Hidden Markov model of atomic quantum jump dynamics in an optically probed cavity

S. Gammelmark and K. Mølmer

Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

W. Alt, T. Kampschulte, and D. Meschede

Institut für Angewandte Physik der Universität Bonn, Wegelerstrasse 8, 53115 Bonn, Germany

(Received 20 December 2013; published 24 April 2014)

We analyze the quantum jumps of an atom interacting with a cavity field, where strong coupling makes the cavity transmission depend on the time-dependent atomic state. In our analysis we employ a Bayesian approach that conditions the population of the atomic states at time \(t \) on the cavity transmission observed both before and after \(t \), and we show that the state assignment by this approach is more decisive than the usual conditional quantum states based on only earlier measurement data. We also provide an iterative protocol which, together with the atomic state populations, simultaneously estimates the atomic jump rates and the transmission signal distributions from the measurement data. Finally, we take into account technical fluctuations in the observed signal, e.g., due to spatial motion of the atom within the cavity, by representing atomic states by several hidden states, thereby significantly improving the state’s recovery.

DOI: 10.1103/PhysRevA.89.043839

PACS number(s): 42.50.Lc, 37.30.+i, 42.50.Pq, 03.65.Ta

I. INTRODUCTION

Cavity QED experiments offer wide possibilities to vary interaction strengths, resonance conditions, and dissipation rates, and thus provide ideal demonstrations of the dynamical evolution of single quantum systems [1]. The combined field and atom degrees of freedom allow, on the one hand, probing of a cavity field by transmission and detection of the state of atoms passing through the cavity [2], and, on the other hand, probing of the quantum state of atoms located inside a cavity by detection of the transmitted field [3]. Recent experiments with superconducting circuit elements and resonators have shown similar measurement capabilities to monitor over time the quantum state of individual quantum systems [4–6].

We have recently [3] shown how the incoherent jumping of one or two atoms between different hyperfine ground states can be monitored due to the different cavity transmission levels associated with the atomic states. Rather than inferring the atomic states directly from the noisy value of the transmission signal, a Bayesian approach was used, where the measured signal continuously updates our probabilistic knowledge based on the previous measurements. This was shown to provide more decisive predictions about the state of the system. An extension of the Bayesian method to incorporate different unknown physical parameters of the light-atom interacting system has also been demonstrated [7].

In this paper we extend the modeling of the system to condition our estimation of the state of the atom at a given time \(t \), not only on the optical measurement data acquired up to time \(t \) but also by the data acquired later, see also [8]. This is a well developed procedure, known as smoothing, in the analysis of hidden Markov models (HMM), where methods also exist to combine the state estimation with the estimation of the physical model parameters from the available data [9,10], and to determine not only the time-dependent state probabilities but also the most likely path, jumping among the states of the HMM [11].

The paper is organized as follows. In Sec. II we give a description of the experimental setup and the data obtained. In Sec. III we present a summary of the general Bayesian method applied in the paper and of the formalism needed to provide the atomic state based on both past and future measurements. In Sec. IV we discuss how system parameters such as atomic transition probabilities and optical signal distributions can be efficiently determined in the HMM framework. In Sec. V we apply our formalism to experimental data, and we show that the atomic state and model parameters are indeed more decisively determined by the full time analysis. In Sec. VI we conclude with a discussion of the results and some further perspectives.

II. DESCRIPTION OF EXPERIMENTS

In the experiment we couple single neutral cesium atoms to the mode of an optical high-finesse cavity, see Fig. 1. Very few cesium atoms are collected and laser cooled in a high-gradient magneto-optical trap, and subsequently transferred into a far-detuned standing-wave optical dipole trap. By analyzing a fluorescence image we make sure that only a single atom is loaded [12]. Using the dipole trap as an optical conveyor belt [13], we transport the atom to the center of the mode of an optical cavity with a very high finesse of \(10^6 \) [14]. The small mode volume of the cavity (length 160 \(\mu \)m, mode waist radius 23 \(\mu \)m) leads to an effective atom-cavity coupling rate of \(g \approx 2\pi \cdot 9 \) MHz [3], which is larger than the atomic dipole decay rate \(\gamma = 2\pi \cdot 2.6 \) MHz and the cavity field decay rate \(\kappa = 2\pi \cdot 0.4 \) MHz. These parameters place the system in the strong-coupling regime, where the single-atom cooperativity \(g^2/(2\kappa\gamma) \approx 40 \) is larger than one, and the absorptive and dispersive effects of a single atom lead to a normal mode splitting of the cavity resonance (vacuum-Rabi-splitting) and can thus strongly change the cavity transmission [15].

The cavity resonance is stabilized 30 MHz blue detuned to the \(|F = 4 \rangle \rightarrow |F' = 5 \rangle \) transition of the \(D_2 \) line at 852 nm, see Fig. 2. A weak probe laser beam, resonant with the empty cavity, is coupled into the cavity and populates the cavity mode with 0.3 photons on average. In this blue-detuned weak probing regime, cavity cooling [16] counteracts heating of the
atom due to photon scattering and thus allows us to observe each atom over several seconds. The transmission of the probe light through the cavity is detected by a single-photon counting module with an overall detection efficiency of 4.4% [3]. The arrival time of each detected photon is recorded with 50 ns time resolution, see Fig. 3, and combined by software into time bins convenient for presentation of the data.

When we place an atom prepared in $|F = 4\rangle$ into the cavity mode, the detected cavity transmission drops from about 30 counts/ms to 5–10 counts/ms, see Fig. 3(a), where the data is binned in 1 ms intervals. Within a few milliseconds, however, off-resonant scattering of the probe light from the $|F = 4\rangle$ level transfers the atom to the $|F = 3\rangle$ ground state with a rate of about 40 s$^{-1}$. Since the optical transitions starting from $|F = 3\rangle$ are detuned by the hyperfine splitting of $\Delta_{\text{FHS}} \approx 9.2$ GHz $\gg (g, k, y')$ from the cavity resonance, the atom in this state does not noticeably influence the cavity resonance and the transmission rises to the high level of the empty cavity. The cavity transmission is thus a measure of the atom’s hyperfine quantum state, and a quantum jump from $|F = 4\rangle$ to $|F = 3\rangle$ becomes visible at a sudden transition from low to high photon count rate.

A very weak laser beam tuned to the $|F = 3\rangle \rightarrow |F' = 4\rangle$ transition repumps the atom back to the $|F = 4\rangle$ state with a rate comparable to the pumping rate due to the probe laser. In this way we obtain a sequence of quantum jumps between $|F = 3\rangle$ and $|F = 4\rangle$, and in the cavity transmission we observe the corresponding random telegraph signal [17].

While the larger bin time of 1 ms used in Fig. 3(a) reveals most of the quantum jumps, occupation of a state in short periods on the order of 1 ms may be missed. Figure 3(b) shows the same data binned in 50 μs intervals, which roughly is the shortest time scale on which we can get significant information for our count rates (about 1.5 photons per bin for $|F = 3\rangle$ vs <0.5 photons per bin for $|F = 4\rangle$). While here we get full time resolution, a simple estimation of the atomic state by eye or by a threshold analysis is no longer possible.

III. HIDDEN MARKOV MODELING OF A CAVITY TRANSMISSION EXPERIMENT

The physical process described in the previous section is a good candidate for a hidden Markov model analysis, i.e., a stochastic process which produces a measurement signal s_i whose statistics is governed by the current state X_i of the (hidden) system which is itself governed by a Markov evolution process. In our case the signal s_i is the number of photons recorded and the hidden system is the atom, whose state X_i jumps randomly between the hyperfine states. The state and the signal are represented in discrete intervals of time, and for convenience we use integer values $t = 1, 2, \ldots$ to represent these time intervals of a finite duration Δt, which is short enough to accurately represent the atomic dynamics. The Markov property formally requires that the atomic state X_i is conditionally independent of all variables except X_{i-1} and that s_i is conditionally independent of all variables except X_i. In Sec. V we shall comment further on the Markovian ansatz in connection with our modeling of the experiment. Between measurements, the atomic system is governed by jumps between its internal states, as described by the transition probabilities $P(X_{i+1}|X_i)$. The signal, on the other hand, is governed by a conditional probability distribution $P(s_i|X_i)$. In this section we show how recursive application of Bayes’ rule $P(A|B) = P(B|A)P(A)/P(B)$ permits calculation of the probability for the atomic state, conditioned on the measured data. In Sec. IV we show how the calculation can be applied in an iterative manner to re-estimate also the jump rates and the signal conditional probabilities, which are assumed to be known input to the Bayesian analysis.

The joint probability for the stochastic variables X and s to have attained particular values at all instances of time $t = 1, \ldots, N$ can be written as a product of conditional probabilities and a prior atomic state probability,

$$P(X_1, \ldots, X_N, s_1, \ldots, s_N) = \prod_{j=1}^{N} P(s_j|X_j) \times \prod_{j=1}^{N-1} P(X_{j+1}|X_j)P(X_1). \quad (1)$$

We recall that the optical transmission signal s_i is given by the experiment, while the atomic state X_i is not directly observed, and the goal of the present work is to determine the probability distribution $P(X_i)$ conditioned on the experimental results as sharply as possible.
A. Forward Bayesian state estimate

Let us first present the conventional situation, where one uses the signal data to estimate the current state of the system, by a recursive Bayesian update. We shall refer to this as a "forward estimate," because the data acquired until a given instant \(t \) are used to estimate the state at time \(t \).

While the current state probabilities depend on the entire signal prior to the current time, they need not be formally computed as a function of these many variables, as the distribution can be updated at every instant of time taking into account only the prior probability and the most recently measured result.

We assume an initial prior \(P(X_1) \) for the atomic state and we note that given \(P(X_t|s_1, \ldots, s_t) \) the probability distribution at the subsequent time is given by the transition probabilities,

\[
P(X_{t+1}|s_1, \ldots, s_t) = \sum_{X_t} P(X_{t+1}|X_t) P(X_t|s_1, \ldots, s_t).
\]

This provides the prior for the Bayesian estimate of the state at time \(t + 1 \), and the probability conditioned on the measurement result \(s_{t+1} \) becomes

\[
P(X_{t+1}|s_1, \ldots, s_t, s_{t+1}) \propto P(s_{t+1}|X_{t+1}) P(X_{t+1}|s_1, \ldots, s_t)
\]

\[
= \sum_{X_t} P(s_{t+1}|X_{t+1}) P(X_{t+1}|X_t)
\]

\[
\times P(X_t|s_1, \ldots, s_t),
\]

where the constant of proportionality can be found by normalization. The combined effect of transition probabilities and Bayesian conditional probabilities is repeated at every time step, and such a procedure was successfully applied in [3] to the case of both one and two atoms inside an optical cavity, and its achievements were compared favorably to the simpler state estimation based on the noisy instantaneous transmission signal in different time bins.

B. Full Bayesian state estimate

Any information that we acquire, which contains further information about the atomic state, will lead to an improved estimate and a conditional update of \(P(X_t) \). In this section we will focus on the information about \(X_t \) available in the measurement signal \(s_{t+1}, s_{t+2}, \ldots, s_N \) after time \(t \). This information must be dealt with via appropriate definition and calculation of conditional probabilities and transition probabilities.

Let us first, however, discuss the meaning of assigning probabilities and making predictions for past events. Clearly we cannot go back in time and verify the prediction, and if we already measured the atomic state at time \(t \), it would already be known to us and no further refinement of \(P(X_t) \) would be relevant. Note, however, that in the case of classical probabilities, we assign the probabilities to states that could have been measured and the result could have been copied and stored, so that they could be compared with our later predictions. A meaningful test of “past predictions” could then involve the comparison of our prediction with the actual outcome of a measurement which had a result that was not revealed at the time of the measurement.

Time-dependent state estimation based on a full detection record constitutes, indeed, an already well established component, called smoothing, in the theory of hidden Markov models. In Ref. [8] it was, thus, applied to infer the transitions between dressed states of a bistable atom-cavity system from noisy
experimental homodyne signals. For completeness we provide a brief summary of this method, following the presentation in [9]. First, it is convenient to introduce two time-dependent quantities, a joint and a conditional probability distribution,

\[\alpha_t(i) = P(X_t = i, s_1, \ldots, s_t), \]
\[\beta_t(i) = P(s_{t+1}, \ldots, s_N | X_t = i). \]

By normalization of \(\alpha_t(i) \), we recognize the forward state estimate

\[P(X_t = i | s_1, \ldots, s_t) = \frac{P(X_t = i, s_1, \ldots, s_t)}{P(s_1, \ldots, s_t)} = \frac{\alpha_t(i)}{\sum_k \alpha_t(k)}. \]

(6)

while \(\alpha_t(i) \) and \(\beta_t(i) \) together serve to provide the state probabilities, conditioned on the full measurement record

\[P(X_t = i | s_1, \ldots, s_N) = \frac{P(X_t = i, s_1, \ldots, s_N)}{P(s_1, \ldots, s_N)} = \frac{\sum_{k \alpha_t(k) \beta_t(k)}}{\sum_{k \alpha_t(k)}}. \]

(7)

Here we have used that \(\alpha_t(i) \beta_t(i) = P(X_t = i, s_1, \ldots, s_N) \) and that the probability for observing \(s_1, \ldots, s_N \) and \(X_t = i \) is the probability for observing \(s_1, \ldots, s_N \) and \(X_t = i \) multiplied by the probability for observing \(s_{t+1}, \ldots, s_N \) given \(X_t = i \).

It follows from the Markov property that

\[\alpha_{t+1}(i) = \sum_j P(s_{t+1} | X_{t+1} = i) P(X_{t+1} = i | X_t = j) \alpha_t(j). \]

(8)

To obtain a similar update rule for \(\beta_t(i) \), we consider

\[P(s_{t+1}, \ldots, s_N | X_{t+1}) = P(s_{t+1} | X_{t+1}) P(s_{t+2}, \ldots, s_N | X_{t+1}). \]

(9)

From which we obtain

\[P(s_{t+1}, \ldots, s_N | X_t = i) = \sum_j P(s_{t+1}, \ldots, s_N | X_{t+1} = j) P(X_{t+1} = j | X_t = i) \]
\[= \sum_j P(s_{t+1} | X_{t+1} = j) P(X_{t+1} = j | X_t = i) \]
\[\times P(s_{t+2}, \ldots, s_N | X_{t+1} = j), \]

(10)

where the first equality follows from the general formula \(P(x | z) = \sum_{y} p(x | y, z) p(y | z) \), with \(x = s_{t+1}, \ldots, s_N, y = X_{t+1} = j, z = X_t = i \) and the fact that in our case \(p(x | y, z) = p(x | y) \) due to the Markov property.

We have thus obtained the desired recursive equation for \(\beta_t(i) \):

\[\beta_t(i) = \sum_j P(s_{t+1} | X_{t+1} = j) P(X_{t+1} = j | X_t = i) \beta_{t+1}(j). \]

(11)

and even though \(\beta_t \) represents a seemingly complicated conditional probability for the entire signal sequence, the equation is readily solved recursively backwards from the final instant of measurements where \(\beta_N(i) = 1 \).

Finally, combining the solution for \(\alpha \) and \(\beta \), we have the state estimate based on the full detection record (7).

IV. RE-ESTIMATING PARAMETERS

It will often be the case that some physical parameters are not precisely known, and that they will have to be determined by the same or a similar experiment as the one revealing the quantum state itself. In the Bayesian formalism, it is possible to treat not only the quantum state but also the value of a small quantum state itself. In the Bayesian formalism, it is possible to treat not only the quantum state but also the value of a small set of variables probabilistically. Such parameter estimation, which is possible if the parameter space is not too large, was demonstrated in [7] in a simultaneous determination of the atomic state and the transition rates between the atomic states from the photon transmission data set. For a larger number of unknown parameters, the multidimensional Bayesian filter becomes numerically intractable. One may then have recourse to the more direct approaches discussed in this section.

A. Re-estimation of transition probabilities

Consider first the case where we wish to determine the atomic transition probabilities \(P(X_{t+1} = j | X_t = i) \) for the transition from state \(i \) to state \(j \). We assume that this probability is time independent, and we therefore write it as \(P(X_{t+1} = j | X_t = i) \). The transitions are revealed through the time-dependent probability that we occupy state \(i \) and \(j \) at subsequent time steps, which are in turn, inferred from the measured data,

\[\gamma_t(i, j) = P(X_t = i, X_{t+1} = j | s_1, \ldots, s_N) \]
\[= \frac{P(X_t = i, X_{t+1} = j, s_1, \ldots, s_N)}{P(s_1, \ldots, s_N)}. \]

(12)

Now,

\[P(X_t = i, X_{t+1} = j, s_1, \ldots, s_N) \]
\[= P(X_t = i, s_1, \ldots, s_N) P(X_{t+1} = j | X_t = i) \]
\[\times P(s_{t+1} | X_{t+1} = j) P(s_{t+2}, \ldots, s_N | X_{t+1} = j) \]
\[= \alpha_t(i) P(X_{t+1} = j | X_t = i) P(s_{t+1} | X_{t+1} = j) \beta_{t+1}(j). \]

(13)

Since \(P(s_1, \ldots, s_N) = \sum_k \alpha_k(k) \beta_k(k) \) we may also write

\[\gamma_t(i, j) = \frac{\alpha_t(i) \beta_{t+1}(j)}{\sum_k \alpha_k(k) \beta_k(k)}. \]

(14)

This enables the re-estimation of the transition probabilities

\[P_{\text{est}}(X_{t+1} = j | X_t = i) \]
\[= \frac{\sum_j \gamma_t(i, j)}{\sum_j \sum_i \gamma_t(i, j)} \]
\[= \frac{\sum_j \gamma_t(i, j)}{\sum_i \sum_j \gamma_t(i, j)} P(X_t = i | s_1, \ldots, s_N). \]

(15)
where the second equality follows from
\[\sum_{j} \gamma_t(i,j) = \frac{\alpha_t(i) \beta_t(i)}{\sum_k \alpha_t(k) \beta_t(k)} = P(X_t = i|s_1, \ldots, s_N). \]

(16)

We recognize that Eq. (15) in a probabilistic manner counts the number of times a transition occurs between \(i \) and \(j \) divided by the accumulated occupation of the \(i \) state.

Note that for the calculation of this quantity, the forward-backward estimated state provides a more accurate estimate of the parameters: Since the estimated state is more accurate, the counting of the number of transitions \(i \rightarrow j \) is more accurate, which leads to the more accurate estimate of the transition probabilities.

B. Re-estimation of signal probabilities

As shown in [3], the actual photon counting distribution for a given known atomic state may be broader than a Poisson distribution, possibly associated with the physical motion of the atom between locations that experience different coupling strengths to the cavity field mode. Assuming for simplicity that the counting distribution is governed by the Markov property and depends conditionally only on the atomic state, a simple procedure determines \(P(s|X) \) by counting how often the signal outcome \(s \) occurs when the atom is in state \(X \).

Since the occupation of state \(X = i \) is given probabilistically, this translates into the expression
\[P(s|X = i) = \frac{\sum_l P(X_t = i|s_1, \ldots, s_N) \delta(s - s_l)}{\sum_l P(X_t = i|s_1, \ldots, s_N)}. \]

(17)

The above procedure is the so-called Baum-Welch estimation which can be shown [9] to be equivalent to the so-called estimation-maximization (EM) algorithm, and will always converge to a (local) optimal estimate. There is, however, no guarantee that the procedure will find the globally optimal model. As in the determination of the atomic transition rates, the better the knowledge of the state occupation in state \(X_t = i \), the better is the estimation of the signal probability distribution. As we shall show with our numerical example, the state estimation based on the full data record is far superior over the only forward Bayesian method, and therefore the parameter estimation is also expected to be much more precise.

Note that the equations in this and the previous section have to be iterated, since the conditional signal probabilities determine the state estimate, which in turn leads to an updated estimate of the signal probabilities. Further details of this iterative scheme and on the identification of a suitable hidden Markov model will be described in the next section.

V. HIDDEN MARKOV MODEL ANALYSIS OF EXPERIMENTS

In this section we apply the procedures reviewed in the previous sections to the data obtained in the experiments described in Sec. II. While the atom has two ground hyperfine ground states, and would thus seem amenable to an HMM description with two (hidden) states, it was observed in [3] that the atom in the \(|F = 4 \rangle \) state showed super-Poissonian counting statistics, \(\text{Var}(n) > \langle n \rangle \). In [3] this was ascribed to the influence of other degrees of freedom of the atom, e.g., its spatial position, which would affect its coupling to the cavity field mode. The slow radial oscillation frequencies of the atom in the dipole trap of about 2 kHz could thus cause millisecond variations of the cavity coupling. Heating and cooling processes could lead to variations of oscillation amplitudes, and hence of the average coupling, on time scales of several milliseconds; and we have indications that the atom hops along the cavity axis between different potential wells of the cavity lock laser on time scales of 30 ms. A signature of this latter effect can be seen in Fig. 3(a) when comparing the lower transmission level in the shaded regions I and II. This variation of the system parameters over longer times violates the basic Markov assumption of HMM to treat the purported \(|F = 4 \rangle \) occupation by a single hidden state. The HMM theory outlined in Secs. III and IV is, however, ideally suited to problems with an unknown number of hidden states with unknown dynamics. It is, indeed, a basic idea of the method that it allows modeling of an observed signal by “hidden” states, transition rates, and signal properties. We will thus allow more than two states in our modeling of the system, and use the state and parameter estimation to assess their physical meaning accordingly.

Figure 3 is, indeed, suggestive of a dynamical evolution of the system between different levels of low transmission, and we shall therefore attempt a model of the system with three states. We do not restrict the properties of these states, but we expect that the algorithm will use the available parameter space to represent one noninteracting state \(|F = 3 \rangle \) and two different states belonging to \(|F = 4 \rangle \) with slightly different transmission characteristics.

As described above, we first use the Bayesian state update formulas with a more or less random initial ansatz for the rate and signal parameters, and we then subsequently iterate the re-estimation and state estimation process until they have converged. We have tested that this procedure converges to the same values with different initial parameter choices, and the results we show in this section are the ones obtained after consistently identifying the model parameters by this iterative procedure.

The forward Bayesian estimation of the atomic state applies the recursive update formula (3) for every 50 μs time bin of the data acquisition, and this determines the time-dependent state of the system, shown in the upper panel in Fig. 4. In reality, the HMM method identifies the time-dependent population of three different states, but it does not identify which are these hidden atomic states. Our estimation of the signal rates associated with the states, however, clearly yield the expected outcome: Two hidden states comply with two slightly different low transmission levels and are thus identified with the atom in the \(|F = 4 \rangle \) hyperfine state, and one state complies with the high transmission of the atomic \(|F = 3 \rangle \) state. In Fig. 4 we plot the two \(|F = 4 \rangle \) populations by the light and dark blue shadings, and we observe that most of the time they add to values near zero and unity while their individual populations fluctuate more. This confirms our intuition that the transmission signal clearly distinguishes high from low transmission, while statistical fluctuations prevent a clear distinction between the two states which are assigned low but quite similar transmission for most of the time. Note,
The measured signal leads to a number of narrow spikes both in the individual and in the total $|F = 4\rangle$ populations. Most of the narrow spikes clearly correspond to statistically improbable short intervals spent by the atom in one and the other hyperfine state, and they result from the inability of the forward Bayesian update formula to distinguish a short time statistical fluctuation in the transmission signal from an actual change due to the transfer of the atom into a different state. The forward-backward estimate, however, conditions the atomic state on the full measurement record according to Eqs. (7), (8), and (11), and the results are shown in Fig. 4(b). Here, indeed, the atomic state populations in the $|F = 3\rangle$ and the $|F = 4\rangle$ states are significantly closer to zero and unity at all times, and most of the spikes in the upper panel of the figure have disappeared. The figure is a clear proof of what we set out to demonstrate: The forward-backward Bayesian estimate provides much more decisive predictions for the atomic state than the usual conditioned dynamics. The forward-backward analysis also distinguishes more sharply between the two candidate $|F = 4\rangle$ states: The data relevant to the state assignment at any time are approximately doubled when both the past and the future transmission is considered.

Naturally Fig. 4 only compares two sets of predictions with each other, and to test theory and confirm its predictions, measurements should be carried out. One simple test of the theory could consist in hiding the data acquired in a single time bin and compare it later with the theoretical predictions, which are governed by $P(s_i) = \sum_i P(s_i|X_t = i)P(X_t = i)$. The state probabilities $P(X_t = i)$ are assigned different values by the forward and the forward-backward recursive expressions [Eqs. (3) and (7)], and our improved predictions about the past state of the atom implies an improved ability to guess the photon count in the past time bin.

As stated in the beginning of this section, we have iteratively estimated both the atomic state and the transition and transmission probabilities. For the photon transmission, we have applied this recursive scheme to the data from the experiments, assuming that the number n of detector clicks in every $50 \mu s$ time bin has an unknown probability distribution $P(n|X)$ that we update according to Eq. (17) until the conditioned state dynamics and the parameter re-estimation converged. After about 200 iterations, all rates and signal probabilities were converged to within a tolerance of 1×10^{-9}, and we arrived at the distributions shown in Fig. 5.

The histograms shown in Fig. 5, represent the actual counts in 50 μs intervals, reported in Fig. 3(b), sorted according to the state assignment in Fig. 4(b). The assignment of two different signal probabilities to the $|F = 4\rangle$ state is compatible with the super-Poissonian character in the low count signals, and we observe that the two distributions are sufficiently different to be distinguished if the atom resides in one or the other states for long enough. This indeed happens several times during the measurement sequence where the forward-backward state assignment favors one or the other of the $|F = 4\rangle$ states with near unity probability.

Our analysis also determines the rates of transitions between the three different states in the model. Since the Baum-Welsh expression for the transition rates makes explicit use of the time-dependent conditional probability assignments, we see in Fig. 4 that the forward Bayes analysis with its many sharp jumps will strongly overestimate the atomic transition rates, while the forward-backward analysis yields much fewer transitions. Indeed, the rates for transitions from the $|F = 3\rangle$ to the $|F = 4\rangle$ states (and back) are estimated to ~ 60 (~ 80) transitions per second, in better agreement with estimates based on the laser-atom parameters made in Sec. II.
VI. DISCUSSION

We have presented a hidden Markov model for cavity transmission experiments with an atom jumping between different states. We showed that the standard HMM formalism, taking only the experimental data as input was able to identify states with the expected characteristics and a dynamical jump process between states in agreement with our physical understanding of the dynamics. This lends support to the validity of the state assignment, shown in Fig. 4, and it brings promises for use of the same method to analyze a wider range of conditional dynamics experiments.

We wish, in particular, to highlight the use of the forward-backward estimate which, by incorporating the whole data set rather than only data taken prior to the time at which the state is determined, provided a considerable improvement of the state analysis. Due to its significantly sharper predictions, the forward-backward analysis yields also better estimates of the physical process parameters, rates, and signal probabilities. It is already a well established procedure in classical HMM theory, and it should become a standard component in the analysis of quantum dynamics, see also [8,11].

In this paper the atomic system underwent only incoherent processes, and the conditional dynamics was described by classical probability theory. We have recently shown [18] that a full forward-backward theory can also be established for coherent quantum dynamics of a system subject to repeated or continuous measurement. In that theory, predictions for the outcome of quantum measurements are given by two matrices, which become diagonal with elements equal to the $\alpha_i(i)$ and $\beta_i(i)$ in Eq. (7) in the case of incoherent processes.

Let us, finally, comment on the choice of three states for the HMM description of two-state atoms in the experiments analyzed in this article. This choice was motivated by the observation that only two states would not be compatible with the assumption of Markovian dynamics (the atom in the $|F = 4\rangle$ appeared to have a “memory” leading to a slowly varying transmission at the low transmission level). With three states, the model identifies two underlying states, possibly associated with the atomic motion inside the cavity. We have tested the ansatz by further augmenting the model and allowing also four hidden states. That calculation led to a further splitting of the state with $|F = 3\rangle$ transmission characteristics. The pair of states obtained this way, however, show very similar transmission probabilities, and the four-state model does not appreciably change the assignment of (total) time-dependent probabilities of occupation of the $|F = 3\rangle$ and the $|F = 4\rangle$ hyperfine states compared with the three-state model. We thus conclude that the hyperfine state assignment shown in Fig. 4 is robust to refinements and changes in the modeling.

ACKNOWLEDGMENTS

The authors wish to acknowledge financial support jointly from the CCQED training network of the European Commission. Aarhus also wishes to thank the Villum Foundation and the Aarhus University Research Foundation. Bonn acknowledges support by the Bundesministerium für Forschung und Technologie (BMFT, Verbund QuOReP), and the Integrated Project SIQS funded by the European Commission.