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Abstract: We apply the Collins-Huygens integral to analytically describe
propagation of a doughnut beam generated by a spiral phase plate. Measured
beam profiles in free space and through an ABCD-lens system illustrate
excellent agreement with theory. Applications range from the creation of
optical beams with angular momentum to microscopy to trapping neutral
atoms. The method extends to other beam shaping components, too.
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1. Introduction

Optical beams with a dark spot at the center are called doughnut beams. They have proven
useful for applications in high-precision imaging of biological samples [1], for trapping dark
field seeking neutral atoms in blue detuned dipole traps [2, 3, 4], or with optical tweezers [5].
In recent years, also light beams carrying orbital angular momentum exhibiting a natural dark
spot at their center have received increased interest [6, 7]. Methods for generating doughnut
shaped beams include the use of computer-generated holograms [8, 9], cylindrical lens mode
converters [10, 11] and the use of spiral phase plates (SPP) [12, 13].

Here we focus on doughnut beams generated by transforming a Gaussian beam with an SPP.
From a practical point of view an analytic description compatible with the standard ABCD-
formalism remains most favorable for the treatment of beam propagation. Since the transformed
beam is not an eigen solution of the paraxial wave equation, a more elaborate treatment e.g. in
terms of the paraxial Fresnel integral [14] is required. It was first studied theoretically in [15],
and Fresnel type beam patterns were analyzed in [16]. The equivalent of the paraxial Fresnel
integral in terms of the ABCD formalism is the Collins-Huygens integral [17] which we expli-
citly calculate. We furthermore illustrate its compatibility with the ABCD formalism by profile
measurements of a Gaussian beam transformed by an SPP element.

2. Propagation dynamics of a doughnut beam

SPP components are commercially available for any optical wavelength. They consist of a
cylindrical dielectric element with optical thickness increasing linearly with the azimuth angle
φ . The SPP imprints a phase factor exp(i�φ) onto incident beams, where in applications the
most frequently used winding number or topological charge is � = 1. In the far field, cylindri-
cally symmetric beams such as Gaussian beams are transformed into doughnut beams since all
beam elements on opposing sides of the axis contribute with opposite sign and hence interfere
destructively on the axis.
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Fig. 1. A Gaussian beam is converted at position z′ by a spiral phase plate (SPP). We
are seeking the field distribution of the optical beam at position z in terms of the ABCD-
coefficients of its trajectory.

For an incident centered Gaussian TEM00 beam centered on the SPP with negligible thick-
ness and winding number � at position z′ (Fig. 1) the field amplitude with maximal amplitude
E0 directly behind the SPP takes for cylindrical coordinates (ρ ′,φ ′,z′) the form

E(ρ ′,φ ′,z′) = E0
w0

w(z′)
exp

[
− ρ ′2

w2(z′)

]
exp

[
−ikz′ − i

kρ ′2

2R(z′)
+ iη(z′)

]
exp(i�φ ′) . (1)

The wave number is k = 2π/λ and w0 and z0 = πw2
0/λ designate the 1/e-waist and the half-

Rayleigh length of the incoming Gaussian beam, respectively. We have R(z′) = z′(1+(z0/z′)2),
w2(z′) = w2

0(1+(z′/z0)
2), and η(z′) = tan−1 (z′/z0) the Gouy phase.

For a conventional Gaussian beam (i.e. for � = 0) the field distribution E(ρ ,φ ,z) can be
calculated once the parameters R(z) and w(z) at position z are evaluated in terms of ABCD-
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matrices involving all components acting on the propagating optical beam in between z′ and z.
For a Gaussian beam transformed by a spiral phase plate (SPP) (�≥1) this no longer the case.
Collins has shown [17], however, that the ABCD formalism remains very useful in the paraxial
approximation: The Collins-Huygens integral

E(ρ ,φ ,z) =

− i
λB

exp(ikz)
∫ ∞

0

∫ 2π

0
E(ρ ′,φ ′,z′)exp

[
ik
2B

(Aρ ′2 +Dρ2)

]
exp

[−ikρρ ′ cos(φ −φ ′)
B

]
ρ ′dρ ′dφ ′.

(2)
allows to calculate the field distribution E(ρ ,φ ,z) for any known initial distribution E(ρ ′,φ ′,z′)
as a function of the global ABCD coefficients characterizing propagation from z′ to z. Substi-
tuting Eq. (1) into Eq. (2), we find

E(ρ ,φ ,z) =− i
λB

E0
w0

w(z′)
exp

(
ikDρ2

2B

)
exp [ik(z− z′)]exp [iη(z′)]×

∫ ∞

0

∫ 2π

0
exp

[ −ρ ′2

w2(z′)
− i

kρ ′2

2R(z′)
+ i

kAρ ′2

2B

]
exp

[−ikρρ ′ cos(φ −φ ′)
B

]
exp(i�φ ′)dφ ′ρ ′dρ ′

(3)
For the sake of clarity we introduce abbreviations

E00(ρ ,z′) = E0
w0

w(z′)
exp

(
ikρ2

2B/D

)
exp(−ikz′)exp [iη(z′)] , (4)

which represents a Gaussian TEM00-mode with

1

R2
C(z

′)
=

[
1

w2(z′)
+

ik
2R(z′)

− iAk
2B

]
and 1/ρC = kρ/B , (5)

yielding an effective Collins curvature radius RC, and a radius ρC characterizing the extension
of the vortex structure. Re-writing Eq. (3) we find

E(ρ ,φ ,z) =− i
λB

exp(ikz)E00(ρ ,z′)×
∫ ∞

0

∫ 2π

0
exp

[
− ρ ′2

R2
C(z

′)

]
exp

[
−i

ρ ′

ρC
cos(φ −φ ′)

]
exp(i�φ ′)dφ ′ρ ′dρ ′ .

(6)

Azimuthal integration over φ ′ yields an �-th order Bessel function of the first kind:

E(ρ ,φ ,z) =
2π(−i)|l|+1

λB
E00(ρ ,z′)exp(ikz)exp(i�φ)

∫ ∞

0
exp

[−ρ ′2/R2
C(z

′)
]
J�
(
ρ ′/ρC

)
ρ ′dρ ′.

(7)
The integral can be expressed in terms of modified Bessel functions Im of the first kind and m-th
order using the formula[18]

∫ ∞

0
xexp(−αx2)Jν(βx)dx =

√
πβ

8α3/2
exp

(
− β 2

8α

)[
I 1

2 |ν |− 1
2

(
β 2

8α

)
− I 1

2 |ν |+ 1
2

(
β 2

8α

)]
. (8)

Identifying α = 1/R2
C and β = 1/ρC we find the analytic expression for the field amplitude

propagated through the optical system from z′ to z

E(ρ ,φ ,z) = 2π3/2(−i)|�|+1 E00(ρ ,z′)R3
C(z

′)
8ρCλB

×

exp(ikz)exp(i�φ)exp

(
− R2

C

8ρ2
C

)
×
[
I 1

2 |�|− 1
2

(
R2

C

8ρ2
C

)
− I 1

2 |�|+ 1
2

(
R2

C

8ρ2
C

)]
.

(9)
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With parameters Eq. (4-5) and the analytic expression Eq. 9 the propagation of a paraxial
doughnut beam through any ABCD optical system is fully characterized. The beam profile
can be calculated at any position, resulting in a convenient tool to analyze the propagation and
focusing properties of doughnut beams generated by an SPP. Formula Eq. (9) is fully equivalent
with the result derived first in [15].

3. Comparison with an experimental doughnut beam created by an SPP

We have experimentally investigated the propagation of a doughnut beam formed by an SPP
for two important cases: propagation in free space and propagation through a lens system. A
commercial SPP (RPC Photonics) produced by a lithographic technique imposes a phase factor
exp(iφ) with winding number �= 1 on an incident beam with wavelength of 849.9 nm.

We have used a standard setup to measure the beam profile, see Fig. 2. We filter the mode
profile by a single mode optical fiber in order to prepare a clean Gaussian TEM00 beam. After
the fiber the laser power is approximately 7.5 μW and the beam is linearly polarized. The beam
is then passed through the SPP to generate the donut beam.

Fig. 2. (a): Setup for measuring the beam profile of the propagating doughnut beam in free
space. (b): Details of the Galileian telesope used for the test measurement. Abbreviations:
AT: attenuator; BS: beam splitter; CCD: beam profile camera; ECDL: external cavity diode
laser; FC: fiber coupler; LS: lens system; OI: optical isolator; SMF: single-mode fiber; SPP:
spiral phase plate. Parametres: d1−3= 300, 80, 50 mm; f1−3= -100, 175, 250 mm.

The beam profile of the generated donut beam is measured using a Spiricon camera and
analyzed using its software . A typical image of the generated donut beam detected by the
beam profile camera is shown in Fig. 3. From the recorded images a radial intensity distribution
is extracted from a single transverse cut showing the doughnut character of the beams. The
theoretical description according to Eq. (9) compares well at the %-level with the measurement
where small asymmetries can be traced to small misalignments.
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Fig. 3. (a): Beam profile at z = 250 mm for free space propagation. The 1D radial intensity
distribution of the doughnut beam is taken along a straight line passing through the beam
center (red line). (b): Radial intensity distribution extracted from the measurement. The
theoretical curve (shaded area, shifted) shows all the details of the measured profile.

3.1. Propagation in free space

In free space, propagation of the beam through the distance z is given by the ray transfer matrix
(

A B
C D

)
=

(
1 z
0 1

)
(10)

for a distance z. The parameters (5) are

1

R2
C(z

′)
=

[
1

w2(z′)
+

ik
2R(z′)

− ik
2z

]
and 1/ρC = kρ/z . (11)

Insertion into Eq. 9 yields for free space propagation and �= 1

E(ρ ,φ ,z)=−2π3/2 E00(ρ ,z′)R3
C(z

′)
8ρCλ z

exp(ikz)exp(iφ)exp

(
− R2

C

8ρ2
C

)[
I0

(
R2

C

8ρ2
C

)
− I1

(
R2

C

8ρ2
C

)]
.

(12)
The variation of the 1D radial intensity distributions of the doughnut beam with distance in

free space from the SPP was measured by removing the lens system from Fig. 2. The results
are shown in Fig. 4 and compared with the numerically calculated intensity distributions. They
agree very well at all distances. The beam profile undergoes significant changes upon propaga-
tion since the distances cover a range from the Fresnel diffraction limit to the Fraunhofer limit.
At the beginning the beam shows a high peak intensity and several radial fringes. As the beam
propagates the peak intensity decreases and the fringes disappear towards large radii.

3.2. Lens system

In order to illustrate the propagation of the beam through a lens system, we have chosen the
configuration shown in Fig. 2(b) which is used in another experiment in our group to generate
tightly focused dipole traps for neutral atoms . The ABCD-transfer matrix of the lens system is
obtained by taking the product of the transfer matrices of the individual optical elements, Mtot =
Mfree ·Mlens3 ·Mfree3 ·Mtel ·Mfree1 As before, substituting the values of the matrix elements into
Eq. (9) and Eq. (5) yields the intensity distribution of the light field after passing the lens system.

The beam profile at different propagation distances behind the last focusing lens is shown in
Fig. 5. In order to get a good fitting between the calculated and measured intensity distributions,
the theoretical distances have been simultaneously offset by 15 mm. This adjustment is justified
since we neither measured the exact position of the chip of the CCD camera nor the precise focal
length of each lens. Again we find very good agreement of experimental and theoretical curves.
The beam profile at the focal plane of the last lens cannot be measured since the beam diameter
at this position is too small to be resolved by the CCD camera.
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Fig. 4. (a) Intensity distributions of the SPP generated doughnut beam propagating in free
space. The distribution at 250 mm is identical with Fig. 3. (b) One-dimensional radial
intensity distributions with measured (black) and calculated (red) intensity distributions.
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Fig. 5. (a) Intensity distributions of the SPP generated propagating doughnut beam trans-
formed by the lens system at different propagation distances. (b) One-dimensional radial
intensity distributions with measured (black) and calculated (red) intensity distributions.

4. Conclusion

We have shown that the analytic solution Eq. 9, which is easily evaluated with a computer,
makes the propagation of SPP generated doughnut beams accessible by the ABCD-method. We
expect the procedure to be relevant for many applications including optical microscopy, neutral
atom trapping, optical tweezers, and propagation of optical angular momentum beams. Our
results indicate that the slightly forgotten Collins-Huygens integral promises useful applications
beyond the present SPP elements, e.g for the half-phase plates used in [3].
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