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Introduction

The field of quantum electrodynamics deals with the interaction of light and matter. The
experimental study of these interactions at the single particle level, i. e. of a single photon
and a single atom, is of major interest in quantum optics. Besides mere observation, it
is highly desirable to control and manipulate single atoms in order to realize qubits, the
essential constituents of quantum computers. In contrast to a classical bit which can be
either in state |0〉 or |1〉, a qubit can be in any superposition |s〉 = α0|0〉+α1|1〉. Certain
classes of computations can then be performed exponentially faster compared to today’s
classical computers [1]. One of the most prominent examples is Shor’s algorithm for the
prime factorization [2].
The development of quantum mechanics in the early twentieth century set the beginning
of this new era in physics. Since then it was an experimental physicist’s dream to explore
the underlying mechanisms of our world at the single particle level. The major problem of
single-photon single-atom systems in free space is their weak interaction, which makes it
difficult to observe any effects [3]. The field of cavity quantum electrodynamics (CQED)
in the strong-coupling regime [4, 5] opened up new possibilities: Here, the atom is
placed between two highly reflecting mirrors, which form a resonator and thus enlarge the
number of interactions between one atom and the same photon. A first theoretical model
was developed by Jaynes and Cummings [6], who described the idealized interaction of a
two-level atom with one quantized mode of the electromagnetic field without dissipation.
The realization of such systems took years. Especially manufacturing cavities of high
finesse to enter the strong-coupling regime demanded great technological effort. The
invention of laser cooling [7] was another major prerequisite to prepare, observe and ma-
nipulate quantum mechanical states at the single atom level. Placing atoms for longer
times inside the cavity was realized with different techniques using a combination of
laser cooling and gravity [8] or atomic fountains [9]. But perfect positioning could only
be achieved with the application of dipole traps (DT) as optical conveyor belts [10–12].
These techniques allowed measurements at the single atom level e. g. the observation of
the vacuum-Rabi splitting [8]. Since then fascinating experiments like the reconstruction
of single atom trajectories (atom-cavity microscope) [13], the realization of the one-atom
laser [14] or the observation of photon blockade [15] emerged. Further experiments en-
tangled single photons with single atoms in optical cavities, paving the way for quantum
networks in the future [16, 17].
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INTRODUCTION

The present experiment consists of a high-finesse optical cavity to which we can strongly
couple single neutral cesium atoms. The latter are prepared in a stable hyperfine ground
state |F = 3, 4〉 and can be loaded into the cavity using an optical conveyor belt. In
the strong-coupling regime, one atom can already shift the cavity resonance such that
the probe laser transmission is significantly suppressed depending on the atomic inter-
nal state. This allows non-destructive state measurements inside the cavity (quantum
non-demolition measurement, QND) [18–20] by recording the transmission with a sin-
gle photon counting module (SPCM). During the past years this technique has been
exploited to analyze our system and investigate phenomena such as quantum jumps
[21–24], Electromagnetically Induced Transparency (EIT) [23, 25, 26] and the Quantum
Zeno Effect [23].
Until now all experiments performed with the present setup lacked proper control of
the coupling strength. Proper coupling control is mandatory for certain entanglement
schemes [27, 28] and is thus desirable to achieve. Two prerequisites to enhance the cou-
pling control comprise perfect confinement and sufficient cooling of the atoms inside the
cavity. Strong confinement of the atom inside the cavity was so far only attained along
two spatial directions. Therefore, the implementation of a strongly focused dipole trap
(SFDT) along the third direction allows three dimensional confinement and thus better
control of the coupling strength g. Hence, as part of this thesis, a SFDT was set up and
characterized. The second premise, sufficient cooling, can be achieved with the applica-
tion of appropriate cooling techniques such as resolved-sideband Raman cooling [29] or
EIT-cooling [23]. The extraction of cooling parameters such as the atomic temperature
and the respective cooling rates inside the cavity is of major interest. So far the setup did
not allow the evaluation of these parameters. Here, a new detection scheme, namely het-
erodyne detection [30], can be exploited to gain further insight into the current system.
Heterodyne sideband spectroscopy allows the extraction of the temperature and cooling
rate of the atoms inside the cavity from the structure of the motional sidebands which
in turn reveals information whether ground-state cooling is already possible. Therefore,
a heterodyne detection setup was implemented into the existing setup and characterized
as part of this thesis. In addition, first measurements employing heterodyne sideband
spectroscopy were performed and analyzed.
The present thesis is divided into three parts: Chapter one gives a brief theoretical intro-
duction followed by a short description of the existing experimental setup. Subsequently,
the implementation and characterization of the strongly focused dipole trap is presented.
The chapter closes with an introduction of the heterodyne detection setup. Chapter two
highlights theoretical aspects of heterodyne detection, emphasizing the estimation of the
expected signal-to-noise ratio in comparison to the measurements. Finally, chapter three
deals with heterodyne spectroscopy as a tool to map intracavity dynamics to frequency
domain. At first a short theoretical introduction into cooling of the motional degree of
freedom of a trapped atom in a cavity is given. First measurements of motional sidebands
are presented and possible broadening mechanisms are discussed in detail. Eventually,
the extracted temperature and cooling rate is compared to theoretical expectations.
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Chapter 1

Coupling atoms to a high-finesse op-
tical resonator

The essential objective of our CQED experiment is the realization of cavity-mediated
coupling of two or more atoms in order to create entangled states. The following chapter
first provides a short introduction into theoretical aspects. Furthermore the experimen-
tal constituents which are necessary to understand the subsequent chapters are briefly
summarized. Finally, the implementation and characterization of the strongly focused
dipole trap is discussed and the heterodyne detection setup is introduced.

1.1 Theoretical background

The interaction between single atoms and a mode of a light field in an optical resonator
is known as cavity quantum electrodynamics. In principle one can distinguish between
two processes: coherent and incoherent atom-light interaction. The first describes the
idealized interaction between the atom and the light field without any dissipation to
and thus interaction with the environment. This is described by the Jaynes-Cummings
model.
Dissipative dynamics usually disturb the coherent evolution of the system under investi-
gation. Nevertheless they are desirable in the setup because only due to those processes
we are able to extract information from the system. Therefore, the next subsections will
first introduce the idealized Jaynes-Cummings model and then take dissipative processes
into account introducing the concept of the master equation.

1.1.1 The Jaynes-Cummings model

The Jaynes-Cummings model deals with the interaction of an idealized two-level atom
with a single mode of the electromagnetic field. The atom possesses a ground state |g〉
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CHAPTER 1. COUPLING ATOMS TO A HIGH-FINESSE OPTICAL RESONATOR

and an excited state |e〉 and the electromagnetic mode is represented by the quantized
mode of the resonator. The coupling is mediated via the electric dipole interaction and
the Hamiltonian in the rotating wave approximation reads [5]

Ĥdip = !g(r)
(
σ†a + σa†

)
(1.1)

where g(r) is the position-dependent coupling factor, σ = |g〉〈e| the annihilation operator
for an atomic excitation and a the annihilation operator for a photon in the cavity mode.
The two contributions in the Hamiltonian can be intuitively understood: Either a photon
is absorbed from an atom in the ground state which will then be in the excited state
or the atom decays from the excited into the ground state and thus emits a photon
into the cavity mode. It is important to point out that the dipole interaction leads to
an energy exchange between atom and light field but no dissipative channel is included.
The strength of the dipole interaction is determined by the coupling factor g(r) which
can be written as the product of the atomic dipole moment d and the intracavity field
Ec(r) [31]

g(r) = d · Ec(r)
! = d

√
ωc

2!ε0V
ψ(r). (1.2)

The right-hand side depends on the matrix element d of the corresponding transition,
the frequency of the cavity field ωc, the mode volume V and the spatial mode ψ(r) which
emphasizes the position dependence of the coupling strength. The latter is normalized
to its maximum value.
Besides Hdip, the Hamilton operator for the two-level atom Ĥa and the cavity mode Ĥc
have to be taken into account. The full Jaynes-Cummings Hamiltonian is then given by
[6, 32]

ĤJC = Ĥa + Ĥc + Ĥdip

= !ωaσ†σ + !ωc

(
a†a + 1

2

)
+ !g(r)

(
σ†a + σa†

) (1.3)

where ωa denotes the atomic transition frequency between ground and excited state.
Without interaction (i. e. Ĥdip = 0) and on resonance (ωa = ωc = ω) the two uncoupled
eigenstates of Ĥa + Ĥc are the tensor products |g, n + 1〉 and |e, n〉 with degenerate
eigenenergies [5]. Here, n denotes the number of photons in the cavity mode. The degen-
eracy can be lifted introducing the dipole interaction. On resonance the eigenenergies
are

E±
n = !ω

(
n + 1

2

)
± !g

√
n + 1 (1.4)

with the corresponding eigenstates

|n, ±〉 = 1√
2

(|e, n〉 ± |g, n + 1〉) . (1.5)
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1.1. THEORETICAL BACKGROUND

The energy splitting of ! · 2g between the states for n = 0 is also known as vacuum-Rabi
splitting and the time evolution of the Schrödinger equation reveals oscillations between
the two states |e, n〉 and |g, n + 1〉 at the so called Rabi-frequency Ω = 2g. Therefore,
the non-dissipative dynamics of the Jaynes-Cummings model are called coherent.

1.1.2 From closed to open systems - the master equation

The previous subsection dealt with the idealized interaction of an atom and a field mode,
constituting a closed system. As already pointed out, a non-dissipative system does not
represent the realistic case since the system under investigation is always coupled to the
environment and is thus considered as an open system. In our experimental situation
the coupling is mediated through two loss channels: One results from a cavity with
non-zero losses at the mirrors leading to a decay of the intracavity field at a rate κ
which corresponds to the half width at half maximum (HWHM) of the cavity linewidth.
The second decay channel is represented by spontaneous emission of the atom to the
environment at the dipole decay rate γ = Γ/2 with the natural linewidth Γ. Both effects
lead to irreversible losses. In order to include these effects into the theoretical model,
the atom-cavity system S is extended by a reservoir E consisting of a bath of harmonic
oscillators to which the energy is lost [33]. The resulting Hamilton operator is given
by Ĥtot = ĤS + ĤE with the Hamiltonian of the system (ĤS) and the reservoir (ĤE).
Introducing the density operator ρ̃ for the Hilbert space of the atom-cavity system and
the environment HS ⊗ HE , the Heisenberg equation of motion reads

˙̃ρ = 1
i!

[
Ĥtot, ρ̃

]
. (1.6)

Tracing over the degrees of freedom of the environment to achieve the reduced density
operator ρ finally yields the so called master equation. It describes the interacting atom-
cavity system including dissipative channels to the environment. For our system, it is
given by [31, 33]

ρ̇ = 1
i!

[
ĤJC, ρ

]
+ 1

i!
[
Ĥp, ρ

]

+ γ
(
2σρσ† − σ†σρ − ρσ†σ

)
+ κ

(
2aρa† − a†aρ − ρa†a

)
.

(1.7)

The two terms proportional to γ and κ describe the damping of the system’s evolution. In
order to observe coherent dynamics g(r) > (γ, κ) must hold, i. e. the coherent dynamics
have to evolve faster than the atomic and cavity decay rate. If the inequality holds, the
system is in the so called strong-coupling regime [5]. Besides dissipative channels, external
driving of the atom-cavity system can also be taken into account. It is represented by
the term including [34]

Ĥp = −i!Ωp
(
a + a†

)
(1.8)
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CHAPTER 1. COUPLING ATOMS TO A HIGH-FINESSE OPTICAL RESONATOR

with the driving strength Ωp at the probe laser frequency ωp which is coupled into the
cavity. According to [31] for a perfect cavity on resonance (i. e. ωa = ωp = ωc, ideal
mode matching, no losses) the intracavity photon number np = 〈a†a〉 is related to the
driving strength Ωp as [34]

np,0 =
Ω2

p
κ2 . (1.9)

For weak driving the solution for the normalized cavity transmission is given by [31]

T̄ (δ, ∆pc, g) = κ2 (
δ2 + γ2)

(γκ + g2 − δ∆pc)2 + (δκ + ∆pcγ)2 . (1.10)

with the probe laser-atom detuning δ = ωp − ωa and the probe laser-cavity detuning
∆pc. The normalized transmission corresponds to the average intracavity photon number
divided by the intracavity photon number for an empty cavity on resonance (np,0). The
dependence on the coupling strength g can be exploited for the detection scheme as will
be discussed in subsection 1.2.4.
All theoretical derivations were based on the assumption that the atom is well confined
within the cavity mode volume. A real atom has a finite temperature and thus cannot
be considered as spatially stationary object. Proper control of the atomic position has
to be experimentally assured and will be discussed in the next section.
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1.2. EXPERIMENTAL SETUP
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Figure 1.1 – Experimental setup of the cavity QED system: An Yb:YAG laser together with two
acousto-optic modulators (AOM) and a direct digital synthesizer is used to generate a standing wave
dipole trap along y. The second polarization degree of freedom is used for a new strongly focused
dipole trap which allows for a tight confinement along x. Atoms are prepared in the MOT and
transported with the DT to the center of the cavity where they interact with a probe laser running
along z. Confinement along z is achieved with an additional laser, the so called lock laser. Imaging of
the atoms inside the MOT is achieved by collecting the fluorescence light resulting from near resonant
excitation with a high-numerical-aperture objective and an ICCD camera while atom counting in the
MOT is realized with an APD.

1.2 Experimental setup

The experimental realization of strongly-coupled atom-cavity systems demands great
effort and the existing setup has been continuously enhanced [23, 24, 26, 28, 35–45]. The
following section will only give a brief overview on the experiment and focuses on the
improvements which were integrated into the existing setup during the present thesis.
According to eqn. (1.2) the strong-coupling regime can be reached minimizing the mode
volume V and decreasing the cavity decay rate κ. This can be realized with a high-finesse
optical resonator. Since g also depends on the spatial mode profile, a good control
of the atom’s position inside the cavity is a prerequisite for sensitive measurements.
Therefore, the preparation of cold cesium atoms will be discussed first. Additionally,
the properties of the optical resonator and its stabilization are presented and a non-
destructive detection scheme for the atomic state inside the cavity is introduced. Finally,
two major improvements of the current setup are discussed: The confinement of the
radial degree of freedom inside the cavity making use of an additional strongly focused
dipole trap and the implementation of a heterodyne detection scheme, which provides
the basis for theoretical calculations and measurements presented in chapter 2 and 3.
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CHAPTER 1. COUPLING ATOMS TO A HIGH-FINESSE OPTICAL RESONATOR

1.2.1 Magneto-optical trap

All experiments are performed in an ultra high vacuum glass cell which is connected to a
cesium reservoir. A schematic representation of the setup is shown in figure 1.1. Trapping
of neutral cesium atoms from the background gas is achieved with a magneto-optical trap
(MOT) [7] which consists of three orthogonal pairs of counter-propagating laser beams.
The latter are red-detuned with respect to the cesium D2 transition |F = 4〉 → |F ′ = 5〉.
Since a non-zero probability for transitions from |F = 4〉 to |F ′ = 4〉 exists, which could
lead to a subsequent decay into the dark state |F = 3〉, a weak repumper is resonant
with the |F = 3〉 → |F ′ = 4〉 transition compensating for this effect.
Atoms are decelerated and thus cooled exploiting the Doppler-effect: The atoms prefer-
ably absorb the red-detuned laser photons coming from the opposite direction compared
to their propagation direction. This leads to a momentum decrease of the atom along
that direction. The subsequent decay due to spontaneous emission entails the isotropic
emission of a photon leading to no recoil on the atom on average. Thus, cooling of atoms
becomes possible. In addition, a magnetic field gradient, resulting from a quadrupole
field, lifts the degeneracy of Zeeman-levels which allows to trap the atoms at one position.
Here, circularly polarized beams are utilized to exert position dependent restoring forces
on the atoms, leading to spatial confinement of the atoms in the center of the MOT.
The loading rate of the MOT can be adjusted with an appropriate magnetic field gradient
which can be switched from 30 G/cm at high loading rates to 300 G/cm with low loading
rates but strong confinement. In order to achieve reasonable loading times, the MOT is
loaded using low field gradients for several milliseconds (usually 50−300 ms) and is then
switched to high field gradients. The number of loaded atoms can be determined via the
detection of their fluorescence light, which is emitted due to near resonant excitation,
using an objective lens with high numerical aperture together with an avalanche photo
diode (APD) [46]. The desired number of loaded atoms in the MOT is achieved adjusting
the loading time to an appropriate value and in addition performing multiple loading
attempts. After a successful loading event, the atoms are then transferred into an optical
dipole trap.

1.2.2 Transporting atoms to the cavity

As shown in figure 1.1, MOT and cavity are not at the same position but about 4.6 mm
[23] apart and all atoms have to be transported from the position of the MOT to the
center of the cavity. This is achieved with a dipole trap which can be used as optical
conveyor belt as well. The dipole trap itself consists of two counter propagating, linearly
polarized laser beams at λDT = 1030 nm and thus far off-resonant with respect to the
cesium D2 transition at λ = 852 nm used in this experiment. Both beams are generated
from a single Yb:YAG laser (ELS VersaDisk-1030-10-SF) which is split into two arms
whereas each of them has a power of approximately P ′ = 1.8 W at the position of the
cavity. The resulting standing wave creates a conservative potential with a potential
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1.2. EXPERIMENTAL SETUP
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Figure 1.2 – (a) Image of two Cs
atoms recorded with the ICCD
camera. The red lines mark
the region of interest (ROI). (b)
Corresponding count histogram,
where each bar contains the verti-
cally binned counts of each pixel
in the ROI. The atomic position
is determined with a subsequent
Gaussian fit routine (blue lines).

well separation of λDT/2 and a typical trap depth of [37]

UDT = 3πc2IDTΓ
2ω3

0∆eff
= kB · 1 mK (1.11)

allowing strong confinement along the y-direction. Here, Γ = 2π · 5.22 MHz is the
natural transition linewidth, ω0 the corresponding atomic resonance frequency and IDT =
4P/(πw2

DT,0) the intensity of the standing wave at the anti-node with the beam waist
(1/e2-radius) of the dipole trap laser and the total power P = 2P ′. In addition, ∆eff
denotes the effective detuning between the dipole trap and the atomic transitions, taking
into account all contributions from the D1 and D2 line [31, 37, 38]. The dipole trap waist
wDT,0 = (32.5±0.4) µm lies at a distance of 2.2 mm from the cavity position and 2.4 mm
from the MOT position resulting in different beam diameters at the respective point.
The dipole trap waist at the position of the cavity is wDT, cav = (39.1±1.5) µm resulting
in typical trap frequencies along this direction at the order of 300 kHz [23].
In order to transport the atoms to the center of the cavity mode, the exact inital and
final position have to be known. After transferring the atoms from the MOT into the
dipole trap, imaging of the atoms is achieved by illumination with molasses beams which
cause fluorescence light of each atom. The latter is in turn recorded with an intensified
CCD-camera (ICCD, Roper Scientific PI-MAX). A typical picture is shown in figure
1.2 (a). Subfigure (b) shows the vertically binned pixels as histograms to determine the
atoms’ positions using a one dimensional fit function. The resolution of the resulting
image is limited to 1.8 µm by the imaging objective [46] but the positions in the optical
dipole trap can be determined with an accuracy of 143 nm [47]. This procedure allows
the calculation of the distance to the center of the cavity mode needed for the computer-
controlled transport. The center of the cavity is determined once before measurements
are performed, for details see [35].
The transport itself is realized with a detuning δDT between both arms of the dipole
trap. The interference pattern resulting from both beams will then move with a velocity
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CHAPTER 1. COUPLING ATOMS TO A HIGH-FINESSE OPTICAL RESONATOR

v which is given by [48]

v = λDTδDT
2 (1.12)

and hence atoms are transported since they are attracted by the moving intensity max-
ima. The detuning is achieved with two acousto-optic modulators (AOMs) which were
usually driven at 100 MHz by a digital frequency discriminator (DFD 100, APE Berlin).
During the present thesis, the DFD turned out to be an unreliable source and was de-
fective several times. Therefore, a new custom build setup was developed recently [49,
50] and integrated into the current setup. Now, a direct digital synthesizer (AnalogDe-
vices DDS AD9954) running at a clock frequency of 400 MHz is controlled by an mbed
microcontroller (ARM mbed NXP LPCL768) and replaces the DFD. The two output
channels of the DDS each generate the sinusoidal 100 MHz signal at −5 dBm. Addi-
tional amplification results in an output power of approximately 34 dBm which is then
used to drive the respective AOM. Measurements revealed a 1/e lifetime of the atoms
of 16 s in the DDS-driven dipole trap configuration which is sufficiently high to perform
all experiments. The DDS also gives more flexibility since arbitrary frequency ramps
can be written into the DDS-RAM. In addition, the phase noise is reduced compared
to the former DFD and the transport itself does not lead to additional atom losses. To
conclude, the new setup represents an adequate and cheap replacement for the DFD.

1.2.3 Realization of strong coupling - a high-finesse optical cavity

After transporting the atoms to the center of the cavity mode, the atom shall be coupled
to the latter. As mentioned above the strong coupling condition demands g(r) > (γ, κ).
Since γ cannot be modified and is fixed by nature, the coupling factor g(r) can be
optimized as well as the cavity field decay rate κ. The latter should be chosen rea-
sonably small which can be achieved with a high-finesse optical resonator. Here, a
good trade-off between low values for κ and a sufficient signal strength at the cav-
ity output mirror is necessary. The cavity used in the experiment is a Fabry-Perot
resonator, consisting of two super-polished mirror substrates with highly-reflective di-
electric coatings resulting in extremely low absorption and transmission losses (A =
(2.0 ± 0.2) · 10−6, T = (0.6 ± 0.1) · 10−6 [31]). The mirror separation l ≈ 160 µm [31]
gives a free spectral range (FSR) of

ωFSR = 2πc

2l
= 2π · 0.95 THz (1.13)

which can be used to calculate the cavity field decay rate

κ ≈ ωFSR(T + A)/2π = 2π · (0.40 ± 0.02) MHz. (1.14)

The finesse then yields

F = ωFSR
2κ

= (1.2 ± 0.1) · 106 (1.15)
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1.2. EXPERIMENTAL SETUP

and is a good figure of merit for the quality of the resonator. A rather intuitive picture
can be achieved considering a single photon inside the resonator which will be reflected
about F/π = 400000 times before it is lost due to absorption or transmission [23]. Further
details on the cavity characterization and properties can be found in [12, 21, 28, 31, 40].
The second parameter to be optimized is the coupling strength g(r) (see eqn. (1.2)). It
reveals a dependence on the mode volume V which should be chosen as small as possible
in order to enhance the coupling strength. For the existing experiment the mode volume
can be calculated according to [40]

V = π

4 w2
0,cav · l, (1.16)

with the cavity mode waist w0,cav = 23 µm. The maximum coupling strength in the
center of the cavity mode can be calculated with eqn. (1.2) if the mode function is set
to unity [40]:

g0 = d
√

ωc

2!ε0V
= 2π · 18 MHz. (1.17)

This value is only achieved for the atomic transition |F = 4, mF = ±4〉 → |F ′ = 5, ±5〉.
Due to the birefringence of the cavity only linearly polarized light can be coupled into the
resonator driving π or σ+/σ− transitions which lead to a population of all mF sublevels.
Since each sublevel has a slightly different coupling constant, this will lead to a decrease
of the overall coupling strength. As shown in figure 1.1 strong confinement inside the
cavity along y is assured with the dipole trap. Along the z-direction, a standing wave
created by a lock laser, which is used to stabilize the cavity, serves as confining potential.
In addition, a probe laser, which pumps the intracavity field, is coupled into the cavity
as well. It is too weak to create a confining potential but the different wavelengths of
lock and probe laser lead to a continuous spatial shift of the corresponding field maxima
as illustrated in figure 1.3 (a). The detuning between lock and probe laser is usually
chosen such that the anti-node of the probe laser coincides with a node of the blue
detuned lock laser in the center of the cavity to trap the atom at the maximum probe
laser field strength and thus achieve maximum coupling strength (for details, see [31]).
Some experiments also demand a controlled positioning at the anti-node of the probe
field which can be achieved changing the detuning between lock and probe laser. This
will be used in chapter 3.
Besides hopping along the y- and z-direction, weak confinement along x leads to a
further reduction of the coupling strength. Nevertheless, the experimental setup fulfills
the strong-coupling condition: The experimentally achieved effective coupling strength
geff = 9 MHz > (κ, γ) determined from the recorded transmission [31] was smaller than
the theoretical value g0. In this region, already a single atom coupled to the cavity
can lead to a significant change of the transmission spectrum of the cavity, depending
on the chosen detunings between cavity, atom and probe laser (see also eqn. (1.10)).
This effect is exploited for the non-destructive hyperfine state detection, which will be
discussed next.

11
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Figure 1.3 – (a) Intracavity distribution of lock and probe laser standing waves. Here, the lock laser is
blue detuned from the probe laser and thus maximal coupling is achieved in the center of the cavity
(lower red point) whereas minimal coupling is achieved at a node of the probe laser standing wave
(upper red point). (adapted from [12]) (b) Detection scheme used for the transmission measurements:
A Cs atom in state |F = 4〉 is near resonant to the cavity resonance and hence changes the transmis-
sion according to eqn. (1.10). An atom in state |F = 3〉 is far off-resonant and thus does not change
the transmission. (adapted from [31])

1.2.4 Detection scheme

The stable hyperfine states 62S1/2, |F = 3, 4〉 of neutral cesium atoms are utilized to
achieve an effective two-level system. A non-destructive state detection (QND measure-
ment) inside the optical resonator can be achieved exploiting the modification of the
transmission spectrum due to the strong coupling between atom and cavity. The cavity
(ωc) is usually blue detuned by several natural linewidths Γ from the |F = 4〉 → |F ′ = 5〉
cesium D2-transition at frequency ωa resulting in a detuning δ. The probe laser at
frequency ωp is resonantly coupled into the cavity (i. e. ∆pc = ωp − ωc = 0) and its
transmission is recorded with a single photon counting module (Perkin Elmer SPCM-
AQRH-13). Once an atom in state |F = 4〉 is loaded into the cavity, the coupling g leads
to a shift of the cavity frequency displacing the cavity out of resonance with respect to
the probe laser. As a consequence the transmission of the probe laser is suppressed (see
eqn. 1.10). If, on the other hand, an atom in state |F = 3〉 is loaded into the cavity, the
probe laser and the cavity are far detuned from the atomic transition due to the large
hyperfine splitting of 9.2 GHz (see figure 1.3 (b)). In this case the atom and the cavity
are almost decoupled and there is hardly any transmission drop visible.
Hence, a non-destructive state detection for |F = 4〉 inside the cavity is possible but the
state |F = 3〉 cannot be distinguished from an empty resonator. This can be circum-
vented applying a weak repumper on the |F = 3〉 → |F ′ = 4〉 transition which finally
leads to a subsequent decay into |F = 4〉 and a transmission drop can then be detected
which assures that the atom was not lost.
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1.2. EXPERIMENTAL SETUP

1.2.5 Cavity stabilization

Although the detection should in principle work as described above, it demands great
effort to stabilize the setup [12, 23, 39, 40, 43]. Due to the narrow cavity linewidth of 2κ,
a high stabilization of the cavity length with respect to the probe laser frequency ωp is
mandatory. Otherwise, the probe laser transmission would exhibit vast fluctuations on
the SPCM, leading to the impossibility of proper measurements. Already a fluctuation
of the cavity length l at the order of 10−13 m would lead to a complete suppression of
the probe laser transmission [23]. Stabilization can be achieved with shear-piezoelectric
transducers together with the lock laser at λlock = 845 nm. The latter runs along the
cavity axis and its reflection is used to generate an error signal exploiting the Pound-
Drever-Hall method [51]. Additionally, the lock laser is coupled into a so called transfer
cavity which in turn is stabilized by a cooling laser. The latter is stabilized on the
crossover signal of the |F = 4〉 ↔ |F ′ = 3/5〉 transition of a cesium spectroscopy cell.
Since the probe laser is generated from the cooling laser, cavity length and probe laser
wavelength are stabilized with respect to each other. Due to the high intensity of the
lock laser compared to the probe laser, any signal measured with the SPCM would be
predominated by the lock laser transmission signal. Therefore, the polarization of both
beams was chosen orthogonal which enables the suppression of the lock laser using a
Glan-Allen-polarizer together with a holographic grating [28, 31].
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Figure 1.4 – Schematic sketch of the new strongly focused dipole trap superimposing arm 1 of the old
DT.

1.2.6 Enhanced coupling control - a strongly focused dipole trap

In order to achieve three-dimensional confinement and thus enhanced coupling control
additional confinement along the x-direction is necessary. A broad trapping potential
has so far only been generated by the Gaussian shape of the lock and dipole trap intensity
distribution. Their waists are at the order of 20−40 µm resulting in a weak confinement
compared to the typical lattice separation of 0.4−0.5 µm along the other directions. The
position dependent coupling strength g(x)

g(x) ∝ exp
[

− x2

w2
0,cav

]

(1.18)

with the cavity mode waist w0,cav reveals a general problem: Due to their finite temper-
ature, atoms can oscillate with a higher amplitude along the x-direction, leading to a
rather large displacement compared to the y- and z-direction. The weak confinement
also allows atoms to change their trapping site along y and z [40]. Both effects lead to a
change of the coupling strength. The elimination of this degree of freedom is mandatory
for stable and reproducible measurement results, especially for the observation of coher-
ent processes. The limited space available in the experiment prohibits the integration of
an additional standing wave dipole trap along the x-direction. Instead, the confining po-
tential of a strongly focused Gaussian beam propagating along y was exploited to achieve
stronger confinement along x and z by a reduced beam waist wSFDT,cav < wDT,cav at the
cavity position. Therefore, in addition to the existing dipole trap, a SFDT based on the
idea in [35] was implemented into the setup during this thesis. In the following paragraph
the experimental setup, its characterization and first measurements comparing the old
and the new configuration are presented.
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1.2. EXPERIMENTAL SETUP

Experimental implementation In general, for the optical potential created by a Gaus-
sian beam propagating along y it holds

U(r, y) ∝ I(r, y) = I0 ·
(

wSFDT,cav
w(y)

)2
exp

[

− 2r2

w2(y)

]

(1.19)

with the peak intensity I0 at the waist position in the center of the cavity, the beam
radius w(y) and r2 = x2 + z2. At y = 0, which corresponds to the center of the cavity,
we can write

U(r, 0) ∝ I0 exp
[

− 2r2

w2
SFDT,cav

]

. (1.20)

Thus, a reduction of the waist wSFDT,cav leads to a steeper decrease of the optical poten-
tial along x and z and to a stronger confinement of the atoms. In principle, the beam
waist could be made arbitrarily small, only limited by the Yb:YAG laser wavelength. In
the far field approximation it holds

w(y) = y · tan [θ] (1.21)

with the beam divergence given by

θ = λ

πwSFDT,cav
. (1.22)

Hence, the beam radius increases faster along y with decreasing beam waist wSFDT,cav.
Here, a commercially available 2′′-lens1 placed at a distance of 300 mm to the cavity
sets an upper limit. The maximum size for the beam radius at that position is 12 mm
since the aperture should have a diameter of at least 4w(y) to avoid optical aberrations.
With this configuration the resulting beam waist at the center of the cavity yields 8.2 µm
which is almost five times smaller than the original DT radius at the cavity position.
The new SFDT is already included in figure 1.1. An additional schematic drawing of
the SFDT setup is shown in figure 1.4. Since the counterpropagating laser beams of
the old DT are mandatory to transport and confine the atoms along y the SFDT shall
be used in addition. For the new setup, the second polarization degree of freedom of
the Yb:YAG laser (p-polarized) is used to superimpose one arm of the DT (arm 1, s-
polarized) with the SFDT using a polarization beam splitter (PBS). Since the maximal
power of the existing Yb:YAG laser is limited, an electro-optic modulator (EOM) is used
for an adequate distribution among both traps depending on the experimental demands:
For the transport of atoms to the cavity a deep dipole trap potential is mandatory and
thus the maximum power available is required. Otherwise an increased loss of atoms
would arise during the transport. Once the atoms are inside the cavity, the power in both

11 inch = 2.54 cm

15



CHAPTER 1. COUPLING ATOMS TO A HIGH-FINESSE OPTICAL RESONATOR

DT arms can be decreased adiabatically while the SFDT power is increased using the
EOM. Finally, the power is shared equally among both traps resulting in a reduced power
of 0.9 W in each arm of the original DT and 1.8 W in the SFDT. Theoretical calculations
reveal that the trap frequency along the y-direction will be reduced from approximately
320 kHz to 225 kHz, but the radial frequency along the x-direction increases from 2 kHz
to 15 kHz. For first characterization measurements this property can be exploited to
prove better radial confinement.

Polarization maintenance The dipole trap demands stable intensities and a high po-
larization purity for the position-dependent manipulation of the hyperfine ground states
in cesium atoms. Deviations, e. g. due to polarization mixtures between the orthogonal
modes of a polarization maintaining fiber, lead to time-dependent light shifts, which
can destroy any coherent processes inside the cavity [35, 38, 52]. In order to achieve
high polarization purity for the SFDT the beam passes through a Glan-Laser polarizer
(Thorlabs Glan-Laser Calcite Polarizer GL5-A) and would in principle be coupled into
a single mode fiber which is used to clean up any other than the TEM00 mode. Addi-
tionally, the fiber also guarantees a stable transfer of the beam to the desired position
without introducing additional instabilities caused by optical elements like mirrors. The
polarization purity for both ends of the used fiber was determined according to the pro-
cedure described in [35] and yields

[
P⊥/P||

]

1
= 5 · 10−3 and

[
P⊥/P||

]

2
= 2 · 10−4 for

the respective side. Here, P⊥ and P|| denote the particular power in the two orthogo-
nal polarization modes. We chose the better end facet to be at the output in order to
prevent any additional polarization impurity. The bad input polarization conservation
could be compensated using a Berek compensator (Thorlabs GL5-B) before the beam is
coupled into the fiber. This improves the polarization extinction by nearly an order of
magnitude to 5 · 10−4.

Characterization of the 2-inch collimator and polarization beam splitter The fiber
output is connected to a 2′′-collimator (Schaefter+Kirchhoff 60FC-T-4-M200-37) to
achieve the required beam radius of 12 mm. Since wavefront distortions can lead to
aberrations the wavefront quality of the collimator was checked with a shear plate inter-
ferometer (Melles Griot, Model 09 SPM 005). The results for parallel and perpendicular
orientation of the collimator with respect to the interferometer, which was placed in front
of the optics at a distance of 50 cm, are shown in figure 1.5. A perfectly collimated beam
should result in an interference pattern completely parallel to the red line. In contrast,
a non-collimated beam would exhibit a parallel but rotated pattern with respect to the
red line. The observed pattern is parallel to the red line and thus collimated. Neverthe-
less, a slight s-shape indicates minor spherical aberrations [53]. The latter effect occurs
in both orientations and might result from an imperfect collimator lens. In addition,
both interference patterns exhibit a decreasing intensity with increasing distance from
the center which results from the Gaussian intensity distribution of the beam.
The DT and SFDT beams are superimposed using a 2′′-polarization beam splitter (man-
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a b

2.5 cm

Figure 1.5 – Shear plate images
taken at a distance of 50 cm
in front of the 2-inch collima-
tor in (a) parallel and (b) ver-
tical orientation.

ufactured by LENS-Optics GmbH). Its extinction ratio for s- and p-polarized light was
determined for all four sides measuring the power of a linearly polarized impinging beam
at the transmission and reflection port for both polarization directions. We subsequently
chose the ports with highest performance. The best extinction ratio for transmission and
reflection yield

[
P||/P⊥

]

T
= 3 · 10−4 and

[
P⊥/P||

]

R
= 5 · 10−2 , respectively.

(1.23)

The transmission port was selected for the SFDT since the maximum intensity at the
position of the cavity

Imax = 2P

πw2
0

(1.24)

depends quadratically on the waist. Thus, polarization fluctuations will be more severe
due to higher intensity values leading to stronger differential light shifts between the
hyperfine ground states compared to the less confined DT.
Aside from poor extinction ratios, wavefront distortions induced by an improper surface
quality of the beam splitter can have a negative impact, too. Therefore, the selected
surface roughness (peak-to-valley) of the cube is about λ/10 which is the best commer-
cially available value. The influence of the PBS on the wavefront was tested revealing
no additional distortion of the interference pattern on the shear plate interferometer.
Additionally, the transmission losses due to the cube were checked and amount to less
than 5 % which agrees well with the value given on the data sheet.

Analyzing the beam profile of the SFDT Due to the new beam radius of 12 mm the
former focusing lens had to be replaced by a new 2′′-lens (Schaefter+Kirchhoff 40M-
M300-02, f=300 mm). A full simulation of the point spread function (PSF) using the
computer software OSLO including all available lens parameters was performed and
compared to the real beam profile to check the mode quality around the focal point F .
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The beam profile was recorded for the new lens in combination with the 2′′-collimator
along the beam direction in steps of 50 µm in a region of ±1500 µm around F . The
normalized1 results are displayed in figure 1.6 and compared to the simulation.
In figure 1.6 (a) a x-y cut through each beam profile at the central peak (at z = 0)
is shown for every recorded beam profile resulting in a two-dimensional intensity distri-
bution. The corresponding simulated result is displayed in subfigure (b). Theoretical
and experimental results are consistent: The predicted double peak structure between
−1500 µm and −400 µm, which results from spherical aberrations, could be experimen-
tally confirmed as well as the expected mode quality behind the focal point. Similar
results were obtained for a z-y cut (not shown).
For a detailed analysis, three distinct beam profiles are shown in subfigures (c) - (e) and
compared to the simulation presented in (f) - (h). The first shows the beam profile at the
position of the double peak structure (-500 µm) which translates into a doughnut-like
profile. Experimental results agree with the PSF but in addition a slight inhomogeneity
in the intensity distribution is apparent which is also visible in (a) as asymmetry be-
tween the two branches. This effect might result from a slight displacement between the
optical fiber and the collimator.
In contrast, subfigure (d) reveals a Gaussian shaped intensity distribution at the focal
point F with a reduced peak intensity compared to the simulation. This might result
from two reasons: First, due to the comparable size of the beam waist and the pixel
size of the beam profile camera (4.4 µm) the peak intensity might be distributed among
two bins and thus be reduced whereas the simulated peak value occupies exactly one
bin. Second, due to optical aberrations the real waist is increased compared to the sim-
ulation. A two-dimensional fit of an elliptical Gaussian function resulted in a waist of
(10.1 ± 1.0) µm and (9.5 ± 1.0) µm along the two orthogonal directions. The waist size
at the focal point is thus slightly bigger than the simulated result of wSFDT = 8.8 µm
for an initially collimated beam of 12 mm radius. In addition, a minor elliptical shape
is present which probably results from an elliptical beam profile at the collimator input.
Deviations might occur due to the finite pixel size but a self-written fitting routine tak-
ing the averaging effect of each pixel into account also resulted in bigger radii compared
to the values of the PSF. Another method to determine the waist size is based on the
calculation of the variance σ2

w of the measurement data. Under the assumption of a
Gaussian beam, it holds 2σw = wSFDT and the results agree with those achieved from
the Gaussian fit. A careful analysis revealed that the position of the minimal waist
has an uncertainty of approximately ±75 µm depending on the method which is used
to determine the waist. From the deviations between the Gaussian fit results and the
calculated variance we were able to estimate the uncertainty for the SFDT waist to 10 %
of its value.
In contrast to the poor beam quality in front of the focal point, the Gaussian shape
is well maintained behind F as apparent in subfigure (e). It agrees with the simulated
point spread function.

1Proper normalization was achieved dividing by the sum of all pixel values in each beam profile/PSF
image.
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Figure 1.6 – Comparison of the measured beam profile and the expected point spread function: (a) x -
y - cut of the measured intensity distribution at z = 0, i. e. through the intensity peak of each recorded
beam profile image. (b) Theoretically expected point spread function. In addition, the measured
beam profile (c) in front of, (d) at and (e) behind the focal point F is shown. (f) - (h) display the
expected beam profiles resulting from the calculated point spread function at the respective positions
marked in subfigure (b).

19



CHAPTER 1. COUPLING ATOMS TO A HIGH-FINESSE OPTICAL RESONATOR

0.0
0 2 4 6 8 10 12 14 16

5 x 10-3

10 x 10-3

15 x 10-3

48 x 10-3
50 x 10-3

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 (a

. u
.)

Frequency (kHz)

DT only DT and SFDT

1.
0 

W

1.
5 

W

1.
9 

W

Figure 1.7 – Measured radial os-
cillation frequencies with the
DT only (red) and with the
SFDT in addition at 1.0 W
(grey), 1.5 W (orange) and
1.9 W (blue). At 1.9 W the
radial oscillation frequency
yields (15.3 ± 0.3) kHz. The
spikes at multiples of 1 kHz re-
sult from a background signal
and do not originate from the
atomic motion.

To conclude, a slight misalignment between the center of the cavity mode and the beam
waist not only increases the beam radius at the cavity position but can also introduce
negative effects due to non-Gaussian beam profiles. Further simulations revealed that
the glass cell, which encloses the cavity, should not have a negative effect on the beam
profile. Nevertheless, due to dust particles and tiny scratches on the surface of the glass
cell, additional distortions might still occur.

Extraction of the radial trap frequency After proper alignment of the waist position
with respect to the cavity mode the confinement of the atoms inside the cavity has to be
quantified. An appropriate observable is the radial trap frequency ωx since the extension
of the atomic wave package ε relates to the oscillation frequency as

ε ∝ 1
√

ωx
. (1.25)

The trap frequency can be extracted if the atoms are transported to the linear slope
of the cavity mode instead of the center. Here, the cavity transmission is proportional
to the coupling strength g and the latter in turn scales linearly with the atomic dis-
placement x. Therefore, the radial oscillation frequency can be mapped to the cavity
transmission. The subsequent calculation of the autocorrelation function of the recorded
transmission followed by the application of the Fourier transform finally allows the ex-
traction of the trap frequency. Figure 1.7 shows the results we achieved for the DT and
SFDT configuration. Without the strongly focused dipole trap, the extracted oscillation
frequency is (1.8 ± 0.2) kHz (red) while an increase is observed if the power in the SFDT
branch is raised. For a power of 1.9 W in the SFDT at the position of the cavity the
measured radial oscillation frequency yields (15.3±0.3) kHz (figure 1.7, blue) and agrees
with the theoretical expectation of 16 kHz. The extension of the atomic wave package
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then reduces by a factor of three along the radial direction.

In summary, first measurements indicate that stronger confinement of the atoms inside
the cavity can be achieved with the new strongly focused dipole trap but further tests are
required. An imperfect polarization purity of the DT/SFDT configuration for example
might still cause additional problems. Already a small admixture of circularly polarized
light can lead to a strong position dependent hyperfine level splitting. This is of major
disadvantage for proper microwave spectroscopy and further investigations are necessary.
Additionally, cavity transmission traces can be recorded for atoms coupled to the anti-
node of the cavity. The respective histograms should reveal a better agreement with a
Poissonian distribution compared to the distribution resulting from measurements with
the DT only. This would in turn allow a better distinction between one and two atoms
coupled to the cavity mode as demanded for proper feedback control of the atomic states
inside the cavity [24].

1.3 Implementation of a heterodyne detection scheme

The investigation of intracavity cooling and heating processes is of major interest in
the present setup. As mentioned in the introduction, proper control of these dynamics
is important to achieve sufficient cooling which is mandatory for a proper control of
the coupling strength. Cavity cooling and heating processes rely on the absorption
and subsequent emission of single photons. Due to energy conservation, cooling and
heating is achieved by the emission of frequency shifted photons. The present setup
only allows QND measurements of the atomic hyperfine states |F = 3, 4〉 but no phase
or frequency information can be extracted. A different approach is optical heterodyne
detection [30], which also facilitates QND measurements but in addition reveals phase
and frequency information of the detected photons. In our setup, optical heterodyne
spectroscopy is a powerful tool to map intracavity dynamics to the frequency domain.
The implementation of this technique allows us to extract several properties, e. g. the
intracavity atomic temperature or the heating and cooling rate.
The principle of optical heterodyne detection is simple: One laser beam is split into two
beams, a weak probe beam, interacting at frequency ωp with a sample and a strong
local oscillator beam at frequency ωlo = ωp −∆p,lo. Both beams are combined again and
their beat signal is recorded on a photo diode or SPCM. Due to their interference the
extraction of phase and frequency information is possible. The detuning ∆p,lo is usually
chosen in the MHz range because these frequencies can be resolved electronically and
1/f noise is strongly reduced.
The following subsection describes the implementation of the heterodyne setup into the
current experiment and introduces the data acquisition and analysis procedure.
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Figure 1.8 – Simplified schematic of the setup for heterodyne detection in the current CQED system.
Local oscillator and probe laser are generated by the same source laser and frequency shifted with
additional AOMs. The probe laser at frequency ωp interacts with the atom(s) inside the cavity and
is superimposed with the local oscillator at frequency ωlo again. The resulting signal is then recorded
with a SPCM.

1.3.1 Experimental setup

A schematic drawing of the optical heterodyne setup is shown in figure 1.8. The cooling
laser is used as source for the probe laser and the local oscillator. Its frequency is given
by [23]

ωcool = ω44′ + ∆ωd (1.26)

with ∆ωd = 2π · 24.90 MHz. The probe laser is coupled into the high-finesse optical
cavity and interacts with single cesium atoms therein. Two AOMs (AOM 1 and 2, see
figure 1.8) are used to generate the probe laser frequency. AOM 1 is driven in -1st order
and AOM 2 in +1st order double-pass configuration such that the probe laser frequency
yields [23]

ωp = ω44′ + ∆ωd − 2ωAOM 1 + 2ωAOM 2. (1.27)

Another AOM in a +1st order quadruple pass configuration generates the local oscillator
frequency:

ωlo = ω44′ + ∆ωd + 4ωAOM. (1.28)

In order to guarantee high relative frequency stability between the two beams, all AOMs
are driven by frequency generators which are in turn connected to a common 10-MHz
reference clock. The frequency difference ∆p,lo between probe laser and local oscillator
can be calculated according to eqn. (1.27) and (1.28):

∆p,lo = ωp − ωlo

= −2ωAOM 1 + 2ωAOM 2 − 4ωAOM.
(1.29)
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Figure 1.9 – Block diagram of data acquisition and analysis for the heterodyne detection setup.

Both beams, transmitted probe laser and the local oscillator, are again combined using
an asymmetric beam splitter (BS, see figure 1.8) which transmits 90 % of the light and
reflects only 10 %. Since we do not want to loose any probe laser photons transmitted
through the cavity, the probe laser is transmitted while the local oscillator is reflected.
The low reflection can be counterbalanced by an increased local oscillator power.
The resulting signal is finally detected as photon clicks on the SPCM. Its output is
recorded with a timercard at a time resolution of ∆t = 50 ns (Silicon Solutions, Timer-
Card 3.0) resulting in a sampling rate of 20 MHz. In order to obey the Nyquist-Shannon
sampling theorem [54, 55], which states that the sampling rate should be at least twice the
maximal expected signal frequency, the highest measurable frequency would be 10 MHz.
To guarantee proper sampling of the sinusoidally shaped signals, the local oscillator de-
tuning was chosen to be less than 5 MHz. Since 1/f noise at low frequencies leads to a
distortion of the real signal as well the detunig should still be chosen in the MHz-range.
The influence of those effects will be discussed in detail in chapter 2. For our measure-
ments a detuning of ∆p,lo = 2π · 1 MHz is sufficient to facilitate a proper sampling rate
as well as minor influences of any artifacts.

1.3.2 Measurement procedure and data evaluation

A simplified schematic of the data acquisition and analysis procedure is shown in figure
1.9. The measurement starts with the preparation of single cesium atoms inside the
MOT which are subsequently loaded into the DT. If more than one atom was loaded
into the DT, the distance between them is checked a posteriori and the data is discarded
if the maximum separation exceeds 20 µm. Otherwise the coupling of the atoms to the
cavity mode will be reduced by more than 20 % and will lead to falsified results.
After a successful fit of the atomic position in the recorded fluorescence picture, the
optical conveyor belt transports the atom(s) to the center of the cavity mode. For
more than one atom, an uncertainty concerning their position still remains because the
software usually transports the center of mass of the atoms to the center of the cavity
mode leading to a reduced coupling factor.
Once the atoms are transported to the cavity they can interact with the probe laser. All
photon clicks caused by local oscillator and transmitted probe laser are detected with
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the SPCM. The latter is connected to the timercard which records all clicks. Finally,
the atoms are transported back an their survival is checked inside the MOT.
These steps (figure 1.9, I - III) are repeated several times since the atom(s) have only
a finite survival time inside the cavity and high statistics is necessary for proper data
evaluation. Typical survival times inside the cavity amount to several seconds. For our
measurements, we chose a reasonable measurement time of 5 s inside the cavity which
provides a good trade-off between atom losses and high data acquisition rates.
Data evaluation is rather complex and consists of several steps (see figure 1.9, IV - VI).
Hence, the coarse procedure is introduced now and details are discussed in chapter 2.
First the discrete autocorrelation function g(2)

k of the recorded photon clicks is calcu-
lated because the signal we are interested in results from incoherent photon scattering
processes which thus possess random phases. Since only one detector is used, artificial
effects superimpose the real signal. This problem could have been obviated with the im-
plementation of a second SPCM. Since the expected signal is at the order of the detector
dark count rate the signal-to-noise ratio would have been decreased. Instead we devel-
oped a routine to eliminate all artificial effects with a reliable recalibration procedure.
Their influence and correction will be discussed in detail in the next chapter.
Frequency information of the scattered photons can be extracted from the g(2)

k -function
exploiting the Wiener-Khinchin theorem [56, 57]: It states that the discrete Fourier
transform (DFT) of the autocorrelation function will result in the power spectral den-
sity. Hence, the frequency spectrum is given by the Fourier transform of the discrete
g(2)

k -function.
After the introduction into the measurement and analysis procedure, a detailed theoret-
ical description of heterodyne detection follows in chapter 2.
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Chapter 2

Theoretical aspects of heterodyne de-
tection

In the following chapter a mathematical description of the heterodyne detection setup
which allows the estimation of the signal-to-noise ratio (SNR) is presented. It enables
us to choose experimental parameters for efficient measurements and also to test our
understanding of the data analysis. Additionally, important improvements in the data
analysis procedure, which facilitate the elimination of technical artifacts, namely the
afterpulsing effect and the detector dead time, are introduced as well.
The time dependent electric field and intensity are presented first and the analytical au-
tocorrelation function g(2)(τ) is derived. Furthermore the different expected components
of the analytic Fourier spectrum are discussed. After the derivation of the discretized
g(2)-function, a detailed discussion on the influence of afterpulsing and the detector dead
time follows. Subsequently, the application of the discrete Fourier transform (DFT) is
discussed including possible artifacts caused by spectral leakage. Finally, a theoretical
estimation of the signal-to-noise ratio is developed and compared to the measurement
data.

2.1 Analytical g(2)-function

In order to calculate the analytical g(2)-function, the time dependent electric field and
intensity are required. The present heterodyne setup uses the strong local oscillator
beam (lo) which is superimposed with the probe laser beam (p) and detected on the
SPCM. In addition, the probe laser can interact with the atoms which are trapped along
the cavity axis by the lock laser standing wave. Due to the interaction of the probe
laser with the atoms, first order sidebands can emerge: Being in some vibrational state
|m〉 of the lock laser potential the probe laser can excite the atom and a subsequent
decay can change its vibrational state from |m〉 to |m ± 1〉. This leads to the emission
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of frequency shifted photons where the energy difference corresponds to the vibrational
energy level spacing. In principle also higher-order transitions, i. e. |m〉 → |m±(2, 3, ...)〉
are possible but their probability is strongly reduced. A more detailed discussion of the
physical mechanism can be found in chapter 3. In this thesis the heterodyne detection
scheme is exploited to measure the motional sidebands of vibrational transitions inside
the cavity. The sidebands are imprinted in the electric field as additional frequency
components. The electric field including all relevant contributions is given by

E(t) = Eloe−iωlot + Epe−iωpt + Es
(
e−i(ωp+ωax)t + e−i(ωp−ωax)t

)
+ c. c. (2.1)

where Ei denotes the field amplitudes of the local oscillator, the probe laser and the
sidebands (s) at the respective frequencies ωlo, ωp and ωp ± ωax. Here, ωax is the
transition frequency from vibrational level |m〉 to |m±1〉. The intensity can be calculated
according to I = 1

2cε0|E|2. As mentioned in the previous chapter, the SPCM can only
resolve frequencies below 10 MHz. Therefore, all terms oscillating at optical frequencies
are neglected in the following calculations. For simplicity an equal strength of both
sidebands as well as an equal phase is assumed. Experimentally we expect incoherent
sideband scattering but we will calculate the autocorrelation function later on, which
destroys any phase information. Thus the simplification does not falsify the final results.
The intensity then yields

I(t) = Ilo + Ip + 2Is + 2
√

IloIp cos [∆p,lot]
+ 2

√
IloIs (cos [(∆p,lo + ωax)t] + cos [(∆p,lo − ωax)t])

+ 4
√

IpIs cos [ωaxt] + 2Is cos [2ωaxt]

(2.2)

with the detuning between the local oscillator and probe laser given by ∆p,lo = ωp −
ωlo. The intensity contains several terms which oscillate at different frequencies. In
order to extract all frequency components a Fourier transform of eqn. (2.2) could be
performed. The squared absolute value would then result in the power spectral density.
Experimentally each measurement trace has a length of T = 5 s resulting in 5 s/50 ns =
108 bins. The large number of time bins demands high computational power for the DFT
and should be avoided. Additionally, the photons resulting from sideband transitions
possess random phases which leads to an increase of the signal strength with

√
N only

where N denotes the number of scattered photons detected. This can be understood in
terms of a two dimensional random walk.
Using the autocorrelation function instead has two advantages: The most interesting
frequency component results from the frequency shifted photons which are emitted due
to the interaction of the probe laser with the atom at frequencies ωp ± ωax. Each
vibrational level has a finite lifetime tlife. Thus, on the one hand the calculation of
the g(2)(τ)-function up to some maximum correlation time τmax with T * τmax * tlife,
reduces the computational load. On the other hand, since the random phase is eliminated
with the calculation of the autocorrelation function, the signal strength is enhanced and
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scales with N in this case. In addition, artificial effects like the detector dead time and
the afterpulsing effect can only be corrected if the autocorrelation function is calculated
(see section 2.4).
Therefore, we introduce the non-normalized g(2)(τ)-function, given by

g(2)(τ) =
∫ T

0
I(t) · I(t + τ)dt. (2.3)

Inserting the intensity from eqn. (2.2) results in

g(2)(τ) = T ·
{

(Ilo + Ip + 2Is)2 + 2IloIp cos [∆p,loτ ]
+2IloIs (cos [(∆p,lo + ωax)τ ] + cos [(∆p,lo − ωax)τ ])
+8IpIs cos [ωaxτ ] + 2I2

s cos [2ωaxτ ]
}

.

(2.4)

A graphical representation of eqn. (2.4) is shown in figure 2.1 (a) for typical experimental
parameters. The intensities of local oscillator Ilo and probe laser Ip are usually one to
three orders of magnitude higher than the sideband intensity Is. Therefore, the beating
at 1 MHz between local oscillator and probe laser is dominant while the influence of the
additional contributions oscillating at ∆p,lo ±ωax, ωax and 2ωax is apparent as amplitude
variations of the g(2)-function.

2.2 Analytical spectrum of the g(2)-function

The previous section showed that the extraction of all frequency components in the
g(2)-function is possible with the application of the Fourier transform. As introduced
in chapter 1, the Wiener-Khinchin theorem states that the Fourier transform of the
autocorrelation function yields the power spectral density. Therefore, its application to
eqn. (2.4) reveals the frequency spectrum of the measurement. The result yields

FT
(
g(2)(τ)

)
(ω) = 1√

2π

+∞∫

−∞

g(2)(τ)e−iωτ dτ

=
√

2π · T ·
{

[Ilo + Ip + 2Is]2 · δ0 + IloIp[δ∆p,lo + δ−∆p,lo]

+IloIs
[
δ−[∆p,lo+ωax] + δ[∆p,lo+ωax] + δ−[∆p,lo−ωax] + δ[∆p,lo−ωax]

]

+4IpIs[δ−ωax + δωax ] + I2
s [δ−2ωax + δ2ωax ]

}
.

(2.5)

Here, δα denotes the Dirac delta distribution δ(ω − α). A graphical representation of
the positive frequency components for typical experimental parameters can be found
in figure 2.1 (b). The Fourier spectrum results from different contributions: A strong
peak occurs at ω = 0 (DC-peak) which is represented by the first term. It usually
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Figure 2.1 – (a) Exemplary g(2)function obtained from eqn. (2.4) for typical ratios of Ip/Ilo = 1/12 and
Is/Ilo = 1/400, ∆p,lo = 2π · 1 MHz and ωax = 2π · 200 kHz. Ilo was arbitrarily set to 1 mW/cm2 and
T to 1 s. (b) Corresponding frequency spectrum with a strong peak at ω/(2π) = 0 MHz, the beat
signal between probe laser and local oscillator at 1 MHz and the sidebands at 0.8 MHz and 1.2 MHz.
The small contribution at 0.2 MHz is hardly visible whereas the peak at 0.4 MHz vanishes at this plot
range due to its weak intensity.

dominates all other contributions because the local oscillator intensity is chosen one
order of magnitude larger than the probe laser intensity (here: Ip/Ilo ≈ 1/12) and the
signal strength is always smaller than the probe laser intensity itself (here: Is/Ip = 1/32).
In addition, the so called carrier oscillating at the beat frequency between local oscil-
lator and probe laser ∆p,lo exhibits a strength proportional to both intensities. In the
spectrum, this peak is the second highest and occurs at 1 MHz which is a typical value
for the chosen detunings.
The signal in frequency domain results from the frequency shifted photons as mentioned
above. In figure 2.1 ωax = 2π · 200 kHz and thus the two peaks around the carrier,
the so called sidebands, correspond to the desired signal we would like to measure. In
contrast to the DC-peak and the carrier it is rather small because usually Is + (Ilo, Ip)
which explains why only a small contribution from this term is expected although the
local oscillator can enhance its strength. A further contribution can be seen at ωax and
the one expected at 2ωax is already too small to be resolved in the plot. Nevertheless,
the plot emphasizes that the expected sidebands can easily be buried in noise and a
comprehension of the dependencies of the SNR is desirable.
The next section takes into account that all measurement results are discrete and a
discretized expression for the g(2)-function is introduced.
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2.3 Discretized g(2)-function

All calculations so far were based on intensities but the SPCM measures count rates, i. e.
it detects single photon clicks. Therefore, the intensity has to be expressed in terms of
the count rates nl with l = (lo, p, s). The relation between these two quantities is given
by

Il = Pl

A
= Nl!ωl

∆tA
= nl!ωl

A
(2.6)

with the number of photons Nl within the time interval ∆t (corresponding to the time
resolution of the timercard in the setup), the effective detector area A and the frequency
ωl of the photons. Since A can be assumed to be constant and the frequencies of the
local oscillator, probe laser and sideband photons ωl are approximately equal as well, we
can write

Il = const. · nl. (2.7)

Hence, the intensity is directly proportional to the count rates nl. Experimentally we
detect photon clicks in a defined time interval ∆t. In each time bin q the mean photon
number equals the product of the photon count rate times ∆t. According to eqn. (2.2)
the number of photon clicks Rq in each bin q is given by

Rq = ∆t
(
nlo + np + 2ns + 2√

nlonp cos [∆p,lo · q∆t]
+2√

nlons (cos [(∆p,lo + ωax) · q∆t] + cos [(∆p,lo − ωax) · q∆t])
+4√

npns cos [ωax · q∆t] + 2ns cos [2ωax · q∆t]
)

.

(2.8)

In the experiment the photon detector (SPCM) can only detect one photon per bin.
Since the count rate is well below one photon per bin, we may still use count rates for
the mathematical description. The discrete g(2)-function can be calculated replacing the
integration by a summation over all measurement bins q

g(2)
k =

Nt−Nf∑

q=0
Rq · Rq+k

(2.4)= (Nt − Nf) · ∆t2 ·
(
(nlo + np + 2ns)2 + 2nlonp cos [∆p,lo · k∆t]

+2nlons (cos [(∆p,lo + ωax) · k∆t] + cos [(∆p,lo − ωax] · k∆t))
+8npns cos [ωax · k∆t] + 2n2

s cos [2ωax · k∆t]
)

(2.9)

with the total number of measurement bins Nt = T/∆t and the total measurement time
T . g(2)

k gives the correlations between the signal with itself at a distance of k = τ/∆t

bins. For the measured data, the discrete values g(2)
k are calculated up to some maximum
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Figure 2.2 – (a) Exemplary g(2) data trace (blue) for a local oscillator count rate of nlo = 2.2 ·
105 counts/s (np = 0) and a total measurement time T = 100 s calculated for a maximal correlation
time of τmax = 500 µs in comparison to the theoretical expectation according to eqn. (2.9) (red line).
(b) Close up of (a): The effect of afterpulsing manifests itself as artificial increase of correlations at
correlation times smaller 250 ns. The detector dead time leads to the reduction of the correlation in
bin k = ±1. Furthermore due to the single detector setup no information is available for g(2)

0 .

bin k = Nf which relates to the maximum correlation time τmax as Nf = τmax/∆t. Nf
is therefore the maximum correlation time expressed in bin sizes. The sum in eqn. (2.9)
runs only up to Nt − Nf due to the limitation by the maximum correlation time τmax:
If g(2)

k=Nf
for the maximum correlation bin Nf is calculated, the value for q + k may not

exceed Nt. Thus the maximum value for q is given by Nt − Nf. In general it holds
Nf + Nt because all correlations vanish on short timescales (< 500 µs). Nevertheless,
summing up to Nt would lead to a visible decrease of the g(2)-function with increasing
correlation bin k.
For further data analysis with the DFT a symmetric g(2)-function is desirable. There-
fore, we exploit that g(2)

k = g(2)
−k and generate all negative values with their positive

counterpart.

2.4 Influence of afterpulsing and detector dead time

The idealized discrete g(2)-function is now compared to real measurement data and
enables us to identify possible technical effects which superimpose the real signal. In
figure 2.2, the expected result according to eqn. (2.9) is displayed for a measurement
with the local oscillator only (i. e. nlo = 2.2 · 105 counts/s) (red) and compared to real
measurement data (grey/blue). Besides noise contributions, which always overlay the
data, theoretical and experimental results agree well for correlation times greater than
500 ns. For smaller correlation times, an artificial increase of the g(2)-function as well as a
drop at g(2)

0 and g(2)
±1 is clearly visible which results from the imperfect detection scheme.

Since all measurements are performed with a single detector (SPCM) the detector dead
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time as well as the afterpulsing effect have to be taken into account. Both effects are
extensively discussed in literature, e. g. [58–62]. Here, we would like to pursue a pratical
approach to correct both effects in our setup.
The afterpulsing effect describes the phenomenon that an artificial click, which is caused
by some residual charge carriers in the SPCM, is created. The origin lies in the inter-
nal structure of the SPCM: It usually consists of a photo multiplier tube or a silicon
APD. The latter is used in our SPCM. Here, an impinging photon usually triggers a
subsequent avalanche of ionizations resulting in the desired signal (click). Nevertheless
it may happen, that single charge carriers are trapped in the junction depletion layer of
the semiconductor [61]. Thermal excitation can lead to their release creating a charge
carrier which can trigger a second click [59]. This phenomenon is called afterpulsing
and leads to an artificially increased count rate. For a perfect detector, the number of
correlations in each bin k of the g(2)-function is given by

g(2)
k = N2

tot
Nt

= Ntotntot∆t, (2.10)

where Ntot denotes the total number of detected photons during the measurment time T .
Due to the afterpulsing, the relation for g(2)

k has to be modified. The probability to detect
a correlation is given by the sum of the probabilities pr and pa to count a correlation
due to a real and an artificial click, respectively. Since the product of detected count
rate times bin size ntot · ∆t is much smaller than one we can relate the probabilities to
the count rate as follows

ntot∆t = (pr + pa). (2.11)

Furthermore, we have to take into account that the probability to detect a correlation
due to an afterpulsing photon will decrease for higher |k| in the g(2)-function. We hence
introduce a k-dependent afterpulsing probability pa,k. The modified autocorrelation
function then reads

g(2)
k = Ntot(pr + pa,k)

= Ntot(nr∆t + pa,k),
(2.12)

where nr is the real photon count rate which is of interest. The effect of afterpulsing
can be visualized if the probe beam is blocked and the local oscillator is recorded only.
The corresponding g(2)-function in figure 2.2 reveals the effect for |k| ≥ 2: Without
afterpulsing the autocorrelation function should be completely flat (red). As expected
the number of correlations is artificially increased for small |k| and hardly any influence
of the afterpulsing is visible for high |k|.
In order to correct the afterpulsing we pursue the following approach: The SPCM’s
dark count rate of nd = 500 counts/s was recorded for 20 hours. The dark count rate
was chosen instead of the local oscillator since possible bunching or antibunching effects
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can superimpose the afterpulsing effect leading to a falsified correction. From the dark
count data the corresponding autocorrelation function g(2)

d,k is calculated. Subsequently,
the mean value 〈g(2)

d 〉 is subtracted from g(2)
d,k. Otherwise, a subtraction from the original

data would eliminate the DC-term of the original data. Additionally, a renormalization
factor Ntot/Ntot,d is introduced because the real and dark count measurement have
different measurement times and thus different total photon numbers Ntot and Ntot,d.
The afterpulsing-corrected autocorrelation function g(2)

cor,k finally yields

g(2)
cor,k = g(2)

k −
(
g(2)

d,k − 〈g(2)
d 〉

)
· Ntot

Ntot, d
. (2.13)

The prevention of additional noise in the measurement data, which can lead to a reduced
SNR, is of major interest. Therefore, the total dark count photon number Ntot,d for the
calculation of g(2)

d,k is chosen at least a factor of two or three higher than the measured
photon number Ntot. In the present setup usual measurement times are on the order of
several seconds and the available dark count data of several hours is sufficiently high to
assure no additional noise contamination caused by the described correction procedure.
Besides the afterpulsing, a further effect stands out in figure 2.2 (b): The decreased
values g(2)

±1 result from the detector dead time tdead since the photon detection is realized
with a single detector only. The measured value for tdead is approximately 30 ns. We
have measured that the influence in the second bin of g(2) is at the order of 3 % only
and is thus negligible. Therefore, the dead time effect mainly affects the first bin of the
autocorrelation function. Due to the detector dead time the number of correlations in
the first bin is too small compared to their original value. Nevertheless we are able to
correct this artifact for the bins k = ±1 if we take the detector dead time coefficient d1
into account and modify eqn. (2.12) accordingly

g(2)
1 = Ntotd1(nr∆t + pa,1). (2.14)

The numerical value for d1 can be determined experimentally: Recording the local oscilla-
tor without the probe laser for different count rates ntot and calculating the g(2)-function
for each count rate enables us to plot g(2)

1 /Ntot versus the count rate times the bin time
nr · ∆t (see figure 2.3 (a)). The count rate nr can be extracted from the g(2)-function
again because for high |k| the afterpulsing probability as well as the detector dead time
are negligible and g(2)

k = Ntotnr∆t for |k| * 1. A linear fit according to eqn. (2.14)
reveals a value of 0.57 ± 0.01 for d1. The dead time effect can be successfully eliminated
if g(2)

±1 is divided by d1.
A third artificial effect arises at k = 0 resulting once again from the fact that only one
detector is used: No information exists about g(2)

0 and its value is therefore zero. A
detailed analysis of the Fourier spectra indicated that this dip has a major influence on
the spectrum and a correction is desirable. The theoretical calculations suggest that
g(2)

0 has almost the same value as g(2)
1 . Therefore g(2)

0 was set to the value of g(2)
1 which
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Figure 2.3 – (a) The normalized value of the first bin of the g(2)-function is plotted versus the local
oscillator photon count rate times the bin time nr · ∆t. This allows the extraction of the detector
dead time coefficient d1 from the linear fit function (for details, see text). (b) Same g(2)-function as
in figure 2.2 (b) with corrected effects of afterpulsing and detector dead time. In addition, g(2)

0 was
set to the value of g(2)

1 . The red line denotes the theoretical expectation as in figure 2.2.

matches the theoretical expectations reasonably well and eliminates nonphysical effects
in the spectrum.
To conclude, all three technical effects were eliminated leading to the corrected g(2)-
function as shown in figure 2.3 (b) which agrees well with the theoretical expectation.

2.5 The discrete Fourier transform

The analytical calculation of the DFT of g(2)
k demands a discretization of the frequencies

as well. Therefore, all frequencies ω will be rewritten in terms of multiples of the smallest
frequency ∆f which can be resolved. Hence, we can write

ω → 2πjω∆f with jω ∈ Z, (2.15)

where ∆f = 1
2Nf∆t with the total number of frequency bins 2Nf which are used for the

Fourier transform later on. The g(2)-function given in eqn. (2.9) can be rewritten again
using the expressions for ω, ∆f and Nt:

g(2)
k = T ∆t

{
(nlo + np + 2ns)2 + 2nlonp cos

[
2πj∆p,lo

k

2Nf

]

+2nlons

(
cos

[
2πj(∆p,lo+ωax)

k

2Nf

]
+ cos

[
2πj(∆p,lo−ωax)

k

2Nf

])

+8npns cos
[
2πjωax

k

2Nf

]
+ 2n2

s cos
[
2πj2ωax

k

2Nf

]}
.

(2.16)
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Figure 2.4 – Exemplary schematic for the application of window functions: First, the original data set
(a) is multiplied with the Blackman-window (b) in time domain. The discrete Fourier transform is
then applied to the resulting function (c), which gives the desired output in frequency domain (d)
without the effect of spectral leakage (blue). The application of the DFT to the periodic function in
(a) would lead to spectral leakage (red).

The discrete Fourier transform of g(2)
k then reads [63]

Fj = 1
2Nf

Nf−1∑

k=−Nf

g(2)
k e−2πijk/(2Nf)

= 1
2Nf

Nf−1∑

k=−Nf

g(2)
k {cos [2πjk/(2Nf)] − i sin [2πjk/(2Nf)]} .

(2.17)

The summation runs from −Nf to Nf − 1 to guarantee a periodic continuation and avoid
inadvertent effects in the Fourier spectrum. Since our g(2)-function is symmetric around
g(2)

0 the imaginary part of the Fourier transform vanishes and only the real part has to
be calculated.

Purpose of window functions The DFT can also cause additional artifacts and a care-
ful application is inevitable. Since every time series spans over a finite time window,
abrupt steps at the beginning and at the end break the periodicity and entail unwanted
spectral contributions. The discrete Fourier transform of a time series, which includes a
periodic signal at frequency ω, will reveal artificial effects, namely spectral leakage [63]. In
principle the Fourier spectrum should only contain a non-zero value at ω but due to spec-
tral leakage, sidelobes arise and neighbouring frequency bins will also contain non-zero
values. If the spectrum of the measured data consist of unequally strong components
which are spectrally close together, it might happen that the weaker signal (here the side-
bands) is buried in the sidelobes of the stronger (here the carrier). Window functions
can be used to circumvent this effect. Their application is simple since they only have to
be multiplied with the original data set (see figure 2.4). In literature [64, 65] a variety of
window functions for different applications is available. Two parameters usually exclude
each other, namely high frequency resolution and high suppression of spectral leakage.
The latter can only be achieved at the expense of frequency resolution. Therefore, one
needs to find an appropriate trade-off between both parameters. We decided to choose
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Figure 2.5 – Comparison of
the real part of the Fourier
spectrum of the measure-
ment data calculated with-
out (red) and with (blue)
the Blackman-window func-
tion. The latter suppresses
spectral leakage of the car-
rier while the broadening in-
troduced due to the applica-
tion of the window remains
reasonably small (see inset).

the Blackman-window, because it exhibits a sidelobe-suppression of −58 dB while the
3 dB-bandwidth (equivalent to the full width at half maximum (FWHM)) is 1.68 bins
[65]. For comparison, the intrinsic window function, resulting from the finite time series,
is always present in the data: the rectangular window. It possesses the highest resolu-
tion, i. e. a 3 dB-bandwidth of 0.88 bins [64] but the suppression is only −13 dB. The
Blackman-window function used is given by [65]

wk,blck = a0 + a1 cos
[ 2π

2Nf
k

]
+ a2 cos

[ 2π

2Nf
2k

]

where a0 = 0.42, a1 = 0.50, a2 = 0.08.
(2.18)

The modified autocorrelation function then yields

g(2)
k,win = wk,blck · g(2)

k . (2.19)

The enhancement achieved with the application of a window function becomes apparent
in figure 2.5. It shows the real part of the discrete Fourier spectrum of the measured
data between 0.5 and 1.5 MHz calculated with and without Blackman-window for a total
measurement time T = 280 s and a maximum correlation time τmax = 500 µs. Here, the
effect of spectral leakage becomes evident: The carrier at 1 MHz is very pronounced
and sidebands at 0.8 and 1.2 MHz are visible as well. Weak sidelobe suppression is seen
for the original data without Blackman-window (figure 2.5, red). The corresponding
carrier peak is narrow (fig. 2.5, inset, red) but both branches are spectrally broadened
and energy ’leaks’ to adjacent frequency bins, slightly superimposing both sidebands. In
contrast, the high suppression of the Blackman-window leads to an excellent suppression
of spectral leakage while the broadening of the peak itself remains reasonable (figure 2.5,
blue). Additionally, spectral leakage can also lead to a redistribution of power between
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real and imaginary part. This explains the artifact of the negative values in the real part
of the spectrum around 1 MHz.

2.6 Estimation of the signal-to-noise ratio

Since all technical artificial effects and their elimination were discussed in the previous
sections, it is of major interest to identify the different dependencies of the measured
signal and its noise. Therefore, an analytical estimation of the signal-to-noise ratio in the
Fourier spectrum is developed and compared to real measurements. For an estimation
we hypothesize that the noise is exclusively determined by the shot noise of the local
oscillator, probe laser, sideband and dark count photons. In this case, the probability
Pk(x) to find x clicks in bin k of g(2)

k is given by the Poisson distribution

Pk(x) = λx

x! e−λ (2.20)

with the expectation value λ which can be calculated as follows: The count rate ntot =
nlo + np + 2ns + nd for the contributions mentioned above is constant. All oscillating
terms of eqn. (2.8) are on average zero and can thus be neglected. The total number of
photons measured is then given by Ntot = ntotT and the expectation value in each bin
k of the g(2)-function yields

λ = g(2)
k =

Nt∑

q=0

N2
tot

N2
t

= N2
tot

Nt
= (ntotT )2

Nt
(2.21)

with the total number of measurement bins Nt 1. The expression can be simplified using
Nt = T/∆t:

λ = (ntotT )2

T/∆t
= n2

totT ∆t (2.22)

and the result is equal to the constant term of eqn. (2.9). Since a Poisson distribution
was assumed, the variance is given by λ as well. Thus, the standard deviation for each
g(2)

k is
√

λ. The Fourier coefficients Fj are given by eqn. (2.17) and their error will
be estimated next. Due to the intrinsic symmetry of the g(2)-function around g(2)

0 the
imaginary part of each Fourier component is zero and the investigation can be limited
to the real part only. The latter is given by

. (Fj) = 1
2Nf

Nf−1∑

k=−Nf

g(2)
k cos

[
2π

jk

2Nf

]
(2.23)

≈ 2
2Nf

Nf−1∑

k=0
g(2)

k cos
[
2π

jk

2Nf

]
. (2.24)

1For this estimation we assume Nt ≈ Nt − Nf and Nt + 1 ≈ Nt
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Here, the last equation holds due to the symmetry of the g(2)-function: The data for
g(2)

k with k < 0 is generated by duplication of the data from the corresponding g(2)
k with

k > 0. In addition, the approximation was introduced because g(2)
0 will be taken twice

and g(2)
−Nf

will be neglected. For the estimation of the error we may assume that all g(2)
k

with k ≥ 0 contribute equally to each Fj . Therefore, the approximation is still valid.
The expected error can be calculated using Gaussian error propagation

∆ [. (Fj)] = 1
Nf

√√√√
Nf−1∑

k=0

(
∆g(2)

k cos
[
2π

j

2Nf
k

])2

= 1
Nf

√√√√
Nf−1∑

k=0

(√
λ cos

[
2π

j

2Nf
k

])2

= ntot
√

∆tT

Nf

√√√√
Nf−1∑

k=0
cos2

[
2π

j

2Nf
k

]

= ntot

√
∆tT

2Nf

= ntot∆t

√
T

2τmax
.

(2.25)

As a next step, the expected signal strength in the Fourier spectrum is estimated. The
signal is given by the sidebands around the carrier, which spread over several frequency
bins. In order to estimate the SNR the broadening will lead to a decreased signal strength
which is taken into account in further considerations (see below). The contribution of
the right sideband to the g(2)-function can be extracted from eqn. (2.16) as

g(2)
k,s = 2nlons∆tT cos

[
2πjs · k

2Nf

]
(2.26)

with js = j∆p,lo+ωax under the assumption that the frequency (∆p,lo + ωax) can be
expressed as a multiple of ∆f . In this case the signal will contribute to one bin in the
Fourier spectrum only which is desirable for the analytical analysis. According to eqn.
(2.17) the real part of the discrete Fourier transform yields

. (Fj=js) = 1
2Nf

Nf−1∑

k=−Nf

2nlons∆tT cos
[
2πjs · k

2Nf

]
· cos

[
2πj · k

2Nf

]

= 2nlons∆tT
1

2Nf

Nf−1∑

k=−Nf

cos2
[
2πjs · k

2Nf

]

= 2nlons∆tT
1

2Nf

(2Nf
2

)

= nlons∆tT

(2.27)
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for the positive frequency component. The negative frequency component at −js will
give the same result because cos (js) = cos (−js). Multiplying the result by a factor of
two will thus give the single sided spectrum of the real part of the Fourier transform of
the g(2)-function.
As already mentioned above the measured signal in Fourier domain is usually broadened
and has a certain spread over several bins j. This is mainly caused by three reasons:
First of all, the vibrational state has a certain lifetime which leads to spectral broadening.
Second, the atoms are trapped in a sinusoidal potential which has unequally spaced ad-
jacent energy levels and thus photons resulting from transitions between the vibrational
states |m〉 → |m±1〉 have a frequency which depends on m. This effect leads to a broad-
ening in frequency domain as well. Furthermore the atom is only weakly confined along
the x-direction which introduces additional broadening as well. A detailed discussion of
different broadening mechanisms follows in chapter 3. Here, we take them into account
by equally spreading the signal over several bins introducing a scaling factor ∆f/SW
with the frequency resolution ∆f and the signal width SW. Due to the Wiener-Khinchin
theorem, which states that the Fourier transform of the autocorrelation function gives
the power spectral density, the signal can be spread over several bins. The modified
signal is given by

.
(
F ′

js

)
= nlons∆t T

∆f

SW
with js = j∆p,lo+ωax − SW

2∆f
, ..., j∆p,lo+ωax + SW

2∆f
. (2.28)

Finally, the SNR can be calculated with eqns. (2.25) and (2.28):

SNR =
.

(
F ′

js

)

∆ [. (Fj)] = nlons∆t T ∆f

ntot∆t
√

T
2τmax

SW
(2.29)

with ∆f = 1
2Nf∆t and Nf = τmax

∆t this equation simplifies to

SNR = nlonsT

ntot
√

T
2τmax

2Nf∆tSW

= nlonsT

ntot
√

T
2τmax

2τmaxSW

= nlo
ntot

· ns
SW

·
√

T

2τmax
.

(2.30)

As expected the result indicates that the SNR can be improved with increasing measure-
ment time. In addition, it also depends on the different count rates nl with l = (lo, p,
s, d). The first factor suggests that high local oscillator count rates are desirable since
then this factor will trend towards unity. Typical parameters in our case are listed in
table 2.1.
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Table 2.1 – Experimental count rates.

Contribution Count rate Experimental value (counts/s)
local oscillator nlo 1.64 · 105

probe laser np 1.60 · 104

sideband signal ns 0.05 · 104

dark count rate nd 0.05 · 104

These values result in a ratio of nlo/ntot = 0.91. If the local oscillator count rate is
doubled the ratio would only increase up to 0.95. Therefore, nlo is already chosen
sufficiently high in the current setup and a further increase would not have a considerable
effect on the SNR. Decreasing the probe laser count rate np would not increase the SNR
because ns also depends on np and would decrease as well.
In addition, the SNR also depends on τmax. In principle this parameter can be chosen
arbitrarily small but the resolution of the Fourier spectrum depends also on τmax since
∆f = 1/(2τmax). Thus a reduction in τmax would lead to a better signal-to-noise ratio
but the frequency resolution would be decreased as well. For each purpose, this effect
should be taken into account to find a good trade-off between resolution and proper
SNR.
Since all calculations are based on the assumption of shot noise in the recorded signal
we would like to compare the theoretical estimation with experimentally measured data
in the following section.

2.7 Verification of estimated signal-to-noise ratio

We now pursue a detailed comparison of theoretical and experimental results focusing
on possible deviations from the expected SNR. For the following analysis we followed
the measurement procedure for heterodyne detection as described in chapter 1, limited
to one atom inside the cavity only. All artificial effects were eliminated, following the
recalibration procedure described in section 2.4. The DFT was performed without the
Blackman-window function because its effect was not considered in the previous noise
analysis.
First, eqn. (2.25) shall be verified: In order to calculate the error ∆ [. (Fj)] of each real
Fourier component in the measured spectrum, the variance

σ2 = 1
(Nf − b) ·

Nf∑

j=b

(.(Fj) − 〈.(F )〉)2 (2.31)

is calculated in the range from 2 − 10 MHz (background) for the corrected measurement
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Figure 2.6 – Comparison of spectral noise in the measured data (blue points) with the theoretical
expectation (red line) according to eqn. (2.32). The standard deviation σ was calculated for the
real part of the Fourier transform of the corrected measurement data between 2 and 10 MHz for
(a) different total measurement times T (at τmax = 500 µs) and (b) different maximum correlation
times τmax (at T = 50 s). Grey circles denote the calculated standard deviation for the uncorrected
measurement data.

data. Here, j = b marks the bin at 2 MHz, j = Nf the corresponding one at 10 MHz and
〈.(F )〉 is the average value of all real Fourier components between 2 and 10 MHz. The
variance was determined for different measurement times T and maximum correlation
times τmax. In general, it should hold

∆ [. (Fj)] = ntot∆t

√
T

2τmax
= σ. (2.32)

Figure 2.6 shows the results for different T at fixed τmax = 500 µs (a) and for different
τmax at fixed T = 50 s (b). The plot reveals good agreement of σ (blue points) with the
theoretical expectation (red curve) calculated for the parameters given in table 2.1. We
conclude that the measurements already reach the shot noise limit and the influence of
other contributions, e. g. technical noise, can be neglected.
In contrast to the recalibrated data, the uncalibrated original data (figure 2.6, grey
circles) shows a higher noise level compared to the expectation given in eqn. (2.25). In
principle both results should be equal. Since the variance is calculated over a wide
spectral range, any spectrally broad signal influences the value of the variance. The
increased variance results from the drop at g(2)

0 which translates into a spectrally broad
contribution in frequency domain. The following analysis will therefore only take the
recalibrated data into account.
As a next step, the dependence of the sideband strength on T and τmax is investigated.
According to eqn. (2.27) it should scale linearly with T and reveal no dependence on τmax.
Here, the area of the sidebands is calculated by summation over all frequency bins in a
limited spectral region around the sideband peaks. Since the spectrum contains some

40



2.7. VERIFICATION OF ESTIMATED SIGNAL-TO-NOISE RATIO

τmax (µs)

Si
de

ba
nd

 a
re

a 
(a

. u
.)

0 100 200 300 400 500
0

100

200

300

400a b

Si
de

ba
nd

 a
re

a 
(a

. u
.)

0
0

500

1000

1500

50 100 150 200 250 300
T (s)

Figure 2.7 – Measured sideband areas of the left (red points) and right (blue points) sideband in compar-
ison to the theoretical expectation (grey line) according to eqn. (2.27) for (a) different measurement
times T (at τmax = 500 µs) and (b) different maximum correlation times τmax (at T = 50 s). Since no
a priori information is available for ns, the shaded areas mark the region for ns = 400 − 600 counts/s.

constant offset, the mean value of the background close to each sideband is determined
and subsequently subtracted before summing over all bins.
Figures 2.7 (a) and (b) show the calculated area of the left (red) and right (blue) side-
band for different measurement times T at τmax = 500 µs and for different maximum
correlation times τmax at T = 50 s, respectively. The theoretical expectation (grey line)
is plotted according to eqn. (2.27) with the parameters of table 2.1. The value of ns can
only be estimated in advance and in principle remains as free parameter. Therefore, we
included different count rates into the theoretical expectation represented by the shaded
area which marks the region for sideband photon count rates between ns = 400 counts/s
(lower limit) and ns = 600 counts/s (upper limit). All measured sideband areas for differ-
ent T and τmax lie within this region and we conclude that a typical count rate between
400 and 600 counts/s is reasonable.
The linear dependence of the signal strength on T is approved although fluctuations of
the sideband areas are present in figure 2.7 (a). They might result from a non-constant
coupling strength of the atom to the cavity which changes from one measurement to the
other, leading to a fluctuation of ns as well. Furthermore spectral leakage could also
have a slight effect on the sideband area. From figure 2.7 (b) we further conclude that
the sideband area does not depend on τmax as long as τmax > 1/SW. The asymmetry of
the left and right sideband area is visible for this measurement with T = 50 s of data but
decreases for higher measurement times as displayed for τmax = 500 µs in figure 2.7 (a).
Finally, the theoretically estimated SNR is compared to the experimental results. In eqn.
(2.30), the signal was equally spread over several bins, introducing the signal width SW.
In order to achieve an appropriate comparison, we choose the height of the sideband in
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Figure 2.8 – Comparision of the SNR resulting form the measured data (blue points) in comparison
to the theoretical expectation (red line) according to eqn. (2.30) for (a) different measurement times
T (at τmax = 500 µs) and (b) maximum correlation times τmax (at T = 50 s). Here, only the peak
height of the measured signal was considered for the signal strength. The shaded areas define the
lower and upper bound for signal widths SW between 30 and 40 kHz.

the experimental data as signal strength. Equation (2.30) suggests that

SNR ∝
√

T

τmax
(2.33)

holds in this case. Figure 2.8 presents the corresponding results for T and τmax (blue
points). The parameters of table 2.1 were used again for the theoretical estimation but
additionally the signal width SW remains as free parameter. It was set to a reasonable
value of 35 kHz. The expectation with these parameters is plotted as red curve in figure
2.8 together with the shaded area which corresponds to different signal widths SW rang-
ing from 30 kHz to 40 kHz while the sideband count rate ns is fixed to 500 counts/s this
time. In addition, at τmax = 500 µs the signal is very noisy due to the small frequency
bin size of 1 kHz. We therefore averaged over 10 bins to achieve reasonable heights in
figure 2.8 (a). In figure 2.8 (b), we only averaged over 10 bins for τmax = 500 µs and over
5 bins for τmax = 250 µs. For smaller values of τmax the peak height could be determined
without averaging due to the decreased frequency resolution and thus less noisy spectra.
Both plots agree with our theoretical expectation, nevertheless deviations are noticeable
which predominantly result from the sideband signal. First, the coupling of the atom
to the cavity might not be constant and thus translate into the sideband strength and
height. This effect could lead to the observed spread around the expected result for
different measurement times T (figure 2.8 (a)). Second, we observed that the center
of the sideband peak varied within a range of ±3 kHz between different measurement
sequences with a duration of T = 100 s. This might also influence the SNR and lead
to a decreased growth of the peak with increasing measurement time, as indicated for
T ≥ 200 s in figure 2.8 (a). In principle this effect could be caused by lock laser intensity
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fluctuations (see section 3.3.3). Other effects causing the peak frequency fluctuations
have not yet been identified.
Besides those two aspects, an equally spread signal was assumed for the theoretical
estimation. It is compared to the height of a Lorentzian-like shaped sideband which can
lead to systematic deviations occurring in figure 2.8 (b). Here, the SNR is always smaller
than the expected value. Nevertheless, all results lie within a reasonable parameter range.
In the next chapter first measurements of motional sidebands emerging from Raman-
scattering in a high-finesse optical cavity are presented.
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Chapter 3

Mapping intracavity dynamics to the
frequency domain

After a brief theoretical and experimental introduction in chapter 1 and a detailed anal-
ysis of the heterodyne detection scheme in chapter 2, this chapter focuses on the applica-
tion of heterodyne detection as a tool to map the intracavity dynamics to the frequency
domain.
We would like to measure the motional sidebands of single cesium atoms trapped inside
the optical cavity to investigate intracavity cooling dynamics. In the literature the quan-
tized motion of trapped atoms was already studied using optical heterodyne detection,
for example for neutral Rb atoms in free-space [66] or inside an optical cavity for an
ensemble of atoms [67]. In our setup, a detailed investigation could reveal more informa-
tion about intracavity cooling dynamics of single cesium atoms, i. e. their temperature,
cooling and heating rate. Their extraction is of major interest since their analysis al-
lows us to quantify the performance of intracavity cooling processes which should be as
efficient as possible to achieve ground-state cooling. In the future this detection scheme
might become useful to develop new cooling schemes for our setup.
The first part of this chapter introduces the theoretical framework describing the origin
of motional sidebands and the expected cooling rate based on a model by M. Bienert
and G. Morigi [68]. Subsequently, the discussion of our measurement results follows
and a simplified model to describe the observed line shape of the motional sidebands
is introduced. The latter allows a first extraction of the approximate cooling rate and
temperature of the atoms inside the cavity. Finally, the simple model is compared to
the theoretical expectations and possible weaknesses are discussed.
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3.1 Theoretical description

Our atoms are trapped in a complex three-dimensional dipole trap potential. To achieve
an analytically solvable model, we assume a one dimensional optical harmonic potential

U(z) = 1
2Mω2

axz2 (3.1)

with the atomic mass M , the trap frequency ωax and the displacement from the center
of the trap z. An atom trapped in this potential possesses the discrete energies

Em = !ωax

(
m + 1

2

)
(3.2)

with the corresponding vibrational state |m〉. The atom’s motional state can be changed
via light scattering. In a simple picture this can be understood in terms of Stokes
and anti-Stokes Raman scattering: An atom in vibrational state |m〉 can be excited
by a photon of frequency ωp and a subsequent decay via the emission of a frequency
shifted photon ωp’ = ωp ± ωax can change its state to |m ± 1〉. These processes can be
related to cooling and heating processes since a higher vibrational quantum number m
corresponds to a higher energy and thus higher temperature. Therefore, transitions from
|m〉 to |m + 1〉 (|m − 1〉) lead to heating (cooling) of the atom. A single cesium atom
in an optical trap can be combined with an optical cavity to enhance or suppress the
respective scattering rates. A theoretical model published by M. Bienert and G. Morigi
[68], which describes the interaction of a trapped two-level system with a single mode
of an optical cavity externally driven by a weak probe laser, resembles our experimental
situation. The main results are discussed in the following section.

3.1.1 Theoretical derivation of sideband scattering rates

The atom-cavity system under consideration is shown in figure 3.1. Inside the cavity a
two-level atom of mass M is trapped in a one dimensional harmonic potential along the
cavity axis with trap frequency ωax. The atom’s ground (excited) state is denoted by |g〉
(|e〉). A weak probe laser drives the cavity whereas the mode of the latter can interact
with the atom [68]. Due to imperfect mirrors, photons can leak out of the cavity at the
decay rate 2κ. In addition, photons can also be lost due to spontaneous emission Γ into
the modes of the electromagnetic field. The total Hamiltonian of the system in a frame
rotating with the laser frequency is given by [68]

Htot = Hext + Hint + Hcav + W + Hemf (3.3)

where the center-of-mass motion of the atom in the harmonic trap is described by Hext,
the electronic degree of freedom by Hint and the cavity degree of freedom by Hcav. The
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vibrational degree of freedom electronic degree of freedom and detunings

a

b

z Figure 3.1 – (a) Schematic of the as-
sumed experimental situation: An
atom (red) is trapped in a harmonic
trap which is displaced by a de-
fined phase angle ϕ from the intra-
cavity field (grey). The cavity is
pumped by a probe laser ωp at rate
Ωp along the cavity axis. The atom
can be excited and a subsequent de-
cay leads to the emission of a pho-
ton due to spontaneous decay (Γ) or
due to cavity losses (κ). (b) In the
harmonic trap with level spacing
ωax the atom possesses a vibrational
quantum number m (left). The elec-
tronic degree of freedom and the rel-
evant detunings between probe laser
(ωp), atom (ωa) and cavity (ωc) are
depicted in the right schematic. In
addition, the coupling introduced
by the cavity between both states
is denoted by g.

exact expressions are given by

Hext = !ωax

(
b†b + 1

2

)
(3.4)

Hint = −! (∆ca|e〉〈e| + ∆pc|g〉〈g|) (3.5)
Hcav = −!∆pca

†a (3.6)

with the creation (annihilation) operator b†(b) of a vibrational quantum and the creation
(annihilation) operator a†(a) of a cavity photon. In addition, the detuning between cavity
resonance and atomic resonance is given by ∆ca = ωc−ωa and the respective probe-cavity
detuning by ∆pc = ωp − ωc. The interactions are described by [68]

W = Wp + Wc(z)
= !Ωp(a + a†) + !g(z)

(
|e〉〈g|a + |g〉〈e|a†

)
.

(3.7)

The first term describes the rate Ωp =
√

Pκ/(!ωp) at which the cavity is driven by the
external probe laser with the power of the probe laser P . The second term, the Jaynes-
Cummings term, takes the atom-cavity interaction into account. Here, the position
dependent coupling strength g(z) is of major importance for our experiment. It is given
by

g(z) = g0 cos [kz + ϕ] = g0 cos
[

2π

λp
z + ϕ

]

, (3.8)
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where ϕ denotes the relative position between the trap center and the intracavity spatial
mode function. For an atom at z = 0 the coupling can thus be maximized if the trap
center and mode function are at the same position in space. The last operator in eqn.
(3.3) denotes the electromagnetic field modes external to the cavity and their coupling
to the atom-cavity system:

Hemf = H0, emf + Wκ + WΓ(z)

= !
∑

'k,ε

(
ω'k − ωp

)
c†
'k,ε

c'k,ε + !
(κ)∑

'k,ε

(
g(κ)

'k,ε
a†c'k,ε + h.c.

)

+ !
(Γ)∑

'k,ε

(
g(Γ)

'k,ε
|e〉〈g| exp [i(/k · /ez)z]c'k,ε + h.c.

)
.

(3.9)

Here, ω'k describes the frequency of the external mode with the respective creation
(annihilation) operator c†

'k,ε
(c'k,ε) which creates (destroys) a photon of wave vector /k

and polarization index ε = (1, 2) in the external modes. The first term describes the free
dynamics of the external modes whereas the second (third) term denotes the coupling
between the cavity (the atom) and the external modes. The exact expressions for g(Γ)

'k,ε
and

g(κ)
'k,ε

can be found in [69, 70]. Both interactions cause photon losses due to spontaneous
emission of the atom at a rate Γ or due to cavity losses at rate 2κ, respectively.
The strength of the motional sidebands of trapped cesium atoms depends on the coef-
ficients A± where A−(A+) is proportional to the transition rate from |m〉 to |m − 1〉
(|m + 1〉). Under the assumption that the internal state dynamics and the center-of-
mass motion are weakly coupled, the absorption and emission of photons couples only
neighboring vibrational energy levels [68]. This allows a description of the vibrational
population change by a rate equation

dpm

dt
= (m + 1)A−pm+1 − [(m + 1)A+ + mA−] pm + mA+pm−1, (3.10)

with the population pm of the vibrational state |m〉. The explicit expressions for the
photon scattering rates resulting from the change of the motional state were calculated
in [68] under two major assumptions: Weak mechanical coupling was assumed which is
equivalent to a small Lamb-Dicke parameter η + 1. The latter is defined as

η = εk (3.11)

which relates the extension of the atomic ground state wave packet ε =
√
!/(2Mωax) to

the exciting laser wavelength λp = 2π/k. An intuitive picture is given in [71]: It states
that the Lamb-Dicke parameter is proportional to

√
Erec/(!ωax) with the recoil energy

Erec due to spontaneous emission of a photon. Thus, in the Lamb-Dicke regime, the
recoil energy transferred to the atom is much smaller than the vibrational level spacing.
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Since the position operator is given by z = ε(b + b†), η is proportional to k · z which
allows the approximation of the position dependent interactions (Wc(z) and WΓ(z)) up
to first order in η by the corresponding Taylor series.
The second condition to be fulfilled is a low intracavity photon number which corresponds
to weak driving of the cavity by the probe laser and thus allows a perturbative treatment
of the interaction dynamics with the latter. The state space then reduces to the states

|g, 0〉, |g, 1〉 and |e, 0〉. (3.12)

The application of scattering theory allows the calculation of the scattering rates A±, a
detailed calculation can be found in [34] and [68]. Here, we are interested in the final
result which is given by

A± = η2A0
[
D + tan2 [ϕ]

{
A(Γ)

± + A(κ)
±

}]
(3.13)

with

A0 = ΓΩ2
p

g2
0 cos2 [ϕ]
f(∆pc)

. (3.14)

The dependence on the laser frequency is summarized in f(∆pc) yielding

f(∆pc) =
[
∆pc(∆ca + ∆pc) − κΓ

2 (1 + 2C)
]2

+
[
∆pc

Γ
2 + (∆ca + ∆pc)κ

]2
(3.15)

with the single atom cooperativity defined as

C = g2
0 cos2 [ϕ]

κΓ . (3.16)

In eqn. (3.13) D is the diffusion constant and describes the diffusive motion of the atom
in lowest non-vanishing order of η caused by the recoil of a spontaneously emitted photon
[68]. Nevertheless, mechanical effects on the atom-cavity system are mainly governed by
the terms

A(κ)
± = 8κ2C

f(∆pc ∓ ωax)

[

(δ ∓ ωax/2)2 + Γ2

4

]

and

A(Γ)
± = 1

f(∆pc ∓ ωax)

[[
(∆pc ∓ ωax)δ − κΓ

2 (1 − 2C)
]2

+
[
(∆pc ∓ ωax)Γ

2 + δκ
]2]

with the probe laser atom detuning δ = ∆pc + ∆ca. Here, the excitation of the state
|g, 0〉⊗|m〉 due to the absorption of a photon and a cavity-induced change of the motional
state from |m〉 to |m ± 1〉 followed by a decay due to cavity losses κ is connected to
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A(κ)
± . Similarly, the process with final spontaneous decay into free space instead of

cavity losses is connected with A(Γ)
± . The heterodyne detection setup is only sensitive

on scattering processes induced by A(κ)
± . As apparent from eqn. (3.13), A± exhibits a

complex dependence on ϕ which sensitively depends on the experimental parameters.
For our experimental situation, two regions around ϕ = π/2 show large scattering rates
A± whereas only small values are expected at ϕ = 0. In addition, both scattering rates
depend on 1/f(∆pc ∓ωax) and can hence be maximized if f(∆pc ∓ωax) becomes minimal
which is achieved if the probe laser detuning is chosen close to the motional sideband
frequency ωax [68]. An important parameter which enables us to distinguish between
cooling and heating is the cooling rate [34, 72]

Γcool = A− − A+. (3.17)

Cooling can thus be enhanced if A− dominates A+. In order to achieve long lifetimes
the mean vibrational quantum number [73]

〈m〉 = A+
A− − A+

(3.18)

should be minimized. Additionally, the steady state vibrational population distribution
[34, 73]

pm =
(

1 − A+
A−

) (
A+
A−

)m

(3.19)

can be calculated analytically from the scattering rates.

3.1.2 Estimation of cooling rates for the experimental parameters

Equations (3.13) and (3.17) can be used to plot the cooling rate for our experimental
setup. The parameters we use are summarized in table 3.1. Figure 3.2 (a) shows Γcool
(blue) as a function of the phase ϕ, with the respective detunings

∆pc = 2π · 0 MHz and
δ = ∆ca = 2π · 20 MHz.

(3.20)

The highest cooling rate is achieved at ϕ = 0.41π while no cooling is present at ϕ = 0
which corresponds to the situation where the atom is maximally coupled to the cavity
mode. In contrast, the cooling rate becomes slightly negative and thus heating occurs
around the anti-node at ϕ = π/2 where the coupling between the cavity mode and the
atom is minimal. Since the cooling rate is maximal close to ϕ = π/2 this is the most
interesting regime for further investigations. The cooling map around this region is
shown in figure 3.2 (b) as a function of the probe-atom detuning δ and the probe-cavity
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Figure 3.2 – (a) Cooling rate Γcool (blue) as a function of the phase ϕ with ωax = 2π · 234 kHz at the
respective detunings ∆pc = 2π · 0 MHz and δ = ∆ca = 2π · 20 MHz. The atomic probability density
p(z) along z before loading the atom into the cavity is shown in red. The grey shaded areas denote
the regions which were taken into account for the averaged cooling map presented in (b). (b) Cooling
map for our experimental parameters as a function of the probe-atom detuning δ and the probe-cavity
detuning ∆pc (for details: see text). Strong cooling regions are shown in blue while orange denotes
heating regions (Γcool < 0). The red point marks the detunings chosen for the measurements.

detuning ∆pc. The red point denotes the detunings chosen for subsequent measurements
(∆pc = 0, δ = 2π · 20 MHz) where a high cooling rate is assured. Since the position
for atoms loaded into the cavity cannot be controlled perfectly in our experiment, the
cooling map shows an averaged result. Here, averaging was performed for all ϕ within
the grey shaded area in figure 3.2 (a). As a first approximation the respective cooling
rates were weighted by the spatial probability distribution p(z) of the atoms along the
z-direction before being loaded into the cavity. The probability density is determined
by the Gaussian shaped DT potential and yields

p(z) = 1
N

exp
[

− 2z2

kBT

U0,DT
w2

DT,cav

]

(3.21)

with the temperature T along z, the DT potential depth U0,DT = kB · 1 mK, the DT
beam radius at the cavity position wDT,cav = 39 µm and a normalization factor N . The
relation between the phase ϕ and the actual position z inside the cavity is given by

z(ϕ) = λp · λl

4|λp − λl|
·
(

ϕ

π
− 0.5

)
. (3.22)

The first factor arises from the detuning between the probe and the lock laser which
usually amounts to one to three cavity free spectral ranges. Thus, the respective phase
ϕ between the trapping potential and the intracavity field changes from one lattice
site to the other (for details, see [31]). Here, λp/l denotes the probe and lock laser
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wavelength, respectively. The additional shift of 0.5 occurs because the atoms are loaded
into the cavity at ϕ = π/2. The probability density p(z) for a reasonable temperature
of T = 50 µK is shown as red curve in figure 3.2 (a). Since heating occurs around
ϕ = π/2 atoms might be rapidly heated out of the lock laser potential and hop to some
neighboring lattice sites where cooling occurs. Thus, the heating region was not taken
into account for the averaging process. The exact extraction of the phase distribution is
rather complex and could possibly be achieved using a sophisticated Bayesian analysis
of all measured probe laser transmission traces.

Table 3.1 – Experimental parameters used for the theoretical calculations.

Parameter Value
Γ 2π · 5.2 MHz
κ 2π · 0.4 MHz
g 2π · 9 MHz

ωax 2π · 0.234 MHz
Ωp 2π · 0.17 MHz
η 0.1
D 1
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Figure 3.3 – (a) Level scheme with different transitions: Probe laser and cavity are 20 MHz detuned
from |F = 4〉 → |F ′ = 5〉, the repumper is resonant with the |F = 3〉 → |F ′ = 4〉 transition. (b)
Schematic representation of sideband transitions and idealized spectral response expected for the
heterodyne measurements. The latter includes the Stokes (red) and anti-Stokes (blue) sideband.

3.2 Measuring the quantized motion of single atoms

Experiments are performed with cesium atoms coupled to the cavity mode for an in-
teraction time of 5 s (setup see figure 1.8). They are prepared in the hyperfine state
|F = 4〉 which represents the ground state |g〉. The excited state |e〉 is represented by
|F ′ = 5〉. Furthermore the probe laser with frequency ωp is in resonance with the cavity
(∆pc = 0) and both have an effective detuning of δ = ∆ca = 2π · 20 MHz from the
|F = 4〉 → |F ′ = 5〉 transition where the light shifts due to the dipole trap and lock laser
are already included. In addition, a repumper is resonant with the |F = 3〉 → |F ′ = 4〉
transition, otherwise the state |F = 3〉 represents a dark state (see figure 3.3 (a)). The
detuning between probe laser and local oscillator is set to ∆p,lo = 2π · 1 MHz and the
respective count rates on the SPCM are chosen according to table 2.1 in chapter 2. All
subsequent measurements are performed without the SFDT since it was not implemented
into the setup at that time.
In our setup, trapping is achieved along all spatial directions. Nevertheless the confine-
ment along the x direction is rather weak (see figures 1.1 and 3.5). Cesium atoms trapped
along the cavity axis due to the lock laser potential have a finite temperature and are
thermally distributed over the vibrational states |m〉. As discussed in the previous sub-
section the absorption of a probe laser photon leads to an excitation and a subsequent
decay into state |F = 4〉 again which can change the vibrational state. While heating
occurs along all spatial dimensions, cooling transitions can only be induced along the
cavity axis due to the geometry of the setup. Thus, an intentional reduction of the
temperature is only possible along this axis1. Motional sidebands become measurable
due to the frequency shifted decay photons leaking out of the cavity. As apparent from
figure 3.2 (a), the atoms should be trapped at a phase difference of ϕ ≈ 0.41π between

1Cooling must also occur along the other spatial dimensions, otherwise the atomic lifetimes observed
could not be explained. But the underlying mechanisms are not understood so far.
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the intracavity electric field and the intracavity dipole trap to achieve maximal cooling
rates which also results in large scattering rates into the cavity mode.
The experimental setup only allows us to place the atoms in lattice sites around 0 or
π/2 but exact positioning is not possible. Thus only a fraction of atoms really resides at
0 or π/2. The latter configuration is achieved by red-detuning the lock laser frequency
one cavity free spectral range with respect to the probe laser frequency (about 0.95 THz,
λl = 854.6 nm). Due to limited control of the exact position along z and in addition
heating at ϕ = π/2 atoms can nevertheless hop to neighboring lattice sites and thus
reside at different ϕ which results in a distribution of scattering rates.
The observation of first order sidebands for maximal coupling (ϕ = 0) is almost impos-
sible, since the scattering rates predicted by theory should vanish. Nevertheless, first
measurements at the anti-node revealed weak sidebands which suggest rather large hop-
ping distances of the atoms to neighboring lattice sites along z in this configuration.
Since larger scattering rates are expected around ϕ = π/2 all subsequent measurements
of motional sidebands were performed at or close to the node of the intracavity field.

Extraction of the trap frequency along the cavity axis In order to extract frequency
information from the photon clicks measured with the SPCM, the data analysis proce-
dure as introduced in chapter 1.3 was performed. Since each measurement trace consists
only of 5 s of data, enough statistics is gained by adding up all autocorrelation functions
before performing the Fourier transform. The real part of the Fourier transform for one-
atom data is displayed in figure 3.4. Here, blue (red) data points denote measurements
at low (high) lock laser intensities for a total measurement time T = 280 s (T = 105 s).
According to eqn. (2.27) both spectra were normalized by nlo · ∆t · T . Therefore, the
y-axis denotes the photon scattering rate ns per frequency bin and per second for both
sidebands.
The expected frequency contributions were already discussed in chapter 2 and can be
best identified in the coherent intensity distribution given in eqn. (2.2):

I(t) = Ilo + Ip + 2Is + 2
√

IloIp cos [∆p,lot]
+ 2

√
IloIs (cos [(∆p,lo + ωax)t] + cos [(∆p,lo − ωax)t])

+ 4
√

IpIs cos [ωaxt] + 2Is cos [2ωaxt].

As expected, aside from the strong carrier peak at ∆p,lo = 2π · 1 MHz, sidebands are
clearly pronounced at ∆p,lo ± ωax. The contributions at frequency ωax are hardly visible
in the spectrum while those at 2ωax are completely buried in noise (both not shown). In
addition, two spurious sidebands emerge close to the carrier at 1.00 ± 0.05 MHz. Their
origin could not be identified yet but they do not result from interactions with the atom
since they also occur if no atom resides in the cavity.
A first check on the sidebands is performed exploiting the relation between the trap
frequency ωax and the lock laser intensity Ilock since the latter generates the trapping
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potential along z. In general it holds

ωax ∝
√

Ilock. (3.23)

The lock laser intensity of both measurements shown in figure 3.4 differs by a factor of
two. Therefore, the trap frequency should change by a factor of

√
2. In order to verify

the dependence, for a first estimation a Gaussian function was fitted to each sideband
and the position of its maximum was used to determine the trap frequency. The fitted
values and the corresponding trap frequencies can be found in table 3.2 and agree with
the expected

√
2-dependence within the error margin.
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quency spectrum for low
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the strong carrier peak at
1 MHz, motional sidebands
at the lock laser trap fre-
quency emerge at ±ωax/2π =
±216/310 kHz for low/high
lock laser intensities. Addi-
tional peaks arise at ±50 kHz
around the carrier which re-
sult from technical artifacts.

Table 3.2 – Extracted trap frequencies resulting from motional sidebands. Here, ωL/R denotes the
measured frequency of the beat signal for the left/right sideband. The extracted and averaged
trap frequencies are given by ωax,l/h where l/h denotes the values extracted for low/high lock laser
intensities.

Ilock ωl/2π [kHz] ωr/2π [kHz] ωax/2π [kHz]
low 784 ± 3 1216 ± 3 216 ± 2
high 689 ± 3 1309 ± 3 310 ± 2

theor. ratio ωh/ωl
√

2 = 1.41
exp. ratio ωax,h/ωax,l 1.43 ± 0.02

A distinct feature is the strong asymmetry of the sidebands with a tail towards the car-
rier frequency at 1 MHz. This is mainly caused by two different broadening mechanisms
superimposing the natural linewidth: The first results from the sinusoidally shaped po-
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tentials the atoms are trapped in. In contrast to the idealized assumption of a harmonic
trap for the theoretical estimation, the vibrational energy levels are non-equidistant.
Thus, transition frequencies between adjacent levels depend on the vibrational quantum
number and are decreasing with increasing m. A second mechanism resulting in broad-
ening is the radial degree of freedom of the atoms along x since the measurements shown
above were performed without the SFDT. Therefore, the atoms experience different lock
laser intensities and thus trap frequencies as a function of x. Further broadening arises
from fluctuations of the lock laser intensity. Additionally, depending on the assumption
of a harmonic or anharmonic trap the vibrational level transition linewidth 2γvib might
depend on m as well. A detailed discussion of all effects follows in section 3.3.

3.3 Analytical description of different broadening mechanisms

The following section develops an analytical description of two possible broadening mech-
anisms which lead to the observed asymmetric line shape. Furthermore the possibility
of a vibrational level dependent transition linewidth 2γvib as well as broadening due to
lock laser fluctuations will be discussed. The section begins with an analysis of the radial
motion along the x-direction, followed by an investigation of the effect of the anharmonic
potential. The effects will be combined and compared to the measured data. This allows
an estimation of the transition linewidth 2γvib as well as the temperature of the atom
along z.

3.3.1 Influence of radial degree of freedom on sideband structure

In our setup strong confinement of the atom is only possible along the dipole trap axis
(y) and the cavity axis (z). Especially if the new strongly focused dipole trap is not in
use, only weak confinement along the radial x-direction is achieved with the Gaussian
shapes of the dipole trap and lock laser only (see figure 3.5). An oscillating atom along
this direction is exposed to different lock laser intensities and thus to different trap
frequencies ωax along the cavity axis as a function of x. Therefore, an influence on the
structure of the sidebands is expected and the effect of the radial degree of freedom will
be investigated. The potential along the x-axis is given by the lock laser and dipole trap
laser

Vx = −U0,lock exp
[

−2x2

w2
0,lock

]

− U0,DT exp
[

−2x2

w2
0,DT

]

− U0,SFDT exp
[

−2x2

w2
0,SFDT

]

(3.24)

with the potential U0,i which denotes the respective trapping potential created by lock
laser, dipole trap and strongly focused dipole trap. The corresponding beam radii at the
position of the cavity are given by w0,lock/DT/SFDT and the radial displacement of the
atom from the center of the beam by x. For small amplitudes the Gaussian potentials
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z

x y

Figure 3.5 – Configuration of
different trapping lasers in-
side the cavity: The standing
wave DT (red disks) strongly
confines the atoms along
the y-direction whereas trap-
ping along the z-direction is
achieved with the standing-
wave resulting from the lock
laser (blue disks). Additional
confinement along x can in
principle be achieved with
a strongly focused Gaussian
beam (red) which superim-
poses the DT along the y-
direction. The atoms usually
reside inside the cavity and
are exposed to the probe laser
(yellow). (adapted from [31])

can be approximated by a harmonic potential. Expanding Vx around x = 0 yields

Vx ≈ − (U0,lock + U0,DT + U0,SFDT) + 2x2ζ

with ζ =
(

U0,lock
w2

0,lock
+ U0,DT

w2
0,DT

+ U0,SFDT
w2

0,SFDT

)

.
(3.25)

Since constant terms in the optical potential only lead to a light shift but do not con-
tribute to the oscillation frequency, they are neglected in the following treatment. The
Hamiltonian of the system is given by

H = p2

2M
+ 2x2ζ. (3.26)

The oscillation frequency ωx along the radial direction yields

ωx =
√

4
M

ζ. (3.27)

We are also interested in the probability distribution p(x) to find the atom at a certain
position x along the radial direction. Here, the classical probability fMB(x, Tx) will be
used which is a proper approximation due to the high number of occupied vibrational
states along x. For a fixed temperature Tx along the radial direction it is given by the
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normalized Boltzmann-factor

fMB(x, Tx) = 1
N

exp [−E/(kBTx)]
(3.27)= 1

N
exp

[
−2x2ζ/(kBTx)

] (3.28)

with the normalization

N =
∫ ∞

−∞
exp

[
−2x2ζ/(kBTx)

]
dx (3.29)

and

E = 1
2Mω2

xx2. (3.30)

Since the atom moves along the x-direction and the lock laser propagating along z has
a Gaussian intensity distribution, the axial trap frequency along z will be different at
different positions along x. The optical potential of the lock laser is given by

Ulock = U0,lock · exp
[

−2x2

w2
0,lock

]

· cos2 [kz]. (3.31)

Using the harmonic approximation for the potential along the z-direction the trap fre-
quency yields

ωax(x) =

√√√√ 4
M

U0,lock exp
[

−2x2

w2
0,lock

]

= ωax,0 · exp
[

−x2

w2
0,lock

] (3.32)

with the vibrational transition frequency ωax,0 at x = 0. The trap frequency thus de-
creases if the atom is displaced from the center of the lock laser mode at x = 0. Therefore,
the broadening due to the radial oscillation will extend only to lower frequencies.
The spectral line shape is also determined by the coupling strength g of the atoms to the
cavity mode which is proportional to the electric field of the probe laser Ep. Since the
electric field distribution of the probe laser beam along the x-axis exhibits a Gaussian
shape as well, the coupling strength is reduced for an atom oscillating along this direction
according to

g(x) = g0 exp
[

−x2

w2
0,p

]

≈ g0 exp
[

−x2

w2
0,lock

]

, (3.33)
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where g0 yields the maximal coupling strength at the center of the cavity mode. The last
approximation is valid because the mode waist of lock laser and probe laser inside the
cavity are approximately equal. Nevertheless, for reasonable temperatures (Tx < 80 µK),
at least 93 % of the population distribution (eqn. (3.28)) is comprised within x = ±7 µm
and g(x = 7 µm) reduces to 0.91 · g0 only. Therefore, the dependence on g(x) will be
neglected in the following calculations.
In order to graph the expected radial broadening, the spectral response R(ωax) has to
be calculated. A transformation from spatial to frequency domain has to be applied first
resulting in

R(ωax) = fMB(x, Tx) · 2 · dx

dωax
(3.34)

where the factor of two arises because the normalization of the Boltzmann-factor in spa-
tial domain was calculated from x = −∞ to +∞ but frequency domain spans from 0 to
+∞ only. An expression for the third factor can be found with eqn. (3.32). Additionally,
the dependence on x can be eliminated using eqn. (3.32). The result yields

R(ωax) = 1
ωax

(
ωax,0
ωax

)−2ξ
√√√√

2ξ

π ln
(

ωax,0
ωax

)

where ξ =
w2

0,lock
kBTx

(
U0,lock
w2

0,lock
+ U0,DT

w2
0,DT

+ U0,SFDT
w2

0,SFDT

)

.

(3.35)

The spectral response function is displayed in figure 3.6 (a) for typical experimental
parameters Tx = 50 µK, ωax,0 = 2π · 300 kHz and U0,lock = kB · 0.58 mK. The blue curve
shows the spectral broadening if the dipole trap is used only, i. e. U0,DT = kB · 1 mK and
U0,SFDT = 0. Since R(ωax) diverges at ωax = ωax,0 the full width at half maximum is
not applicable to quantify broadening. The area under the spectral line is used instead.
Here, about 70% of the spectral area is comprised within a region of ∆rad = 2π · 4.2 kHz
around ωax,0.
The improved setup including the strongly focused dipole trap is shown in red (U0,DT =
kB · 0.5 mK and U0,SFDT = kB · 4 mK). As expected, the effect of radial broadening is
decreased even further to ∆rad = 2π ·0.2 kHz and hence almost negligible. Nevertheless if
the temperature is increased, it becomes more pronounced and will therefore be included
into the model.
So far the vibrational transition line itself was assumed to have zero intrinsic width. For
a more realistic model, the above result can be convolved with a Lorentzian function
introducing a natural line width 2γvib

L(ω, ωax,0, γvib) = 1
π

γvib
(ω − ωax,0)2 + γ2

vib
. (3.36)

There is no possibility to independently determine the linewidth 2γvib for our measure-
ments. Thus, a reasonable value of γvib = 2π·7 kHz was assumed. The convolved spectral
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Figure 3.6 – (a) Spectral response function for the influence of radial broadening with (red) and without
(blue) the SFDT at Tx = 50 µK and ωax,0 = 2π · 300 kHz. (b) Influence of radial degree of freedom
(without SFDT) convolved with a Lorentzian (blue, linewidth 2γvib = 2π ·14 kHz) in comparison to a
regular Lorentzian function at Tx = 50 µK and ωax,0 = 2π ·300 kHz (green). The effective broadening
is already small without the SFDT.

line (without SFDT, blue) in figure 3.6 (b) reveals a slight asymmetry compared to the
Lorentzian (green) for the frequency ωax,0 = 2π · 300 kHz which was also expected. In
addition, the peak frequency is slightly shifted to lower values. We conclude that the
effect of the radial oscillation on the asymmetry of the sidebands is rather small.

3.3.2 Sideband transitions in sinusoidal potentials

The theoretical treatment presented in section 3.1.1 assumed a harmonic trapping poten-
tial. In the experimental setup the real trap exhibits a sinusoidal shape. In contrast to a
harmonic potential, the energy levels are thus non-equidistant. The following paragraph
presents the exact trap frequencies of the sinusoidally shaped potential along z using
Mathieu’s differential equation to solve the Schrödinger equation.
The Hamiltonian of the system is given by

Ĥ = p̂2

2M
+ U0,lock cos2 (kz). (3.37)

With p̂ = −i!∂z and the optical potential U0,lock cos2 (kz) = 1
2 (U0,lock cos (2kz) + 1) at

x = 0 the rewritten Hamiltonian yields

Ĥ = −!2∂2
z

2M
+ U0,lock

2 + U0,lock
2 cos (2kz). (3.38)

The stationary Schrödinger equation is then given by

− !2∂2
z

2M
Ψ(z) +

(
U0,lock

2 − Em + U0,lock
2 cos (2kz)

)
Ψ(z) = 0. (3.39)
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This equation exhibits the same structure as Mathieu’s differential equation [74]:

∂2
z f(z) + (a − 2q cos (2z)) f(z) = 0. (3.40)

Equating coefficients in eqns. (3.39) and (3.40) results in

a = M(2Em − U0,lock)
(!k)2 (3.41)

q = U0,lockM

2(!k)2 . (3.42)

The energies Em of the different vibrational levels are calculated with the help of Math-
ematica which provides solutions to Mathieu’s differential equation. We are now inter-
ested in the different transition frequencies between adjacent levels which produce the
first order sidebands in the spectra of the heterodyne measurements. They are given by
the difference of the energies of two adjacent levels with quantum number m and m + 1

∆Em = Em+1 − Em = !ωax,m. (3.43)

Under the assumption of a Boltzmann distribution for the population of the states of
the system, the probability for an atom to be in state m is given by

pm(Em, Tz) = 1
Z(Em, Tz) exp

(
− Em

kBTz

)
(3.44)

with the canonical partition function

Z(Em, Tz) =
∞∑

m=0
exp

(
− Em

kBTz

)
. (3.45)

Assuming a Lorentzian line shape for each transition the resulting heating (+) and
cooling (−) transition line is calculated by summation over all transition lines at the
corresponding transition frequency weighted by their respective probability:

L±(ω) = C± ·
∞∑

m=0
L(ω, ∓ωax,m−b∓ , γvib) · (m + b±) · pm(Em, Tz) (3.46)

with the Lorentzian function L(ω, ωax,m, γvib) as defined in eqn. (3.36), a scaling factor
C± and b+(−) = 1(0). The resulting spectral line is shown in figure 3.8.

3.3.3 Influence of lock laser intensity fluctuations

Aside from broadening due to radial oscillations and the anharmonic potential, lock laser
intensity fluctuations can translate into broadening of the motional sideband. The lock
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Figure 3.7 – Comparison of the measured lock laser
intensity distribution (blue bars) to a thermal light
source (red bars). The thermal light source is com-
pared to a Gaussian intensity distribution (red line).
The signal was measured with the lock laser APD
in units of Volt.

laser transmission was recorded with an APD for each measurement trace at a time
resolution of 1 ms which allowed an a posteriori estimation of the intensity fluctuations.
For the measurements presented in figure 3.4 the lock laser intensities were binned (bin
size 1 ms) and compared to the signal of a thermal light source (flashlight) which was
adjusted to the same signal strength and recorded with the same APD. The resulting nor-
malized histograms are shown in figure 3.7. The flashlight signal represents a shot noise
limited source and follows the expected Gaussian distribution (red line). It reveals that
additional broadening is introduced due to lock laser fluctuations in our measurements.
A distinct feature is the asymmetry of the lock laser intensity distribution towards lower
intensities which indicate the occurrence of lock laser transmission drops due to fluctua-
tions of the cavity frequency relative to the laser frequency. This might contribute to the
observed asymmetric lineshapes. In order to quantify the broadening, a sophisticated
approach would include the deconvolution of both distributions to retrieve the original
function of the lock laser. The latter would allow the calculation of the exact influence
on the sideband structure. As a first error estimate, we assume both distributions to be
Gaussian. Then, we exploit the fact that the variance Var of two convolved Gaussian
functions is given by the sum of their variances [75]. In order to obtain the real variance
of the lock laser intensity Var(Ilock,re) without shot noise contributions, the variance of
the measured lock laser transmission Var(Ilock) and the thermal light source Var(Itherm)
are subtracted:

Var(Ilock,re) = ± [Var(Ilock) − Var(Itherm)] = ±0.4 mV2 = σ2
I,lock. (3.47)

Relating this value to the mean value of I lock = 14.9 mV results in an uncertainty of

σI,lock
I

= ±0.04. (3.48)

According to eqn. (3.23) the trap frequency fluctuations are thus at the order of
σωax,lock = ±0.02 · ωax. If the spectral line is assumed to follow a normal distribution
the influence on the total linewidth can be estimated by quadratic subtraction again.
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Finally, the contribution of the lock laser fluctuations to the overall broadening with the
trap frequency at the order of ωax = 2π · 220 kHz yields

∆lock = ∆s −
√

∆2
s −

(
2
√

2 ln 2σωax,lock
)2

= 2π · 2 kHz (3.49)

with the observed sideband full width at half maximum ∆s ≈ 2π · 35 kHz. The factor of
2
√

2 ln 2 arises since the fullwidth at half maximum relates to σ as FWHM = 2
√

2 ln 2σ.
In conclusion, approximately 2π ·2 kHz of additional broadening is introduced due to the
lock laser fluctuations. Since the lock laser intensity was recorded with a time resolution
of 1 ms, all fluctuations at frequencies higher than 1 kHz are averaged out and are thus
not detectable. Therefore, additional broadening can still be introduced if additional
fluctuations occur on shorter timescales. Mechanical fluctuation which might cause lock
laser intensity fluctuations are unlikely at frequencies above 1 kHz. Thus, lock laser
fluctuations as a source for linewidth broadening are neglected.

3.3.4 Level dependent transition linewidth

The exact dependence between the vibrational transition linewidth 2γvib and the vi-
brational level m is unknown for our setup. In case that the transition lines are well
separated, i. e. for a strongly anharmonic potential, the linewidth 2γvib is given by the
inelastic photon scattering rate [76]:

γvib ∝ m. (3.50)

On the other hand, if the potential is purely harmonic, one can show that the decay rate
of coherences between neighboring vibrational levels is independent of the vibrational
level m [72, 73]. The linewidth is then determined by the cooling rate Γcool as given in
eqn. (3.17). Since the dipole trap has a sinusoidal shape, a clear distinction between the
harmonic and anharmonic case is not possible. The real dependence on the transition
linewidth might be a mixture of both models. Hence, for a first estimation the transition
linewidth is assumed to be independent of m.

3.3.5 Resulting spectral line shape

The resulting line shape is now calculated including the broadening due to the anhar-
monic potential and the radial degree of freedom. Possible broadening introduced by lock
laser fluctuations is neglected. With the expressions given in eqns. (3.28), (3.36) and
(3.44) the spectral line shape caused by heating and cooling transitions can be described
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Figure 3.8 – Contribution of different broaden-
ing mechanisms: A regular Lorentzian (black,
ωax,0 = 2π · 234 kHz, 2γvib = 2π · 12 kHz) is
compared to the simulated lineshape taking
the anharmonic potential into account (blue,
ωax,0 = 2π · 234 kHz, 2γvib = 2π · 12 kHz,
T = 50 µK) and in addition the radial degree
of freedom which results from eqn. (3.51) (red,
same parameters).

according to

S±(ω) = S∗
± · L±(ω)

= S∗
± ·

∞∑

m=0

+∞∫

−∞

fMB(x, Tx) · (m + b±)

· 1
π

γvib
(
ω ± ωax,m−b∓(x)

)2 + γ2
vib

· pm(Em, Tz)dx

where S∗
± = S±/

+∞∫

−∞

L±(ω)dω and b+(−) = 1(0).

(3.51)

Here, S+ (S−) denotes the total number of Stokes (anti-Stokes) sideband photons de-
tected at the SPCM which can in principle be theoretically calculated if the phase ϕ
between the lock laser trapping potential and the probe laser as well as the correct cou-
pling constant g are known (see next section). In eqn. (3.51) the oscillation along the
radial direction is assumed to be adiabatic with respect to the axial frequency and dia-
batic compared to heating and cooling mechanisms along the cavity, i. e. the motional
population distribution will not change while the atom oscillates along the radial direc-
tion. Therefore, pm(Em, Tz) is not modified and the distribution at x = 0 will be used
for all calculations which is justified since the spatial distribution peaks at this position.
Additionally, Tx = Tz = T is assumed for all further calculations.
To estimate the influence of both broadening mechanisms, the regular Lorentzian func-
tion (ωax,0 = 2π · 234 kHz, γvib = 2π · 6 kHz) is shown in figure 3.8 (black) in comparison
to the spectral line resulting from the anharmonic potential (blue) at a temperature
of T = 50 µK. The red graph additionally takes the radial degree of freedom into ac-
count which corresponds to the solution of eqn. (3.51). As expected the radial degree of
freedom leads only to a minor correction and shifts the peak position slightly to lower
trap frequencies. The major contribution to the asymmetry arises from the anharmonic
trapping potential.
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Figure 3.9 – Comparison of the measured vibra-
tional anti-Stokes sideband at low lock laser
intensities (blue) and simulated line shapes
according to eqn. (3.51) for different sets of
parameters: Best agreement with the data is
achieved for T = 50 µK, 2γvib = 2π · 12 kHz
and ωax,0 = 2π · 234 kHz (red). The dashed
(dotted) black line denotes the simulated re-
sults with T = 30 µK, 2γvib = 2π · 18 kHz
and ωax,0 = 2π · 229 kHz (T = 80 µK, 2γvib =
2π · 6 kHz and ωax,0 = 2π · 239 kHz). They
mark the lower and upper bounds for the tem-
perature and linewidth estimation.

3.4 Comparison of modeled line shape and measurements

The modeled line shape is now compared to the measured motional sidebands at low
lock laser intensities. Since a numerical fit of the resulting function given in eqn. (3.51)
is computationally very costly, all free parameters (S±, T, ωax,0, γvib) were manually op-
timized. Figure 3.8 shows three calculated line shapes for the indicated parameters to-
gether with the experimental one-atom data at low trap frequencies (ωax,l = 2π ·216 kHz).
At high temperatures (dotted line, T = 80 µK) the corresponding vibrational transition
linewidth 2γvib = 2π · 6 kHz has to be chosen sufficiently small to properly fit the steep
slope towards higher frequencies. Nevertheless, the left shoulder is overestimated since a
higher temperature leads to higher mean vibrational quantum numbers and thus higher
vibrational levels will be occupied which in turn lead to lower vibrational transition fre-
quencies contributing to the spectral asymmetry. The sudden kink at 1.14 MHz results
from the finite number of occupied vibrational levels taken into account for the simula-
tion. They will only lead to a minor correction of the spectral line shape and are thus
neglected. In contrast, at low temperatures (dashed line, T = 30 µK) the right slope is
described properly if the linewidth 2γvib is increased to 2π·18 kHz. Nevertheless, the data
is underestimated at lower trap frequencies which results from the lower temperature
and thus a lower mean vibrational quantum number. Best agreement with the dataset
is achieved for a temperature of T = 50 µK and a linewidth 2γvib = 2π · 12 kHz with the
lowest vibrational transition frequency given by ωax,0 = (E1 − E0)/! = 2π · 234 kHz. In
comparison to the calculated lock laser trap frequency ωax,l in section 3.2, where a Gaus-
sian fit function was used, a discrepancy of approximately 10% is apparent which can be
explained by the anharmonic trap again. The total photon scattering rates S− deduced
from the fit functions lie between 500 cps for T = 30 µK and 700 cps for T = 80 µK.
Although figure 3.9 suggests that the simple model describes the data sufficiently well
it allows only a rough estimation of the atom’s temperature along z inside the cavity.
Additional broadening mechanisms like fluctuations of the lock laser intensity and hop-
ping along the y- and z-direction (for details, see [40]) were not taken into account and
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might lead to an overestimation of the natural linewidth 2γvib or the temperature T .
The aforementioned possible vibrational level dependent linewidth 2γvib could also lead
to deviations. Furthermore the atomic wave package has a spatial probability distribu-
tion which depends on the vibrational level. This can also lead to a vibrational level
dependent probe laser transmission and thus influences the recorded photon scattering
rate. To conclude, the parameter range can be limited to

S− = 500 − 700 cps
ωax,0 = 2π · (229 − 240 kHz)

T = 30 − 80 µK
2γvib = 2π · (6 − 18 kHz).

(3.52)

The corresponding values for the Stokes sideband agree with these values. In addition,
a numerical fit to the spectrum neglecting the radial degree of freedom lies within the
estimated parameter range as well and we conclude that the radial oscillation is almost
negligible at temperatures below 100 µK. In order to achieve smaller uncertainties, a
more sophisticated approach would include a full quantum mechanical simulation of the
system using a master equation approach.

Comparison to the expected scattering rate The total photon number scattered out
of the cavity mode which is expected at the SPCM can also be calculated according to
eqns. (3.13), (3.14) and (3.19)

S±(ϕ) = 1
2

∞∑

m=0
pm · (m + b±) · η2A0 tan2 [ϕ]A(κ)

± · ηdet. (3.53)

Here, +(−) again denotes photon scattering from the Stokes (anti-Stokes) sideband and
b+(−) = 1(0). The factor 1/2 arises since the output of one cavity mirror is detected.
The total detection efficiency is comprised in ηdet which yields 4.4% [23]. As mentioned
previously the phase cannot be exactly determined. Therefore, we average over a phase
distribution around π/2 again. Each scattering rate is weighted with the respective
spatial probability distribution p(ϕ) as introduced in eqns. (3.21) and (3.22). Hence,
the theoretically expected photon scattering rate adds up to

S± =
0.49π∫

0

p(ϕ) · S±(ϕ)dϕ +
π∫

0.51π

p(ϕ) · S±(ϕ)dϕ. (3.54)

Similarly the averaged cooling rate Γcool is calculated according to eqn. (3.17). In
addition, the expected temperature can be deduced from the ratio A−/A+ [73]:

T = !ωax
kB · ln (A−/A+) . (3.55)
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The calculated parameters for ωax = ωax,0 = 2π · 234 kHz and using the values given in
table 3.1 then read

S− = 500 cps
T = 26 µK

Γcool = 2π · 5 kHz.

(3.56)

Comparing eqns. (3.52) and (3.56) reveals that the simple model provides proper esti-
mates within an appropriate order of magnitude. The theoretical model also possesses
a significant uncertainty since the phase distribution as well as the precise coupling con-
stant g are unknown. As apparent from figure 3.2, the cooling rate rapidly changes over
a small range of ϕ which demands a good a priori knowledge of the phase ϕ to achieve
reliable predictions.

3.5 Future challenges

Since all measurements were performed before the SFDT was set up, a major problem
was the weak control of the coupling strength. Atoms could hop along the cavity axis
which results in an uncertainty of ϕ and thus g. The new SFDT might allow better
control of the coupling to the cavity which could in turn enable us to prove intracavity
’g-control’ via heterodyne detection. A Bayesian analysis in combination with a hidden
Markov model [77] would in addition allow the extraction of the ϕ-distribution from the
measured cavity transmission traces and thus lead to more accurate theoretical estimates.
Besides the observation of motional sidebands resulting from one atom inside the cavity,
the investigation of possible collective cooling effects for two or more atoms coupled to
the cavity will be of interest. First measurements were already performed but further
investigations are necessary to develop a deeper understanding (see figure 3.10).
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The heterodyne detection setup can also be used to investigate intracavity EIT-cooling
[23, 25] as well as the influence of the SFDT on the structure of the sidebands. The
simulations suggest that the latter should not significantly affect the sideband width.
Further ideas comprise measurements at different detunings, e. g. at ∆pc = ±ωax to
enhance or suppress cooling transitions which then results in a strong Stokes/anti-Stokes
sideband asymmetry.

68



Summary and outlook

The most prominent challenge in recent experiments is a sufficient control of the coupling
strength g. For most experiments and especially for the realization of entanglement of
two atoms inside the cavity this property has to be controlled reasonably well. Better
coupling control can be achieved by stronger confinement of the atom on the one hand
and sufficient cooling of the atom on the other hand.
The present thesis therefore pursued two main objectives: Enhanced confinement and
the investigation of intracavity cooling dynamics of single atoms trapped inside a high-
finesse optical cavity. The first could be achieved with the implementation of a strongly
focused dipole trap. It should allow for stronger confinement along the x-direction
and thus better coupling control of the atoms. The experimental characterization of
the SFDT revealed good agreement with theoretical expectations: The collimated beam
exhibits minor aberrations introduced by the 2′′ collimator. Behind the focusing lens the
measured beam profile agrees well with the expected point spread function and exhibits
a minimum waist of approximately (9.8 ± 1.0) µm. The measurement of the radial trap
frequency revealed an increase from (1.8 ± 0.2) kHz with the original DT configuration
to (15.3 ± 0.3) kHz with the SFDT setup. This indicated enhanced confinement of the
atoms inside the cavity and agrees with the theoretical expectations. In the future,
transmission histograms of atoms coupled to the cavity might reveal a distribution close
to a Poissonian which would then allow a better distinction between one and two atoms
coupled to the cavity. This is eligible for proper feedback control of the atomic state(s)
inside the cavity [24].
Aside from proper confinement, sufficient cooling inside the cavity is desirable and hence
cooling dynamics should be investigated intensively. In order to gain further insight into
intracavity cooling dynamics a new detection scheme, namely heterodyne detection, was
integrated into the existing experimental setup. Besides the introduction of the theo-
retical framework of heterodyne detection, the analytical description of the continuous
electric field and intensity distribution for motional sideband transitions was developed.
Furthermore the analytical expression for the autocorrelation function and the corre-
sponding Fourier spectrum were presented as well and discretized expressions for both
were found, representing the experimental situation. Additionally, technical effects which
superimpose the signal, namely the detector dead time and the afterpulsing effect, were
successfully eliminated. A derivation of the signal-to-noise ratio in heterodyne measure-

69



SUMMARY

ments was presented and compared to our measurement results. In summary we achieved
a proper description of the SNR which agreed well with experimental results and the
choice of optimal parameters to achieve a high signal-to-noise ratio became possible.
Heterodyne spectroscopy was exploited to detect the motional sidebands of single cesium
atoms trapped inside the high-finesse optical cavity. The measured trap frequencies along
the cavity axis revealed the expected dependence on the lock laser intensity as well as
distinct asymmetries. The latter mainly arose due to an anharmonic trapping potential.
In addition, other sources which might cause broadening were discussed, namely radial
oscillations, lock laser fluctuations and a vibrational level dependent transition linewidth.
We conclude that radial oscillations have only a minor influence on the overall broaden-
ing even if the SFDT is not used. The effect of lock laser fluctuations on the sideband
structure is negligible whereas the contribution of the vibrational level dependent tran-
sition linewidth could not be clearly identified.
A simplified model was developed taking into account the most prominent broadening
sources in order to extract the intracavity atomic temperature and the respective cooling
rate. A comparison to a theoretical model introduced by M. Bienert and G. Morigi re-
vealed that our model allows a rough estimation of the temperature and cooling rate but
a more sophisticated approach is necessary to gain further insight. Here, a full quantum
simulation might lead to more accurate results.
One major limiting parameter for the simulations was the uncertainty concerning the
phase ϕ between the cavity mode function and the trapping potential. The SFDT might
reduce the atomic hopping along the z direction which should enable better control of
ϕ and thus g. In the near future we might be able to prove that proper coupling control
is achieved in our setup.
Since only few measurements have been performed with the new heterodyne setup, a
variety of ideas already exists for future measurements. They include the investigation
of possible collective cooling effects of two or more atoms coupled to the cavity as well
as the investigation of intracavity EIT-cooling. Especially for the investigation of new
cooling schemes and their efficiency the heterodyne detection setup opens up new possi-
bilities. Furthermore the influence of the SFDT on the sideband structure can also be
investigated. Although simulations suggest that its influence on the structure of the side-
bands is rather small, a comparison to experimental data could confirm the expectations
and a detailed analysis should be conducted as well.
If strong confinement of the atoms is well controlled in the near future and ground state
cooling becomes possible with the application of new cooling schemes, the realization of
two-atom entanglement inside the cavity might become feasible.
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