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We present a technique for the precision synthesis of arbitrary polarization states of light with a high
modulation bandwidth. Our approach consists of superimposing two laser light fields with the same
wavelength, but with opposite circular polarizations, where the phase and the amplitude of each light field
are individually controlled. We find that the polarization-synthesized beam reaches a degree of polarization
of 99.99%, which is mainly limited by static spatial variations of the polarization state over the beam
profile. We also find that the depolarization caused by temporal fluctuations of the polarization state is
about 2 orders of magnitude smaller. In a recent work, Robens et al. [Low-Entropy States of Neutral Atoms
in Polarization-Synthesized Optical Lattices, Phys. Rev. Lett. 118, 065302 (2017)] demonstrated an
application of the polarization synthesizer to create two independently controllable optical lattices which
trap atoms depending on their internal spin state. We use ultracold atoms in polarization-synthesized optical
lattices to give an independent, in situ demonstration of the performance of the polarization synthesizer.
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I. INTRODUCTION

Dynamical polarization control of light fields plays an
important role in photonic applications, and it has recently
been gaining importance in quantum technologies as well
(see, e.g., Refs. [1–9]). Static polarization control is much
less demanding and can be simply achieved using a few
birefringent optical elements: A half- and a quarter-wave
plate are already sufficient to transform a linear polarization
state into any desired polarization state.
Currently existing devices for the dynamical polarization

synthesis are based on voltage-controlled retarders—
implemented by either fiber squeezers or electro-optical
modulators—and are typically specified to reach modulation
bandwidths of 100 kHz with 1° uncertainty in the state of
polarization (SOP) and 99% degree of polarization (DOP).
In general, these devices allow one to create any SOP, but
only a few of them also permit an endless, reset-free rotation
of the SOP, which is achieved, e.g., by cascading multiple
retarders steered via advanced algorithms [10,11].
Polarization synthesizers of this kind are widely used in
fiber-based telecommunication technologies [12], where slow
drifts of the polarization state must be actively counteracted.
The demands imposed by quantum-technological appli-

cations in terms of modulation bandwidth and precision
often go beyond the reach of existing polarization synthe-
sizers. Previous results of ours [13] demonstrated dynami-
cal rotations of the linear polarization of light with a
bandwidth of ≲400 kHz and a DOP at around 99.9%,
limited by static polarization inhomogeneities across the

beam profile. While these values outperform most com-
mercial polarization synthesizers, higher DOPs may be
required [14] to suppress decoherence caused by spatial
inhomogeneities and temporal fluctuations of the SOP, with
the ultimate goal of achieving complex quantum manipu-
lations of ultracold atoms comprising hundreds of quantum
gates. Moreover, a single electro-optical modulator used to
rotate the SOP does not permit us to also control the degree
of ellipticity, and the rotation angle is limited to within a
range of about π—two factors that constrain its applicabil-
ity for ultracold-atom experiments.
In this work, we report on a different technique for

polarization synthesis which is tailored to the requirements
of ultracold-atom experiments and similar quantum tech-
nologies, where polarization precision and high modulation
bandwidth play an important role. Our polarization synthe-
sizer, instead of using an electro-optical modulator to control
the SOP, directly synthesizes arbitrary SOPs by superimpos-
ing two distinct phase-stabilized laser beamswith orthogonal
circular polarizations. In a recent paper [15], we demon-
strated an application of our polarization synthesizer to
realize polarization-synthesized optical lattices, which allow
transporting atoms state dependently over arbitrarily long
distances relying on a reset-free rotation of linear polariza-
tion. Thereby, we were able to demonstrate the sorting of
individual atoms to predefined patterns, reducing the posi-
tional entropyof a randomly distributed ensemble tovirtually
zero. Furthermore, polarization-synthesized optical lattices
have also enabled the realization of so-called ideal negative
measurements for fundamental tests of quantum superimpo-
sition states [16,17]. We expect several other applications
of polarization-synthesized optical lattices in the realm of*alberti@iap.uni-bonn.de
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ultracold atoms, ranging from fast atom transport [18,19] to
testing the indistinguishability of identical particles [20],
nonequilibrium quantum thermodynamics experiments [21],
nonequilibrium localization experiments [22], and the quan-
tum simulation of quantum electrodynamics [23] and of
impurity models [24,25]. In addition, our experimental
scheme for the synthesis of light polarization may find
applications in other quantum-technological areas beyond
ultracold atoms.
The article is organized as follows: In Sec. II, we present

the experimental setup of the polarization synthesizer and
its application to polarization-synthesized optical lattices.
In Sec. III, we analyze and quantify the physical mecha-
nisms limiting the precision of the SOP, the DOP, and the
modulation bandwidth of the polarization synthesizer.
Furthermore, we utilize atoms trapped in the polariza-
tion-synthesized optical lattice to provide complementary
measurements of the heating rate and transport excitations,
which give an independent assessment of the performance
of the polarization synthesizer.

II. POLARIZATION SYNTHESIZER

A. Polarization synthesis

The basic idea behind our polarization synthesizer is to
superimpose a right (R) and a left (L) circularly polarized
laser beam, each of them with a controllable phase (ϕR or
ϕL) and a real-valued electric-field amplitude (ER or EL), in
order to produce a single laser beam with the desired
polarization. The electric field of the resulting polarization-
synthesized laser beam is given by

E⃗ ¼ 1ffiffiffi
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where we assume a homogeneously polarized laser wave
front. Here, k ¼ 2π=λ is the wave vector, ω is the frequency
of both light-field components, and the vector components
of the electric field are expressed in Cartesian coordinates.
Controlling the individual phases and electric-field ampli-
tudes allows one to synthesize any arbitrary SOP: Varying
the relative phase, ϕR − ϕL, rotates the polarization state in
the real space around the laser beam’s direction by an angle
equal to ðϕR − ϕLÞ=2, whereas changing the ratio between
the two electric-field amplitudes, ER and EL, transforms the
polarization state from linear to elliptical. For example, a
horizontal linear polarization is synthesized by setting
ER ¼ EL and ϕR ¼ ϕL.
The polarization state of the polarization-synthesized

laser beam given in Eq. (1) can be conveniently expressed
as a Stokes vector ðS0; S1; S2; S3Þ [26] and visualized on the
Poincaré sphere, as shown in Fig. 1(a). The rotation (ψ ) and
ellipticity (χ) angles defining the orientation of the Stokes
vector can be written as a function of the control parameters
of the polarization synthesizer:

ψ ¼ tan−1ðS2=S1Þ ¼ ϕR − ϕL; ð2Þ

χ ¼ sin−1ðS3=S0Þ; S3=S0 ¼ ϵ ¼ E2
R − E2

L

E2
R þ E2

L
; ð3Þ

where ϵ represents the amount of ellipticity, −1 < ϵ < 1.
Hence, a change of the relative phase rotates the Stokes
vector on the Poincaré sphere in a horizontal plane, whereas
an imbalance of the electric-field amplitudes rotates the
Stokes vector in a vertical plane. It should be noted that
most of the literature (e.g., Ref. [27]) uses a different
convention for the rotation and ellipticity angles of Stokes
vectors (ψ → 2ψ , χ → 2χ).
In Ref. [15], the polarization-synthesized laser beam is

made to interfere with a counterpropagating, linearly
polarized beam of the same frequency ω. Thereby, two
optical standing waves of R and L circular polarization are
produced, forming two independent optical lattices able to
trap atoms in either one of two internal states. Three
examples of polarization-synthesized optical lattices are
illustrated in the insets of Fig. 1, corresponding to different
choices for the synthesized polarization. Note that control-
ling the ratio ER=EL and the relative phase ϕR − ϕL
suffices for the purpose of synthesizing any polarization
state. However, the control of the individual phases, as well
as of the individual electric-field amplitudes, enables
additional operations in the case in which the polarization
synthesizer is used to create a polarization-synthesized

(a)
(d)

(c)

(b)

FIG. 1. (a) Representation of the synthesized polarization state
on the Poincaré sphere with rotation angle ψ and ellipticity angle
χ. The interference between the polarization-synthesized laser
beam and a linearly polarized, counterpropagating laser beam
gives rise to two standing waves of opposite circular polarization
that are (b) spatially overlapped, (c) relatively shifted by a quarter
period, and (d) of different trap depths. Colors (red and blue) are
used to denote atoms in different internal states, as well as their
corresponding state-dependent optical potentials. The double-
headed arrows indicate how the synthesized polarization state is
affected by phase (δψ ) and intensity (δχ) fluctuations of the field
components in Eq. (1). Circular regions close to the poles
represent exclusion regions, which are not accessible by the
polarization synthesizer due to the finite dynamic range of the
intensity control loops.
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optical lattice: For example, varying only ϕL allows one to
shift the lattice potential for only one of the two internal
states [see Fig. 1(c)], while varying EL allows one to
change the corresponding lattice depth [see Fig. 1(d)].
While in Eq. (1) the electric-field components are

assumed to be perfectly polarized, in practice, polarization
imperfections reduce the DOP to less than 1,

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22 þ S23

p
S0

< 1: ð4Þ

In general, there are two basic causes of depolarization
[28]: (1) a mixture of spatial modes with different polari-
zation states and (2) a mixture of spectral (temporal) modes
with different polarization states. The first cause yields
static polarization inhomogeneities, with the SOP varying
stochastically across the beam profile. The second cause
instead produces temporal fluctuations of the synthesized
polarization. Such temporal fluctuations cause an uncer-
tainty about the SOP and, correspondingly, about the
orientation of the Stokes vector on the Poincaré sphere.
In this work, static and temporal fluctuations of the SOP are
considered and measured separately.

B. Experimental setup

Figure 2 presents a sketch of the experimental setup for
the control of the phase and amplitude of the two
orthogonally polarized laser beams, which are spatially
combined to synthesize the desired polarization.
The input beam from a Ti:sapphire laser (MBR 110,

Coherent) is split by a beam splitter (BS) into a reference
beam required for the optical phase control and a main
beam used to generate the polarization-synthesized beam.
The main beam is further divided by a polarizing beam
splitter (PBS) into two beams with vertical (V) and
horizontal (H) polarization, the intensity and the phase
of which are independently controlled by two separate
acousto-optic modulators (AOMs). The superimposition of
the two circularly polarized light-field components in
Eq. (1) is achieved by spatially recombining both linear
polarized beams with a Wollaston prism (WP) and,
subsequently, by transforming the linear polarizations into
circular ones using a quarter-wave plate.
We use a feedback control system in order to counteract

the effect of thermal drifts, acoustic noise, air turbulence,
and laser intensity noise, which cause the amplitudes (ER
and EL) and the phases (ϕR and ϕL) of the two circularly
polarized components to fluctuate. If not properly stabi-
lized, the phase in particular would be strongly affected
by subwavelength mechanical vibrations of the optical
components at the place where the laser beams split
into separate AOMs, by the phase noise of the voltage-
controlled oscillators (VCOs), and by time-varying thermal
stress of the optical fiber after the Wollaston prism. Hence,
to control both phase and amplitude, we utilize for each

light-field component, two independent feedback control
loops, indicated in Fig. 2 by the shaded regions, which act
on the radio-frequency (rf) signal sent to the AOMs. The
error signals for the control loops are obtained by diverting
parts of the polarization-synthesized output beam into two
beams using custom-coated (12% reflectivity for both
polarizations) pickup plates (PPs) (Altechna).
For the phase control loop, we superimpose one of two

diverted beams with the linearly polarized reference beam
mentioned at the beginning of this section. The resulting
beam is mode cleaned through a polarization-maintaining
(PM) single-mode optical fiber, and the two polarization
components are subsequently separated by a Wollaston
prism. At both output ports of the Wollaston prism, beat
signals are detected due to the 80-MHz-frequency differ-
ence generated by the AOMs between the reference beam
and the diverted beams. Each beat signal is detected using
an ultrafast photodiode (G4176-03, Hamamatsu) which is
ac coupled through a bias tee (ZX85-12Gþ, Mini-Circuits)
to a low-noise rf amplifier (ZFL-500HLNþ, Mini-Circuits)
and, subsequently, to a limiting amplifier (AD8306, Analog
Devices). The limiting amplifier strongly reduces spurious
amplitude-to-phase conversions when the amplitude of the
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FIG. 2. Illustration of the polarization-synthesizer setup. A
linearly polarized laser beam enters the synthesizer at the input
(in) and exits it at the output (out) with its polarization trans-
formed into any desired SOP. For illustrative purposes, copro-
pagating beams with different polarization are drawn slightly
apart, although they overlap in reality. The abbreviations are
acousto-optic modulator (AOM), beam splitter (BS), reference
clock (CLK), direct digital synthesizer (DDS), horizontal linear
polarization (H), polarizing beam splitter (PBS), photodiode
(PD), phase-frequency detector (PFD), proportional-double-
integral-derivative controller (PI2D), polarization maintaining
(PM), pickup plate (PP), radio frequency (rf), universal serial
bus (USB), vertical linear polarization (V), voltage-controlled
oscillator (VCO), Wollaston prism (WP), half-wave plate (λ=2),
and quarter-wave plate (λ=4).
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beat signal changes, whereas the low-capacitance photo-
diode prevents phase shifts due to changes of the capaci-
tance induced by ambient-light fluctuations. Individually
for each polarization component, the phase of the beat
signal is compared to a rf reference signal (DDS; AD9954,
Analog Devices) using a digital phase-frequency discrimi-
nator (PFD; MC100EP140, ON Semiconductor), which has
an instrumental rms phase noise measured at around 0.03°
over a 10 MHz bandwidth. The chosen DDS model allows
us to store arbitrary phase ramps in its internal RAM (1024
words, 32 bits), which we use to control the phase of the
reference signal in time. The error signal resulting from the
PFD output is filtered by a 10-MHz-bandwidth proportional-
double-integral-derivative (PI2D) controller (D2-125,
Vescent Photonics). To close the phase control loop, indi-
vidually for each polarization component, the output of the
analog loop filter steers through a VCO (ZX95-78þ, Mini-
Circuits) the frequency of the rf signal that drives the
respective AOM. The chosenVCO features a high frequency
control bandwidth (5 MHz) and a low phase noise
(−140 dBc=Hz at 100 kHz offset; here dBc denotes decibels
relative to the carrier). By closing the phase control loop,
phase variations in the rf reference signal are thus imprinted
onto the phase of the laser beam traversing the controlled
AOM.
Three comments are in order: First, controlling the phase-

locked loop (PLL) through the phase of the reference signal,
instead of through the set point of the PI2D, ensures that the
PFD operates at around zero phase difference, where the
PFD instrumental phase noise is minimum, avoids PFD
nonlinearities, and, most importantly, allows us to realize
reset-free phase modulations by several multiples of 2π.
Second, by allowing the two polarization components to
travel along a common path and by stabilizing the phase of
each component, ϕR and ϕL, with respect to a common
reference laser beam,we ensure precise control of the relative
phase, ψ , of the polarization-synthesized beam [see Eq. (2)].
Third, by employing a common 400-MHz clock signal
(CLK) as the time base for both DDS rf signal generators,
we minimize the electronic contribution to the differential
phase noise in the phase-control-loop setup.
For the intensity control loop, we use the second laser

beam that is diverted from the polarization-synthesized
beam.AWollaston prism spatially separates the two orthogo-
nal polarization components. The optical power of each
component is detected by a fast photodiode (PDA10A,
Thorlabs) and compared to a variable set point in order to
form an error signal, which is fed to an additional PI2D
controller (D2-125, Vescent Photonics). Bymeans of amixer
(ZLW-6þ,Mini-Circuits), the controller steers the amplitude
of the rf signal used to drive the AOMs.
In order to achieve a high DOP of the synthesized

polarization, static polarization inhomogeneities are strongly
suppressed by matching the transverse modes of both
polarization components through a PM single-mode optical

fiber, which is situated after theWollaston prism. The optical
fibers employed in this setup are tested to have a high linear
polarization extinction ratio (>50 dB) [29–31].We also find
that stress-induced birefringence of the optical fiber colli-
mators causes deviations from linear polarization unless the
spurious birefringence is compensated for by an additional
pair of quarter- and half-wave plates placed in front of each
optical-fiber end (not shown in Fig. 2). In particular, at the
output end of the optical fiber, this compensation ensures that
the polarizations of the two electric-field components are
aligned to the s and p directions of the PPs.
Moreover, in order to also ensure a high circular-

polarization purity for both the R and L polarization
components, we use two quarter-wave plates instead of a
single one at the output of the polarization synthesizer.
The R and L polarization components are analyzed
separately by blocking the other component before the
Wollaston prism. After careful adjustment of the two plates,
we measure a circular-polarization purity, defined as the
ratio PR;L¼ðER=ELÞ�2, of ≳105 when only the R or L
polarization component is allowed to propagate. Under the
assumption of a polarization state constant in time and
homogeneous over the beam profile, one can show using
the Stokes vector formalism that a finite value of the purity,
P, corresponds to synthesizing polarization states on a
Poincaré-like sphere that is slightly inclined by an angle of
2 arctanð1= ffiffiffiffi

P
p Þ≲ 0.4° with respect to the vertical axis.

However, the measured value of P is likely due to residual
polarization inhomogeneities (Sec. III A) caused by
uncompensated for, inhomogeneous stress-induced bire-
fringence at the output end of the PM fiber.

C. Polarization-synthesized optical lattices

Demonstrated in Ref. [15], polarization-synthesized
optical lattices consist of two superimposed yet independ-
ently controllable optical-lattice potentials, which can trap
ultracold cesium atoms depending on their internal state.
These lattice potentials are a direct application of the
polarization synthesizer, which is used to create two optical
standing waves with R- and L-circular polarization by
making the polarization-synthesized output beam interfere
with a counterpropagating, linearly polarized beam of the
same frequency. Exploiting the polarization-dependent ac
polarizability of the outermost hyperfine states of cesium,
namely, j↑i ¼ jF ¼ 4; mF ¼ 4i and j↓i¼jF¼3;mF¼3i,
at the so-called magic wavelength, λ ¼ 866 nm, the j↑i
state experiences an optical dipole potential, U↑, originat-
ing only from R-polarized light, while the j↓i state
experiences a potential, U↓, generated predominantly [32]
by L-polarized light:

Usðx; tÞ ¼ Uð0Þ
s cos2f2π½x − xsðtÞ�=λg: ð5Þ

Here, Uð0Þ
s is the lattice depth and xsðtÞ is the longitudinal

displacement of the corresponding lattice, with s ¼ f↑;↓g
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denoting the pseudospin orientation. The polarization
synthesizer allows us, therefore, to control the individual
positions, x↑ and x↓, of the two potentials by varying the
phases ϕR and ϕL [see Fig. 1(c)] according to

x↑ðtÞ ¼
λ

2

ϕRðtÞ − ϕ0ðtÞ
2π

; x↓ðtÞ ≈
λ

2

ϕLðtÞ − ϕ0ðtÞ
2π

;

ð6Þ
where ϕ0ðtÞ is the phase of the linearly polarized counter-
propagating beam, which can also be steered in time. The
second equation holds only approximately due to the small
contribution of R-polarized light to the lattice potential U↓.
Moreover, we can directly control the lattice potential
depths by varying the light-field intensity ER and EL, as

shown in Fig. 1(d). In fact, the potential depth Uð0Þ
↑ is

directly proportional to the light-field intensity E2
R, while

the potential depth Uð0Þ
↓ is approximately proportional to

the light-field intensity E2
L. To obtain the exact expression

of the position x↓ and potential depth Uð0Þ
↓ , the reader is

referred to Ref. [32].

III. CHARACTERIZATION OF THE
POLARIZATION SYNTHESIZER

In view of future quantum applications, where particles
are in fragile quantum states delocalized over many lattice
sites, it is important to characterize the precision attained
by the polarization synthesizer and the polarization-
synthesized optical lattice. These characterizations are
presented in detail in Secs. III A, III B, III C, and III D.
We summarize the main results here.
In Sec. III A, we characterize the DOP of the polarization

synthesizer. For this purpose, we measure both the relative
intensity noise and the relative phase noise of the two
circularly polarized laser beams. In addition, we also
measure spatial polarization inhomogeneities across the
profile of the polarization-synthesized beam, which also
contribute to a reduction of the DOP. The results of these
measurements are summarized in Table I: We find that
static polarization inhomogeneities are the leading contri-
bution degrading the polarization purity. Our analysis
reveals, furthermore, that the noise of the relative phase,
ϕR − ϕL, is particularly small, corresponding to a rms
uncertainty about the relative position, Δx ¼ x↑ − x↓,
between the two standing waves of the polarization-
synthesized optical lattice of σΔx ≈ 1.2 Å.
Static polarization inhomogeneities cause state-dependent

deformation of the lattice potentials, one of the main sources
of inhomogeneous spin dephasing for thermal atomsor,more
generally, for atoms distributed over several motional states
[14]. By contrast, fluctuations of the synthesized polarization
state due to phase and intensity noise can produce spin
dephasing even for atoms cooled into the motional ground

state. However, from Ramsey interferometry [33], we infer a
spin-coherence time of 250 μs probing thermal atoms
trapped in polarization-synthesized optical lattices, which
is limited not by polarization-synthesized optical lattices
but by other spin-dephasing sources (stray magnetic fields,
hyperfine-interaction-mediated differential light shifts; see
Ref. [33]).
Furthermore, fluctuations of the synthesized polarization

state can also cause motional excitations. In Sec. III B, we
determine the heating rate from storage-time measure-
ments, where we use a Fokker-Planck equation [34–36]
to model the loss of atoms from polarization-synthesized
optical-lattice potentials. From our analysis of atom losses,
we infer an excitation rate of about 1 quant=s. The obtained
value is consistent with the rate of excitations caused by
position fluctuations of the lattice, which we estimate from
the measured power spectral densities of the phase noise.
From the measured power spectral density of the intensity
noise, we instead obtain that intensity noise has a negligible
contribution to the heating of atoms.
Concerning the dynamical control of polarization-

synthesized optical lattices, we measure the response
function of the polarization synthesizer for both the phase
and intensity servo loops, obtaining a modulation band-
width of about 800 kHz. The details of these measurements
are discussed in Sec. III C. Such a high bandwidth, in
combination with high trapping frequencies (i.e., deep
lattices), allows us to state dependently transport atoms
and control their motional states on the time scale of
microseconds, which is orders of magnitude faster than in
typical quantum gas experiments.
By sideband spectroscopy, we furthermore observe that

all transport operations employed in Robens et al. [15] to
sort atoms into arbitrary patterns leave 99% of the atoms in
the longitudinal and transverse motional ground state (see
Sec. III D). We experimentally verify that this is the case
even for nonadiabatic state-dependent transport operations
lasting 20 μs (corresponding to about two oscillation
periods in the harmonic-trap approximation) per single-
site shift using a bang-bang-like transport pulse in a similar
manner to that employed in Ref. [37] using trapped ions.

TABLE I. Physical factors limiting the DOP of the polarization-
synthesized beam and their contributions to the polarization
extinction ratio, η. The uncertainty in the SOP caused by intensity
noise and phase noise, as well as the total polarization extinction
ratio, are directly measured (for the experimental details, see
Sec. III A). The total polarization extinction ratio reported in the
table corresponds to D ≈ 99.99%; see Eq. (7).

State of polarization η

Intensity noise σχ ≈ 0.02° 4 × 10−8

Phase noise σψ ≈ 0.09° 6 × 10−7

Spatial inhomogeneities � � � 5 × 10−5

Total 5 × 10−5
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A. Degree of polarization

The DOP denotes how pure the polarization state is. In
real applications, polarization imperfections due to fluctu-
ations in time and spatial inhomogeneities of the SOP
reduce the DOP to less than 1; see Eq. (4).
To characterize the DOP with high accuracy, we carry

out a measurement of the polarization extinction ratio [38].
We rely on the fact [39] that the DOP is related to the
minimum polarization extinction ratio,

η ¼ 1 −D
2

; ð7Þ

which can be reached after an (ideal) polarizer by adjusting
the SOP in front of it using, e.g., a half- and quarter-wave
plate. Thus, we let the polarization-synthesized beam cross
a polarizer (colorPol IR 1100, CODIXX), which features an
extinction ratio at around 10−7, and record with a beam
profiling camera the optical power of the transmitted beam
with an exposure time of 1 s.
The transmitted power, integrated over the beam profile

and normalized by the power transmitted through the 90°-
rotated polarizer, yields the overall polarization extinction
ratio, η. Using the dynamical control of the polarization
synthesizer, we vary the rotation angle ψ [see Eq. (2)] and
the ellipticity ϵ [see Eq. (3)] of the synthesized polarization
to minimize η. With this procedure, we obtain a minimum
extinction ratio of η ≈ 5 × 10−5, corresponding to a DOP of
about 99.99%. Note that this measurement of the DOP is
sensitive not only to static spatial polarization inhomoge-
neities but also to depolarization by fast temporal fluctua-
tions of the SOP.
To obtain further insight into the factors limiting the

DOP, we analyze separately the contribution of temporal
fluctuations of the control parameters, ER;L and ϕR;L; see
Eq. (1). The details of the additional characterizations are
presented below and the results are summarized in Table I.
We first assume that only the intensities, E2

L and E2
R, can

stochastically fluctuate in time, while ψ is arbitrary yet
fixed. In the limit of small fluctuations, it can be shown
using the Stokes vector formalism that the DOP is
determined by the variance, σ2χ , of the ellipticity angle χ
and is independent of the orientation of the Stokes vector
on the Poincaré sphere,

D ¼ 1 −
σ2χ
2
: ð8Þ

Moreover, in the same limit of small fluctuations, the
previous expression in Eq. (8) can be related to exper-
imentally accessible quantities,

σ2χ ¼
R2

R þR2
L

4
ð1 − ϵ2Þ; ð9Þ

where RR;L ¼ σE2
R;L
=IR;L is the relative intensity noise

(RIN) of the two polarization components, which can be
precisely measured. Here, IR ¼ hE2

Ri is the average inten-
sity (up to a constant prefactor) and σ2E2

R
is the variance of

the intensity E2
R; analogous definitions also hold for the

L-polarized light-field component. Note that Eq. (9) is
derived under the assumption that the fluctuations δER and
δEL of the electric fields ER and EL are uncorrelated, which
is reasonable for noise spectral components within the
bandwidth of two independent intensity control loops.
It may be useful to also specify the two limiting cases
of perfect correlations and anticorrelations, δEL ¼
�δER

ffiffiffiffiffiffiffiffiffiffiffiffi
IL=IR

p
. For perfectly correlated fluctuations, we

obtain σ2χ ¼ 0 (thus, D ¼ 1), whereas for anticorrelated
fluctuations we find that σ2χ amounts to twice the value
given in Eq. (9).
Equation (9) shows that, for a given amount of RIN, the

DOP has the worst value (its minimum) for linear polari-
zation, ϵ ¼ 0, whereas the DOP is ideally 1 for a circular
polarization, ϵ ¼ �1, when intensity fluctuations of either
the R- or L-polarized beam have no effect on the SOP.
Thus, we characterize the depolarization of the output beam
due to intensity fluctuations in the most unfavorable case of
a synthesized linear polarization. We measure the RIN
separately for each of the two circularly polarized beams by
integrating the intensity noise spectral density from 1 Hz to
25 MHz using a spectrum analyzer. Both RIN measure-
ments amount to a similar value,RR;L ≈ 0.056%, resulting
in σχ ≈ 0.02° and, correspondingly, in a contribution to the
polarization extinction ratio of about 4 × 10−8.
Now, we assume that only the phases, ϕR and ϕL, can

stochastically fluctuate in time, while the intensities are
fixed. Using the Stokes vector formalism, it can be shown
that, for the same limit of small fluctuations considered
before, the DOP is determined by the variance, σ2ψ , of the
rotation angle,

D ¼ 1 −
1 − ϵ2

2
σ2ψ : ð10Þ

Moreover, if we assume that the fluctuations of ϕR and ϕL
are uncorrelated (which is reasonable for noise spectral
components in the bandwidth of the phase control loop),
we directly obtain [see Eq. (2)] σ2ψ ¼ σ2ϕR

þ σ2ϕL
, where σ2ϕR

and σ2ϕL
are the variances of the individual phases, respec-

tively.Note also that theDOPhere depends on the orientation
of the Stokes vector, namely, on its ellipticity, in contrast to
the expression in Eq. (8). The reason for this dependence
becomes apparent if we consider limiting cases that areR- or
L-circularly polarized, a situation in which the fluctuations
of the rotation angle, ψ , cannot cause depolarization.
However, instead of measuring separately σ2ϕR

and σ2ϕL
to

obtain σ2ψ , we directly measure the noise spectral density
of the relative phase, ψ . For this purpose, we record the
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intensity fluctuations of a polarization-synthesized beam
with ϵ ¼ 0 (linear polarization) after transmission through a
Glan-laser polarizer oriented at 45° with respect to the
synthesized linear polarization, as illustrated in Fig. 3(a).
Thereby, small phase variations are linearly converted into
intensity variations, which are recorded by a fast photo-
diode and Fourier analyzed by a spectrum analyzer; see
Fig. 3(b). By integrating the phase noise spectral density
from 1 Hz to 25 MHz, we obtain σψ ≈ 0.09°, which,
according to Eqs. (7) and (10), results in a contribution to
the polarization extinction ratio of about 4 × 10−8.
For the polarization-synthesized optical-lattice applica-

tion, we use the measurement of σψ to obtain the rms
uncertainty, σΔx ≈ 1.2 Å, about the relative position, Δx ¼
x↑ − x↓; see Eq. (6). Importantly, σΔx is much smaller
than the size of the wave packet of atoms prepared in
the motional ground state, which amounts, typically, to
≳20 nm [32].

By comparing the values summarized in Table I, we
realize that the intensity and the phase noise contribute
about 1% of the total measured polarization extinction
ratio. Thus, we deduce that the main factor limiting the
DOP are static spatial polarization inhomogeneities. The
images of the beam profile acquired after the polarizer in
an extinction configuration provide further confirmation of
our findings since the extinction ratio exhibits spatial
variations of the same order of magnitude, around 10−5.
We suggest that the observed spatial polarization inhomo-
geneities originate from stress-induced birefringence in the
collimator of the fiber used to clean the transverse mode of
the polarization-synthesized beam.

B. Phase-noise-induced heating of atoms in a
polarization-synthesized optical lattice

Fluctuations of the optical phases ϕR and ϕL shake the
trap’s positions, x↑ and x↓; see Eqs. (5) and (6). To estimate
the rate of excitations induced by phase noise, we assume a
one-dimensional (1D) harmonic confinement of atoms,
which is a suitable approximation formolasses-cooled atoms
trapped in a deep optical lattice. We model the shaking as a
perturbation to the harmonic trapping potential [34],

UsðxÞ ¼
1

2
mð2πνkÞ2ðx − xsÞ2; ð11Þ

where m is the mass of cesium atoms, νk is the longitudinal
trapping frequency, and xs is the trap position, which is a
fluctuating quantity with noise spectral density SxsðνÞ. Since
the noise spectral density of the position is comparable for
both spin components, without loss of generality, we con-
sider in the remainder of this section the internal state s ¼ ↑.
Using Fermi’s “golden rule,” one directly obtains the

transition rate Rn�1←n for an atom occupying the motional
level n to be transferred to the n� 1 level,

Rn�1←n ¼
2π3mν3k

ℏ
Sx↑ðνkÞ

�
nþ 1

2
� 1

2

�
: ð12Þ

Moreover, Sx↑ðνÞ is directly related to the noise spectral
density of ΔϕR ¼ ϕR − ϕ0 [see Eq. (6)],

SΔϕR
ðνÞ ¼ 4k2Sx↑ðνÞ; ð13Þ

which can be precisely measured by means of a purely
optical setup, as is described below. Hence, the average
excitation rate, _QΔϕR

, of an atomic ensemble is given by

_QΔϕR
¼

X
n

Pðn; tÞðRnþ1←n − Rn−1←nÞ

¼ R1←0 ¼
π3mν3k
2ℏk2

SΔϕR
ðνkÞ; ð14Þ
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FIG. 3. (a) Optoelectronic setup to measure the noise spectral
density, Sψ ðνÞ, of the relative phase, ψ ¼ ϕR − ϕL, between the
R- and L-polarized laser beams. With respect to the setup in
Fig. 2, a Glan-laser polarizer (GLP) oriented at 45° is present
between the quarter-wave plate and the vacuum cell, which
allows us to analyze the phase noise of the polarization-
synthesized optical lattice directly in situ. (b) The measured
phase noise spectral density is shown in units of dBc=Hz [40] (on
the left axis) over more than six decades in frequency, with the
electronic noise floor subtracted. The cumulative rms phase
noise, σψ ðνÞ, is also displayed (on the right axis). The signal is
>20 dB above the electronic noise floor for ν < 1 MHz, and the
noise floor lies at about −152 dBc=Hz for ν > 10 kHz; from the
transimpedance of the photodiode, we estimate the photon shot
noise to lie at −150.5 dBc=Hz (the horizontal dashed line). The
longitudinal oscillation frequency of atoms trapped in the
polarization-synthesized optical lattice is indicated by νk, where
the phase noise is Sψ ðνkÞ ≈ −122 dBc=Hz.
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where Pðn; tÞ denotes the probability that an atom of the
ensemble occupies the nth motional level.
Thus, in order to infer _QΔϕR

from Eq. (14), we measure
the phase noise, SΔϕR

ðνÞ, of one of the two optical lattice
components. Note that this measurement differs from that
discussed in the previous section to obtain the relative
phase noise of the polarization synthesizer, SψðνÞ [see
Fig. 3(b)]. To that end, we employ the optoelectronic setup
illustrated in Fig. 4(a), which consists of a Michelson
interferometer where the two counterpropagating laser
beams of the polarization-synthesized optical lattice are
made to interfere using a monolithic cube (W 40-4, Owis).
We use a low-bandwidth (≲1 kHz) control loop acting on a
piezoelectric actuator to stabilize the interference signal at
the side of the fringe, thereby ensuring that phase fluctua-
tions are linearly converted into intensity fluctuations.

In Fig. 4(b), we show the recorded noise spectral density,
as well as the excitation rate, _QΔϕR

, estimated using
Eq. (14). For a trapping frequency of νk ≈ 117 kHz [for
its measurement, see Fig. 7(a)], which is typical for our
quantum-walk experiments [3,4,6,16], we obtain a phase
noise SΔϕR

ðνkÞ ≈ −122 dBc=Hz, corresponding to an exci-

tation rate of _QΔϕR
≈ 1 quanta=s. Hence, the ground-state

lifetime, 1=R1←0, is about 1 s.
To validate our estimate of the phase-noise-induced

excitation rate, _QΔϕR
, we carry out an independent experi-

mentmeasuring the fraction of trapped atoms as a function of
the time during which the atoms are held in the polarization-
synthesized optical lattice without additional molasses cool-
ing. The measured fraction of remaining atoms is shown in
Fig. 5, revealing a storage time (half-life) of about 6.6 s.
To obtain from this measurement information about _QΔϕR

,
we use a model of atom losses which considers an atom as
lost once heating mechanisms have increased its energy
(measured from the bottom of the trap) above the trap depth
(kB × 80 μK) or when the atom collides with a background-
gas molecule. To account for heating mechanisms, we use a
Fokker-Planck equation for a 1D harmonic trap [34], which
describes the stochastic evolution of the energy distribution
due to fluctuations of the trap position (phase noise),
fluctuations of the trap depth (intensity noise), and recoil
heating by the off-resonant scattering of lattice photons.
Moreover, modeling the evolution only in the longitudinal
direction suffices since the rate of excitations (e.g., due to
intensity fluctuations) in the directions transverse to the 1D
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FIG. 4. (a) Optoelectronic setup to measure the phase noise
values, SΔϕR

ðνÞ and SΔϕL
ðνÞ, of each individual optical standing

wave, which are used to selectively trap atoms in the states j↑i
and j↓i, respectively. The two counterpropagating laser beams
are made to interfere in a Michelson-like interferometer. The
interference signal is recorded by a fast photodiode and Fourier
analyzed using a spectrum analyzer. A slow feedback control
loop stabilizes the phase difference, ΔϕR;L ¼ ϕR;L − ϕ0, between
the two beams using a piezoelectric-actuated mirror to maintain
the interference signal at the side of the fringe. (b) Measured
phase noise spectral density, SΔϕR

ðνÞ, and excitation rate, _QΔϕR
,

estimated using Eq. (14) for different trapping frequencies, ν; the
phase-noise-limited ground-state lifetime corresponds to 1= _QΔϕR

.
The longitudinal trapping frequency of the optical lattice used in
this work is indicated by νk. Lighter tones denote the portion of the
spectrum within the bandwidth of the slow stabilization control
loop. Differences between this spectrum and that in Fig. 3(b) (e.g.,
the servo bump at around 500 kHz) are likely due to a slightly
different setting of the PLLs. As for Fig. 3(b), similar consider-
ations about the subtracted electronic noise floor apply.
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FIG. 5. Storage-time measurement of atoms trapped in a 1D
polarization-synthesized optical lattice with trap depth
U0

↑ ≈ kB × 80 μK. The circles with error bars represent the
measured fraction of atoms remaining trapped after a given hold
time. The solid line shows the result of a numerical simulation
based on a Fokker-Planck equation, where the phase-noise-
induced excitation rate, _QΔϕR

, and the initial temperature of
the molasses-cooled atomic ensemble, T0, are fitted parameters;
see Table II. The square point is acquired with atoms trapped in a
1D optical lattice without polarization-synthesized beam and with
all AOMs supplied with the same rf signal generator. The dashed
line shows the surviving probability of atoms, purely limited by
background-gas collisions, which is measured by holding atoms
in a deep optical trap while they are continuously cooled by an
optical molasses.
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optical lattice is significantly lower owing to the smaller
transverse trapping frequency, ν⊥ ≈ 20 kHz [for its meas-
urement, see Fig. 7(b)], on which the heating rate depends
[34]. We fit the model prediction to the experimental data
(the curve in Fig. 5) with the initial temperature, T0, of the
molasses-cooled atomic ensemble and the phase-noise-
induced excitation rate, _QΔϕR

, being theonly free parameters.
The other parameters are held fixed based on independent
measurements as detailed below. Figure 5 shows that our
model fits the measured data well.
The rate of excitation by intensity noise and the rate of

losses by collisions with the background-gas molecules are
too small to be derived from the fit and, thus, are provided
to the model as fixed parameters based on independent
measurements: By holding atoms trapped in the optical
lattice while they are continuously molasses cooled, we
find that the background-gas-limited lifetime, τcoll, of atoms
in our ultrahigh vacuum apparatus is about 5 min (1=e).
Moreover, from measurements of the spectrally resolved
RIN (see Sec. III A), R2

R;Lð2νkÞ ≈ 1.9 × 10−14 Hz−1, we
estimate [34] that the rate constant, Γ, characterizing
the exponential heating by intensity noise is about
1.3 × 10−3 s−1, corresponding to an intensity-noise-limited
ground-state lifetime, 1=R2←0 ¼ 4=Γ ≈ 50 min, where we
also take into account the RIN of the counterpropagating
laser beam forming the optical lattice, which has a similar
value.
Furthermore, our model does not differentiate between

excitations induced by phase noise from those produced by
the off-resonant scattering of lattice photons since the
excitation rates are, in both cases, independent of the atom’s
energy and are simply added together in the Fokker-Planck
equation. However, one can independently determine [41]
the rate of excitations produced in the lattice direction by
the recoil of the scattered photons, _Qrec ¼ ð1þ 1=3ÞγErec=
ð2πℏνkÞ, by knowing the recoil energy, Erec ¼ ℏ2k2=ð2mÞ,
and the scattering rate of the lattice photons, γ. By probing
the spin relaxation induced by off-resonant scattering, we
measure γ ≈ 12.5 s−1. Thus, we obtain _Qrec ≈ 0.3 quanta=s,
which we provide in our model as a fixed parameter.
The quantities determined by the fitting analysis, T0 and

_QΔϕR
, as well as the other fixed parameters provided in the

fitting model, are summarized in Table II. The table shows
that the dominant heating mechanism is phase noise.
Remarkably, the obtained value of the rate of excitations
induced by phase noise, _QΔϕR

¼ 1.11� 0.06 quants=s,
is in good agreement with the estimate obtained from
the optical measurement of phase noise; see Fig. 4(b). The
intensity noise is found to play no role in the atom losses,
which are dominated by phase noise and, to a lesser extent,
by the recoil heating. Moreover, the estimated initial
temperature, T0 ¼ 7.8� 0.7 μK, is in the range expected
for sub-Doppler molasses cooling and agrees well with
independent temperature measurements using an adiabatic-
lowering technique [42].

To identify the primary origin of the observed phase
noise, SΔϕR

, we conduct additional measurements without
employing the polarization synthesizer. For this purpose,
we replace the polarization-synthesized beam with a beam
of fixed linear polarization and, along with that, we supply
the same rf signal to both of the AOMs employed to
control the two counterpropagating optical-lattice beams.
Measurements show a remarkable suppression of the
phase noise, by about 2 orders of magnitude. Likewise,
storage-time measurements show a considerable increase
in the fraction of trapped atoms for a given hold time (the
square point in Fig. 5), revealing that, when the polari-
zation synthesizer is not employed, the probability of an
atom surviving in the trap is mainly determined by
collisions with the background-gas molecules. This obser-
vation gives clear evidence that the phase noise originates
mostly from the employed DDS-based rf signal generators
(AD9954, Analog Devices). Measurements of the elec-
tronic phase noise at the trapping frequency, νk, yield
−130 dBc=Hz, which is only one decade lower than the
measured optical phase noise, SΔϕR

ðνkÞ.
However, preliminary results show that the latest gen-

eration of DDS chips (e.g., AD9915, Analog Devices)
exhibits a 20-dB-lower electronic phase noise at the
trapping frequency, νk. Employing these chips to steer
the polarization synthesizer holds the promise of achieving
a corresponding reduction (extension) of the heating rate
(phase-noise-limited ground-state lifetime) of the trapped
atoms.

TABLE II. Results of the analysis of the storage-time meas-
urement presented in Fig. 5. The rate of excitations induced by
phase noise, _QΔϕR

, and the initial temperature, T0, are obtained
by fitting our numerical model, which relies on a Fokker-Planck
equation (see the text), to the experimental data. All other
quantities are independently measured and provided to the model
as fixed parameters. Note that the quoted value of 1= _Qrec refers to
the recoil-limited lifetime in the motional ground state along the
lattice direction; for the sake of completeness, we also specify the
overall recoil-limited ground-state lifetime, 0.9 s, which accounts
for the two transverse directions with trapping frequency ν⊥ as
well.

Storage time in an optical trap of
depth U0

↑

6.6 s

Phase-noise-limited ground-state
lifetime (1= _QΔϕR

)
0.90� 0.05 s

Inverse scattering rate (1=γ) 80 ms
Recoil-limited ground-state lifetime
(1= _Qrec)

3.3 s

Intensity-noise-limited ground-state
lifetime (4=Γ)

50 min

Background-gas-limited lifetime (τcoll) 5 min
Trap depth [U0

↑ ¼ mðνkλÞ2=2] kB × 80 μK
Atomic ensemble temperature after
molasses cooling (T0)

kB × ð7.8� 0.7Þ μK
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To confirm that phase noise mainly originates from the
DDS-based rf signal generators and not from the phase
control loop itself, we repeat the measurement of the lattice
phase noise, SΔϕR

, without employing the polarization
synthesizer, yet using independent DDSs to drive the
AOMs. In this case, we find that the amount of phase
noise is comparable to that measured with the polarization-
synthesized beam.

C. Modulation bandwidth of the
polarization synthesizer

We determine the modulation bandwidth of the two
intensity and two phase control loops (see Fig. 2) by
recording their response to a step change of the corre-
sponding set points. To that end, for the phase control loop,
we first synthesize a linear polarization state (i.e., χ ¼ 0)
and then suddenly step the phase of one of the rf signals by
a small amount, say 10°. The phase control loop reacts by
rotating (in real space) the linear polarization by an angle of
10°=2. We record the dynamics of the rotation by meas-
uring the intensity of the polarization-synthesized beam
behind a 45°-oriented polarizer, which serves as a phase-to-
intensity converter. Figure 6 shows an exemplary step
response function of the optical phase control loop for the
R-polarized light-field component. From the derivative of
the step response function displayed in Fig. 6, we further
obtain the impulse response function, whose Fourier trans-
form, in turn, yields the frequency response function of the
control loop (see the inset). From this measurement, we
obtain a modulation bandwidth (3-dB criterion) of about
800 kHz (the dashed red line).
For the intensity control loop, in a like manner, we record

the step response function by suddenly stepping the set-
point intensity. All intensity and phase control loops of the
polarization-synthesizer achieve a comparable modulation
bandwidth, which is primarily limited by the dead time in
the response of the AOMs, which is on the order of 300 ns.

D. Motional excitations induced by the state-dependent
transport of atoms

For applications of polarization-synthesized optical lat-
tices in which atoms are transported (see, e.g., Refs. [1–4,6,
15,16]), it is important that the transport operations do not
excite atoms that are initially prepared in the motional
ground state. To transport atoms quickly (i.e., on the time
scale of 1=νk), yet without creating any motional excitation,
tailored transport ramps are necessary. To that end, optimal
control theory [18] and shortcuts to adiabaticity [19]
provide robust solutions on how to shape both phases,
ϕR;L, and intensities, IR;L. The implementation of optimal
transport will be the subject of future experimental work.
Here, we characterize motional excitations following an

adiabatic transport operation. For this purpose, we first cool
the atoms into, or close to, their motional ground state by
resolved-sideband cooling using microwave transitions
[5,32,43] (for the direction longitudinal to the lattice)
and Raman transitions [44–46] (for the directions trans-
verse to the lattice). Sideband cooling also initializes all
atoms in state j↑i. Subsequently, we translate the U↑ðx; tÞ
optical-lattice potential by an integer number of lattice sites
using a 1-ms-long smooth ramp of the phase, ϕR [see
Eqs. (5) and (6)]. The displacement of the lattice leads to an
adiabatic acceleration and deceleration of atoms in j↑i,
which are thereby displaced by the desired number of
lattice sites. We use motional sideband spectroscopy at the
end of the transport operation [32,47] to measure the
probability of creating an excitation. A typical sideband
spectrum is shown in Fig. 7(a) for the longitudinal
direction, and in Fig. 7(b) for the transverse direction.
The three central peaks of these spectra correspond to the
heating (blue) sideband transition j↑; ni → j↓; nþ 1i, to
the carrier transition j↑; ni → j↓; ni, and to the cooling
(red) sideband transition j↑; ni → j↓; n − 1i, where n
denotes the motional quantum number.
As a figure of merit to estimate the number of motional

excitations, we use the ratio of the height of the cooling
sideband to that of the heating sideband, r. Assuming that
the motional states are Boltzmann distributed [48], this
ratio is directly related to the average number of motional
excitations [47],

n̄ ¼ r
1 − r

: ð15Þ

The resulting mean motional level, n̄, is displayed for
increasing transport distances in Fig. 7(c) for the longi-
tudinal direction, and in Fig. 7(d) for the transverse
direction. We observe virtually no excitation caused by
the adiabatic transport operations along the longitudinal
direction, and only small excitations in the transverse
directions (≲5 × 10−3 quanta per lattice site).
Additional measurements show excitation-free transport

also for nonadiabatic transport operations using bang-bang
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transport pulses [37], which last about 20 μs (i.e., two
oscillation periods) per lattice site [16].

IV. CONCLUSIONS AND OUTLOOK

In this work, we have presented an experimental setup
for the precision synthesis of arbitrary polarization states,
demonstrating the capability to modulate the SOP with a
bandwidth of 800 kHz. Residual temporal fluctuations of
the SOP, which are not suppressed by the phase and
intensity control loop, limit the DOP to 99.9999(1)%.
We also find that the measured DOP of 99.99% is mainly
limited by spatial inhomogeneities of the polarization state
across the beam profile. In the future, suppressing polari-
zation inhomogeneities by, e.g., reducing stress-induced
birefringence in the fiber collimator holds the promise of
synthesizing polarization states with DOPs in the range
of 1 − 10−6.
Furthermore, we have shown the application of our

polarization synthesizer to form state-dependent polariza-
tion-synthesized optical lattices. Our implementation of
state-dependent transport based on the polarization syn-
thesizer overcomes the shortcomings of former realizations
[1,2,4,13], which employed electro-optical modulators to
control the SOP: The individual control of the two optical
lattices with opposite circular polarizations not only per-
mits fully independent shift operations of both atomic spin
components but also enables an unprecedented control of
the individual lattice depths in state-dependent optical
lattices. Such a control enables the application of optical
control methods [18] and shortcuts to adiabaticity [19] to
dramatically speed up transport operations.

Utilizing atoms as a measurement probe, we have
provided an independent in situ characterization of the
polarization synthesizer demonstrating a remarkably low
heating rate at the level of 1 quanta=s, primarily limited by
the phase noise of the DDS rf signal generators, and
vanishing motional excitations in adiabatic atom-transport
applications.
While the polarization synthesizer is developed, in the

first place, for precise atom transport, it may find appli-
cations in other quantum technologies—or even in fiber-
based telecommunication networks—to manipulate with
high bandwidth and precision the polarization state
of a laser beam comprising one, or a few, wavelength
components.
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