the same means as before. In order to determine the correct coin
angle as well as the decoherence level, a set of ordinary quantum walks were taken prior
to the actual sequence. With these, η and p could be calibrated as described in section
4.4.

First, the m = 8 case shall be at the focus of interest. For this particular force
parameter the frequency of dipole trap arm one (DT1) was detuned by about 4 kHz per
acceleration step (see (5.33)). Driving up to this detuning in 12.5µs causes a constant
acceleration strength of ∼ 14 g. Calculating the actual value of m taking the software
rounding error into account yields m = 7.9993, and hence the integer assumption is
sufficient here. By analysing first the preliminary data of an ordinary quantum walk,
coin correction factor and decoherence level were determined to be η = 0.98± 0.01 and
p = 0.07± 0.01, respectively. Then, walk sequences with integrated acceleration steps
were performed for 4, 8, 12 and 16 steps. The corresponding probability distributions
can be observed in figure 5.9(a)-(d). Following the theoretical considerations, an oscil-
lation should occur with a periodicity of 8. The revival is damped owing to decoherence
processes, but is clearly visible by looking at the experimental data. The second ex-
pected contraction after 16 steps, however, is not very distinct any more. Qualitatively,
the taken data for all steps follow quite accurately the expectations made by the em-
ployed spin-decoherence model. Hereby, the simulation of Bloch oscillations in quantum
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walks is successfully confirmed. The same effect should also manifest itself in the asso-
ciated RMS value. However, when looking at figure 5.9(e) the data points do not show
a strong sign of oscillation. It is indeed revealed that the walk’s spatial spreading is
hampered in the presence of a force, but it seems that in this picture the measurements
might also be described sufficiently well by the classical model. Having said this, up
to 12 steps the recorded data agrees within its error bars with the expectation taking
decoherence into account. Nonetheless, while the RMS picture is suitable to describe
the dynamics of an ordinary quantum walk, it is not necessarily advantageous to use it
here. Instead one shall solely focus on the remarkable feature of the revival. A full and
ideal revival will yield the system with almost unity probability at the initial spatial
position |n0〉 = |0〉. Figure 5.9(f) gives the probability P{0} with which the system could
be found at |0〉 as a function of the step size. While the curves for the classical diffusion
as well as for the ordinary quantum walk decrease rapidly, the predicted revivals cause
peaks. Although theoretical predictions are not fully matched, the contraction of the
system’s wave function to the initial state can be clearly observed for 8 steps.

In the other presented example a weaker force of m = 20 was exerted, which corre-
sponds to a detuning per step of ∆ν = 1.6 kHz and an acceleration of about 5.5 g. The
rounding leads to an effective m of 19.94, which is still below one percent deviation
from the ideal value. For this set of measurements a coin correction of η = 0.98± 0.01
and a slightly unusual high decoherence level of p = 0.10 ± 0.01 was found. Due to
an expected oscillation period of 20, the step size was varied from 10 to about 30.
Selected probability distributions can be found in figure 5.9(g)-(j) for step numbers of
14, 18 , 20 and 24. It can be nicely observed how the delocalised distribution contracts
and subsequently spreads again. Decoherences again smear out this effect to a certain
extend. But as in the previous case, the theoretical decoherence curve describes the
measured data qualitatively very well. Moreover, the movement of the wave packet
across the revival can be inferred. Theoretical predictions showed (c.f. figure 5.2) how
for an initial spin-up state the electric walk, or rather its mean position, maintains its
moving direction at all times. So the distribution’s ”center of mass” is expected to move
across the zero position when varying the step size across the value where the revival
is to occur. Exactly this effect is beautifully revealed by the shown data, illustrating
that not only the feature of revival is experimentally demonstrated, but also additional
dynamical properties. In the RMS picture this spatially directional behaviour can de
facto not be observed, but even the general contraction of the electric walk is washed
out (see figure 5.9(k)). This holds for the experimental data, but also the theoretical
decoherence curve loses almost all signs of periodic motion for p = 0.10. Though the
data points do show hints for an oscillation, it is not enough to sufficiently distinguish
these from the pure classical curve. Similar to what was done above, the focus will
be on the zero-position probability instead. In fact, since here larger steps sizes are
involved, which potentially leads to a wider spreading of the walk, the accumulated
probability over the set6 {−2, 0, 2} is considered, i.e.

P{−2,0,2} =
∑

n={−2,0,2}

P|n〉 =
∑

n={−2,0,2}

|〈n|ψN 〉el|2 . (5.34)

The summed probability (5.34) is depicted in figure 5.9(l). While the curve describing
ideal theoretical predictions shows a clean oscillation ranging up to unity probability,
the one respecting decoherence has a significantly lowered amplitude. Nonetheless, the
oscillating behaviour can be impeccably attributed. Experimental data agrees mostly

6Recall that for even step sizes odd position states are unoccupied

57



Chapter 5. Electric quantum walks

0

20

60

40

pr
ob

ab
ili

ty
 (%

)

0 4 8-4-8
position number (Λ/4) position number (Λ/4) position number (Λ/4) position number (Λ/4)

{ 0
} -

 p
ro

ba
bi

lit
y 

(%
)

100

80

60

40

4 steps 8 steps 12 steps 16 steps

0 4
step number

R
M

S
 v

al
ue

 (Λ
/4

)

4

2

0

step number

m = 8

m = 20

6

8

0

10
20
30

50

40

pr
ob

ab
ili

ty
 (%

)

0 6 12-6-12 0 6 12-6-12 0 6 12-6-12 0 6 12-6-12
position number (Λ/4) position number (Λ/4) position number (Λ/4) position number (Λ/4)

�
��
��
��
��
 p

ro
ba

bi
lit

y 
(%

)100

80

60

40

14 steps 18 steps 20 steps 24 steps

R
M

S
 v

al
ue

 (Λ
/4

)

10

4

2

0
10 15 20 25 30 35

step number

6

8

0 4 8-4-8 0 4 8-4-8 0 4 8-4-8

20

0
8 12 160 4 8 12 16

a b c d

e f

g h i j

k l

10 15 20 25 30 35
step number

Figure 5.9.: Experimental accelerated quantum walks for m = 8 and m = 20, respectively.
All measured distributions are given in (a)-(d) for the first, and a selection of such in (g)-(j)
for the second case. The corresponding root mean square values are plotted in (e) and (k),
respectively. The real coin parameter was determined for both cases to be η = 0.98± 0.01.
The decoherence level is estimated to be p = 0.07 ± 0.01 for m = 8 and p = 0.10 ± 0.01
for m = 20. While for m = 6 the zero-position probability is depicted as a function of the
step number in (f), the same is done for the accumulated probability over the {-2, 0, 2}-
positions in the m = 20 case (l). Ideal theoretical curves is generally plotted in red and ones
respecting decoherence in green. An ordinary quantum walk is represented by a black solid
line, and its classical counterpart by a dashed one. For detailed description and analysis
see text.
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with this curve, particularly within the region of expected revival. This gives additional
prove that also for this weaker force, and associated longer walking sequences than
above, the effect of an electric field on a charged quantum particle could have been
simulated.

Having said this, negative effects and their impacts need to be discussed, particularly
with regard to the quality of the RMS plots. Whereas for ordinary walks, which show
in any case a spatially wider distribution, a miscount does not significantly impact
the RMS value, the electric version is highly sensitive to such bad events. Particu-
larly around the revival case, i.e. where the RMS approaches zero for full contraction,
unwanted events disturb the outcome tremendously. Here, an unnoticed drop of the
single-site resolution efficiency due to a small drift of the objective position, for ex-
ample, could have a huge impact. Furthermore, when enlarging the number of steps,
the experimental radius of interest becomes larger as well. This increases the proba-
bility of unwanted recordings such as rare cases of hopping atoms, which imprints an
additional offset onto the RMS curve. Such an offset can indeed be seen by looking
at figure 5.9(k), for example. But even in the case of model-like decoherence, the os-
cillatory effect washes out rather swiftly in the RMS picture. It has been presumed
that the additional force operation does not induce further decoherence. However, this
assumption might not be fully correct, leading to an additional reduction of the RMS
oscillation, and poorer data quality in general. Particularly longer sequences could be
further negatively affected, if the value of total detuning might start to significantly
change the AOM diffraction properties. An altered trap depth would be the conse-
quence leading to additional undesired effects. Generally, increasing the length of the
sequence increases also the relevance of decoherence, making it even more difficult to
properly show the asymptotic behaviour of a quantum walk experiencing acceleration.
A possible additional effect that has been neglected so far is the intrinsic shape of the
lattice. Locally, the potential is perfectly well described by a sinusoidal form, but the
real shape is that of a Gaussian beam. This leads to an inevitable potential gradient
across the lattice [10]. While for ordinary quantum walk sequences of moderate step
sizes this is believed to be negligible, here, the additional movement along the lattice
axis (particularly for strong forces, and long sequences) might let the system explore
this extra effective force. The consequence would be additional interference processes,
which could give rise to a reduction of the revival. A quantitative analysis of this is not
performed, though. In conclusion, while the decoherence model describes the measured
probability distributions very well and results here mainly in quantitative discrepan-
cies, the presentation in the RMS picture suffers severely from decoherences and other
unwanted effects also in a qualitative fashion. Nonetheless, the occurrence of revivals,
and hence the simulated phenomenon of Bloch oscillations could be demonstrated.

Pure ballistic transport in the strong force regime

Section 5.1.4 has intuitively described how the demonstrated effect of the applied force
is removed in two cases of the strong regime by tuning m correctly. For the values
m = 1, 2 the momentum translation and the associated mapping to the energy bands
should give rise to the same dynamics as m =∞, i.e. where no force is present at all.
Figure 5.10 shows the experimental investigation of the phenomenon.

The paramters m = {1, 2} correspond to a per-step detuning of ∆ν = {32, 16} kHz
and an associated acceleration strength of a = {82, 41} g. Note that even these strong7

7Here, the strong force regime is referred to the situation where 2π
m

approaches 2π.
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Figure 5.10.: Electric quantum walks for m =∞, 1, 2. In (a) the probability distributions
of all three cases are compared to each other for the exemplary case of an 18-steps walk.
Coin correction factor η = 1.07 leads to the ideal theoretical curve (solid) and estimated
coherence level of p = 0.05 corrects this (dashed). The RMS value of three different
walk lengths are shown in (b). Here, for reasons of visibility the data points have been
horizontally shifted relative to each other and the expectations are plotted without their
confidence interval.

forces can be comfortably sustained by the system (c.f. figure 3.9). First, looking at
the individual probability distributions for m =∞ the coin correction factor and the
decoherence parameter could be determined to be η = 1.07± 0.01 and p = 0.05± 0.01,
respectively. The corresponding theoretical curves can then be compared to the ex-
perimental data. Figure 5.10(a) exemplarily shows the probability distributions of all
three m realisations for a 18-steps accelerated quantum walk. Comparing these to
each other reveals that they all follow the same shape. The discrepancies between
data and theory regarding the peaks is again well explained by the decoherence model.
However, the shown probability distributions for m = 1, 2 suggest that p might have
been overestimated, since here the characteristic feature of an emerging center peak is
absent.

Figure 5.10(b) gives the RMS picture for walks of different step lengths. The equiva-
lent behaviour of this dynamical property for all three cases becomes apparent. In fact,
the RMS values of a respective walk length fully agree to each other within their error-
bars. Moreover, it can be obeserved that all data points rather follow the ideal curve
(solid) than the one taking decoherence into account (dashed). This can be explained
by an overestimation of the decoherence together with the uncertainty in the coin cor-
rection factor η. Nevertheless, this is a mutual effect and does not alter the conclusion
of the measurement: It could be experimentally shown that an applied strong force
according to m = {1, 2} indeed produces the same result as in the m =∞ case, where
the system is not subject to a force at all. Consequently, the theoretical considerations
from section 5.1.4 can hereby be confirmed.

Hints for odd-even equivalence

Theory predicts that the asymptotic behaviour of electric quantum walks for odd values
of m is the same as for even values of 2m. Experimentally, this is very challenging to
confirm since a) the step sizes are limited due to the present decoherence (so pure
asymptotic testing is not possible at all at the moment) and b) the quantity of interest
to show collective dynamics of the walk is the root-mean-square value. It is already
shown above that this way of presenting the data might not be sufficient for proving

60



5.2. Experimental realisation
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ted with its confidence interval for reasons of visibility. The ideal theory for η = 1.02 is
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the desired effects. Nevertheless, an attempt to see the remarkable phenomenon has
been undertaken. In order to keep the necessary step sizes at small values the two force
parameters m = 3 and m = 6 were chosen. It can be numerically observed that these
two cases do not only show identical asymptotic behaviour, but give equivalent results.
This simplifies the situation since a direct comparison of the probability distributions
is possible.

Figure 5.11(a)-(b) shows a pair of these distributions for a 12-step walk. Coin cor-
rection factor and decoherence level were here determined to be η = 1.02 ± 0.01 and
p = 0.10± 0.01. It can be observed that the distributions show very similar character-
istics. Even when going to the RMS picture (figure 5.11(c)), it can be seen that the
corresponding values strongly agree with each other. However, huge deviations can be
noticed, if these are compared to the decoherence curve. Possible reasons are already
discussed above. So although the measured data does show some similarity between the
two cases, the quality of the measured second moment is not sufficient to fully support
what has been shown theoretically. A different approach to this problem might be to
consider weaker forces and compare solely the revival strengths. This was not doable in
the present case, since the strength of the respective forces causes strong Landau-Zener
tunnelling that suppresses good revivals after just one period.

Towards incommensurate forces

So far, electric quantum walks have been investigated theoretically as well as experi-
mentally under the assumption that the force parameter m is an integer number. But
what happens if m is to become incommensurate? This is a very interesting and non-
trivial case to study from the theoretical side, since the lack of periodicity in this system
prohibits to apply the trick of regrouping as used in section 5.1. Numerically, however,
the electrified walk operator (5.5) is applied as before8. It can then be shown that the
behaviour of the resulting walk depends on the type of the irrational number, but shows
extreme localisation in certain cases. One of such cases is where the force parameter is

8Having said this, no real computer is able to realise pure irrational numbers, but it is assumed that
such a machine can approximate it sufficiently well.
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chosen to be m = 1+
√

5
2 (∼ 1.6180), i.e. the golden ratio. Performing a simulation for

a quantum walk of 1000 steps reveals a very strong and steady spatial confinement, in
which the RMS-value never exceeds 3. This occurs despite the fact that the system
experiences a very strong force.

Figure 5.12 shows probability distributions of an experimental electric quantum walk

implementing m = 1+
√

5
2 for different step sizes. Calibrated quantum walk parameters

are here η = 0.98 ± 0.01 and p = 0.10 ± 0.01, respectively. The internal software
rounding processes result in an effective force parameter of m = 1.6174 which can
be approximated by the rational fraction 1543/954. Although the irrational nature is
lost, the numerical deviation for the pure golden ratio is hereby only around 0.04%. A
numerical analysis of the two slightly different values of m for a realistic experimental
sequence length of 100 steps reveals no noticeable mismatch between the ideal golden
ration and the experimentally applied one. Indeed, it can be observed that the recorded
probability distributions in figure 5.12(a)-(c) follow rather well the theory curves, which
assume an ideal golden ratio as the parameter m. The discussed sensitivity of the
electric walk, its quality regarding the corresponding RMS value as well as the generally
limited number of steps prevent the analysis of the remarkable feature of strong and
permanent confinement, though. Nonetheless, it seems that incommensurate force
parameters can be approximated sufficiently, and hence their effect on the quantum
walk can in principle be tested. The investigation of phenomena related to such type
of numbers, for example the difference between individual irrational values of m, is
therefore suggested. Having said this, further improvement of the presented system is
essential such that the testing of asymptotic behaviour can be accomplished.
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Chapter 6.

Conclusion and Outlook

So far, quantum walks with single caesium atoms were strongly limited with respect
to step sizes. The accumulated effects of decoherence resulted in strong non-quantum
signatures already after about 20 steps. In the course of this thesis, however, quan-
tum walks of up to 100 steps maintaining firm signs of quantum coherences could be
successfully demonstrated. By carefully improving all experimental aspects as well as
employing a shallower optical trap during sequences, these results could be achieved. In
addition, the application of a spin-decoherence model allowed to accurately explain the
discrepancies between recorded data and theoretical expectations. The level of decoher-
ence had to be individually found by fitting the model to the data. The determination
of a direct connection between model parameters and experimentally measurable quan-
tities is proposed as a future task.

Furthermore, the quantum walk was investigated with respect to its dynamical prop-
erties. Theoretical considerations reveal that the quantum walk is asymptotically gov-
erned by an effective energy band structure. The properties of these bands strongly
depend on the form of the coin operation. Appropriate adjustment of the applied mi-
crowave radiation field, allowed for systematic testing of this relation. Here, measure-
ments indeed fully agree with the theory, revealing the quantum simulator properties
of the quantum walk system.

Embarking on this theoretically, the quantum transport behaviour of quantum walks
was further studied by applying a discrete force operator on the system. Since this
process resembles the evolution of a charged quantum particle under the presence of an
electric field, such a walk system is named electric quantum walk. In order to test the
remarkable properties of this time discrete system experimentally, within this thesis a
method has been implemented that allows to exert forces on a single atom system in
a one-dimensional optical trap. Hereby, the entire lattice is accelerated by appropriate
relative detuning of the two lattice arms, which is achieved by a direct digital synthesizer
to a very high level of reliability.

Internal functions of the DDS device offer the opportunity to employ also discrete
force operations on trapped system. Extending the typical experimental quantum walk
sequence by this action lead to the realisation of electric quantum walks. Accompa-
nied by theoretical predictions, electric walks were recorded for a set of chosen forces.
It could be successfully demonstrated that the walk’s probability distribution reveals
spatial contractions for the tested force parameters m = 8, 20, hereby effectively simu-
lating the phenomenon of Bloch oscillations. Additionally, it could be experimentally
illustrated how the effect of the force is eliminated by setting the force paramter to
m = 1, 2, respectively. This phenomenon is theoretically linked to the occurrence of
pure Landau-Zener tunnelling for these respective forces. Moreover, the theoretical
model demonstrates the asymptotic equivalence of electric walks for forces correspond-
ing to an odd value of m and its even counterpart 2m. Although this could not be fully
confirmed, experimental hints were shown. In a last step, approximations of incom-
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mensurate forces and their impact on electric walks were consider. Here, experimental
limitations prevented to reveal the expected strong confinement properties of such a
walk.

The general limiting factor of all experimental sequences was the coherence time of
the system. Whereas for ordinary uantum walks this can be sufficiently compensated
with the applied decoherence model, the investigation of an electric quantum walk,
particularly regarding its asymptotic behaviour, is very demanding with respect to
experimental optimisation. Here, the quantum effects get rapidly washed out by the
presence of decoherence. Hence, it is suggested to attempt boosting the coherence
time by the exchange of technological devices. In this context the most promising
approach is to replace the EOM. By establishing longer coherence times, it is believed
that further testing of the remarkable asymptotic behaviour of electric walks should
become possible. Hereby, further simulations of potentially complex systems could be
achieved by this time discrete system [20].

On top of that, the preparation of momentum states would experimentally allow
to perform spectroscopy of the quantum walk’s band structure. By employing such
states it would also be possible to simulate relativistic dynamics and their associated
phenomena such as Zitterbewegung or the Klein-paradox with the presented set-up
[60, 61]. Schemes which could potentially realise such momentum states are under
current consideration and development. Finally, by utilising additional quantum levels,
the quantum walk could be performed in a higher dimensional space. This could lead
to the simulation of strong magnetic fields, and ultimately to the demonstration of the
resulting fractional energy level structure, the so-called Hofstadter Butterfly [62].
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Appendix A.

DDS box
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Figure A.1.: Schematics of the DDS-mbed pin connection. Detailed information about
individual pins can be found in [48]. The connection to the ground is abbreviated by ”gnd”.

Figure A.2.: Picture showing the interior of the home-built DDS box.
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Appendix B.

Characteristic polynomial of the electric
walk operator

Here, a recurrence relation shall be derived which gives rise to the form of the charac-
teristic polynomial (5.17) describing the 2m× 2m matrix representing the accelerated
quantum walk. Recall (5.15)

Ŵ j,spin
acc,k = Ĉ · Ŝ · F̂ =

(
C1,1Ŝ

j,↑
k F̂ jk C1,2Ŝ

j,↑
k F̂ jk

C2,1Ŝ
j,↓
k F̂ jk C2,2Ŝ

j,↓
k F̂ jk

)
. (B.1)

Assume det[Ĉ] = 1 and all coin elements to be real, then C1,1 = C2,2 = ci and C1,2 =
−C2,1 = cii, since Ĉ ∈ SU(2). The characteristic polynomial of matrix (5.16) can then
be found to be

det
[
Ŵ j,spin
acc,k − λ 1̂2m

]
= det

[
ciŜ

j,↑
k F̂ jk − 1̂m −ciiŜ

j,↑
k F̂ jk

ciiŜ
j,↓
k F̂ jk ciŜ

j,↓
k F̂ jk − 1̂m

]
(B.2)

= det
[
λ2
1̂m − ciF̂

j
k

(
Ŝj,↑k + Ŝj,↓k

)
λ+ F̂ jk Ŝ

j,↑
k F̂ jk Ŝ

j,↓
k

(
c2

i + c2
ii

) ]
(B.3)

= det

[
λ2
1̂m − ciF̂

j
k

(
Ŝj,↑k + Ŝj,↓k

)
λ+ ei2π/m

(
F̂ jk

)2
]

(B.4)

= det


χ1 ζ1 ξm

ξ1 χ2
. . .

. . .
. . . ζm−1

ζm ξm−1 χm

 , (B.5)

with χn = λ2 + ei2π(2n+1)/m (B.6)

ζn = −ci e
ik ei2πn/m (B.7)

ξn = −ci e
−ik ei2π(n+1)/m , (B.8)

where n = {1, · · · ,m}. This special form of a tridiagonal matrix cab be solved by the
general solution according to [63], yielding

det
[
Ŵ j,spin
acc,k − λ 1̂2m

]
= (−1)m+1 (ζm · · · ζ1 + ξm · · · ξ1) (B.9)

+ Tr

[(
χm −ζm−1ξm−1

1 0

)
· · ·
(
χm −ζ1ξ1

1 0

)(
χm −ζmξm
1 0

)]
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det
[
Ŵ j,spin
acc,k − λ 1̂2m

]
= (−1)m cmi (eimk + e−mik) + Tr

[(
Ξm Γm
Υm Ωm

)]
(B.10)

= (−1)m 2 cmi cos(mk) +
(

Ξm + Ωm

)
, (B.11)

where

(
Ξm Γm
Υm Ωm

)
=

(
χm −ζm−1ξm−1

1 0

)
·
(

Ξm−1 Γm−1

Υm−1 Ωm−1

)
, (B.12)

and

(
Ξ1 Γ1

Υ1 Ω1

)
=

(
χ1 −ζmξm
1 0

)
, (B.13)(

Ξ0 Γ0

Υ0 Ω0

)
=

(
1 0
0 1

)
. (B.14)

From this, respective recurrence relations can then be derived. They read

Ξn = χn Ξn−1 − ζn−1ξn−1 Ξn−2 (B.15)

Γn = χn Γn−1 − ζn−1ξn−1 Γn−2 (B.16)

Υn = χn−1 Υn−1 − ζn−2ξn−2 Υn−2 (B.17)

Ωn = χn−1 Ωn−1 − ζn−2ξn−2 Ωn−2 (B.18)

Since the full set of parameters {χn, ζn, ξn} is known, any of the above recurrence
relations can be calculated. Hereby, calculation of the sum

(
Ξm + Ωm

)
, i.e. of the

occurring trace in (B.9) is possible. This leads directly to the determination of the
characteristic polynomial of (B.1). Owing to the fact that the coefficients {χn, ζn, ξn}
depend intrinsically on the parameter n, standard methods to solve these recurrence
relations cannot be applied. However, a consecutive calculation for different forces, i.e.
values of m, allows to deduce a general relation describing the characteristic polyno-
mial (see (5.17)). Here, the peculiarity regarding the parity of m becomes apparent.
A rigorous proof for the correctness of this relation was delivered by the alternative
approach of temporal regrouping of the walk-operator1.

1To be published by Prof. R.F. Werner’s group (Institut für Theoretische Physik, Leibniz Universität
Hannover).
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