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Abstract

In this thesis I present the realization of a technique for building strings of neutral atoms
stored in a standing wave optical dipole trap with any desired interatomic separations
atom by atom. As the first application of this technique I demonstrate the preparation
of equidistant strings of atoms. Further, I demonstrate that this technique allows us
to insert two atoms into a single potential well of a standing wave dipole trap and to
deterministically induce light induced collisions between these atoms.

The first part of this thesis (Chapters 2 and 3) is devoted to the presentation of tools
for trapping and detecting single atoms. A magneto-optical trap is our source of a desired
small number of cold atoms. Strings of atoms are stored in a standing wave optical dipole
trap. All spatial manipulations with the atoms are carried out with two dipole traps. An
intensified CCD camera in combination with molasses cooling allows us to nondestructively
observe and determine the positions of the atoms.

In the second part (Chapter 4) I describe the realization of the spatial manipulation
of the atoms. I demonstrate the creation of strings of up to seven atoms by rearranging
initially irregularly spaced atoms. The rearrangement is carried out by extracting atoms
out of the initial string and by reinserting them back at predetermined positions using a
second standing wave dipole trap operated as optical tweezers. Using this method, the
distance between simultaneously trapped atoms can be actively controlled with a precision
of 0.78(±0.05) µm rms and a success rate of 98+2

−5 %. This precision corresponds to only
3-4 potential wells of the standing wave trap. Further, I experimentally demonstrate that
our reinsertion technique is compatible with the insertion of an atom into the potential of
the standing wave already occupied by another atom. We can induce inelastic interaction
between these atoms by illuminating them with an optical molasses. The detected success
rate of the insertion of one atom into the potential well occupied by the other atom is
16+4
−3 %, which is limited by the precision of insertion with our optical tweezers. Further-

more, I present analytical models of insertion and extraction processes which allows to
identify the main mechanisms limiting the performance of our tweezers, e. g., precision
and efficiency. Finally, I discuss the possibility to apply of our rearrangement technique
to larger number of atoms.

Parts of this thesis have been published in the following papers:

1. Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan,
D. Meschede, D. Schrader and A. Rauschenbeutel, An atom-sorting ma-
chine, Nature, 442, 151 (2006)
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D. Meschede, D. Schrader, S. Reick and A. Rauschenbeutel, Inserting two
atoms into a single optical micropotential , quant-ph/0606113 (2006)

3. Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan,
A. Rauschenbeutel and D. Meschede, Precision preparation of strings of
trapped neutral atoms, physics/0607294 (2006)

4. Y. Miroshnychenko, D. Schrader, S. Kuhr, W. Alt, I. Dotsenko, M. Khu-
daverdyan, A. Rauschenbeutel and D. Meschede, Continued imaging of the
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Chapter 1

Introduction

Technological advances such as laser cooling and trapping give us the possibility to
experiments with ultracold atoms and even with new states of matter [1, 2, 3]. Atoms
trapped in optical lattices have already led to the creation of Mott insulator state [4]
and to possibility to experiment with single atoms [5, 6]. Moreover, a system of neutral
atoms stored in optical lattices is a promising model system for new areas of research:
In quantum information processing [7, 8], single atoms in different lattice sites can be
used as qubits. In the area of quantum simulations [9, 10], optically trapped atoms can
serve as a model system for a lattice of spin-1/2 particles interacting with each other
allowing us, for example, to simulate hamiltonians from condensed matter physics. In
chemistry, single atoms can be coherently bound into a molecule [11, 12, 13]. In all these
experiments the creation of exactly controlled initial configuration and further control
over external and internal degrees of freedom of the atoms is required.

There are two general approaches towards the creation of these experimental conditions:
In the “top-down” approach one starts with a large sample of Bose-condensed atoms which
are adiabatically loaded into a three-dimensional optical lattice. By inducing a quantum
phase transition to the Mott insulator state [4, 14], a three-dimensional array with almost
exactly one atom per lattice site is created. The control over the separations between
the atoms in this approach is realized using the method of spin dependent transport [15].
Using this approach, the creation of large-scale entanglement using controlled collisions
between the atoms in neighbouring lattice sites has already been demonstrated [16]. The
production of dimer molecules using atoms in optical lattices has also been realized by
starting with exactly two atoms per lattice site [17, 18, 19, 20, 21], where thousands
of independent reactions in parallel were carried out. A draw-back of this approach is
the small separation between atoms stored in adjacent sites which up to now makes the
manipulation and detection at the level of an individual atom impossible.

In the “bottom-up” approach strings of optically trapped neutral atoms are built atom-
by-atom while maintaining full control over the degrees of freedom of each individual atom.
In our group single neutral atoms have been prepared and observed in optical dipole
traps [5, 6]. When stored in a standing wave dipole trap, formed by a pair of counter-
propagating laser beams, the absolute positions of the atoms can be optically measured
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2 CHAPTER 1. INTRODUCTION

with sub-micrometer precision along the beam axis [22]. In addition, the atoms can be
positioned along this axis using the dipole trap as an “optical conveyor belt” [6, 23]. In
these experiments, the number of potential wells separating simultaneously trapped atoms
can be exactly determined by optical means [22]. We have demonstrated that the state of
an individual atom being part of an irregularly spaced string in the standing wave dipole
trap can be selectively prepared and read out with high spatial resolution [24].

In this work I extend this list by the ultimate spatial manipulation of strings of atoms
and present the first results concerning controlled interactions of two individual atoms.
The method realized here allows us to control the positions of individual atoms of the
string. The atoms are initially stored in random potential wells of a standing wave dipole
trap as on an “object holder”. Individual atoms are then extracted using “optical tweezers”
and inserted at predetermined positions on the object holder. I demonstrate the creation
of small strings consisting of up to 7 atoms with equal separations. Furthermore, I have
carried out an analysis of the processes of extraction and of insertion of the atoms with
our optical tweezers. This analysis allows to identify the main effects limiting both the
precision and the scalability.

Further, I present first results concerning the controlled interaction of two individual
atoms inside the same micropotential of the standing wave of the dipole trap. In this
experiment, one of the two atoms initially stored in different potential wells is extracted
with the optical tweezers and placed into the potential well occupied by the second atom.
By illuminating these two atoms with an additional laser beam we have deterministically
induced inelastic interaction between the atoms.



Chapter 2

Trapping of a single neutral atom

Electromagnetic cooling and trapping of neutral atoms plays an essential role in our exper-
iments, allowing us to isolate individual atoms in space and control their external degrees
of freedom, i. e., number, position, temperature. We use two different types of traps: a
magneto-optical trap and an optical dipole trap. Therefore, this chapter is divided into
two parts covering our realization of the magneto-optical trapping (Sec. 2.1) and of the
optical dipole trap for neutral cesium atoms (Sec. 2.2).

2.1 Magneto-optical trap

Cooling of atoms with near-resonant laser light has been first proposed three decades ago
by T. Haensch and A. Shawlow [25]. After the first demonstration of the three dimensional
cooling [26] and the subsequent modification with the inhomogeneous magnetic field, this
idea evolved into a magneto optical trap (MOT) [27]. Since than, the MOT became a
versatile tool for preparing samples of neutral atoms at submillikelvin temperatures and
keeping them trapped for long times.

We use a specially designed MOT as a source of single cesium atoms for our experiments.
The fluorescence signal from the MOT is imaged on a single photon detector, which allows
us to count the exact number of atoms in real-time.

2.1.1 Operating principle

The working principle of the MOT relies on a velocity dependent cooling force to provide
energy dissipation (Doppler cooling) and on a position dependent restoring force to provide
spatial confinement of the atoms. The idea of the magneto optical trapping can be under-
stood from a one-dimensional model, which can then be extended to a three-dimensional
case.

Doppler cooling

Consider a two-level atom with a stable ground state and an excited state with a lifetime
of 1/Γ, where Γ is the natural linewidth. The levels are coupled by a radiative transition
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4 Chapter 2: Trapping of a single atom

Figure 2.1: One-dimensional picture of the MOT. a) A model atom with J = 0 and
J ′ = 1. The transitions with ∆mJ = −1, 0, 1 can only be excited by σ−, π and σ+-
polarized light, respectively. b) A magnetic field gradient shifts the Zeeman sublevels
such that the laser light from the beam from the right is preferentially absorbed, pushing
the atom back to the center.

with resonance frequency ω0. The atom is illuminated by a laser beam with frequency
ω and intensity I. The atom absorbs photons from the laser beam and spontaneously
re-emits them. The corresponding scattering rate is given by

Rs(I, ∆) = s0
Γ
2

[
1 + s0 +

(
2∆
Γ

)2
]−1

, (2.1)

where s0 = I/I0 is the resonant saturation parameter, I0 is the saturation intensity of the
atomic transition, and ∆ = ω−ω0 is the detuning of the laser from the atomic transition.

Suppose, the atom is moving in the field of the two counterpropagating laser beams,
which are slightly red-detuned with respect to the atomic transition (∆ < 0). Then, in the
reference frame of the atom moving in the direction opposite to the propagation of one of
the beams, the frequency of the laser light will be blue-shited due to the Doppler shift, and
the absolute value of the detuning ∆ will be smaller for this beam. Therefore, according
to Eq. 2.1, the absorption rate from the beam, opposite to the direction of the motion of
the atom, will increase, and it will decrease for the other beam. Since the direction of
the consequent re-emission of the photon is random, the average momentum transfer to
the atom is in the direction opposite to its motion, thereby slowing down (or “cooling”)
the motion of the atom. For small velocities the resulting force can be approximated by
F ∼ v, which resembles a motion of a particle in a viscous medium (“optical molasses”).

Position dependent force

Consider in addition to the previous model, that the angular momenta of the states of the
model atom are J = 0 for the ground and J = 1 for the excited states. In the absence of
a magnetic field the mJ -levels of the exited state are degenerate and are coupled to the
ground state by different polarizations of the laser light, see Fig. 2.1a. The presence of a
magnetic field shifts the excited states due to the linear Zeeman effect by

∆E = mJgJµBB, (2.2)
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Figure 2.2: Three-dimensional schematic of the MOT. Two magnetic coils in anti-
Helmholz configuration produce the quadrupole field. Six circularly polarized laser beams
exert cooling and trapping forces.

where gJ is the Landé g-factor and µB is the Bohr’s magneton.
Suppose, the atom is placed in a linearly varying inhomogeneous magnetic field

B(z) =
dB

dz
z, (2.3)

where dB/dz is the field gradient in the z-direction. Assume dB/dz is positive and
gJ > 0. Then, for an atom on the right of the zero point of the magnetic field, the level
|J = 1,mJ = −1〉 is shifted downwards, into resonance with the red- detuned cooling
laser, see Fig. 2.1b. If the polarization of the laser beam from the right is σ−, the
absorption of the photons of this beam will increase. At the same time, if the polarization
of the beam from the left is σ+, the corresponding photon absorption will be even reduced
due to the increased detuning. This will result in a net force, pushing the atom to the
left. Correspondingly, an atom on the left of the zero of the magnetic field gradient will
be pushed to the right. This restoring force results in a one-dimensional localization of
the atom. Together with the velocity dependent force this is a magneto optical trap,
which can cool and trap neutral atoms.

The one-dimensional model of the MOT can be readily extended to the three-
dimensional case. The six counter propagating laser beams with the corresponding circular
polarizations cross in one point. The necessary magnetic field gradient is produced by a
magnetic quadrupole field with the zero of the magnetic field at the crossing point of the
laser beams, see Fig.2.2. This field can be produced by two coils in anti-Helmholtz con-
figuration.

2.1.2 Experimental setup

The details of our MOT-system, i.e., the vacuum system, the cooling laser system and the
magnetic coils, have been extensively described in previous theses of our group [28, 29].
Here, only a short overview of these components is presented.
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Figure 2.3: Simplified level scheme of the Cs atom. Shown are the transitions used for
cooling and repumping in the MOT.

Vacuum setup

All our experiments are performed in a 30×30×125 mm3 glass cell. It provides an optimal
optical access from all the sides. The cell is attached to a vacuum chamber. A constantly
working ion getter pump produces an ultra-high vacuum in the glass cell with a pressure
of less than 10−10 mbar. A reservoir containing cesium is connected to the chamber by
a valve, which is usually closed. Opening this valve about once a week for a few minutes
sufficiently rises the cesium partial pressure for our experiments with single atoms.

Laser system

The closed transition from F = 4 to F ′ = 5 of the cesium D2 line (λ = 852 nm) is used for
cooling, see Fig, 2.3. Consequently, the frequency of the cooling laser is red detuned by
approximately Γ = 2π ·5 MHz from this transition. After an atom has absorbed a photon,
it can spontaneously decay only to F = 4 and is ready to absorb the next cooling photon.
There is, moreover, a small probability of off-resonantly exciting the atom to F ′ = 4-level,
from where it can decay to the F = 3 ground state. Due to the large hyperfine splitting
the cooling laser does not excite this level. In order to return these atoms into the cooling
cycle, a repumping laser excites the F = 3 to F ′ = 4-transition. From the F ′ = 4-state
the atom can decay either back into the F = 3-state and the repumping cycle repeats, or
to the F = 4-state, restoring the cooling cycle.

Geometrically, the MOT consists of three pairs of orthogonal laser beams, intersecting
in one point inside the glass cell, see Fig. 2.4. The counter propagating beams are created
by retro-reflection. The diameter (2w0) of the MOT beams is about 2 mm with the typical
power of 150 µW per beam, resulting in the saturation parameter of

s = s0

[
1 +

(
2∆
Γ

)2
]−1

= 0.5 (2.4)
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in each beam. The repumping laser is linearly polarized and is shined into the MOT
area along the axis of the glass cell. We typically use 1 mW focused to about 0.5 mm.
All the MOT lasers are diode lasers built in Littrow configuration, and their frequencies
are actively stabilized using cesium polarization spectroscopy. Electronically controlled
mechanical shutters are used to switch on and off each laser beam with a switching time
of < 100 µs.

Magnetic coils

The quadrupole field of the MOT is created by two water-cooled coils in anti-Helmholtz
configuration along the z-axis, see Fig. 2.4. They allow to run currents of about 16 A,
thereby providing a high magnetic field gradient of 340 G/cm. The electronically controlled
power supply of the coils allows us to switch between “high current” (16 A), “low current”
(1.6 A) or “off”. The switching time is limited by eddy currents within the copper cooling
plate, which take about 50 ms to decay.

With the high gradient of the magnetic field cesium atoms are randomly loaded into the
MOT from the thermal background vapor at a loading rate of about 0.03 atoms/s. This
slow dynamics of the atom number in the MOT is necessary for performing experiments
at the level of few atoms. At the same time we need a possibility to quickly load atoms
at the beginning of each experiment.

In order to speed up the loading process, we temporarily reduce the magnetic field gra-
dient to ∂B/∂z = 34 G/cm for the time of several tens of milliseconds. This increases the
capture cross section of the MOT, thereby increasing the loading rate to about 50 atoms/s.
Then, the field is switched to its initial value, confining the loaded atoms in the center
of the MOT, and reducing the loading rate. Varying the loading time, one can select a
specific average number of loaded atoms ranging from 1 to 50.

Atom counting

The atoms in the MOT can be counted by collecting their fluorescence light. Our atom
counting method relies on the fact that each atom equally contributes to the intensity of
the MOT fluorescence signal and on the high signal to noise ratio of our detection system,
allowing us to distinguish discrete steps in the detected intensity for each capture of loss
event in the MOT.

The fluorescence light from the MOT is first collected by a custom-designed diffraction
limited objective [30]. Due to its high numerical aperture of 0.29, it collects light from
about ηobj = 2 % of the solid angle. The light is then divided into two parts by the
beam splitter. The reflected light is collected by an intensified CCD (ICCD, quantum
efficiency of ηICCD = 10 %) camera, see Sec. 2.2.5. The transmitted light is focused onto
an avalanche photodiode (APD, quantum efficiency of ηAPD = 50 %), see Fig. 2.4. In order
to minimize the stray light background the entire optical path of the imaging system is
wrapped in black paper and aluminum foil, the reflections of the MOT laser beams off the
glass cell are carefully blocked, and the light is spectrally filtered using interference filters.
Moreover, the light going to the APD is additionally spatially filtered using a pinhole
[23, 29].
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Figure 2.4: Experimental setup with the detection optics for the MOT fluorescence.
The fluorescence light is collected and collimated by an objective. One part of the
fluorescence signal is spatially and spectrally filtered and detected with an avalanche
photo diode (APD). The other part is only spectrally filtered and sent into an intensified
CCD camera.

The low background and the high signal to noise ratio of the detected fluorescence
signal allows us to distinguish discrete levels in the detected intensity, see Fig. 2.5. For n
trapped atoms we detect

Nn = (Rstray + n ·R1atom) · τint (2.5)

photons during the integration time τint. Here, Rstray is the count rate due to the stray
light and the detector background, R1atom is the detected one-atom fluorescence rate, see
Fig. 3.1a. For typical MOT parameters, we detect R1atom = 35000/s and Rstray = 25000/s.
Synchronously, the CCD records about RCCD

1atom = 7000/s.
The standard deviation of the photon number is fundamentally limited by Poisson

statistics to N
−1/2
n . Fluctuations of the MOT laser beams including intensity, phase and

pointing stability are taken into account in analogy with the description of intensity noise
in laser beams by a global relative intensity noise RIN = δN2/N2 where δN2 represents
the rms-value of these fluctuations. In our case RIN = 0.012–0.022.

In order to distinguish between n and n + 1 atoms, the total width of the peaks corre-
sponding to neighboring atom numbers (∆N = (Nn + RIN ·N2

n)1/2) has to be compared
to their separation R1Atomτint. In order to distinguish atom numbers with better than
95% confidence, the ratio

kn =
∆N

Nn+1 −Nn
=

(
Rstray

R1Atom
+ n

)(
1

nR1Atomτint + Rstrayτint
+ RIN

)1/2

(2.6)

must be smaller than 1/4. In our experiments, RIN begins to dominate this ratio for
integration times τint ' 60 ms. This time was chosen discriminating atom numbers from



2.2 Optical dipole trap 9

Figure 2.5: Count rate of the APD detecting the fluorescence from the MOT. Each
trapped atom contributes the same amount of fluorescence to the signal. Each time
an atom enters or leaves the trap the fluorescence signal increases or decreases step like,
respectively. The exact number of trapped atoms can thus be unambiguously determined
from the fluorescence signal. Note that this picture was taken in a system without the
interference filter. Therefore, the one atom fluorescence rate is higher than the value
given in the text.

the APD signal, since it is short compared to other experimental procedures, and longer
times do not improve the signal to noise ratio. This method allows us to discriminate 1
to 20 atoms in the MOT with confidence level above 95 %.

2.2 Optical dipole trap

An alternative to the radiation pressure traps, such as the MOT, is an optical dipole trap.
This trap offers certain advantages such as trapping of atoms in long living internal states
in a conservative potential, reduced atomic scattering rate and long coherence times. The
optical dipole trap relies on the electric dipole interaction with far-detuned light. The
optical dipole force, acting as confining mechanism for neutral atoms in a dipole trap,
was first considered by Letokhov in 1968 [31], who suggested that atoms might be one-
dimensionally confined at the nodes or aninodes of a standing wave detuned far below
or above the atomic resonance. Ashkin suggested three-dimensional traps for neutral
atoms in 1978 [32].The action of the dipole force on neutral atoms was demonstrated by
Bjorkholm et al. in the same year [33]. The first demonstration of an optical trap for
neutral atoms was done in 1986 by Chu et al. [34]. After this, dipole traps become a
valuable, widely used tool for the manipulation of neutral atoms [35].

The action of the optical dipole forces is not restricted to neutral atoms, but affects
any small polarizable particle. The first demonstration of the trapping of micron-sized
particles was done in 1970 by Ashkin [36]. The further development of this technique [37]
is widely used in biological, chemical and physics experiments as “optical tweezers” [38].
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In our experiments we use two optical dipole traps. One of them is used as an “object
holder” for neutral atoms loaded from the MOT. It is important to note, that also we call
this trap “object holder”, the atoms are held free in space isolated from any contact with
matter and not on the surface of a substrate. After the positions of all the atoms on the
object holder have been determined, we use another dipole trap as “optical tweezers” to
pick up a selected atom and to place it to some other position on the object holder. In
this chapter I concentrate on the realization of the dipole trapping, whereas the spatial
manipulation is covered in Ch. 4.

2.2.1 Dipole force on a two level atom

Classical model

The classical model gives an intuitive and transparent insight into the origin of the dipole
force [35]. In this model the atom is a damped harmonic oscillator subject to the classical
radiation field.

Consider an atom placed into laser light. The electric component of the field E induces
an atomic dipole moment p that oscillates at the driving frequency ω:

p = αE, (2.7)

where p(r, t) = ep(r) exp(−iωt) + c.c., E(r, t) = eE(r) exp(−iωt) + c.c. and e is the unit
polarization vector. α is the complex atomic polarizability, which depends on the driving
frequency ω.

The interaction potential of the induced dipole moment p and the electric field E is
the dipole potential Udip:

Udip = −1
2
〈p ·E〉 = |E|2 Re(α), (2.8)

where 〈.〉 denotes the time average over the rapid oscillating terms, and the factor 1
2 takes

into account that the dipole moment is induced and not a permanent one. Introducing
I = 2ε0c |E|2, one gets

Udip = − 1
2ε0c

Re(α)I. (2.9)

This demonstrates that the potential energy of the atom in the field is proportional to
the intensity I and to the real part of the polarizability. The latter describes the in-phase
component of the dipole oscillation, showing the dispersive nature of the interaction. The
dipole force itself is

Fdip(r) = −∇Udip(r) =
1

2ε0c
Re(α)∇I(r). (2.10)

The considerations so far are valid for any polarizable neutral particle in any oscillating
electric field.

The analytic form of the atomic polarizability α(ω) is derived in Lorentz’s model of a
classical harmonic damped oscillator. In this picture, an electron with the mass me and
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elementary charge e is considered to be bound elastically to the core with an oscillation
eigenfrequency ω0, corresponding to the optical transition frequency. The dipole radiation
of the oscillating electron results in the damping Γ = e2ω2

0/(6πε0mec
3). The corresponding

atomic polarizability is then

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − i

(
ω3/ω2

0

)
Γ

. (2.11)

Substitution of Eq. 2.11 into Eq. 2.9 yield the expression for the trap depth

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ
ω0 + ω

)
I(r). (2.12)

If the absolute value of the detuning ∆ ≡ ω−ω0 is much smaller than the optical frequency
ω0, which holds for our experiment, the rotating wave approximation can be applied to
further simplify Eq. 2.12:

Udip(r) = −3πc2

2ω3
0

Γ
∆

I(r). (2.13)

The last expression demonstrates the important point for dipole trapping that the sign
of the dipole potential depends of the sign of the detuning. For ∆ < 0, which holds for our
experiment, the dipole potential is negative and the interaction thus attracts atoms into
the light field. Potential minima are therefore found at positions with maximum intensity.

Quantum model

In the quantum mechanical approach, the effect of far-detuned laser laser light on the
atomic level can be treated as a perturbation in second order of the electric field, i. e.
linear in terms of the light intensity. The corresponding Hamiltonian is Ĥ = −~̂µ ·E, where
~̂µ = −er is the electric dipole operator. The second order energy shift of the i-th atomic
energy level in the non-degenerate case of the time independent perturbation theory is
then given by

∆Ei =
∑

j 6=i

∣∣∣
〈
j|Ĥ|i

〉∣∣∣
2

Ei − Ej
, (2.14)

where Ei is unperturbed energy. Further, a “dressed-state” view [39] for the relevant
energies Ei is applied considering the combined system of “atom plus field” [35]. In its
ground state the atom has zero internal energy and the energy of the field is n~ω, where
n is the number of photons. This results in the total energy Ei = n~ω for the unperturbed
state. If a photon is absorbed by the atom, its energy becomes ~ω0, whereas the field energy
is (n − 1)~ω. This results then in the total energy Ej = ~ω0 + (n − 1)~ω = −~∆ + n~ω.
Therefore, the denominator of Eq. 2.14 becomes Ei − Ej = ~∆.

For a two-level atom Ĥ = −µ̂E, and the Eq. 2.14 simplifies to

∆Eg =
|〈e|µ̂|g〉|2

∆
|E|2 =

3πc2

2ω3
0

Γ
∆

I (2.15)



12 Chapter 2: Trapping of a single atom

Figure 2.6: Light shifts for a two-level atom. a) Red-detuned light (∆ < 0) shifts
the ground state downwards and the excited state upwards by the same amount. b)
A spatially inhomogeneous field like a Gaussian laser beam produces a ground state
potential well, where an atom can be trapped.

for the ground state and

∆Ee = −3πc2

2ω3
0

Γ
∆

I (2.16)

for the excited state, using the relations for the intensity of the field I = 2ε0c|E|2 and
for the spontaneous decay rate Γ = ω3

0
3πε0~c3 | 〈e|µ̂|g〉 |2. The result Eq. 2.15 shows that the

optically induced shift, the “light shift”, of the ground state exactly corresponds to the
dipole potential Eq. 2.13. The excited state shows the opposite shift, see Fig. 2.6a. In the
interesting case of low saturation, the atom resides most of the time in its ground state. In
a spatially modulated light field like a Gaussian beam, one can interpret the light shifted
ground state as the trapping potential for the atom, see Fig. 2.6b.

The important difference between the classical and the quantum mechanical oscillator
is the possible occurrence of saturation, which occurs at too high intensities of the driving
field. But for the dipole trapping, only the unsaturated case is of relevance. As the
consequence, Eq. 2.13 and Eq. 2.15 derived for these models agree.

2.2.2 Dipole force on an Alkali-atom

The existence of numerous possible resonant transitions in a Cs atom makes the calcula-
tions of the trapping potential less transparent. The classical model can approximately
tackle this problem by applying Eq. 2.12 to each transition separately and adding up the
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Figure 2.7: Beams of the HDT, VDT and the vertical beam of the MOT. Lens L focuses
the incoming beam of the VDT at the position of the MOT. This beam is combined with
the vertical beam of the MOT using a dichroic mirror. The spherical mirror retro-reflects
the beam of the VDT to create a standing wave pattern. The beams of the HDT are
focused at the position of the MOT and cross the VDT.

results weighted with each transition’s oscillator strength fosc. The oscillator strength is
used as a statistical weight of the strength of each transition.

For the trapping lasers in our experiment (1064 nm and 1030 nm), only D1- and D2-
transition contribute significantly to the dipole force, whereas the relative contribution
of the next strongest transition (to the 7P3/2) is only 3 · 10−5 [29]. The corresponding
oscillator strength for the cesium D1 (λD1 = 894 nm, ΓD1 = 2π · 4.56 MHz) and D2
(λD2 = 852 nm, ΓD2 = 2π · 5.22 MHz) lines are fosc,D1 = 0.344 and fosc,D2 = 0.714,
respectively. One obtains from the contributions of the D1- and D2-transitions

Udip(r) = −3πc2A

2
I(r) (2.17)

with

A = fosc,D1
ΓD1

ω3
D1

(
1

ωD1 − ω
+

1
ωD1 + ω

)
+ fosc,D2

ΓD2

ω3
D2

(
1

ωD2 − ω
+

1
ωD2 + ω

)
. (2.18)

The quantum mechanical calculation of the light shifts including the multilevel structure
of a cesium atom was done by D. Schrader [40].

2.2.3 Horizontal dipole trap

Historically, we had one standing wave optical dipole trap oriented horizontally (HDT),
see Fig. 2.7. This trap we use as an “object holder”. The details about our horizontal
dipole trap have been extensively described in the thesis of D. Schrader [40]. Here, I
describe only the key properties, important for our experiments.
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Trap parameters

The horizontal dipole trap consists of two counter propagating Gaussian laser beams
with wavelength λHDT = 1064 nm, waist radius measured to be wHDT = 19 µm by the
oscillation frequency measurement, see Sec. 2.2.3. This waist and all other given beam
sizes are to be understood as a 1/e2-radius of the beam. The beams have the same waist
position, linear polarization and optical power. The two beams are created by dividing a
beam from a Nd:YAG laser, see Fig. 2.8a. Each beam goes first through an acousto-optic
modulator (AOM) for the realization of an optical “conveyor belt”, see Sec. 4.1, and then
the beams are overlapped to create a standing wave interference pattern with the waist
at the position of the MOT, see Fig. 2.7. The corresponding trap profile, neglecting the
Guoy phase as well as the curvature of the wavefronts of the Gaussian beams, is

UHDT(x, y, z) = −U0
HDT e

− 2(x2+z2)

w2
HDT cos2(kHDT · y), (2.19)

since the trap profile is proportional to the intensity distribution of the laser light, see
Eq. 2.17. In the case of 100 % contrast of the standing wave, the depth of the HDT is

U0
HDT = 3πc2A

P

πw2
HDT

, (2.20)

where P is the leaser power per beam.
For typical optical power P = 1 W per beam, the trap depth is U0

HDT/kB = 0.8 mK
determined from the oscillation frequency measurement, see Sec. 2.2.3.

Single atom transfer efficiency

Our MOT allows us to prepare and reliably count single atoms. These atoms are then
loaded into the HDT by simultaneously operating both traps during several tens of mil-
liseconds. A high transfer efficiency of atoms between the MOT and the dipole trap is a
prerequisite to our experiments.

The single atom transfer efficiency was measured by repeating the following sequence:
One atom on average was prepared in the MOT. This atom was then loaded into the HDT
and held for 100 ms. This was followed by the reloading of the atom back into the MOT
for counting. The events with only one atom at the beginning were then post selected, in
order to exclude any collision events between the atoms during this time, see Sec. 3.3.1.
The ratio of the final number of atoms to the initial number of the loaded atoms yields
the single atom transfer efficiency, which is in our case 98.7+0.7

−1.1 %. The error of this value
comes from the binomial statistics.

Lifetime of atoms

The lifetime of atoms in the trap gives the estimate of the upper limit of the time scale
for the experiments with the HDT.

In order to measure the lifetime, the following experimental sequence was executed:
Initially, four atoms on average were loaded into the MOT and their initial number was
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Figure 2.8: Block diagram of the laser systems of our dipole traps. a) The beam from
a Nd:YAG laser is divided into two parts to create the horizontal standing wave dipole
trap, overlapping with the MOT. b) The vertical standing wave dipole trap is created by
retro reflecting the beam from an Yb:YAG laser. See text for details.

determined from the fluorescence signal. The atoms were then transferred into the HDT
and the MOT was switched off. After certain time, the rest of the atoms was reloaded
back into the MOT for counting. The survival probability of the atoms after storing them
for a certain time was calculated as the ratio of the final number to the initial number of
atoms. The result of this measurement for different storage times in the HDT is presented
in Fig. 2.9.

An exponential function p(t) = p0 exp (−t/τ) with the free parameters τ and p0 was
fitted to the experimental points, see Fig. 2.9. The resulting 1/e-decay time is τ = 8(±1) s,
but p0 = 112(±2)%, which is higher than expected 100%. This result indicates that the
decay is not purely exponential, as it would be expected if the atom lifetime in the HDT
was limited by background gas collisions only. Indeed, the experimental points suggest
that the survival probability has a plateau shape for times shorter than one second, and
only then begins to decay. This behavior can be understood assuming that the storage
time in the trap is limited by heating effects [41]. The initial temperature of atoms in the
trap is about 0.1 U0

HDT. Due to the heating effects in the HDT, the temperature of the
atoms increases. After about one second the temperature reaches the value of the depth
of the HDT and the atoms start to leave the trap.

In our case the heating effect is mainly caused by axial fluctuations of the standing
wave pattern [42, 29]. These fluctuations come from the phase noise of the frequency
synthesizer driving the AOMs of the HDT, see Sec. 4.1. In Sec. 2.2.5 we show that by
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Figure 2.9: Measurement of the lifetime of the atoms in the HDT. The solid line is an
exponential fit to the experimental data. Every point presents the result of about 30
repetitions of the sequence.

cooling atoms, we can reach the background limited lifetime of about 60 s.

Oscillation frequencies

In harmonic approximation, the axial and the radial oscillation frequencies of an atom in
the center of the trap are connected with the depth of the trap U0

HDT and the waist of the
Gaussian beam of the trap wHDT by

Ωax = 2π

√
2U0

HDT

mCsλ2
HDT

(2.21)

Ωrad =

√
4U0

HDT

mCsw2
HDT

. (2.22)

Therefore, by measuring these frequencies, one can independently calculate the waist of
the Gaussian beam of the HDT and the depth of the trap for a certain optical laser power.

The method for measuring these frequencies is based on the fact that the atoms in a
trap will be rapidly parametrically heated up and lost from the HDT, if the depth of the
trap is modulated at exactly twice the oscillation frequency of the atoms in the trap [29].
For this, we load atoms into the trap, modulate the trap depth, and finally measure the
survival probability of the atoms for this modulation frequency.

Since the trapping potential of the standing wave dipole trap has a Gaussian form in the
radial directions and a sinusoidal form in the axial direction, the harmonic approximation
holds only for cold atoms. As the atoms approach the top of the trap during the excitation,
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the resonance frequencies of the trap are reduced. In order to take into account this
unharmonicity, the whole frequency scan range was divided into the frequency intervals
ν1, ν2,.., νN , and in each interval the frequency was swept downwards from νk to νk−1,
thereby following the unharmonicity of the trap as the atoms heated up. Moreover, we
have detected even small excitations of the atoms in the trap by lowering the depth of
the HDT to about 3 % of its initial value. In this case even small heating resulted in a
measurable loss of the atoms.

The oscillation frequencies of our HDT are ΩHDT
rad /2π = 3.6(±0.2) kHz at 1.8 W and

ΩHDT
ax /2π = 265(±8) kHz at 1.56 W, and were measured in [40]. This results in a depth

of U0
HDT/kB = 0.8(±0.2) mK at 1 W of the optical power power in each beam, and in a

waist of 18.9(±1.1) µm.

2.2.4 Vertical dipole trap

In order to pick up a selected atom and place it at some other position with high precision
on the “object holder”, we use “optical tweezers”. As the optical tweezers for single atoms
we use another standing wave optical dipole trap. This trap is oriented vertically (VDT),
perpendicularly to the HDT, see Fig. 2.7. The details about the design and alignment of
the trap are described in Appendix A. Below, I describe the key properties of the trap,
important for our experiments.

Trap parameters

We use an Yb:YAG disk laser (model VersaDisk-1030-10-SF from Elektronik Laser System
GmbH) with the maximum optical power of up to 25 W. The linearly polarized beam with
a wavelength of λVDT = 1030 nm is focused on to the MOT, see Fig. 2.7. The waist of the
beam is about wVDT = 9 µm, see App. C. The standing wave is created by retro-reflecting
the beam, see Fig. 2.8b. Since the beams of the VDT coincide with the vertical beams of
the MOT, they are combined using a dichroic mirror, see Fig. 2.7.

The profile of the trap, neglecting the Guoy phase as well as the curvature of the
wavefronts of the Gaussian beams, is described by

UVDT(x, y, z) = −U0
VDT e

− 2(x2+y2)

w2
VDT cos2(kVDT · z). (2.23)

For typical optical power of 0.6 W in the incoming beam we have a dipole trap depth of
U0

VDT/kB = 2.7 mK, determined from the oscillation frequency measurement. Although
this trap crosses the HDT, their interference patterns can be incoherently added due to
the large detuning between the laser frequencies of these traps.

Single atom transfer efficiency

The single atom transfer efficiency was measured using the same method explained in
Sec. 2.2.3 by loading single atoms from the MOT into the dipole trap and then reloading
them back into the MOT. The measured efficiency is 100+0

−5 %.
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Oscillation frequencies

The oscillation frequencies of the VDT have been measured using the method described
in Sec. 2.2.3. The beam intensity modulation was realized with a high power electro-
optic modulator (EOM) (from ALPHALAS GmbH) installed between two polarizers. The
detailed description of the driving electronics of the EOM is given in Appendix B.

The axial frequency is Ωax/2π = 560(±50) kHz, see Fig. 2.10a. The calculated corre-
sponding depth of the VDT is U0

VDT/kB = 2.7(±0.5) mK for 560 mW of the laser power
used in this experiment.

Figure 2.10b presents the results of the radial frequency measurement. We observe
two peaks, which correspond to two oscillation frequencies Ωrad1/2π = 12.8(±0.7) kHz
and Ωrad2/2π = 18.0(±1.2) kHz. The positions of the two peaks were reproduced two
times for one adjustment of the experimental setup. This demonstrates that this effect
was not a result of a drift of the VDT, but was rather characteristic for that adjustment.
The presence of two oscillation frequencies means that the trap confinement on two radial
directions is different, implying that the radial profile of the VDT is elliptic. This profile
can be described by two waists wVDT1 = 10.1(±1.4) µm and wVDT2 = 7.2(±1.2) µm.

The ellipticity can be explained either by the fact that the reflected beam was slightly
shifted with respect to the incoming beam of the VDT due to a slight tilt of the retro-
reflecting mirror, or that the laser beam had a small astigmatic aberration, which can as
well result in an ellipticity of the radial profile of the VDT at the position of the MOT.
In the first case, the ellipticity depends on the adjustment for a given experiment. In the
second case, the ellipticity is the same for all experiments. The numerical simulation and
analysis of these two cases are presented in Appendix C. They show that both of these
models can quantitatively explain the ellipticity of the trap during this measurement, and
therefore explain the measured radial oscillation frequencies of the VDT. Consequently,
at this point it is not possible to unambiguously conclude, which of these models is closer
to the experimental situation. A separate measurement, characterizing the size of the
optical tweezers by extracting atoms from the HDT described in Sec. 4.3, suggests that
the astigmatic beam model is more appropriate.

Lifetime of atoms

The lifetime of atoms in the VDT was measured using the same method as for the HDT,
see Sec. 2.2.3. The result of this measurement is presented in Fig. 2.11.

A fit of an exponential function p(t) = p0 exp (−t/τ) yields the 1/e-decay time of
τ = 13(±1) s. The second fit parameter is p0 = 111(±4)%, which is higher than 100%.
This suggests that the decay is not purely exponential, but rather limited by some heating
effects, compare with the HDT in Sec. 2.2.3.

In our case the heating effects can be caused by pointing instability of the laser beam
at the position of the atoms and by intensity fluctuations. The pointing instability can
result in direct resonant excitation of the atoms, if the fluctuations of the two beams
of the standing wave are correlated. If the fluctuations are not correlated, the pointing
instability will result in a change of the contrast of the standing wave pattern, which
results in the modulation of the trap depth, and therefore in parametric heating of the
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Figure 2.10: a) Axial oscillation frequency of the VDT. The points present the measured
survival probability after parametric heating followed by the adiabatic lowering of the
trap depth. The curve is a fitted Gaussian. b) Radial oscillation frequencies. The
measured data (points) are fitted with a sum of two Gaussians. Every data point is the
result of about 20 repetitions with on average 5 atoms per repetition.

atoms. The intensity fluctuations can result in the modulation of the trap depth, and
therefore in parametric heating of the atoms in the trap as well.



20 Chapter 2: Trapping of a single atom

Figure 2.11: Measurement of the lifetime of the atoms in the VDT. The solid line is an
exponential fit to the experimental data. Every point is the result of about 15 repetitions
of the sequence.

2.2.5 Imaging single trapped atoms

The possibility to count atoms in the MOT allows us to load a well known number of
atoms into the HDT. After this transfer the atoms occupy random potential wells forming
a string of atoms with random separations. In order to manipulate individual atoms, we
need to know the initial positions of the atoms in the HDT. For this purpose, we image
the atoms using the ICCD camera, see Fig. 2.4.

However, direct imaging of the atoms in the HDT is not possible, for the scattering rate
of the atoms in the HDT is low [40], and the interference filter before the ICCD camera
additionally suppresses the photons scattered from the trap, see Fig. 2.4. This problem
can be overcome by illuminating the trapped atoms with resonant or near-resonant light.
During the illumination, each scattered photon adds energy Er = ~2k2/(2mCs) on absorb-
tion and Er on emission. Therefore, the atoms will be heated during the illumination. An
atom initially at the bottom of the trap with a depth of U = 1 mK will scatter about
U/(2Er) = 5600 photons before the atom is lost from the dipole trap. Taking into account
the efficiency of our imaging optics, we would only detect about 10 photons on the ICCD
camera before the atom leaves the trap. Although this is in principle already enough to
detect the atom, this method is obviously destructive.

Molasses cooling

A solution to this problem is to illuminate the trapped atom with three-dimensional optical
molasses. We use the MOT beams for this purpose, however, we reduce the power of each
beam to about 80 µW and red-detune them by about 1.5 Γ, relative to the transition of the
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free atom. Additionally, the levels of the atoms in the HDT are light shifted by about 6 Γ.
This results in the saturation parameter of s = 0.01 for each beam. The molasses cools
the atom in the dipole trap, while up to Rs = 170000 photons/s are scattered. From this
scattering rate we can estimate how many photons we expect to detect in our experiment:

Rdet = ηobj · ηBS · ηF · ηICCD ·Rs = 120 photons/s,

where ηobj = 0.02 is the collection efficiency of the objective, ηBS = 0.5 is the loss on
the beam splitter, ηF = 0.7 is the loss on the interference filter, and ηICCD = 0.1 is the
quantum efficiency of the APD, see Fig. 2.4. In the experiment we typically detect about
150 photons/s per atom in the HDT on the ICCD chip, which is in a good agreement with
the estimation above.

The illumination of the atoms in the HDT with the optical molasses not only allows us
to detect enough photons for atom imaging, it also continuously cools the atoms. Under
this continuous cooling, the lifetime of the atoms in both dipole traps is increased. The
results of the measurements of the increased lifetime of atoms in both traps is presented
in Fig. 2.12. Here, we have used the method described in Sec. 2.2.3, with the modification
that the atoms were additionally illuminated by the optical molasses. The lifetime was
determined from the fit of p(t) = p0 exp (−t/τ). In this case, the 1/e-time in the HDT
is τHDT = 57(±11) s and τVDT = 62(±7) s in the VDT, which are about one order of
magnitude larger than the corresponding lifetimes without the molasses cooling. The fact
that both time constants are equal within the error bars, and the exponential function
fits the data reasonably well, suggests that this lifetime is limited by the background gas
collisions.

Continued imaging

We image atoms in the HDT by collecting the fluorescence photons during the illumination
with the optical molasses. Each detected photon produces about 350 counts on the CCD
chip. The counts are concentrated in a 3 × 3 pixel area with about 50 % in the central
pixel. Since our imaging optics has a magnification of 26.1(±0.1), one CCD pixel of
13 × 13 µm2 corresponds to 0.499(±0.002) µm at the position of the atom (for more
details about the calibration methods see Sec. 4.2). Figure 2.14a shows an image of a single
atom trapped in the HDT with 1 s illumination time. The observed spot corresponds to
about 160 detected photons. We determine the size (σh

HDT, σv
HDT) and the position of

the fluorescence spot by binning the pixels of the picture in the horizontal and vertical
directions after suitably clipping the image to minimize the background noise, and by
fitting the resulting histograms with Gaussians as shown in Fig. 2.13.

The 1/
√

e-half width of the fluorescence spot in the vertical direction is σv
HDT =

3.31(±0.08) µm, which is smaller than the 1/
√

e-half width of the laser beam of the
HDT of b = 9.5 µm. This shows that the atom is trapped close to the minimum of the
HDT potential and remains cold during the illumination. The temperature of the atom
can be estimated using a Fokker-Planck equation model, see App. D,

T =
U0

HDT

kB

(a

b

)2
, (2.24)
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Figure 2.12: Measurement of the lifetime of the atoms in our dipole traps in presence
of the optical molasses cooling. The squares present the measurement with the HDT.
The solid line is an exponential fit to the experimental data. The circles present the
measurement with the VDT with the corresponding exponential fit.

where a =
√

(σv
HDT)2 − (σh

HDT)2. Together with the horizontal width of σh
HDT =

1.3(±0.1) µm and U0
HDT/kB = 0.8 mK, we obtain a temperature of T = 80(±20) µK,

which agrees well with the temperatures determined by other methods, see Sec. 4.3 and
[29].

From the standing wave geometry we know that the axial confinement of the atoms
is ¿ λHDT/2 = 0.532 µm. However, the observed width of the fluorescence spot in the
horizontal direction is σh

HDT = 1.3(±0.1) µm. The deviation of the σh
HDT from the expected

diffraction limited spot size of σdiff = 0.6 µm [23] is mainly due to the fact that one photon
detected by the camera produces a spot on the CCD chip with an average 1/

√
e-half width

of σICCD = 1.1(±0.2) pixels, which corresponds to 0.6(±0.1) µm [40]. The rms sum of
σICCD together with the σdiff yields σtotal = 0.9(±0.1) µm, which is less than the measured
value of σh

HDT = 1.3(±0.1) µm. The difference can come from aberrations in the imaging
system. The most probable source of this aberration is a slight tilt of the imaging objective
[43], which can result in astigmatism and coma.

Figure 2.14b shows an image one atom trapped in the standing wave of the VDT. This
is the same atom that was in the HDT shown in Fig. 2.14a. The atom was first reloaded
bach into the MOT and then loaded into the VDT. The observed spot corresponds to
about 440 photons. The vertical size σv

VDT = 1.18(±0.02) µm equals within the error bars
the size σh

HDT, for the VDT is perpendicular to the HDT, and the atom is tightly confined
along the vertical direction. The horizontal size is σh

VDT = 1.5(±0.1) µm, which is smaller
than the 1/

√
e-half width of the laser beam of the VDT of about 5 µm, showing that the

atom remains trapped in the bottom of the trap during the illumination.
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Figure 2.13: CCD image of one atom in the HDT (exposure time 1 s). The counts are
binned in the vertical and horizontal directions and fitted with Gaussians to determine
the size and the absolute position of the fluorescence spot in the horizontal and vertical
directions.

If both traps are operated simultaneously, see Fig.2.14c, the atom is tightly confined
in the horizontal and in the vertical directions simultaneously. For this image, the HDT
was switched on in addition to the VDT, and the same atom is now confined in both
traps. The fluorescence spot corresponds to about 100 detected photons. Due to the
tight axial confinement of both traps, the sizes of the fluorescence spot should be equal
and compatible with σtotal = 0.9(±0.1) µm in the absence of aberrations. The sizes
are σh

HDT+VDT = 1.06(±0.08) µm and σv
HDT+VDT = 1.16(±0.06) µm. They are equal

within the error bars but are larger than σtotal, which can be attributed to the presence
of aberrations on our imaging system. The fact that σh

HDT = 1.3(±0.1) µm is larger than
σh

HDT+VDT is the result that the atom in the HDT is confined in a region larger than the
depth of focus of the objective (6.4 µm) [29], which results in a blurred image.

The difference in the number of the detected photons in all three cases can be attributed
to the different light shifts of the atomic levels produced by the two dipole trap lasers.

Position of an atom

We have measured a horizontal width of the fluorescence spot in the HDT of σh
HDT =

1.3(±0.1) µm, whereas the lateral localization of the atom in the standing wave of the
HDT is 35-50 nm rms, depending on the trap depth and on the atomic temperature [22].
This difference indicates that the image of the atom is blurred, which limits the resolution.
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Figure 2.14: Images of the same atom trapped in our dipole traps (exposure time 1 s).
a) The atom is trapped in a potential well of the HDT under continuous illumination
with 3-D optical molasses. On the right side, the respective configuration of the traps is
shown. b) The same atom reloaded first back into the MOT and than into the VDT. c)
The same atom trapped simultaneously in two traps.

In order to understand the source of the blurring and be able to extract as much as possible
information from the image, we discuss the steps of the image formation.

The influence of the imaging system on the image can be modeled by the point spread
function (PSF) of the imaging system. The PSF determines how a single point i(x, y) in
the object plane is being imaged onto the image plane I(h, v). Representing the object
as a collection of points (x, y), the image can be constructed by replacing the geometric
image of each point (h(x), v(y)) with the PSF weighted by the intensity of this point. This
operation is a convolution:

I(h, v) =
∫ ∞

−∞

∫ ∞

−∞
i(x(h)− χ, y(v)− γ) PSF (h(χ), v(γ)) dχ dγ + N(h, v), (2.25)

where N(h, v) is additive noise, originating from shot noise, stray light, electronic noise
and dark counts of the detector. This noise additionally distorts the image. The problem
of restoring the intensity distribution i in the object plane from the detected intensity
distribution in the image plane I occurs in astronomy in numerous cases of mapping of
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emission spectra and reconstruction of telescope images [44], as well as in chemistry and
biology in fluorescence microscopy [45].

There are two classes of image processing techniques, which have been developed to
tackle this problem: image restoration and parameter estimation. The aim of image
restoration is to determine the intensity in the object plane, whereas parameter estimation
fits a model of the object and the image formation to the data by optimizing a small set
of model parameters [45]. In our experiments we use the parameter estimation method,
since we are only interested in the lateral position of the atom.

We bin the pixels of the ICCD image in the vertical direction, obtaining a one-
dimensional intensity distribution I(h). This distribution is a convolution of the cor-
responding line spread function (LSF) and of a one-dimensional intensity distribution in
the object plane. After integration of Eq. 2.25 in the vertical direction we have:

I(h) =
∫ ∞

−∞
i(x(h)− χ) LSF (h(χ)) dχ + N(h). (2.26)

For all experiments in this thesis we approximate the LSF of our imaging optics by a
Gaussian. Since the lateral localization of each atom in the HDT is much smaller than
the width of the LSF (σh

HDT = 1.3 µm), we approximate i(x) as a sum of delta functions
corresponding to the positions of the atoms. This results in a sum of shifted Gaussians
with the same parameters. By fitting a sum of Gaussians to the detected fluorescence I(h),
the deconvolution operation is effectively applied, neglecting noise. We define the position
of the atom as the position of the maximum of the fitted LSF. Using this image processing
method we are thus able to determine the position of each atom in the HDT along the
trap axis with a precision of 140 nm [22], which is an order of magnitude smaller than
the size of the fluorescence peak of σh

HDT = 1.3 µm and even smaller than the wavelength
of the fluorescence light of 852 nm and the size of a DT micropotential (532 nm). This
precision is mainly limited by the statistical error, resulting from the shot noise of the
detected photons, the background noise of our ICCD image and the position fluctuations
of the HDT [22].

Conclusion

Continued illumination with the optical molasses of an atom in both of the dipole traps
counteracts heating processes and allows us to nondestructively image atoms in the dipole
traps. Additional processing of the images of the atoms allows us to determine the atomic
positions in the HDT with submicrometer precision.





Chapter 3

Number-locked loading of a dipole
trap

We experiment with few trapped atoms. In order to get enough data to make statistically
significant statements about the result of an experiment, such as ones described in Sec. 4.6-
4.8, the experiment should be repeated many times under the same initial conditions,
e. g., starting with the same number of atoms. Although using our forced loading of
the MOT, see Sec. 2.1, we can adjust the average number of loaded atoms, the exact
number fluctuates according to Poissonian statistics. The atoms prepared in the MOT are
transferred into the HDT, where all our experiments take place, and only the experimental
shots with the desired number of atoms are post selected for the data analysis. Therefore,
fluctuations of the atom number reduce the efficiency of the experiment. For example, the
maximum probability to load exactly two atoms is about 0.3 and drops even further with
increasing number of atoms. Performing experiments in the shortest time is important to
reduce the effect of drifts and misalignment of the experimental setup. In order to speed
up our experiments, we have implemented a method of loading a desired number of atoms
into the dipole trap with high probability, which we call “number-locked loading” method.

3.1 Outline of the method

The basic idea is to use our computer control in order to transfer atoms from the MOT
into the HDT and start the main experiment if and only if the current number of atoms in
the MOT equals the desired number. Otherwise, it ejects the atoms from the MOT and
loads the MOT again from the background gas by lowering the magnetic field gradient,
see Sec.2.1.

The computer control consists of two programs, which we call “Experiment Control”
[28] and “Experiment Manager”. Experiment Control allows us to program several ex-
perimental sequences, e. g., ejection of atoms from the MOT and loading the MOT from
the background gas, transfer of atoms between the MOT and the HDT, etc. Experiment
Manager counts the current number of atoms in the MOT, by collecting MOT fluorescence
light and using a suitable calibration of the fluorescence count rate. Depending on the
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Figure 3.1: Histograms of the fluorescence rate in the MOT (integration time 60 ms).
Each peak corresponds to a definite number of atoms. a) Fluorescence at the input
of the discriminator after loading the MOT with five atoms on average. Each time the
discriminator detected the presence of five atoms, they were transferred into the HDT and
reloaded back into the MOT, where finally the fluorescence histogram (b) was recorded.
This histogram corresponds to 300 times of detection of five atoms by the discriminator.

current number of atoms, this program sends a command the Experiment Control program
to start a desired sequence, thus actively managing the experiment. In particular, using
these programs we are able to prepare a desired number of atoms in the MOT, transfer
them into the HDT and start the main experiment, thereby realizing the number-locking
loading of the HDT. Since the two programs run on different computers, they communicate
with each other via the TCP-protocol and have a communication delay of 125(±25) ms,
which will be important during the analysis of the experimental results.
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Figure 3.2: Experimental sequences of the preparation efficiency measurement. a)
After counting the atoms, they are transferred from the MOT into the HDT and the
magnetic field gradient is switched off. The atoms are then stored in the HDT. Finally,
the magnetic field gradient is switched on and the atoms are transferred back into the
MOT for counting. b) The same sequence but without the steps involving the HDT.

3.2 Experimental results

Figure 3.1 shows the fluorescence histogram from an experiment preparing five atoms. On
the input of the discriminator the number of atoms is Poisson distributed, see Fig. 3.1a.
Each time Experiment Manager detected five atoms, it has started the following sequence,
see Fig. 3.2a: The atoms were first transferred into the HDT by overlapping both traps
for 45 ms (the shutter delay is 15 ms). The MOT was then switched off, keeping the
atoms for 50 ms in the HDT only. Since the atom counting in the HDT is not effective,
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Figure 3.3: Efficiency of the preparation of N atoms in the HDT. Each point is the
result of 300 successful detections of exactly N atoms by the discriminator.

see Sec. 2.2.5, we finally transfer the atoms back into the MOT. The resulting histogram
of the photon counts is shown in Fig. 3.1b.

The peak corresponding to five atoms contains η = 88 % of all events. In the other
events atoms have been lost or an additional atom has been captured. This percentage η
we define as five atom preparation efficiency. Because the atoms have to be transferred
back into the MOT for counting, η is a lower bound for the probability of preparing the
desired number of atoms in the dipole trap. For comparison, without the number-locked
loading, the preparation efficiency for N = 5 atoms in the HDT is a factor of five smaller
due to Poissonian fluctuations.

We have measured the preparation efficiency with our number-locked loading method
for up to N = 19 atoms shown in Fig. 3.3. For each N , the average number of atoms
loaded into the MOT from the background gas was accordingly adjusted.

3.3 Analysis

In order to study which factors limit the preparation efficiency in the HDT, we have
analyzed the contributions to the preparation efficiency from all the steps of the process:
preparation of the desired number of atoms in the MOT, transfer of these atoms into the
HDT, holding the atoms in the HDT, reloading of the atoms back into the MOT, and
keeping the atoms in the MOT for counting, see Fig. 3.2a.
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3.3.1 Loss mechanisms

In the MOT

The determination of the current number of atoms in the MOT takes 60 ms. If the the
number equals to the desired number, the main experimental sequence is started. The
communication between the computer control programs additionally takes about 125 ms.
The same holds for reloading atoms back from the HDT into the MOT. During this time
∆tMOT = 370 ms the atoms are stored in the high gradient MOT, and the number of atoms
in the MOT can change due to single atom events, i. e., collisions with the background gas
or capture of an additional atom from the background gas, and due to two-atoms collisions.

Collisions with the background gas and capturing. The probability that one atom
is lost from the MOT due to a background gas collision increases with time as

pbackgr(t) = 1− exp
(
− t

τbackgr

)
, (3.1)

where the time constant of this process is τbackgr ≈ 55 s, see Ch. 2. The same law holds
for the probability to capture an atom from the background vapor:

pcapture(t) = 1− exp
(
− t

τcapture

)
(3.2)

with the time constant τcapture ≈ 33 s. Since both time constants are more than an order
of magnitude smaller than ∆tMOT, these processes play only a minor role to the reduction
of the preparation efficiency at this step.

Two-atom losses. The main contribution comes from two-atom collisions. This
fact can be already seen from Fig. 3.1b. Here, if the peak corresponding to the two-atom
losses stemmed from two uncorrelated single atom losses, then this peak should be
quadratically smaller than the single atom losses peak, which is not the case. Therefore,
the two-atom loss peak is the result of inelastic two-atom collisions such as fine structure
changing collisions, radiative escape or hyper fine state changing collisions.

During a binary cold collision, two atoms approach each other, and as the interatomic
separation R becomes small (< 1000 Å), the molecular interactions between the atoms
start playing a role. The asymptotic dependency of the molecular potential depends on
the atomic internal state. If both atoms are in the ground state, the interaction is between
two induced dipole moments. This is known as Van-der-Waals potential. If one of the
atoms is in the excited- and the other in the ground state, the interaction is described by
the resonant dipole-dipole interaction.

� Hyper fine state changing collisions Consider two Cs atoms in the ground 2S1/2 state
approaching each other on one of the quasimolecular curves. The simplified picture
of the ground state potentials including the hyperfine splitting between F = 4 and
F = 3 levels is presented in Fig. 3.4. The attractive and repulsive quasimolecular
curves cross at the interatomic separation at about 30 Å. If the atoms during the
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Figure 3.4: Schematic presentation of ground state collisions between two atoms. Two
atoms in the ground state S +S approach each other on one of the attractive quasimole-
cular potential curves. If the atoms reach the separation of the level crossings (circles),
the hyper fine structure state of the “quasimolecule” changes. As the result, the atoms
gain the energy ∆EHFS and leave the collision region on the repulsive quasimolecular
potential.

approach change the asymptote from the attractive to the repulsive one at one of the
crossings, this will result in the release of energy corresponding to the single/double
hyperfine splitting of ∆EHFS/h = 9.2 GHz, depending on the asymptote. This
process is called a hyper fine state changing collision (HCC). The released energy
corresponds to

∆EHFS/2kB = 0.22 K

per atom for a single ∆EHFS transition, which is on the order of the MOT escape
energy. In the previous work [46], the MOT escape energy was measured to be
EMOT = 0.2 K, resulting in the loss of all products of this collision. The corre-
sponding collision rate was about βHCC ≈ 2 · 10−11 cm3s−1 [46]. In our case, the
MOT escape energy is on the same order of magnitude, but not known with preci-
sion enough to conclude whether all the products of the HCC collision are lost or
recaptured by the MOT.

These collisions can take place without presence of an external laser field. The next
two collision processes are light induced. For simplicity, we neglect the hyperfine
splitting in the following.

� Fine structure changing collisions A colliding atom pair, initially with both atoms
in the ground state moving on the S +S-potential curve, absorbs a photon from the
cooling laser to a strongly attractive excited state potential curve, see Fig. 3.5. The
atoms are then accelerated towards each other on the S + P3/2-curve. If the atoms
approach each other to a distance RFCC, see Fig. 3.5a, before they spontaneously
emit a photon, the change of the fine structure state can take place. The atoms
then can leave the near-field region on the S + P1/2 quasi-molecular potential. The
released energy ∆EFCC = E(P3/2) − E(P1/2) is then equally distributed between
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Figure 3.5: Schematic presentation of light induced collisions between two atoms. An
atomic pair in the ground state S + S at the separation R0 is excited by the cooling
laser to the quasimolecular potential S + P3/2 at the separation R0 ≈ 800 Å. As the
result, atoms start accelerating towards each other. a) The atoms reach the separation
RFCC ≈ 30 Å, where the fine structure state of the atomic pair changes. As the result,
the atoms leave the near-field region on the channel S + P1/2 before the spontaneous
emission of a photon takes place. b) If the photon emission takes place before the atoms
reach the separation RFCC , the atomic pair leaves the interaction region on the S + S
channel.

the two atoms. For Cs atoms

∆EFCC/2kB = 400 K

per atom. Since this energy is much higher than a typical escape energy from the
MOT, this process will always result in ejection of the two atoms from the trap. The
corresponding collision rate is βFCC ≈ 2 · 10−11 cm3s−1 [46].

� Radiative escape If the atoms spontaneously emit a photon during the approach,
see Fig. 3.5b, the atoms leave the near field region on the S + S channel. This
process is called radiative escape (RE). The released energy ∆ERE = ~ω − ~ω′
depends on the interatomic separation at the moment of the emission. The spectral
probability density to release the energy around ∆ERE in this process was shown in
the semiclassical approximation [47] to be

PRE(∆ERE) =
A

(∆ERE)11/6
(for ∆ERE À kBT ), (3.3)

where A = 8.8 · 10−25 J5/6 is the weighted average over different collision channels
for a Cs quasimolecule given in Table I of [47], T is the temperature of atoms in the
MOT. Since the spectrum of the radiative escape is not discrete as for the HCC- and
FCC-collision, but is continuous, only part of the collisions that have enough energy
to overcome the capturing energy of the MOT will leave the trap. The corresponding
loss rate for our trap is βRE ≈ 9 · 10−11 cm3s−1 [46].
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Figure 3.6: Efficiency of the preparation of N atoms in the MOT (triangles) and the
corresponding fit. Each point is the result of 300 successful detections of exactly N
atoms by the discriminator. For comparison, the preparation efficiency for the HDT
from Fig. 3.3 is shown as well (squares).

Since the loss rates of all three processes are on the same order of magnitude, the
collision rate of the RE-collisions is higher. This fact is important for the analysis
of the atomic collisional dynamics during the simultaneous operation of the MOT
and of the HDT. Since the depth of the HDT is three orders of magnitude smaller
than the escape energy of the MOT, the losses from the HDT are dominated by
RE-collisions.

The probability that a two-atom collision in the MOT with N atoms takes place during
the time t is

p2MOT(N, t) = 1− exp
(
−α

N(N − 1)
2

t

)
. (3.4)

Here the loss rate is
α = β/VMOT, (3.5)

where VMOT is the effective volume of the MOT and β = (βHCC + βFCC + βRE) ≈
13 · 10−11 cm3s−1 [46].

Measurement. In order to single out the losses in the MOT, contributing to the
reduction of the preparation efficiency, we have repeated the experiment as for Fig. 3.2a,
but without the HDT, i. e., preparing N atoms in the MOT. The corresponding
experimental sequence is shown in Fig. 3.2b.

Analysis. The result of this experiment is presented in Fig. 3.6 as triangles. For
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every number of atoms N in this graph the probability that no atom is lost during the
experimental sequence consists of three contributions:

ηMOT(N) = (1−pcapture(∆tMOT)) ·(1−pbackgr(∆tMOT))N ·(1−p2MOT(N,∆tMOT)). (3.6)

We have fitted this function to the experimental data with α as a free fit parameter. The
result for

αest = 0.014(±0.001) s−1

is shown in Fig. 3.6 as a solid line.
In order to compare this loss coefficient to the literature value, we have to estimate

the effective volume of our MOT, see Eq. 3.5. We approximate it with a sphere with the
radius of σ = 5.5 µm, see below. This results in the loss coefficient of

β = 1 · 10−11 cm3s−1.

This value is an order of magnitude smaller than the literature value of 13 · 10−11 cm3s−1

[46]. Most probably, the the difference is caused by our approximation of VMOT.
Another contribution might arise due to higher escape energy of our MOT, relative
to 0.2 K from [46]. In this case all products of HCC-collisions and part of the prod-
ucts of RE-collisions are recaptured by the MOT, thereby reducing the two-atom loss rate.

Discussion. For comparison, we have plotted the result of the measurement with
the HDT, see Fig. 3.3, as rectangles in the Fig. 3.6. Since the preparation efficiency in
the HDT is only slightly differs from the efficiency in the MOT, we can conclude that
the losses in the HDT are small. On the other side, the transfer of atoms between the
MOT and the HDT involves the near resonant light of the MOT. Therefore, light induced
collisions can take place at this step as well. Since the losses due to these collisions are
small, but the duration of these steps is comparable, there should be some mechanism
of redistribution of atoms between the micropotentials of the standing wave of the HDT
until they are occupied by at most one atom, and the light induced collisions are no
longer possible. We attribute this mechanism to the process of recapture of the products
of the two-atom collisions in the HDT by the MOT, during the step of transfer of atoms
from the MOT into the HDT, see Fig. 3.7.

In the dipole trap

The steps with the dipole trap in the experimental sequence Fig. 3.2a include the transfer
of atoms from the MOT into the HDT, keeping atoms in the dipole trap and reloading
back into the MOT. During this time (∆tHDT = 230 ms) single atoms can be lost due to
the collisions with the background gas. During the transfer steps between the MOT and
the HDT atoms can be captured by the MOT from the background vapor. In the HDT
without the MOT light, FCC-collisions can take place if there are some potential wells
occupied by more than one atom and at least one of the atoms is the F = 4 ground state.
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Figure 3.7: Collisional redistribution of atoms. Two atoms trapped in one of the HDT
micropotentials collide and leave the HDT. The products of the radiative escape collision
are recaptured by the MOT, cooled down and reloaded into the HDT.

Transfer efficiency. Additionally, an atom can be lost during the transfer of atoms
between the MOT and the HDT. We have measured it in Sec. 2.2.3 to be

ptransfer = 98.7+0.7
−1.1 %. (3.7)

Redistribution. In the experimental sequence, see Fig. 3.2, we transfer atoms from the
MOT into the HDT by simultaneously operating these traps for 45 ms. Since the MOT
lasers are still operating, all of the above mentioned light induced collisions take place in
this step as well.

The difference to the collisions in the MOT arises from the geometry of the traps. In
the MOT all atoms have a possibility to collide with each other. In contrast, in the HDT
only the atoms trapped inside one micropotential can collide. Moreover, if a collision
take place, some products of the collision can be recaptured by the MOT, which cools
them and loads them back into the HDT, see Fig. 3.7. If the atoms are loaded into empty
HDT micropotentials, there will be no more collisions. Otherwise, the repeats on until
the atoms are redistributed or lost.

Theoretical estimation of the redistribution efficiency. Since the rate of the RE-
collisions is much higher than rate of other two-atoms collisions, and the depth of the
HDT is U0

HDT = 0.8 mK, which is three orders of magnitude smaller than the escape
energy from the MOT, the losses from the HDT are dominated by the losses due to the
RE-collisions. We can estimate using Eq. 3.3 that in

pest
redist =

∫ EMOT

U0
HDT

PRE(E)dE
∫∞
U0

HDT
PRE(E)dE

= 99.0 % (3.8)

of the cases the products of the RE-loss from the HDT are recaptured by the MOT. This
result suggests that the redistribution process should be very effective, if the MOT is
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Figure 3.8: Experimental sequence for measurement of the time scale of the MOT
induced redistribution process. After counting the atoms, they are transferred from the
MOT into the HDT by overlapping the traps. The overlap time is varied between 3 and
300 ms. The filling time is necessary to keep the length of the experimental sequence
constant. Then, the magnetic field gradient is switched off. The atoms in the HDT are
illuminated by optical molasses during 300 ms to induce two-atom collisions in the HDT.
Finally, the magnetic field gradient is switched on and the atoms are transferred back
into the MOT for counting.

switched on long enough to redistribute the atoms until there are no multiply-occupied
micropotentials any more.

Outline of the time scale measurement procedure. In order to experimentally deter-
mine the time scale of this process, the experimental sequence presented in Fig. 3.2 must
be modified with a step where doubly occupied micropotentials are emptied. This can
be done by illuminating the atoms in the HDT with the optical molasses. During this
illumination, the light induced collisions take place, but the products of the collisions
are not recaptured. Therefore, such illumination effectively removes atoms from doubly
occupied HDT micropotentials, the effect known in literature as collisional blockade
[48, 49]. Measuring the preparation efficiency with this modified sequence shown in
Fig. 3.8, we should observe, that for increasing overlap times between the HDT and
the MOT, the preparation efficiency increases and saturates for overlap times long
comparable to the timescale of the redistribution process. In contrast, for shorter times
the preparation efficiency will decrease down to the value, corresponding to absence of
redistribution.

Estimation of the preparation efficiency for long overlap times. For overlap times
longer than the timescale of the redistribution process we expect that the atoms are
redistributed between different potential wells of the HDT. Therefore, we do not expect
any two atom losses during the illumination of the atoms in the HDT with the optical
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Figure 3.9: Simulated preparation efficiency of atoms in the HDT with the absence of
the redistribution during the transfer from the MOT and loss of atoms from the doubly
occupied potential wells of the HDT.

molasses. Consequently, in this case the preparation efficiency in the HDT should be
comparable to the preparation efficiency presented in Fig. 3.3 using the experimental
sequence Fig. 3.2a.

Estimation of the preparation efficiency for short overlap times. For short overlap
times we expect that the redistribution does not take place. Therefore, the potential
wells of the HDT, containing pairs of atoms, will be emptied during the illumination with
the molasses. We have carried out a Monte-Carlo simulation to estimate distribution of
atoms in the potential wells of the HDT after the transfer from the MOT.

We assume that the spatial distribution of atoms along the axis of the HDT after trans-
fer from the MOT is Gaussian with σ = 5.5 µm. This size was measured by transferring
single atoms from the MOT into the HDT, and then calculating the standard deviation
of their positions.

In our simulation N atoms were placed into the potential wells of the HDT separated
by 532 nm at positions randomly distributed according to the Gaussian probability dis-
tribution with σ = 5.5 µm. If there were two atoms in one well, this pair of atoms was
removed from the HDT, simulating the absence of recapturing. By repeating this proce-
dure for 2000 times for every N , the corresponding probability ηmolasses(N) of not losing
any atom was computed.

The resulting preparation efficiency was then calculated as

η(N) = ηmolasses(N) · ηMOT(N) · pN
transfer. (3.9)

The result is presented in Fig. 3.9, which gives us the estimation of the expected
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Figure 3.10: Dependence of the preparation efficiency on the overlap time between the
MOT and the HDT for N = 10 atoms.

preparation efficiency for the experiment presented in Fig. 3.8 for the case of very short
overlap times, i. e., of no redistribution.

Measurement of the time scale. We have measured the preparation efficiency for
N = 10 atoms and varied the overlap time between 3 and 250 ms. In order to control
it with the millisecond precision, we have used the AOMs of the HDT instead of the
mechanical shutter to switch on the dipole trap. The atoms were then illuminated in the
HDT with the optical molasses for 300 ms. Finally, they were transferred back into the
MOT for counting, see Fig. 3.8. Figure 3.10 shows the result of this experiment.

Analysis. In Fig. 3.10 we see the expected saturation of the preparation efficiency
for long times at ηlong

meas = 49+4
−4 %, which reasonably agrees with the expected ηlong

th ≈ 60 %
for N = 10, see Fig. 3.3. For short overlap times, the preparation efficiency goes to a
value of ηshort

meas = 15+4
−3 % at τovl = 1 ms, which agrees with the expected ηshort

th = 19(±1) %
for N = 10, see Fig. 3.9.

In order to be sure that this short time is enough for the efficient transfer of atoms
from the MOT into the HDT, we have measured the single atom transfer efficiency for an
overlap time of τovl = 1 ms to be 98.5+1.0

−1.5 %. This efficiency includes the transfer from
the MOT into the HDT and back into the MOT for counting.

In order to estimate the timescale τ est
redist of this process we have fitted the experimental

data with the exponential function

η(τovl) = a

[
b− exp

(
− τovl

τ est
redistr

)]
(3.10)



40 Chapter 3: Number-locked loading of a dipole trap

with the free fir parameters a, b and τ est
redistr. The result of the fit with

a = 0.36(±0.04), b = 1.4(±0.1) and τ est
redistr = 38(±10) ms

is presented as a solid line in Fig. 3.10. This time scale is compatible with the time constant
of the light induced collisions in our HDT of τfit

HDT = 44(±2) ms, see Fig. 4.25, where we
have illuminated atoms in the HDT with the optical molasses and observed atomic losses
on the decay of the fluorescence signal, see Sec. 4.8.2. The similarity of the timescales in
these two experiments suggest that in Fig. 3.10 we observe a MOT assisted redistribution
of atoms in the HDT.

Discussion

We can conclude that the reduction of the efficiency of preparing N atoms in the HDT
is mainly caused by the losses in the MOT. Therefore, a reduction of the time which the
atoms spend in the MOT, either the communication time between the programs of the
computer control, or the APD integration time, will result in an increase of the preparation
efficiency in the HDT. Physical effects such as “optical shielding” due to the repump laser
[50], due to an additional “catalyst laser” [51] or due to the dipole trap laser [52] can be
used as well to reduce the rate of two-atom losses.

Although the model of the low loss MOT assisted redistribution of atoms in the HDT
allows us to quantitatively explain the results of our measurements, this is only an indirect
experimental demonstration of this process. The final proof is a direct observation of the
reduction of two atom losses as a function of the of the overlap time between the MOT
and the HDT, see Fig. 3.10.

3.3.2 Quantitative study of atom losses

We have carried out a Monte-Carlo simulation of atom loss dynamics during the exper-
iments, corresponding to the experimental sequences: measurement of the preparation
efficiency in the HDT as the function of the number of atoms N (“HDT-sequence”), see
Fig. 3.2a, the preparation efficiency in the MOT (“MOT-sequence”), see Fig. 3.2b, and the
sequence for measuring the dependency of the preparation efficiency on the overlap time
τovl between the MOT and HDT (“overlap-sequence”), see Fig. 3.8. Finally, we compare
the results of this simulation to the experimental data.

Outline of the algorithm

In order to calculate the probability of no loss during execution of the experimental se-
quence, in principal we have to divide the whole experimental sequence into infinitesimally
short time bins and calculate the probabilities of no losses during each time interval. These
probabilities for the whole sequence then have to be multiplied in order to calculate the
probability of no loss during the whole experimental sequence, i. e., the preparation ef-
ficiency η. Physically this means that the time steps have to be much shorter the time
between two loss events. Since the probabilities we calculate for each step are conditional
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probabilities, which physically means that the probability of the collision on the current
step depends on the result of the collisions in the previous steps, we have to calculate
the final probabilities for all possible configurations during the process and sum them up
with the corresponding statistical weights. Although the calculation of the correspond-
ing conditional probabilities is straightforward, the analytic calculation of the weights of
all different outcomes is non trivial. We overcome this difficulty by using a Monte-Carlo
simulation.

In order to numerically simulate the loss processes, we divide the whole experimental
sequence into time intervals ∆t = 5 ms. The probability that any loss process takes place
during this time is quite low and the probability that more than one such losses take place
during this time is negligibly small, thereby fulfilling the above mentioned condition.

Parametrization of the physical processes

We have numerically taken into account all the processes leading to a change of the number
of trapped atoms during the time interval ∆t by parameterizing them with the correspond-
ing probabilities:

� the probability that one atom is lost due to the the background gas collisions is
pbackgr(∆t) with the time constant τbackgr = 55 s (Eq. 3.1),

� the probability of capturing an atom by the MOT is pcapture(∆t) with the time
constant τcapture = 33 s (Eq. 3.2),

� the single transfer efficiency between the MOT and the HDT is ptransfer (Eq. 3.7),

� the probability that the MOT recaptures the atoms which have been expelled from
the HDT by a Radiative-Escape collision is pmc

redist,

� the probability that a two-atom collision between N atoms in the MOT takes place
p2MOT(∆t,N) with the collision rate αmc (Eq. 3.4),

� the probability that an inelastic light induced collision takes place in one micropo-
tential of the HDT containing n atoms is

p2molasses(∆t, n) = 1− exp
(
−n(n− 1)

2
∆t

τmc
HDT

)
,

where τmc
HDT is the time scale of this process.

Moreover, we have included in our simulation the probability that after a light induced
collision in the MOT only one atom is lost as p1MOT. Although up to date there is no
theoretical explanation of this process, there is an experimental evidence that in our high
gradient MOT such processes take place [46, 50]. In analogy, the same kind of process
can take place in the HDT under the illumination with the optical molasses. We have
included this process in our simulation as the probability p1molasses that after a light
induced collision in the HDT one of the collided atoms stays trapped.
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Figure 3.11: Simulation of the preparation efficiency of the atoms in the MOT (open
circles). Additionally, the probabilities of one-, two-, three- and four-atom losses are
shown. The result of the simulation is shown as solid lines.

We fix the time scales of the background gas collisions τbackgr and of capturing τcapture,
whereas the rest of the parameters: pmc

transfer, pmc
redist, αmc, τmc

HDT, p1MOT and p1molasses we
determine from the fit of the model to the experimental data.

Simulation

We have executed this simulation for the three experimental sequences described above. A
computer program, realizing this algorithm, was written by one of my co-workers, Leonid
Förster. The simulation was repeated 105 times for every atom number N from 1 to 19,
and for τovl from 0 ms to 250 ms, respectively.

Our prime goal is to describe the atom loss dynamics in the overlap-sequence.
Nevertheless, we use the first two sequences in order to determine and fix part of the fit
parameters: αmc, p1MOT, pmc

transfer and pmc
redist.

MOT-sequence. We have first simulated the result of the MOT-sequence and de-
termined the parameters αmc and p1MOT. For this purpose, we have computed the curves
for several values of these parameters, and then chosen the best fitting curve, thereby
carrying out the fit procedure manually. Since we do not have an analytic expression
for the fit function, a calculation of the error bars of the resulting fit parameters is not
possible.

The result for
αmc = 0.02 s−1 and p1MOT = 0.1
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Figure 3.12: Simulation of the preparation efficiency of the atoms in the HDT (open
circles). Additionally, the probabilities of one-, two-, three- and four-atoms losses are
shown. The result of the simulation is shown as solid lines.

is shown in Fig. 3.11 as solid lines. Here, in addition to the plot in Fig. 3.6, we have also
plotted the the experimental one-, two-, three- and four-atom loss probabilities.

HDT-sequence. At the second step, we have fixed the values of αmc and p1MOT

and simulated the HDT-sequence to determine the transfer efficiency between the traps
pmc
transfer and the recapturing probability pmc

redist during the overlap of the HDT and the
MOT. The result for

pmc
transfer = 0.995 and pmc

redist = 0.97

together with the atom losses is shown in Fig. 3.11 as solid lines.

Overlap-sequence. Finally, we have simulated the expected preparation efficiency
for the overlap-sequence. Here, we have fitted pmc

redist, τmc
HDT and p1molasses. The result for

pmc
redist = 0.9, τmc

HDT = 20 ms and p1molasses = 0

is shown in Fig. 3.13.

Analysis

Transfer efficiency. The obtained transfer efficiency of pmc
tranfer = 99.5 % is consistent with

the measured efficiency of 98.7+0.7
−1.1 %, see Sec. 2.2.3.
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Figure 3.13: Simulation of the preparation efficiency for N = 10 as the function of the
overlap time between the MOT and the HDT (open circles). Additionally, the probabil-
ities of one-, two-, three- and four-atoms losses are shown. Solid lines show the result of
the simulation.

Collision rates. The value of the collision rate in the MOT of αmc = 0.02 s−1 ob-
tained in the simulation is somewhat larger than our estimation from the fit of the data
in Fig. 3.6 of αest = 0.014(±0.001) s−1. The difference can be attributed to the one-atom
losses (p1MOT 6= 0). Since not all two-atom collisions result in loss of both atoms, we need
more collisions to have the same rate of two-atoms losses.

The resulting time scale of the light induced collisions in the HDT of τmc
HDT = 20 ms is

somewhat shorter than the result of the fit of the data from Fig. 4.25 of τfit
HDT = 44(±2) ms.

The difference comes from the fact that during the overlap-sequence, the atoms in the
HDT are illuminated with the MOT laser beams, whereas in the experiment in Fig. 4.25,
the atoms were illuminated with the optical molasses beams, which have less intensity
and are further detuned. The fact that the time scale of the redistribution process of
τmc
redist = 38(±10) ms is larger than τmc

HDT can be attributed to the fact than on average we
need more than one collision to redistribute N = 10 atoms between different potential
wells of the HDT.

Recapturing probability In our simulations we have obtained two different values of
the recapturing probability: pmc

redist = 0.97 for the HDT-sequence and pmc
redist = 0.9 for the

overlap-sequence. Although these values differ from each other, the general tendency of
the expected high recapturing probability holds. The difference can be attributed to the
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fact that these values are extracted from the results of two independent measurements
and, therefore possibly, under slightly different experimental conditions.

One atom loss after collision in the MOT. The results of our simulations show
that the probability that only one atom is lost after a light induced collision in our MOT
is non zero, but rather on the order of p1MOT ≈ 10 %. The values of 10–30 % have been
observed earlier in our MOT [46]. The fact that we do not see such an effect for the
optical molasses (p1molasses ≈ 0) suggests that this is an effect of recapturing of one of the
atoms after the two-atom collision by the MOT.

Atom loss dynamics. Although the results of the simulation show the expected
from the redistribution decrease of the two atom losses as the function of the overlap
time between the MOT and the HDT, see Fig. 3.13, we do not see this tendency in the
experimental data for the two atom losses, see stars in Fig. 3.13.

For short overlap times (τovl = 0..40 ms) the tendency of our simulated curve for one-
atom losses completely differs from the tendency of the experimental data, see triangles in
Fig. 3.13. The experimental data show first a decrease of the one atom losses, which then
slightly increases to a constant value. In contrast, in our simulation we see a monotonic
increase of the single atom losses with the time. This increase of the losses with τovl can
be attributed to the increase of the time the atoms spend in the MOT, which due to
p1MOT 6= 0 increases the single-atoms losses.

Moreover, our simulated graph for the two atom losses is systematically lower than the
experimental points, whereas the graph for the single atom losses is systematically higher.
This indicates that in our model we underestimate the two atom and overestimate the
single atom losses. The source might be the fact that we have used the same value of
pmc
1MOT for the analysis of the data of the MOT- and for the overlap-sequence, disregarding

that these were two independent measurements.

3.3.3 Conclusion

We have realized a method of number-locked loading of a dipole trap, beating the Pois-
sonian fluctuations by a factor of 2–5. Analysis of the performance of our method, i. e.,
of the preparation efficiency, shows that light induced inelastic collisions in the MOT are
the main factor limiting the performance. Moreover, we have found out that the transfer
of atoms from the MOT into the HDT is a reach dynamical process, where light induced
collisions between cold atoms play a key role. We found an evidence of a low loss MOT in-
duced process of redistribution of atoms between the micropotentials of the standing wave
of the HDT. We have studied this process experimentally and theoretically. Although our
experimental data does not allow us to unambiguously conclude about the efficiency of
this redistribution, our models, where this process is highly effective, explain most of the
experimentally measured data. The presence of such a low loss redistribution mechanism
would then open a route towards preparation of an optical lattice with a filling factor very
close to one with thermal atoms from the MOT, without preparing a BEC and using a
Mott insulator transition.





Chapter 4

Spatial manipulation of individual
atoms

Building quantum systems atom-by-atom requires a full control over the spatial position of
each building block of the system. We realize this control in three steps: At the beginning,
the necessary number of atoms is prepared on our “object holder”, the horizontal dipole
trap (HDT). Analysis of an image of these atoms at the second step yields information
about the initial spatial positions of the atoms. And finally, using this initial information,
we use our “optical tweezers”, the vertical dipole trap (VDT), to extract and place one-
by-one the atoms at the target positions on the object holder. The first two steps are
extensively described in Ch. 2 and Ch. 3, whereas the question of the spatial manipulation
of atoms is the aim of this chapter.

This chapter starts with the explanation of how the transportation of a single atom
in all three dimensions using our dipole traps is realized (Sec. 4.1). Since atoms have
to be transported over distances up to 100 µm with the submicrometer accuracy, it is
essential to obtain a precise calibration of camera pixel separation to atom position in the
object plane of the microscope objective (Sec. 4.2). The technique of the extraction of
an atom with the optical tweezers out of the HDT is explained and analyzed in Sec. 4.3,
whereas the insertion of an atom is the topic of Sec. 4.4. Using this technique we have
demonstrated that starting with two initially arbitrary separated atoms in the HDT, we
are able to rearrange them to have an atomic pair with a well defined final separation
(Sec. 4.6). This technique is then applied to a larger number of atoms to create strings
of equidistantly separated atoms (Sec. 4.7). And finally, we demonstrate that two atoms
can even be joined in a single potential well of the standing wave of the HDT (Sec. 4.8).

4.1 3D transport of atoms

We transport atoms in the x-y-plane using the HDT. Vertical transport of the atoms along
the z-direction is realized by the VDT.

47
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Figure 4.1: Scheme of the experimental setup for atom rearrangement. Atoms in the
HDT can be moved along the y-direction using the optical “conveyor belt” technique,
whereas the movement in the x-direction is realized by tilting the mirrors M1 and M2.
Atoms in the VDT can be transported along the z-direction by moving the retro-reflecting
mirror M3. The imaging optics is situated perpendicularly to the plane of the traps.

Transportation along the y-direction

An “optical conveyor belt” [6] along the trap axis is realized by means of acousto optic
modulators (AOMs) installed in each arm of the HDT, see Fig. 4.1. Mutually detuning
the AOM driving frequencies using a dual-frequency synthesizer (model DFD 100 from
APE Berlin), detunes the frequencies of the two laser beams by ∆ν = ν1−ν2. As a result,
the standing wave moves along the axis of the trap with the velocity vy = λ∆ν/2.

We transport an atom by first accelerating the standing wave to a maximum velocity
and then decelerating it in the same way to bring the atom to a stop. For this purpose,
the frequency difference ∆ν is linearly increased to its maximum value in a predetermined
time and then decreased to zero in the same time. This results in a uniform acceleration
and deceleration during the transportation. Our DFD synthesizer allows us to program
up to 8 different transportation distances. Programming a set of new transportation
distances takes about 800 ms. Each of them can then be triggered within 2 ms during the
experiment. This fact will be important for the analysis of the time necessary for building
an equidistant string of seven atoms, see Sec. 4.7.

The optical conveyor belt allows us to transport the atoms over millimeter distances
with submicrometer precision [22, 6] within several milliseconds. The accuracy of the
transportation distance is limited to 190 nm by the discretisation error of our digital
synthesizer [22]. In this experiment we typically transport atoms over a few tens of mi-
crometers within a few hundred microseconds.

Transportation along the x-direction

Translation of the HDT along the x-direction is realized by synchronously tilting the
mirrors M1 and M2, see Fig. 4.1, in opposite directions around the z-axis using piezo-
electric actuators. For tilt angles smaller than 0.1 mrad the variation of the interference
pattern is small and to a good approximation pure x-translation is realized.
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Experimentally, the transportation of atoms is realized by linearly ramping the voltage
on the actuators, which results in a transportation with the constant speed.

We typically move atoms in the x-direction by two times the waist radius of the HDT
(ca. 40 µm) with a precision of a few micrometers within 50 ms. The maximum trans-
portation distance is limited to about 40 µm by the dynamic range of the actuators. The
minimal transportation time is limited to about 10 ms by the bandwidth of the PZT-
system.

Transportation along the z-direction

The VDT acts as optical tweezers and extracts and reinserts atoms in the z-direction.
To axially move the standing wave pattern of the VDT, the retro-reflecting mirror M3 is
mounted on a linear PZT stage (model P-621.10L from PI Germany), see Fig. 4.1.

In our experiments the VDT transports an atom over the distance of 70 µm along the
z-axis by applying a sinusoidal half wave voltage ramp to the PZT within 50 ms. This
transportation distance is more than three waists of the HDT, and therefore is enough for
the extraction of an atom out of the HDT, see Sec. 4.3. The precision of the transporta-
tion is limited to a few micrometers by the hysteresis of the piezo-crystal, whereas the
transportation time is limited by the inertia of the mirror.

4.2 Precise calibration of the imaging scale

Information about the initial positions of the atoms to be manipulated is extracted from
an ICCD image. Since atoms have to be transported over large distances up to 1 mm
with submicrometer accuracy, it is essential to obtain a precise calibration of camera pixel
separation to atom position in the object plane of the microscope objective.

Already from the design of the imaging system this correspondence can be estimated
from the optical magnification of the system to be αmagn = 0.47(±0.05) µm/pixel, see
Sec. 2.1.2. But the 10 % error in the calibration results already in the 10 µm uncertainty
for the 100 µm transportation distance. Therefore, we have used two other calibration
methods to reduce this uncertainty.

4.2.1 Using transportation

For this method we use our possibility to transport atoms with our optical conveyor
belt along the y-direction over any desired distance with submicrometer precision. By
taking the images of the atom before and after the transport we are thus able to find the
correspondence between the known transportation distance and the distance in pixels on
the ICCD.

We load exactly one atom into the HDT and transport it over a fixed distance of
15 λHDT. The transportation distance in pixels from about 50 transports is 31.99(±0.13).
The resulting calibration parameter is thus

αtrans = 0.499(±0.002) µm/pixel.
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Figure 4.2: Histogram of measured distances and its fourier transform. The only one
prominent contribution at k0 = 0.9336 wells/pixel corresponds to the periodicity of
λHDT/2 in the object plane of the microscope objective. The inset shows the original
function f(y). Here, for presentation purposes each delta function was replaced by a
Gaussian with the width of 0.05 pixel.

This value is compatible with the estimation αmagn, but the precision is now an order of
magnitude better.

4.2.2 Using periodicity of the HDT

For this calibration we take advantage of the fact that the atoms in the HDT are trapped
in the potential minima separated by exactly λHDT/2 = 532 nm. Therefore, the measured
distance between two simultaneously trapped atoms d given in units of camera pixels must
correspond to an integer multiple of λHDT/2 in the object plane:

αd = nλHDT/2, (4.1)

where α is the calibration parameter in µm/pixel. In order to determine α we have first
accumulated about 500 images with two to four atoms trapped in the HDT. Then we have
determined the interatomic separations in each image, resulting in n ≈ 700 distance values
di, shown in Fig. 4.2. In order to avoid any inaccuracy caused by overlapping peaks at
short distances, only separations of more than 10 µm then were taken into account. To
find the periodicity of the distribution we construct a function built by summing the delta
functions at the positions of each di

f(y) =
1
n

n∑

i=1

δ(di − y) (4.2)



4.3 Extraction of an atom 51

Figure 4.3: Extraction of an individual atom out of the string. a) The target atom is
transported to the position of the VDT. b)By axially moving the VDT, the target atom
is extracted out of the HDT.

and Fourier transform it:

g(k) =
1√
2π

∫ ∞

−∞
f(y)e2πikydy =

1√
2π n

n∑

i=1

e2πikdi . (4.3)

The real part of the Fourier transform of g(k) is shown in Fig. 4.2. The most prominent
peak at k0 = 0.9336(±0.0003) 1/pixel corresponds to the spatial frequency of the standing
wave pattern:

k =
α

λHDT/2
. (4.4)

This yields the calibration parameter α = 0.4967(±0.0002) µm/pixel.
The error of this value is dominated by the statistical error due to the finite sample

and the 130 nm-uncertainty in the determination of each distance [22]. The statistical
error is estimated by randomly selecting a subset of n/2 distances and determining α by
the above mentioned calculations on this subset. Using 20 different subsets the standard
deviation (δα)n/2 was determined. The statistical error for the full set is therefore (δα)n =
(δα)n/2/

√
2. The slight modification of the wave length λHDT in the Rayleigh zone by the

Guoy phase is on the order of 10−5 and hence negligible here.

4.2.3 Conclusion

Both methods give a precision enough for the transportation with submicrometer precision.
The transportation method is relatively fast to implement and straightforward to analyze.
In contrast, the Fourier analysis method is more involved, but yields an order of magnitude
higher precision of the calibration parameter. Therefore, we have used the transportation
method for all experiments in this thesis. We have used the Fourier method for the analysis
of the experimental data of the distance control experiment, see Sec. 4.6.

4.3 Extraction of an atom

Knowing the initial positions of the atoms in the HDT, atoms can be selectively extracted
with the optical tweezers. For extraction, the VDT-optical tweezers needs to overcome the
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Figure 4.4: Trapping potentials along the z-axis. The trapping potential in the overlap
region of the two traps is the sum of the Gaussian profile of the radial confining potential
of the HDT and of the standing wave of the VDT. An atom at the bottom of the HDT
experiences light forces of the standing wave, too.

HDT trapping forces. In both the HDT and VDT standing wave dipole traps confinement
in the axial direction is almost two orders of magnitude tighter than in the radial direction,
the maximal axial forces are thus much larger than the radial forces. For comparable
potential depths of the HDT and the VDT, an atom in the overlap region will therefore
always follow the axial motion of the traps.

We extract a selected atom out of the string trapped in the HDT, by first transporting
the target atom to the position of the VDT, see Fig. 4.3a, followed by switching on the
VDT adiabatically and moving its standing wave pattern upwards in the z-direction, see
Fig. 4.3b. Successful extraction of a single atom not only requires efficient handling of the
atoms between the HDT and VDT traps. In addition, other atoms present in the vicinity
must remain undisturbed. We have thus defined and analyzed a minimal separation of
atoms tolerable on extraction, which is equivalent to an effective “width of the optical
tweezers”.

4.3.1 Theoretical model of the width of the optical tweezers

For extraction by the optical tweezers, motion occurs in the y-z-plane only. A two-
dimensional model is used to analyze the extraction operation of an atom. In this model
motion in the traps is treated classically, for at the atomic temperature of about 60 µK for
the typical depths of the traps in our experiments the mean oscillatory quantum numbers
are nrad ≈ 90, nax ≈ 3 for the VDT, and nrad ≈ 400, nax ≈ 6 for the HDT.

We consider two crossed standing wave optical dipole traps. For simplicity, we assume
that all the spatial manipulations are carried out within the Rayleigh-range of the standing
wave dipole traps, i. e., we neglect the change of the curvature of the wave fronts. In
this approximation, each dipole trap is described by three parameters: the waist radius
of the Gaussian beam, the depth of the trap, and the periodicity of the standing wave.
Atoms are trapped in the different potential wells of the standing wave of the HDT and
are extracted along the z-direction with the VDT. Therefore, we consider one-dimensional
potentials along the z-axis at different y-positions in the y-z-plane with x = 0.

In order to separate the effect of the potential shape and the atomic motion on the
process of extraction, we first model the case of atoms at zero temperature, where the
energy of the atoms is well defined. Then, the influence of the thermal energy distribution
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Figure 4.5: Decrease of the effective depth of the potential well. Due to the Gaussian
shape of the confining potential of the HDT in the z-direction, the depth of the standing
wave pattern reaches its minimum at the distance wHDT/2 from the axis of the HDT. If
the effective depth is larger than zero, the atom remains trapped in the standing wave
and will be finally extracted with the VDT a). If the depth is smaller, the atom always
rolls down during the extraction b).

is discussed.

Tweezers potential

Consider an atom at rest trapped at the bottom of a micro-potential of the HDT at y = 0,
which coincides with the axis of the VDT. At this position the HDT-potential in the z-
direction has a Gaussian shape with waist wHDT and depth U0

HDT. After switching on the
VDT, in addition to the Gaussian potential of the HDT, a periodic potential with depth
U0

VDT and period λVDT/2 is superimposed in the z-direction. Since the HDT and VDT
laser frequencies are far apart, the trapping potentials are added incoherently, and the
atom is then additionally subject to the forces of the VDT standing wave, see Fig. 4.4.

During extraction of an atom out of the HDT, the VDT is moved axially, causing a
shift of the standing wave modulation pattern along the z-direction. The trapped atom is
transported at the bottom of one of the local potential minima of the sum potential away
from the axis of the HDT. Due to the Gaussian shape of the radial confining potential of the
HDT, the depth of the local minima changes along the z-axis and reaches its minimum
at the distance zmax = wHDT/2 from the axis of the HDT. The effective depth of the
corresponding potential well, see Fig. 4.5, can be approximated as

U ≈ U0
VDT −

1
π
√

e

λVDT

wHDT
U0

HDT, (4.5)

The condition that the VDT extracts the atom from the HDT is

U > 0. (4.6)

Hence, the lower limit for the VDT potential is

U0
VDT >

1
π
√

e

λVDT

wHDT
U0

HDT. (4.7)

Now, consider an atom is trapped at some other position y 6= 0 along the HDT. The
potential along the z-direction will be the sum of the same Gaussian potential well of
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the HDT with depth U0
HDT and of the periodic potential of the VDT, but now with the

reduced depth

UVDT(y) = U0
VDT e

− 2y2

w2
VDT . (4.8)

The sum of the two potentials at the lateral position y generalizes Eq. 4.5,

U(y) ≈ U0
VDT e

− 2y2

w2
VDT − 1

π
√

e

λVDT

wHDT
U0

HDT. (4.9)

Consequently, there exists some region −yT < y < yT along the HDT, where condition
Eq. 4.6 holds, and where atoms will be extracted with the VDT. Figure 4.6a shows the
probability PHDT for an atom to remain trapped in the HDT after the extraction as
the function of the lateral position y. The critical position yT defined by the condition
U(yT) = 0 is

yT =
wVDT√

2

√
ln

(
π
√

e
wHDT

λVDT

U0
VDT

U0
HDT

)
, (4.10)

which characterizes the width of the optical tweezers, yT, as a function of the trap para-
meters for atoms at zero temperature. Equation 4.10 shows, that the reduction of U0

VDT

by decreasing the power of the laser beam of the VDT reduces the lateral region yT, from
which the atoms will be extracted, thereby reducing the size of the optical tweezers. For
T = 0 K, i. e., for minimal kinetic energy of the atoms, and neglecting quantum effects,
this region can be made arbitrary small at U0

VDT = λVDT
π
√

ewHDT
U0

HDT.

Thermal atomic motion

Let us model atomic motion in the dipole trap by an ensemble in thermal equilibrium at
temperature T in a three-dimensional harmonic potential. We assume that the energy of
the atoms is Boltzmann-distributed [53]:

f(E, T ) =
1

2(kBT )3
E2e−E/(kBT ). (4.11)

For an atom at fixed energy E the condition for the extraction analogous to Eq. 4.6 is:

U(y)− E > 0, (4.12)

where U(y) is given by Eq. 4.9. Since for a given temperature T the fraction of atoms
with an energy above U is

p(U) =
∫ U0

HDT

max {U,0}
f(E, T )dE, (4.13)

the probability PHDT for an atom to remain trapped in the HDT after the extraction as
a function of the lateral position y is

PHDT(y) ≡ p(U(y)) =
1
2
e
−U(y)

kBT

[(
U(y)
kBT

+ 1
)2

+ 1

]
, (4.14)



4.3 Extraction of an atom 55

Figure 4.6: Probability for an atom to remain trapped in the HDT after the extraction.
a) atoms at T = 0 K. b) atoms at temperatures T1 (solid line) and T2 (dashed line),
with T1 > T2.

where we have changed the upper limit of the integral from U0
HDT to infinity in order to

get an analytic solution.
Figure 4.6b shows PHDT for the same trap parameters as 4.6a. Atomic motion causes

“softening” of the edges of the extraction zone PHDT. An increasing temperature causes
narrowing of the region of the efficient extraction. For quantitative analysis we define
the minimal width of the optical tweezers 2ymin

T such that the extraction efficiency at the
center of the VDT is 99 %:

PHDT(y = 0) = 0.01, (4.15)

and the probability to extract an atom at ymin
T is 1 %:

PHDT(ymin
T ) = 0.99. (4.16)

4.3.2 Measurement of the width of the optical tweezers

We have experimentally determined the width 2yT of the optical tweezers as a function
of the depth of the VDT by loading the HDT with atoms distributed over a region larger
than yT, extracting atoms with the VDT, and analyzing the distribution of the atoms
remaining in the HDT.
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Figure 4.7: Image analysis for the determination of the width of the tweezers. a) The
picture shows 40 added images (exposure time 1 s) of about 50 atoms each trapped
in the HDT. b) Added images after the extraction of the atoms with the VDT and
expelling the extracted atoms. The histograms in a) and b) show the corresponding
intensity histograms after the summation of the pixels in the vertical direction in the
selected region before the correction for the background. c) The experimentally measured
probability for an atom to remain trapped in the HDT PHDT.

Experimental sequence

We have carried out the following experiment: At the first step, a large number of about
50 atoms was loaded into the HDT. Since after the transfer from the MOT, their lateral
distribution only extends over the MOT size of about 2σMOT = 11 µm, which is already
about the waist of the VDT beam, this distribution has been broadened. This was realized
by switching off one of the trap laser beams and letting the atoms freely expand along
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the HDT axis for t = 1 ms. Since the laser beam was switched off within 1 ms, which
is adiabatic with respect to the axial oscillation frequency, the atoms were adiabatically
cooled to Tfinal = 1

2Tinit ≈ 30 µK [29]. This results in an average velocity of an atom
along the HDT vy =

√
kBTfinal/m, and therefore in the final spread of the atoms over

2
√

σ2
MOT + (vyt)2 ≈ 80 µm. At the second step, under the continuous illumination of

the optical molasses, the first photo of the atoms in the HDT with an integration time of
1 s was taken, see Fig.4.7a. At the third step, the molasses was switched off, the VDT
was adiabatically switched on and moved axially, thereby extracting the atoms out of the
HDT. At the forth step, the VDT was switched off to expel the extracted atoms. And
finally, the second fluorescence image of the remaining atoms in the HDT was recorded,
see Fig.4.7b.

In this measurement, the depth of the HDT was fixed (U0
HDT/kB = 0.8 mK), whereas

the depth of the VDT was changed over two orders of magnitude from 0.3 to 16.8 mK.
For better signal-to-noise ratio we repeat this experiment 40 times for each depth of the
VDT and add up all initial, see Fig. 4.7a, and all final images, see Fig. 4.7b.

Calculation of PHDT

The experimental PHDT was then calculated from the initial and final images according to
the following procedure: After suitably clipping the images to minimize the background
noise, see region “atoms” in Fig. 4.7a-b, the pixels of the picture were binned in the z-
direction to obtain histograms for the intensity distribution along the axis of the HDT.
Each histogram is then corrected for the background noise on the CCD chip. The noise
was estimated by binning the pixels of a region of the image of the same size but without
the atoms, see region “background” in Fig.4.7a-b. And finally, the probability PHDT was
obtained as the normalized final intensity distribution, by dividing the histogram of the
final image by the one of the initial image, see Fig.4.7c. The corresponding plots for
U0

VDT/kB = 0.3 mK to 16.8 mK are presented in Fig. 4.8.

4.3.3 Analysis

In Fig. 4.8, the measured data are compared to the theoretical model described by Eq. 4.14.
Free fit parameters for the data of Fig. 4.8a include the temperature T of the atoms, the
waist of the VDT wVDT along the axis of the HDT, and the position of the VDT y0, relative
to the picture. The fit to the data set for the depth of the VDT at U0

VDT/kB = 0.3 mK,
corresponding to a power of the incoming VDT laser beam of 0.06 W, yields

T = 60(±1) µK and wVDT = 11.6(±0.2) µm,

see Fig. 4.8a. The temperature thus obtained is in the range of the typical temperatures
measured by other methods [54]. Also, the measured value of the waist of the VDT along
the axial direction of the HDT is in reasonable agreement with the waist 10.1(±1.4) µm
determined from the oscillation frequency measurements in the VDT. In Fig. 4.8b-h
we have plotted the model function PHDT(y) at U0

VDT/kB = 3.1 mK, 0.6 mK, 1.1 mK,
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Figure 4.8: Comparison of the experimental data and the respective theoretical expec-
tation. a) Fit of PHDT (solid line) to the experimental data (points) for U0

VDT/kB =
0.3 mK. b-h) The function PHDT with parameters from a) except U0

VDT/kB = 0.6 mK,
U0

VDT/kB = 1.1 mK, U0
VDT/kB = 3.1 mK, U0

VDT/kB = 6.0 mK, U0
VDT/kB = 9.4 mK,

U0
VDT/kB = 13.0 mK and U0

VDT/kB = 16.8 mK, respectively. The depth of the HDT is
U0

HDT/kB = 0.8 mK.
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3.1 mK, 6.0 mK, 9.4 mK, 13.0 mK and 16.8 mK, respectively, without further adjustment
of T and w, finding good agreement with experimental data.

Using the quantitative definitions Eq. 4.15 and Eq. 4.16 we can determine the optimal
width of the optical tweezers for our current experimental parameters, i. e., for the depth
of the HDT of 0.8 mK and the atomic temperature of T = 60 µK. Using Eq. 4.15 we find
the optimal depth of the VDT at U0

VDT/kB = 0.51 mK. The corresponding width of the
optical tweezers is calculated with Eq. 4.16 to be 2ymin

T = 2 · 11.7 µm, see Tab. 4.1.

4.3.4 Effects not included into the theory

Blurring of the image

We calculate the function PHDT by analyzing the ICCD images. The effect of the blur
on the camera chip on the resulting profile of PHDT(y) can be estimated by convoluting
the LSF of the imaging system, see Sec. 2.2.5, with the respective function PHDT(y).
Numerical simulations show that for the data presented in Fig. 4.8 this effect is negligibly
small. Therefore, bluring of the imaging system was not taken into account.

Fluctuations and drifts of the traps

Radial fluctuations and drifts of the VDT with respect to the HDT result in the fluctuation
of the center of the extraction region. Since for the above described experiment we have
added up many images, the obtained extraction region is effectively broadened. In Sec. 4.6
we have measured these drifts of the traps to be less than micrometer. Therefore, the
broadening caused by this effect on the determination of PHDT is negligibly small.

Heating of atoms

The increase of the depth of the potential well with a trapped atom due to the adiabatic
switching on of the VDT results in adiabatic heating of the atom [29]. Due to the Gaussian
radial profile of the VDT, this heating is maximum at the center of the VDT and drops
down further away along the axis of the HDT. Since for hotter atoms the slope of PHDT

at yT is “softer”, see Fig. 4.6, our theoretical model overestimates this slope. The system-
atically stronger slope of the theoretical curve with respect to the experimental data in
Fig.4.8 can thus be attributed to this effect. Nevertheless, this effect does not significantly
change the value of yT (PHDT(yT) = 0.99), for at this lateral position the depth of the
VDT, see Eq. 4.8, is exponentially reduced, and therefore the heating effect is small.

4.3.5 Towards ultimate resolution

Ultimate resolution of the optical tweezers is realized, if a single potential well of the HDT
is addressed only, i. e., if the width of the optical tweezers 2yT < 2 · 0.532 µm. Here, we
use our model in order to develop strategies for the reduction of the width of our optical
tweezers. The width depends on the depth and waist of the VDT, of the HDT, and on the
temperature of the atoms in the HDT. Variation of the depth of the traps can be straight
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Table 4.1: Width of the tweezers 2ymin
T for different parameters

UHDT
kB

(mK) UVDT
kB

(mK) T (µK) wHDT
λVDT

wVDT
λVDT

Fr ymin
T (µm)

current experiment
1 0.8 0.51 60.0 19 9.8 0.015 11.7

stronger focusing of optical tweezers
2 0.8 0.51 60.0 19 4.9 0.025 5.9
3 0.8 0.51 60.0 19 2.45 0.025 2.9

lower atom temperature
4 0.8 0.017 1.0 19 4.9 0.48 2.9
5 0.8 0.0088 0.084 19 2.45 0.92 0.5

forwardly realized by changing the power of the respective laser (up to up to 20 W for
the VDT laser and 1.2 W for each beam for the HDT laser). Changing the waist size of
the traps is connected with the design of new lens systems, and lowering of the atomic
temperature requires the implementation of e. g. the Raman sideband cooling technique
[55].

In the following analysis we concentrate on the dominating influence of beam properties
and atomic motion. We ignore further experimental effects not included in our model, see
above, which become relevant for ultimate precision.

Universal extraction function

We rewrite, first, the extraction efficiency from Eq. 4.14 in terms of dimensionless para-
meters:

U(y)
kBT

= sT

(
e
− 2y2

w2
VDT − Fr

)
, (4.17)

where the normalized tweezers potential depth

sT =
U0

VDT

kBT
(4.18)

compares the tweezers trap depth with atomic temperature, and

Fr =
1

π
√

e

U0
HDT

U0
VDT

λVDT

wHDT
(4.19)

is a relative measure of forces exerted by the VDT (∼ U0
VDT/λVDT) and the HDT

(∼ U0
HDT/wHDT). Condition of the extraction Eq. 4.7 translates into

Fr < 1.
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Figure 4.9: Contour plot for PHDT(ymin
T , Fr) = 0.99. Outside the white area atoms will

remain trapped in the HDT with at least 99 % probability.

The condition Eq. 4.15 that the target atom is extracted out of the HDT with 99 %
efficiency, is satisfied for

sT =
8.4

1− Fr
. (4.20)

Using this equation together with Eq. 4.16 we determine to connection between the min-
imal width of the optical tweezers ymin

T and the dimensionless parameter Fr:

PHDT(ymin
T , Fr) = 0.99, (4.21)

which is plotted in Fig. 4.9.
From this figure we can already infer a strategy for improved resolution: the Fr value

should be about unity, the waist of the VDT should be as small as possible. The increase
of Fr can be done by increasing the depth of the HDT, reducing wHDT and the temperature
T of the atoms, see Eq. 4.19 and Eq. 4.18.

Examples of optical tweezers

Table 4.1 we have collected potential parameters for the dipole traps for improved extrac-
tion resolution. The traps and tweezers width in the first line corresponds to our current
setup. In lines 2-3 we project parameters for improved resolution by changing the focusing
properties of the VDT (2 and 4 times tighter, respectively) without modification of the
HDT. In lines 4 and 5 the additional influence of reduced atomic temperatures is shown
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Figure 4.10: Axial insertion. An atom trapped in one of the potential wells of the
standing wave of the VDT, is inserted into the Gaussian potential well of the HDT by
axially moving the VDT along the z-direction.

(1 µK and ca. 0.1 µK which can be obtained with Raman cooling [56] and quantum degen-
erate gases). The last two lines show that by stronger focusing of the HDT the ultimate
resolution can be reached without additionally cooling the atoms.

4.4 Insertion of an atom

After extraction, an atom is trapped in the potential of the VDT. In order to re-insert the
atom into a potential well of the HDT, the VDT potential is merged with the HDT and
finally switched off. There are two alternative methods to insert an atom back into the
HDT: “axial insertion” and “radial insertion”. Some properties of theses two methods,
e. g., insertion precision, is the same for both methods. Whereas the difference becomes
apparent, when we try to insert an atom with the VDT into the HDT, which holds another
atom and the final interatomic separation is smaller than the size of the optical tweezers,
which will be discussed in Sec. 4.5.

Axial insertion

In this case, the process of extraction of an atom is simply reversed: the VDT axially
transports the atom to the axis of the HDT, see Fig. 4.10, and then the VDT is adia-
batically switched off, leaving the atom in the HDT. The whole process of axial insertion
takes about 70 ms.

Radial insertion

For radial insertion, the two traps are first radially separated by displacing the axis of the
HDT in the positive x-direction, see Fig. 4.11a. Then the atom in the VDT is transported
downwards to the vertical position of the horizontal trap, see Fig. 4.11b. Along the
x-axis, the atom in this configuration is confined in the Gaussian-shaped radial potential
of the VDT. In the next step, the VDT is then merged with the Gaussian-shaped radial
potential of the HDT by moving the HDT radially towards the x-position of the VDT,
see Fig. 4.11c. In the final step the VDT is adiabatically switched off, which releases the
atom to the HDT, see Fig. 4.11d. The process of radial re-insertion takes about 210 ms.
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Figure 4.11: Radial insertion of an atom. a) An atom in the VDT after the extraction.
The traps are separated by moving the HDT along the x-direction. b) The atom in the
VDT is transported to the z-position of the HDT. c) The traps are merged by moving
the HDT along the x-direction towards the VDT. d) Evolution of radial potentials of the
traps along the x-axis for steps b) and c).

The ultimate goal of insertion is to securely drop an atom into a given HDT micropo-
tential, for instance spaced exactly a given number of wells from its neighbor, but without
influencing the neighboring atom.

4.4.1 Insertion precision

There are two independent effects influencing the precision of the insertion, i. e., how
accurately an atom can be placed into a desired HDT mocroptential: the atomic thermal
motion in the transversal potential of the VDT and the fluctuations of the center of the
optical tweezers relative to the HDT.

Transversal distribution in the VDT

Before contact with the HDT atoms trapped in the VDT are modeled as an ensemble
in thermal equilibrium at a temperature T . For atomic temperatures much smaller then
the depth of the VDT, the atoms can be considered to be trapped in a three-dimensional
harmonic potential with the oscillation frequencies given by Eq. C.3 and Eq. C.7. In the
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harmonic approximation all three degrees of freedom are decoupled, and the energy of
each one-dimensional motion is Boltzmann-distributed with the same temperature T :

f1(ε, T ) =
1

kBT
e−ε/kBT . (4.22)

For a fixed energy ε, the probability to find an atom at position y in a potential
U(y) = mΩ2y2/2 is

pε(y) =
1

π
√

y2
0 − y2

, (4.23)

for |y| ≤ y0. Here y0 =
√

2ε
mΩ2 is the turning point, and Ω = Ωrad is the radial oscillation

frequency of the VDT. Integration of pε(y) over all energies ε weighted with the Boltzmann
factor gives the spatial distribution of a thermal atom:

pT(y) =
∫ ∞

0
pε(y)f1(ε, T )dε (4.24)

=

√
mΩ2

2πkBT
e−mΩ2y2/(2kBT ),

which is a Gaussian distribution with the width

δytherm =
wVDT

2

√
kBT

U0
VDT

. (4.25)

This width can also be expressed in terms of the VDT waist radius and the sT-parameter,
combining the tweezers trap depth and the temperature, see Eq. 4.18:

δytherm =
wVDT

2s
1/2
T

. (4.26)

Spatial fluctuations of the tweezers axis

For insertion, the atoms must be inserted into the HDT at some target position. Since
the VDT and the HDT laser beams are guided by independent mechanical setups, their
relative position is subject to radial and axial fluctuations. In our model these fluctuations
are taken into account by δyfluct representing the rms-amplitude of the fluctuations of the
VDT axis in the HDT frame of reference.

For our typical experimental parameters, the width of the thermal distribution is on
the order of 0.5 µm, and the rms amplitude of the axis fluctuations is about 0.5 µm.
Assuming these fluctuations are Gaussian distributed, the rms-amplitude of the combined
fluctuations is

δyinsert =
√

δy2
therm + δy2

fluct . (4.27)
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Figure 4.12: Spatial distribution p(y) with the width yinsert is projected onto the stand-
ing wave of the HDT as both traps are merged (a). This distribution after the projection
(b). The width of the envelope remains almost unchanged, but the probability is spatially
modulated with the periodicity of the HDT.

The new Gaussian distribution of the probability of finding an atom along the HDT axis
p(y) has thus the width δyinsert ≈ 0.7 µm, which is larger than the size of one HDT
micropotential. Therefore, this distribution extends over several potential wells of the
HDT, see Fig. 4.12a.

Insertion into HDT micropotentials by “projection”

For the last step of the insertion, the traps are merged and the VDT is finally switched off.
Due to the periodicity of the HDT, the distribution p(y) changes for δyinsert & λHDT/2: its
envelope reflects the width of the original distribution before the traps were merged, but
under this envelope the distribution is now modulated with the periodicity of the stand-
ing wave of the HDT, see Fig. 4.12b. The distribution in each approximately harmonic
micropotential is described again by a Gaussian of width

δymicropot =
λHDT

2
√

2π

√
kBT

U0
HDT

,

where T is the temperature.
It is clear that the insertion precision will be enhanced with improving localization of the

atoms, i. e., with lower atomic temperature and deeper VDT potentials. Ultimately, for
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Figure 4.13: Experimental sequence for the characterization of the insertion precision.
After loading on average one atom into the HDT it is imaged with the ICCD, which is
followed by the extraction of the atom with the VDT. If there are more than one atom
at the beginning of the sequence, the not extracted atoms are expelled by switching off
the HDT for a short time. The extracted atom is then cooled and re-inserted into the
HDT. The last image reveals the final position of the atom after the re-insertion.

δyinsert ¿ λHDT/2 the final distribution will be concentrated into a single micropotential.
This limit corresponds to “perfect” insertion of an atom into a single target micropotential.
It is not yet realized in our experiment but will be discussed further.

4.4.2 Experimental studies of the insertion precision

We have carried out a series of measurements in order to experimentally study the de-
pendence of the insertion precision on atomic temperature and on the depth of the VDT
predicted by the model above. For this purpose we have loaded one atom on average into
the HDT. This atom was then extracted with the VDT , cooled with optical molasses,
and re-inserted back into the HDT, see Fig. 4.13. If there were initially several atoms
loaded into the HDT, the rightmost atom was extracted, and the rest of the atoms was
expelled out of the HDT by switching it off for 30 ms, while holding the extracted atom
with the VDT. We have always cooled the atoms at the same conditions, i. e., at the
same depth of the VDT and with the same parameters of the optical molasses. This has
been realized by first lowering the depth of the VDT from the “extraction level” (Uextr)
to the “cooling level” (Ucool) and by switching on the optical molasses for 100 ms. After
the cooling, the depth of the VDT was ramped to the desired for the insertion value Uins.
The temperature was varied by performing the measurement with and without the cooling
step in the experimental sequence.

We have calculated the standard deviation of the final positions of the atoms after
several repetitions of the same experiment, yielding the insertion precision δyinsert.
For δyinsert ≥ 0.5λHDT/2 we can neglect the discretization of the positions due to the
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Figure 4.14: Insertion precision with and without cooling. The triangular points present
the insertion precision for the experimental sequence without cooling of the atoms before
re-insertion. The rectangular points are the results of the insertion precision with the
cooling step. The depth of the HDT was fixed. In this experiment we have used the axial
insertion method. Every point corresponds to about 25 repetitions of the experiment.

periodicity of the HDT [57].

4.4.3 Analysis

Figure 4.14 shows the result of the measurement for depths of the VDT between 0.6 mK
and 8.4 mK, a fixed depth of the HDT (U0

HDT/kB = 0.8 mK), and with and without the
cooling step.

Temperature of the atoms

Squares and triangles in Fig. 4.14 present the result of the measurement with and without
cooling, respectively. The insertion precision in the case of the cooled atoms is on the
order of 500–700 nm, whereas for the case without cooling it is several micrometers. This
qualitatively demonstrates the temperature dependency of the insertion precision.

Depth of the VDT

In order to quantitatively analyze the dependence of the insertion precision on the depth of
the VDT, the experimental data (squares in Fig. 4.14) were compared with the theoretical
prediction given by the function Eq. 4.27 with ytherm from Eq. 4.25. For this purpose we
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Figure 4.15: Insertion precision as the function of the depth of the VDT. The solid line
is the fit of Eq. 4.28 to the experimental data (the rectangular points from Fig.4.14.

have rewritten this function as

δδyexp(UVDT) =

√
b2

√
UVDT

+ δy
2
fluct, (4.28)

where we have also included the fact that atoms were cooled with the molasses at the
VDT depth Ucool and then the depth of the VDT was ramped to the value, where the
insertion took place (UVDT). During this adiabatic ramping, the temperature of the atom
adiabatically changes to the value of T = T0

√
UVDT/Ucool [29]. We have independently

determined the contributions to δyfluct, i. e., the fluctuation of the VDT during this
experiment (ca. 200 sec). The drifts of the VDT were measured by observing an atom
in the VDT to be δyfluct = 0.26(±0.03) µm. Equation Eq. 4.28 was then fitted to the
experimental data with the fit parameter b. The parameter b = wVDT

2

√
T0

4√Ucool
yields the

combination of the waist of the VDT, of the trap depth where the atom was cooled and
the temperature. The result of the fit is presented in Fig. 4.15 with

b = 0.52(±0.05) µm mK1/4. (4.29)

For wVDT = 10.1(±1.4) µm and Ucool/kB = 1.6(±0.3) mK we calculate the corresponding
temperature of the atom in the VDT after the cooling with the optical molasses to be

T0 = 13(±4) µK.

This temperature is smaller than the temperature of the atoms in the HDT cooled with
the optical molasses (60 µK). The difference between these values can be attributed to
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the fact that the cooling process in the HDT is impaired by the multi mode nature of our
HDT laser [24].

Periodicity of the HDT

A reconstruction of the periodically modulated probability distribution p(y) of finding an
atom along the HDT axis, as it is shown in Fig. 4.12b, requires accumulation of many
images of individual atoms. Since the axial fluctuation of the HDT δyHDT during the
time of the experiment is on the order of the periodicity of the HDT, the measured
positions of atoms do not show any periodic bunching. However in an experiment, where
we have prepared a pair of atoms with a fixed separation, see Sec. 4.6, the distribution
of the separations between the atoms show this periodic structure, see Fig. 4.21. Since
the separations were measured relative to other atoms in the HDT and not relative to
the ICCD camera, the axial fluctuations of the HDT were effectively suppressed, which
allowed direct mapping of the periodically modulated probability distribution p(y).

4.5 Insertion in the presence of other atoms

A radical difference of the two alternative insertion methods mentioned in Sec.4.4 occurs
if the HDT already holds an atom within the width of the optical tweezers. Since during
axial insertion the VDT exercises the same manipulations as during the extraction of an
atom, this method limits the minimal final distance between the atoms in the HDT to the
width of the optical tweezers, because otherwise the atom in the HDT will be extracted
downwards by the VDT during the re-insertion, see Fig. 4.16a-b. In contrast, if the two
traps are merged radially, the VDT does not exert any forces pushing an atom out of the
HDT, see Fig. 4.16c-d. Consequently, for radial insertion there are no limitations on the
final allowed distance. In particular, the final distance between two atoms can be zero. In
this case, the two atoms will be joined in a single micro-potential of the standing wave of
the HDT. The advantages of radial insertion are accompanied by a drawback due to the
occurrence of an additional heating mechanism.

4.5.1 Insertion induced heating: Adiabatic model

Consider an atom trapped in the HDT at the y-position of the VDT, when the traps
are axially separated along the x-direction. Along this direction the radial potentials of
the two traps with the respective depths U0

HDT and U0
VDT have Gaussian shape each.

For kBT ¿ U0
HDT, the atom is trapped near the bottom of the potential well of the

HDT. This trap is then moved along the x-direction towards the vertical trap just before
the traps are merged, see Fig. 4.17. The atom has a potential energy of approximately
Ea ≈ U0

VDT − U0
HDT, with respect to the bottom of the potential well of the VDT.

After the merger, the atom with energy Ea is trapped in the sum potential of the two
traps. Adiabatically switching off of the VDT causes the atom to be adiabatically cooled
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Figure 4.16: Insertion of an atom with the VDT into the HDT, which holds another
atom, if the y-separation between atoms is smaller than the width of the optical tweezers.
a)–b) During the axial insertion, atom 2 will be extracted downwards with the VDT out
of the horizontal trap. c)–d) If the two traps are merged radially, both atoms will remain
trapped in the HDT.

to the final atomic energy [29]:

Efinal
a = Ea

√
U0

HDT

U0
HDT + U0

VDT

. (4.30)

The condition for the atom to remain trapped in the HDT is Efinal
a < U0

HDT, yielding an
upper limit for the depth of the VDT

U0
VDT < 3U0

HDT, (4.31)

otherwise the atom will be lost.

4.5.2 Measurement of the heating effect

In order to experimentally check the model, we have carried out the following experiment:
One atom on average was loaded into the HDT. The atom was then transported to the
y-position of the VDT axis. For the third step, the HDT with the atom was transported
in the x-direction, and the VDT was switched on. At the fourth step, the atom was trans-
ported back towards the VDT as it would occur during the radial insertion. Thereafter the
VDT was switched off adiabatically. The final image reveals the presence or the absence of
the atom in the HDT after this manipulation. Figure 4.18a shows the survival probability
of an atom in the HDT after this manipulation.
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Figure 4.17: Radial potential of the two traps. During the radial merging of the traps,
an atom in the radial potential of the HDT has a potential energy Ea, relative to the
bottom of the potential well of the VDT. The inset shows the respective geometry of the
traps.

4.5.3 Analysis

Experimental data in Fig. 4.18a show that starting from a VDT depth of 2.5 mK the
atoms in the HDT were heated up and lost during the radial insertion procedure. Since
the depth of the HDT for this experiment was 0.8 mK, the condition Eq. 4.31 results in
U0

VDT < 2.4 mK, which reasonably agrees with the experimentally observed value. This
result gives us the upper limit on the depth of the VDT.

At the same time, the lower limit on the depth of the VDT is dictated by the insertion
precision, which deteriorates with the reduction of the VDT depth. Figure 4.18b shows
the insertion precision, measured for the same depth of the HDT using the radial insertion
method. For VDT depths below about 1.2 mK the insertion precision is dominated by the
thermal component, see Eq. 4.25.

The non shaded regions in Fig. 4.18 give the range of the experimentally useful depths
of the VDT. For our typical experimental parameters there is a non empty overlap of
the experimentally useful ranges for the depth of the VDT. This region can be further
enlarged by increasing the depth of the HDT, see Eq. 4.31.

4.5.4 Conclusion

Summarizing, both methods of insertion allow the same high precision on the order of the
periodicity of the HDT. Although we have not yet reached the ultimate precision, i. e.,
secure insertion of an atom into a desired micropotential of the HDT, we have identified
the main limiting factors: thermal motion of the atom in the VDT and radial fluctuations
of the VDT-tweezers relative to the horizontal trap. The first factor can be reduced by
increasing the spatial confinement of the atom in the VDT, i. e., by increasing the trap
depth and reducing the atomic temperature. Active stabilization of the positions of the
traps would result in the reduction of their fluctuations.
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Figure 4.18: Optimal depth of the VDT. a) The survival probability of an atom in
the HDT as a function of the depth of the VDT. Every point is the result of about 35
repetitions of the experiment. b) The insertion precision (radial insertion) as a function
of the depth of the VDT. Every point corresponds to about 35 repetitions with a single
atom. The shaded areas show the experimentally useless ranges of the depth of the VDT.

Moreover, working with several atoms in the HDT, the radial insertion method does
not limit the final distance between the atoms after the re-insertion. It can be made even
as small as zero. By suitably selecting the depths of the traps, e. g., 1.2 mK to 2.4 mK for
the VDT and 0.8 mK for the HDT, this re-insertion can be done effectively and without
loss of the atoms due to the insertion. On the other side, the axial insertion is intrinsically
faster, which is important for working with strings with many atoms, see Sec. 4.7.

4.6 Distance control between two atoms

Now, the combination of the techniques to trap a string of atoms in the HDT (Sec. 3.2),
determine the initial positions of the individual atoms (Sec.2.2.5), extract a selected atom
(Sec. 4.3), and re-insert this atom at any target position in the string (Sec. 4.4) is used
to realize an active control of the separation between two atoms. In this experiment we
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prepare two atoms in the HDT with the target separation dt = 15 µm.

4.6.1 Experimental realization

Repositioning procedure

At the beginning, two atoms on average were loaded into the HDT. The following experi-
mental sequence was then executed irrespectively of the actual number of atoms. However,
for the analysis of the experimental data we have post-selected the events with initially
two atoms. The initial positions of the atoms along the HDT were determined from the
first ICCD image, see Sec. 2.2.5. The HDT transported then the atoms along the y-axis
so that the righthand atom stopped at the position of the VDT, see Fig. 4.19a. The
VDT then extracted this atom out of the horizontal trap, see Fig. 4.19b. While holding
this atom with the VDT, the remaining atom was transported along the y-direction so
that it stopped at the nominal target distance dt = 15 µm to the right from the axis of
the VDT, see Fig. 4.19c. The extracted atom was then cooled using the optical molasses
during 100 ms and radially re-inserted into the HDT. For this purpose the traps were
first separated by displacing the axis of the HDT along the x-direction, see Fig. 4.19d.
Then, the atom in the VDT was transported downwards to the z-position of the HDT,
see Fig. 4.19e. In the final step the extracted atom was inserted at the desired position
by shifting the HDT radially to the x-position of the VDT and adiabatically switching off
the VDT, see Fig. 4.19f. The second ICCD image was recorded to check the outcome of
the manipulation sequence, see Fig. 4.19g.

In this algorithm, the two transportation distances with the HDT, s1 and s2, have to
be calculated from the initial positions of the atoms y1 and y2, from the position of the
VDT yVDT and from the nominal final distance dt.

Position of the VDT In order to reduce the influence of the radial drifts of the VDT,
its position was measured once per 200 repetitions. This was realized by repeating
the sequence, analogous to the one, used for the characterization of the insertion
precision, see Fig. 4.13. In this sequence single atoms were inserted into the HDT
with the optical tweezers. The mean value of the final position of the re-inserted
atoms gave then the y-position of the VDT in pixels, yVDT.

Transportation distances The rearrangement algorithm requires two transports along
the HDT axis. They have to be calculated from position of the VDT yVDT, the
nominal target distance dt and the initial positions y1 and y2 of the lefthand and of
the righthand atoms, respectively. After the first transport, the atom 2 have to be
at the position of the VDT. Therefore, the first transportation distance is

s1 = −(yVDT − y2)α,

where α is the pixel-to-µm calibration coefficient, see Sec. 4.2. After the second
transport, the atom 1 have to be at the distance dt to the right from the VDT.
Therefore, the second transportation distance is

s2 = (y1 − y2)α + dT.
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Figure 4.19: Steps of the distance control. a) The righthand atom is transported to the
y-position of the VDT and the VDT is switched on. b) This atom is extracted upwards
with the optical tweezers. c) The atom in the HDT is transported to the position dt

to the right from the VDT. d) The axes of the two dipole traps are separated. e) The
atom in the VDT is transported downwards to the z-position of the HDT. f) The HDT
is moved in the x-direction towards the VDT. g) After switching off the VDT, the pair
of atoms in the HDT with the desired separation dt is prepared. Note that the figures
d-f are viewed along the y-direction, whereas the rest along the x-direction.

Experimental parameters

For this experiment we have used the HDT with the depth of U0
HDT = 0.8 mK using 1 W

of the laser power in each arm of the standing wave. The VDT was used with 0.3 W in
the incoming beam, which corresponds to the depth of U0

VDT = 1.5 mK. We have used
the same depth of the VDT for the extraction, for cooling and for the re-insertion on the
atoms.

During this experiment atoms have to be transported over different distances along the
y-axis, depending on the initial position of the atoms. The transportation over different
distances was then realized by varying the transportation time tD:

d = a
t2D
4

, (4.32)

keeping the acceleration of a = 1000 m/s constant. In this experiment we have transported
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Figure 4.20: Actively controlling the distance between simultaneously trapped atoms
in the HDT. The white histogram shows the broad distribution of the initial atomic
separations for about 190 pairs. The grey histogram shows the final distribution of
distances for the same pairs after the distance control operation (target distance dt =
15 µm). It is narrowed down to a width of only δdm = 0.78 µm rms, centered around
dm = 15.27 µm.

over the distances of up to 100 µm, which corresponds to the transportation times of up
to 600 µs.

The entire experimental sequence took about 5100 ms. This includes preparing of the
atoms in the MOT and loading them into the HDT (200 ms), first exposure (1000 ms),
readout of the image and its analysis (800 ms), reprogramming the DFD (840 ms), spatial
manipulation of the atoms (460 ms), taking the second image (1000 ms) and its readout
and analysis (800).

For this experiment we have used the calibration constant of αtrans = 0.499 µm/pixel
determined in a separate calibration measurement using the transportation method. The
Fourier analysis of the final experimental data showed that the calibration constant, cor-
responding to the current experiment, was αFourier = 0.4967 µm/pixel, see Sec. 4.2. This
constant was then used for the analysis of the experimental data.

4.6.2 Experimental results

During this experiment the experimental sequence was executed for about 1400 times.
The events with only 2 atoms at the beginning were then post selected.
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Figure 4.21: Zoom of the distribution of the final distances displayed in Fig. 4.20. The
histogram clearly shows that the final distances are integer multiples of the standing
wave period of λHDT/2 and that the final distribution extends over only 3-4 standing
wave potential wells. The solid line is a theoretical fit with a Gaussian envelope (dashed
line) centered at dGauss = 15.31 µm and having a 1/

√
e-halfwidth of δdGauss = 0.71 µm.

The narrow peaks under this envelope have a 1/
√

e-halfwidth of δdGauss = 0.130 µm,
corresponding to the precision of our distance measurement.

Final and initial distances

Figure 4.20 shows a histogram (bin size λHDT = 1064 nm) of the initial distances (white)
and final distances (grey) between the atoms for about 190 pairs. Initially, atoms have
random distances up to about 80 µm. In contrast, the final distribution is strongly peaked
with the mean value of

dm = 15.27(±0.06) µm

and a standard deviation of
δdm = 0.78(±0.05) µm.

The 1/
√

e-width of the distribution thus extends over only few potential wells of the HDT.

Discretization of the final distances

This spread of the final distances over only a few potential wells is strikingly apparent in
Fig. 4.21, where the histogram of the distribution of the final distances is displayed for a
smaller bin size of λHDT/12 = 89 nm. The distribution is clearly peaked with a 532 nm,
indicating that the final distances are integer multiples of the standing wave period λHDT/2
[22].
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To demonstrate this fact quantitatively, the experimental data were fitted with the
sum of eight Gaussian functions, keeping the distance between the peaks constant and the
height of each of them lying on the envelope of another Gaussian function:

f(d) =
8∑

i=1

a exp
(
−((df + i)− dGauss)2

2(δdGauss)2

)
exp

(
−(d− (df + i))2

2w2
p

)
. (4.33)

As the fit parameters were taken: the center of the envelope dGauss, the 1/
√

e-halfwidth
of the envelope δdGauss, the 1/

√
e-halfwidth of the individual peak wp and the center

of the first peak df . The individual peaks reflect our ability to determine the distances
between individual atoms with a sub-micrometer precision. Whereas the envelope reflects
the accuracy of the distance control procedure.

The envelope is centered at

dGauss = 15.31(±0.07) µm

and having a halfwidth of
δdGauss = 0.71(±0.05) µm.

These values are in a good agreement with the corresponding values dm and δdm deter-
mined from the statistical analysis of the data, see above. The position of the first small
peak is at

df = 24.00(±0.03) λHDT/2,

demonstrating that the small peaks are situated exactly at the positions of the potential
minima of the HDT. Whereas the halfwidth of each small peak is

wp = 0.130(±0.010) µm,

corresponds to the precision of the distance measurement. In a previous experiment we
have determined the precision of the distance measurement using only one ICCD image
is 0.135(±0.030) µm [22].

This result is a direct evidence for the ability to control the distance between two
simultaneously trapped atoms on the scale of the wells of the standing wave potential.

Efficiency

As was already noted in the Sec. 4.3, in order to selectively extract an atom out of the
HDT, its separation from the other atoms in the string should be larger than the size
of the optical tweezers. This can be seen in Fig.4.22, where the final distances between
the atoms are plotted as the function of the initial distances. This demonstrates that the
distance control method reliably works for initial distance greater than 10 µm. Whereas
if the atoms are initially too close to one another and one tries to extract one of them, the
action of the VDT on the second atom will be non-negligible and will lead to uncontrolled
effect, e.g. extraction, ejection, etc. Therefore, for the calculation of the efficiency of
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Figure 4.22: Correlation between the final and the initial distance measurement.

the distance control operation was done after post selecting the events with the initial
interatomic separations of more than 10 µm. We define the efficiency of the distance
control operation as the ratio of the number of successful events with two atoms trapped
at the desired distance after the operation to the number of all events where two atoms
were initially present in the HDT and separated by more than 10 µm.

In this experiment the extracted efficiency was about 80 %. We have determined that
it was mainly limited by the intensity fluctuations of our laser of the VDT caused by the
back-coupling of the retro reflected beam to the resonator of the laser. These fluctuations
caused then parametric heating of the atoms in the VDT, thereby increasing their loss rate.
After installing the second optical isolator at the output of the Yb:YAG laser of the VDT,
see Fig. 2.8b, this back-coupling was reduced. Therefore, an independent measurement
analogous to the previous one, but with less shots, was carried out to determine the
improved efficiency. In this case, the efficiency of the distance control operation was

pDC = 98+2
−5 %.

This value is compatible with the assumption that the distance control operation does not
introduce any significant losses and that atom loss solely occurs due to background gas
collisions, see Sec. 2.2.5, during the 2.1 s duration of the distance control operation. This
time was counted from the moment of the end of the first exposure till the beginning of
the second exposure.
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4.6.3 Analysis

Deviation of the final distance from the target distance

Analysis of the data of the distance control experiment shows, that the deviation of the
experimentally measured average final distance between the atoms of dm = 15.3 µm from
the target distance dt = 15.0 µm stems from the drifts of the VDT during the experi-
ment. Although the influence of the global drift of the VDT during the whole experiment
was reduced by re-calibrating the position of the VDT after every experimental run (ca.
200 shots, which takes about 15 min.), the drifts during one experimental run resulted in
the average shift of the final distance by ca. 0.3 µm from the nominal distance. Never-
theless, numerical simulations show, that the corresponding increase of the spread of the
final distances in this experiment due to this effect is less than 10 nm rms.

Spread of the final distances

The spread of the final distances of δdm = 0.78 µm mainly arises from the two factors:
the precision of the transport of the atoms along the axis of the HDT and the precision
of re-insertion of the extracted atom into the HDT.

Precision of the transport. In our previous work [22], it has been shown that the
precision of the transport of an atom to a predetermined position along the HDT
in our experiment is subject to a statistical error δytransp = 0.190(±0.025) µm rms.
Since the experimental sequence used here involves two transports along the HDT,
i.e., moving the atom to be extracted to the y-position of the VDT and then plac-
ing the remaining atom at the target distance dT from yVDT, this effect contributes
an uncertainty of

√
2δytransp = 0.270(±0.035) µm to the final distance between two atoms.

Insertion precision. Immediately after the reinserting the extracted atom into the
HDT, its measured position has a spread of δyinsert = 0.65(±0.05) µm rms, which directly
contributes to the spread of measured final distances. This value was extracted from the
final positions of the atoms being re-inserted during the same experiment.

The insertion precision itself has contributions from the finite confinement of the ex-
tracted atoms in the VDT due to their thermal motion, from the fluctuations and drifts
of the VDT and from the precision of the position determination of the atom.

The contribution from the thermal motion of the atoms in the VDT can be estimated
using Eq. 4.25 and Eq. 4.29 to 0.47(±0.06) µm rms along the y-direction. Long time
fluctuations and drifts of the VDT along the y-direction during the whole experiment have
been measured to be 0.5(±0.2) µm rms, by observing the y-position of atoms trapped in
the VDT with the ICCD camera.

The quadratic sum of these two errors together with the precision of the position deter-
mination of the atom itself (0.143(±0.020) nm rms [22]) yields δyth

insert = 0.7(±0.2) µm rms,
which is in a good agreement with the measured δyinsert = 0.65(±0.05) µm rms.
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Using these values we can estimate the expected spread of the final distances as

∆dth =
√

2δd2
transp + δy2

insert + w2
p = 0.72(±0.05) µm rms,

where wp = 0.130(±0.010) is the precision of our distance measurement. This spread
is in a good agreement with the measured δdm = 0.78(±0.05) µm rms and δdGauss =
0.71(±0.05) µm extracted from the fit. This demonstrates the correctness of the assump-
tion that there are no other significant contributions to the spread of the final distances,
and, correspondingly, to the precision of the distance control method.

4.6.4 Conclusion

Summarizing, we have demonstrated that the distance between two simultaneously
trapped atoms can be actively controlled with a precision of 0.78(±0.05) µm rms. This
precision is of the same order of magnitude as the separation between the adjacent walls
of the standing wave dipole trap. The success rate of this process is 98+2

−5 %, provided that
the initial separation exceeds 10 µm.

The precision of the distance control operation on the level of the potential wells of the
HDT suggests the possibility of controllably joining of two atoms in a single well of the
HDT. Whereas the high efficiency of this operation allows to scale up the number of the
atoms to be rearranged, e. g., building an equidistant string of several atoms.

4.7 Building an equidistant string of several atoms

The distance control method, see Sec. 4.6, can be easily extended for string with a larger
number of atoms. We have demonstrated this by creating equidistant strings of up to
seven neutral atoms.

4.7.1 Experimental realization

Starting with larger strings of n ≥ 3 atoms in the HDT, a sequential application of the
distance control operation allows to rearrange the string. For this purpose exactly n
atoms were first loaded into the HDT, see Ch. 3. Then, the positions of all n atoms are
determined from the first fluorescence image. After this the rightmost atom is extracted
and inserted at the target distance dt to the left of the leftmost atom. The only difference
in the spatial manipulation to the distance control experiment is that the manipulation
steps c and d in Fig. 4.19 were interchanged. After each distance control operation the
order of the atoms within the string undergoes a cyclic permutation. Since for each step
the same target distance was used, after n − 1 such steps all atoms within the string are
equidistantly spaced with respect to each other. The final fluorescence image is recorded
in order to check the outcome of the whole manipulation.

We have used the same experimental parameters, i. e., depths of the traps, exposure
time and the pixel to micrometer calibration as for the distance control experiment above.
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Figure 4.23: Sequence of the ICCD images of the step-by-step rearrangement of a
string of three atoms. Two out of three atoms are cyclically rearranged by a sequential
application of the distance control operation.
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Figure 4.24: Building a regular string of seven neutral atoms. a) Initial string with
randomly separated atoms. b) The same string after rearranging six out of the seven
atoms with our distance control operation.

The only difference lays in the timing of the sequence. This is based on the fact that the
DFD generator can be programmed with only 8 transportation distances, see Sec. 4.1,
which is enough for rearrangement of up to 4 atoms. In order to manipulate more than 4
atoms, an additional reprogramming of the DFD should be done after the eighth transport
with the HDT. The reprogramming then takes additionally 840 ms.

4.7.2 Experimental results

We have recorded a detailed sequence of ICCD images, illustrating the steps of the re-
arrangement of a string of three atoms, see Fig. 4.23. Here, after each step of the ma-
nipulation an ICCD image with 1 s exposure was made. Since the target final separation
between the atoms was set to dt = 15 µm, this operation results in the creation of a string
of three equidistantly separated atoms.

Figure 4.24 shows ICCD images of a string of seven atoms that has successfully been
rearranged. After extracting and re-inserting six out of the seven atoms, the initially
random separations have clearly been made equidistant with the interatomic spacing of
15 µm.

4.7.3 Analysis

We now estimate the scalability of our distance control method to even larger strings of
atoms, i. e., of how many atoms we can successfully rearrange without loosing none of
them if the initial separations between the atoms are more than the size of the optical
tweezers. For this purpose we use the assumption that the atom losses are caused only by
background gas collisions, see Sec. 4.6.2, with the time constant τ ≈ 60 s from Sec. 2.2.5.
In this case, the probability to have all n atoms successfully rearranged is

p(n) =
(
e−

T (n)
τ

)n
,

where T (n) is the manipulation time, i. e., between the end of the first exposure and
before the start of the second exposure with the ICCD camera.

According to this equation, the efficiency of the creation of a string with seven atoms is
about 50 %. The increase of the number of atoms in the string, but keeping this efficiency
at the same level, can be done by reducing the manipulation time. Since, the axial insertion
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method requires less atom manipulation steps, this method is thereby intrinsically faster.
Using the axial instead of the radial insertion would allow us to manipulate nine atoms.
Further improvements of the setup such as usage of shorter cooling in the VDT, movement
of the VDT standing wave with AOMs and driving the AOMs with a frequency synthesizer,
which can be faster reprogrammed, would increase this number to about 14 atoms for the
radial and to about 21 atoms for the axial insertion method.

It should be noted that these results are only rough estimations of the order of magni-
tude and strongly depend on the quality of the vacuum in our experimental setup.

4.7.4 Conclusion

Summarizing, we can prepare equidistant strings of up to seven atoms in a standing wave
dipole trap by rearranging atom-by-atom irregular strings, supplied by loading the trap
with an exactly known number of atoms from a magneto-optical trap.

4.8 Joining two atoms in one well of the standing wave

4.8.1 Experimental realization

According to our model of the radial insertion process, see Sec.4.4, it should be compatible
with the target distance zero. In this section we experimentally demonstrate that two
atoms can be joined in one potential well of the HDT.

Repositioning procedure

For this purpose, exactly two atoms were first loaded into the HDT, see Ch. 3. Then, the
distance control operation with the target distance dt = 0 µm was applied to the atoms,
see Sec. 4.6. The difference in the manipulation in comparison to the distance control
experiment is that the manipulation steps c and d in Fig. 4.19 were interchanged in order
to make this scheme be compatible with the target distance zero. This modification allows
us to separate the two atoms in two dipole traps.

Experimental parameters

For this experiment we have used the HDT with the depth of U0
HDT = 1.0 mK using

1.3 W of the laser power in each arm of the standing wave. The VDT was used with
0.3 W in the incoming beam, which corresponds to the depth of U0

VDT = 1.5 mK. The
calibration between the pixels and the micrometers and the timing of the experimental
sequence was chosen to be the same as in the distance control experiment.

Although, the experimental problem of joining two atoms in one potential well of the
standing wave was experimentally solved using our radial insertion method, see Sec. 4.4,
the detection of the success of joining cannot be solved by purely optically methods. The
resolution of our imaging system is σtotal = 0.9 µm, see Sec. 2.2.5, corresponding to 1.7
potential wells. Whereas in this experiment, we have to discriminate the case where the
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two atoms have successfully been transferred into the same potential well from the case
where the two atoms occupy neighboring potential wells of the standing wave.

4.8.2 Detection scheme

We discriminate these cases by inducing two-atom losses which take place if and only if
the two atoms are trapped in the same potential well, see Sec. 3.3.1. This is achieved by
illuminating the atoms with the optical molasses for 1 s after merging the traps.

It has been shown that radiative escape is the leading physical mechanism for light
induced collisions in a dipole trap illuminated by an optical molasses [58]. For this process,
the released kinetic energy causes both atoms to reliably leave the trap. If, on the other
hand, the atoms reside in different potential wells, radiative escape is not possible and
the atoms remain trapped. Detecting the absence of the pair of atoms after the optical
molasses stage therefore confirms the successful joining of the two atoms in one potential
well of the HDT.

In order to determine the time scale of this process, and thereby to determine the
necessary illumination time we have performed the following experiment: We loaded a
variable number of atoms from MOT the into the HDT, illuminated them with the optical
molasses, and detected the atomic fluorescence with the APD. The level of this fluorescence
signal is a direct measure of the number of trapped atoms, so that the dynamics of the
atom losses from the trap is immediately revealed from the time-dependence of their
fluorescence. If we have loaded a small number of atoms into the HDT, e.g., on average
3 atoms per shot distributed over on average 25 potential wells, their fluorescence level
remained constant, see open circles in Fig. 4.25. For a large number of atoms, e.g., on
average 19 atoms per shot distributed over on average 25 potential wells, however, we
observed an exponential decay of the average fluorescence level to a steady state value
within about 150 ms, see filled circles in Fig. 4.25.

This behavior can be interpreted as follows: for about 3 atoms per 25 potential wells,
the probability for having two atoms in one potential well, and thus for inducing cold
collisions between them, is negligibly small. In this case, no atom losses are detected when
illuminating them with the molasses. For about 19 atoms per 25 potential wells, however,
the probability for at least two atoms to occupy a common well is significant. In this case,
the optical molasses results in radiative escape of these pairs of atoms. The decay of the
level of fluorescence to a steady state value indicates that this loss mechanism effectively
removes all pairs within 150 ms. The steady state fluorescence level then corresponds
to the atoms which are trapped in individual potential wells of the HDT. The presence
of these atoms is shown by releasing all the atoms from the HDT by shortly switching
off and on both the trapping laser and the optical molasses. After this, the background
fluorescence without atoms is recorded, see Fig. 4.25 between 620 ms and 660 ms. This
level is significantly lower than the atomic fluorescence level at the end of the illumination.
Indeed, this decay is caused by two-atom losses and not by single-atom losses.
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Figure 4.25: Light induced collisions in the HDT. Fluorescence signal of on average
3 atoms (open circles) and on average 19 atoms (full circles) trapped in on average 25
potential wells of the HDT. At t = 260 ms the optical molasses illuminating the atoms
is switched on. In the 3-atom case, the fluorescence level is constant over the 300 ms
illumination time, indicating that no atoms are lost. In the 19-atoms case, however,
the fluorescence signal exponentially decays towards a steady state value. This can be
attributed to radiative escape collisions causing the loss of pairs of atoms which are
trapped in the same potential well. At t = 560 ms, the remaining atoms are ejected from
the HDT by switching off all lasers in order to measure the background signal due to
stray light. Each of the two traces is averaged over 100 shots. Note that the vertical
scale is interrupted between 12 and 24 kHz.

4.8.3 Experimental results

In this experiment we have repeated the experimental sequence for on average 25 times.
But since we cannot distinguish a two-atom loss due to radiative escape after successfully
joining the atoms in one potential well from a two-atom loss due to two uncorrelated one
atom losses during the experimental sequence, we have performed in addition to the main
experiment two independent cross checks. For this purpose, we have carried out the entire
experimental sequence with only one atom: an atom present in the VDT and the HDT
is empty, and an atom present in the HDT and the VDT is empty. Every cross check
was repeated for about 20 times. The whole sequence, consisting of the main experiment
followed by the two cross checks, was repeated altogether seven times.

The corresponding single atom loss probabilities in both cross checks were measured to
be pV = 6.5+2.1

−2.4 % and pH = 0.0+3.5
−0.0 %, respectively. From these measurements, we infer

the probability for two uncorrelated one atom losses during the experimental sequence to
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be

puncorr = pV · pH = 0.0+0.2
−0.0 %.

At the same time, in the main experiment on joining two atoms in one well, we have
measured a total two-atom loss probability of

pmeas = 16+4
−3 %,

significantly higher than what was expected for uncorrelated events. The difference of
these two values,

pcorr = pmeas − puncorr = 16+4
−3 %,

is the probability for correlated two-atom losses. It stems from radiative escape of pairs of
atoms proving the successful joining of the two atoms in one potential well, and therefore
is our detected success rate in this experiment.

4.8.4 Analysis

The limiting factor for this success rate is the accuracy of the spatial manipulation of
the trapped atoms with our dipole traps: we have determined that the position of an
atom inserted with the VDT into the HDT fluctuates by δyinsert = 0.82(±0.11) µm rms,
mainly caused by radial position fluctuations of the VDT. In addition, the accuracy of
the transportation of an atom to a predetermined position of the HDT by means of the
optical conveyor belt equals δytransp = 0.190(±0.025) µm rms [22]. Assuming that both
errors are Gaussian distributed, we can add them quadratically in order to determine the
fluctuation of the position of the VDT with respect to the position of the potential well
of the atom in the HDT while inserting the other atom with the optical tweezers into the
HDT: δy = (2δy2

transp + δy2
insert)

1/2 = 0.86(±0.11) µm. This yields a Gaussian probability
distribution with a half-width of δy, giving the probability distribution to join two atoms
in one well. Integrating this distribution over the size on one potential well of the HDT,
see Fig.4.26, gives the probability ptheor to joint two atoms in one potential well of the
standing wave of the HDT:

ptheor =
p2atoms√

2π δy

∫ λHDT
4

−λHDT
4

exp
(
− y2

2 δy2

)
dy ,

where p2atoms = (1− pV)(1− pH) = 94+6
−5 % is the probability that none of the atoms gets

lost during the manipulation. This results in the expected efficiency

ptheor = 23± 3 %

of placing two atoms into one well, which agrees reasonably with the experimentally de-
termined success rate of pcorr = 16+4

−3 %.
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Figure 4.26: Probability distribution to join two atoms in one well. Integration of the
distribution over the size of the potential well of the HDT gives the probability ptheor to
joint two atoms in one potential well of the standing wave of the HDT.

4.8.5 Conclusion

Summarizing, we have joined two atoms in one and the same potential well of a standing
wave optical dipole trap. The joining is realized by application of the distance control
operation with the target final interatomic distance of zero. The experimental problem
to detect the success of the manipulation was solved by inducing cold collisions between
the atoms. This was realized by illuminating the atoms with an optical molasses, which
leads to a two-atom loss if and only if both atoms reside in the same potential well. Using
this detection method, we have experimentally determined a 16+4

−3 % success rate of the
operation.





Chapter 5

Summary

The major achievement of this work is the realization of a technique allowing us to build
strings of atoms with any desired interatomic separations and with high precision and effi-
ciency. Initially, the desired number of atoms is prepared in a magneto-optical trap. These
atoms are then transferred into a standing wave optical dipole trap. The rearrangement is
carried out by extracting atoms out of the initial string in the standing wave dipole trap
and by reinserting them back at predetermined positions using a second standing wave
dipole trap as optical tweezers. Using this method, the distance between simultaneously
trapped atoms can be actively controlled with a precision of 0.78(±0.05) µm rms and
a success rate of 98+2

−5 %. This precision corresponds to only 3-4 potential wells of the
standing wave trap.

Further, this technique allows us to insert two atoms into a single potential well of
a standing wave optical dipole trap and to deterministically induce interactions between
them leading to light induced collisions. The detected success rate of the insertion of one
atom into the potential well occupied by the other atom is 16+4

−3 %, which is limited by
the precision of insertion with our optical tweezers.

Furthermore, I have presented models describing the processes of extraction and in-
sertion of an atom with the optical tweezers. They allow to single out the main effects
limiting the performance of these operations and to work out the strategies for their fur-
ther improvements. Finally, I have addressed scalability, i. e., the possibility to apply our
method to much larger number of atoms.
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Chapter 6

Outlook

Using the technique of manipulating of atoms with optical tweezers presented in this thesis,
we are able to control the separations between the atoms stored in the standing wave dipole
trap at the level of the potential wells. We can prepare strings with interatomic separations
large enough to allow addressing of individual atoms. Moreover, our method of placing an
atom with the optical tweezers allows us to insert an atom even into an already occupied
micropotential. The result of this work opens a route towards a broad range of further
experiments with neutral atoms.

6.1 Quantum information processing

The essential resource for quantum computation is entanglement between qubits. Al-
though bipartile entanglement is theoretically understood and characterized, the char-
acterization and understanding of multi-particle entanglement is a challenging topic of
quantum information theory and of great experimental interest [59, 60, 61]. Moreover,
arrays of individually addressable entangled qubits (cluster states) form the basis of the
one–way quantum computing concept [61]. A string of individually addressable neutral
atoms serving as qubits presents a good starting point for the experimental implemen-
tation of many particle entangled states. There are several proposals for the realization
of multi-particle entanglement in this system. These schemes require the separations be-
tween the atoms to be known and controlled. I discuss below two methods for the possible
realization of entanglement in our system.

Cold collisions

One of the possibilities to produce entanglement in a string of optically trapped atomic
qubits is to use coherent cold collisions [62]. If two atoms are located in the vicinity of
each other, such that their respective spin wave functions overlap, they acquire a collisional
phase. By properly adjusting the collision time, the states of the atoms can be entangled.
One of the promising techniques, which allow us first to bring atoms into the contact
and then to spatially separate them is the technique of spin dependent transport of single
atoms [63]. It is based on the fact that at a “magic” wavelength of the standing wave

91



92 Chapter 6: Outlook

optical dipole trap, the trapping potential for atoms in state | 1 〉 is formed only by σ+

polarization of the dipole trap laser, whereas the atoms in the state | 0 〉 are trapped in
the σ− component only. Therefore, atoms in different internal states will be shifted in
different directions by shifting the trapping potentials with respect to each other.

We have already demonstrated a preparation of a pair of atoms with a well defined
separation. Combination of this system with the technique of spin dependent transport
would allow us to prepare an entangled state of two particles. Starting with an equidistant
string of up to seven atoms would allow us to prepare a cluster state with individually
addressable qubits, which is interesting for the realization of a one-way quantum computer.
Spin dependent transport of thousands of atoms in optical lattices has already been realized
[15], as well as the creation of a cluster state [16], but at a moment without the possibility
to address individual atoms. A new setup, which would allow us to realize spin dependent
transport of single atoms, is being built in our group.

Cavity quantum electrodynamics

An alternative possibility to entangle atomic qubits is to use cavity quantum electrody-
namics. This can be realized by placing two atoms into a mode of high finesse cavity, which
mediates the photon exchange between the atoms. We have recently built and installed
into our experimental setup such a high finesse cavity [29]. Since the size of the cavity
mode is about 20 µm, our strings of atoms with 15 µm separations are thus well suitable
for the cavity mediated entanglement of pairs of atoms.

There are several proposals of the realization of the cavity– mediated entanglement.
Atoms of a string can be entangled using dissipation-assisted adiabatic passage by trans-
porting them slowly through the cavity mode [64]. In an another proposal the qubits are
entangled pairwise using a four-photon Raman process [65, 40].

6.2 “Nano-chemistry”

Another interesting application of optically trapped atoms is “nano-chemistry”, where
one engineers molecules out of its constituents. We have used our optical tweezers to
localize exactly two atoms in one micropotential. These two atoms could then be bound
into a stable dimer molecule using photoassociation [11, 12] or Feschbach resonance [13]
techniques. Thousands of such chemical reactions carried out in parallel in an optical
lattice ware already realized experimentally [17, 18, 19, 20, 21]. An alternative to inserting
two atoms into one micropotential with the optical tweezers is to use spin dependent
transport. The newly built setup will thus allow us to follow this approach as well.

6.3 Quantum simulations

Although the realization of at least part of the above mentioned schemes for the creation
of entangled states seems to be feasible already in the near future, there are still several
steps more to be done towards the solution of computational problems which are difficult
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or not possible with present classical computers [8, 7]. Such calculations require quantum
computers with thousands of qubits, which have to be fully controlled. On the other
hand, there is another set of problems in theoretical physics, e. g., quantum many-body
problems in solid state physics, which are not possible to simulate on a classical computer,
because of the presence of too many parameters, but which can be efficiently simulated
on a quantum simulator, as it was initially proposed by Feynamn [9]. Arrays of optically
trapped neutral atoms are good candidates for a quantum simulator. There are already
several proposals to perform universal simulation of quantum dynamics using such atomic
arrays [10, 66, 67], to simulate ferromagnetism and spin squeezing [68].

Our strings of equidistantly spaced atoms are thus suitable candidates for the physical
realization of the above mentioned proposals, which require 1d strings of atoms with the
possibility to address each of them.





Appendix A

Design and adjustment of the
optical tweezers

During my thesis I developed a lens system of the optical tweezers, the vertical dipole
trap (VDT). This system allows us to tightly focus the beam of the VDT, and thereby
to reach a small size of the optical tweezers. The small size is necessary for picking up
of individual atoms from the HDT (our “object holder”) and for placing back the atoms
with high precision at the desired position on the object holder.

A.1 Design goals

In addition to the requirement of the tight focusing of the leaser beam of the tweezers, we
should be able to integrate the tweezers into the existing experimental setup for trapping
single atoms. The summarized requirements for the optical system of the VDT are:

� We want to reach the tightest possible focusing of the beam of the VDT, which is
compatible with the geometry of our experimental system, with minimal diffraction
effects and spherical aberrations.

� The minimum distance between the last lens (L), which focuses the beam of the
VDT on to the MOT, and the glass cell is 160 mm, see Fig. 2.7. This distance
is determined by our experimental setup, because the vertical beam of the MOT,
which coincides with the axis of the VDT, should not be affected by this lens.

� If possible, usage of catalog lenses to reduce the cost of the system.

A.2 Design of the optical system

We want to have a system with maximum possible lens size, which practically fits to the
experimental system. Lenses with 2-inch size fulfill this criterion. A system, with a 2-
inch aperture and a focal length of about 160 mm, will then have a numerical aperture
on the order of 0.1. At this numerical aperture special attention should be paid to the
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Figure A.1: Layout of the optical system of the VDT. The telescope consists of a
meniscus lens (surfaces 1 and 2) and a plan convex lens (surfaces 3 and 4). A laser
doublet lens (surfaces 5, 6 and 7) focuses the beam through the wall of the glass cell
(surfaces 8 and 9). The two plane mirrors between the surfaces 4 and 5 are not shown,
for they do not introduce aberrations. The waist radius in front of the telescope is
a measured radius, whereas the other sizes are calculated. The sizes of the beam are
exaggerated for presentation purposes.

spherical aberration of the system. Spherical aberrations can be minimized either by using
aspheric lenses (which were not used in this system, for they are usually expensive) or by
using a multi-lens system with spherical surfaces, where the aberrations of one surface are
compensated by the aberrations of the other ones.

In our experimental setup, we have a beam with a waist of 2.25(±0.03) mm. This
beam has to be first expanded and and then focused to the desired waist with the
optical system of the VDT. Additionally, because of space limitations due to the existing
experimental setup, it is desirable to physically separate the beam-expansion part of the
optical system from the final focusing lens. In the simplest possible configuration, one
has to use two lenses as a telescope to expand the beam and one lens for the final focusing.

Using this starting information about the desired optical system, I have used the pro-
gram Oslo LT Edition (Version 6.1 from Lambda Research Corporation, free downloadable
from http://www.lambdares.com) to design a system with minimal spherical aberrations.
The program traces bundle of rays trough the lenses and calculates the point spread func-
tion at the image plane, including effects of diffraction and aberrations. It computes as
well the wave front error, which is a measure of the deviation of the current optical sys-
tem from an ideal aberration free system. I have minimized this error by trying different
combinations of standard catalog lenses.

The result of the optimization is shown in Fig. A.1 and Table A.1. The system consists
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Table A.1: Specifications of the lens system.
Surface no. Radius of curvature [mm] Distance to next surface [mm] Material

1 627.40 2.50 BK7
2 24.70 149.96 air
3 ∞ 7.00 BK7
4 -103.10 200.00 air
5 120.36 9.50 SK11
6 -80.89 4.00 SF5
7 -341.67 152.00 air
8 ∞ 5.00 silica
9 ∞ 25.00 vacuum

of three catalog lenses: a meniscus lens (diameter 1-inch, model CMN11405/100 with
MgF2 coating from BFI OPTILAS GmbH), a plan-convex lens (diameter 2-inch, model
LPX50B/200 with NIR coating from Lens-Optics GmbH) and a diode laser glass doublet
lens (diameter 2-inch, model 06LAI015/077 with NIR coating from MELLES GRIOT).

The simulation shows that the wave front error in the image surface is on the order
of λVDT/20. The waist radius of the focused beam is 6.9 µm. The same was simulated
using purely Gaussian beam optics, neglecting all aberrations and diffraction effects. This
simulation yields a waist radius of w0 = 6.7 µm with a Rayleigh length of z0 = 137 µm.
It is interesting to note, that with the current numerical aperture, the introduction of an
additional plane silica window, corresponding to the wall of the glass cell of the vacuum
setup, does not introduce significant spherical aberrations but only shifts the position of
the waist.

A.3 Adjustment of the optical tweezers

Incoming beam of the VDT

The first step of the installation of the optical system of the VDT consists of the ad-
justment of the distance between the first two lenses of the optical system comprising a
telescope. The collimation of the expanded beam was checked with a shear plate interfer-
ometer (model 09 SPM 001 from MELLES GRIOT). In order to reach full flexibility for
the alignment of the beam through the final focusing lens, we installed two 45◦-mirrors
(standard 2-inch mirror with NIR coating from Lens-Optics GmbH) between the telescope
and this lens. Since the mirrors are tilted by 45◦ degree with respect to the beam, they
introduce the smallest aperture in the focusing system of D = aM/

√
2 = 32.5 mm, where

aM = 46 mm is the clear aperture of the mirror. These values will be important for the
analysis of the beam clipping in App. C.

In the second step of the installation, we have adjusted the path of the vertical beam of
the MOT, in order to combine the beam of the VDT with the MOT beam. For this purpose
we have installed a dichroic mirror (2-inch mirror with special coating from Lens-Optics
GmbH), which transmits about 96% of the laser light at 852 nm and reflects 99% of the
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laser light at 1030 nm, see Fig. 2.7. The changes of the polarization of the MOT beams
due to the dichroitic mirror were then compensated by the corresponding polarization
optics in the MOT beams.

The third step consists of the axial positioning of the final focusing lens L of the VDT,
see Fig. 2.7. The aim of this alignment is to focus the beam of the VDT onto the MOT.
As the criterion for the adjustment we have used the fact that the beam of the VDT,
if it hits the MOT with a single trapped atom, will cause a light shift of the Cs energy
levels proportional to the local intensity of the VDT, which results in a reduction of the
fluorescence signal from the MOT. The estimated precision of our alignment along the
beam axis was about 100 µm, which is smaller than the Rayleigh length z0 = 137 µm of
the Gaussian beam of the VDT.

Creation of the standing wave

So far, we have discussed only the transverse geometry of the VDT. The tight axial
confinement in the trap is reached by creating a standing wave. The easiest way to
minimize the aberrations of the counter propagating beam is to reflect the incoming
beam on a spherical mirror (diam. 50 mm with a radius of curvature −250 mm, surface
quality λ/10 and HR coating for 1030-1064 nm from LASER COMPONENTS GmbH).
The mirror has to be positioned at the position along the axis of the VDT where the
curvature of the mirror matches the curvature of the wave front of the incoming Gaussian
beam. As the adjustment criterion we have used the fact that the retro reflected beam
should be again collimated after it passes back through the final focusing lens L, see
Fig. 2.7. This was checked by placing a beam splitter between the lens and the telescope
and observing the reflected beam again with a shear plate interferometer. The final wave
front aberration, as measured with the shear plate interferometer, was less than λVDT/4
in the central part of the beam.

A.4 Experimental test of the performance of the VDT

The waist of the resulting dipole trap was expected to be 6.9 µm. The oscillation frequency
measurement of the atoms in the VDT allowed us to measure the waist of the resulting
trap, see Sec. 2.2.4. The result shows that the trap profile is elliptic with the widths
10.1 µm and 7.2 µm. The analysis suggests that the observed ellipticity is most probably
due to the adjustment procedure of the VDT, see App. C.



Appendix B

Driving electronics of the EOM

The measurement of the oscillation frequency of the atoms in the VDT requires a
slow controllable lowering of the depth of the trap on the time scale of few hundred
milliseconds, and a fast modulation with the frequencies up to 2 MHz.

We control the power of the laser beam of the trap with the EOM installed between two
crosses polarizers. The λ/2-voltage of the EOM is 8 kV. This voltage is supplied by a high
voltage (HV) amplifier (model HEOPS-10P2-L from hivolt.de GmbH), which amplifies a
0-10 V signal from the analog output of the computer control. Since the bandwidth of the
HV-amplifier is limited to 5 kHz, it cannot be directly used for the fast trap modulation
but only for changing the voltage offset on the EOM necessary for the tap lowering. In
order to have a possibility to slowly lower the depth of the trap and to perform the fast
modulation of the EOM, we combine the high voltage from the HV-amplifier and the
RF-signal at the necessary frequency from an RF-generator (model SML02 from Rhode &
Schwarz), see Fig. B.1. The frequency of the RF-generator is controlled using the digital
output of the computer control. The signal from the RF-generator is amplified by a video
amplifier (type 250 series video amplifier from LEYSOP Ltd.), which has a bandwidth of
DC-5 MHz. The video amplifier produces up to 220 Vpp between the inner poles of the
outputs 1 and 2.

The corresponding schematic of the EOM control is presented in Fig. B.1. The capaci-
tors C2 and C3 decouple the DC high voltage of the HV-amplifier from the video amplifier.
R1, R2 and C1 build a low pass filter to prevent a leakage of the RF-modulation voltage
into the HV-amplifier. The EOM is DC-grounded using R3.
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Figure B.1: Driving electronics of the EOM.



Appendix C

Analysis of the ellipticity of the
VDT

In the oscillation frequency measurement, see Sec. 2.2.4, we have observed two separate
peaks in the spectrum of the radial frequency measurement, see Fig. 2.10b. The presence
of two peaks shows that the radial symmetry of the trap is broken and the radial profile of
the VDT is elliptic. This profile can be described by two waists wVDT1 = 10.1(±1.4) µm
and wVDT2 = 7.2(±1.2) µm. In order to interpret this result, to evaluate the quality of the
VDT lens system as well as to interpret the result of the measurement of the extraction
resolution of the optical tweezers, see Sec. 4.3, we develop a quantitative model.

The cause of the ellipticity can be either the fact that the reflected beam is slightly
shifted with respect to the incoming beam of the VDT, or that the laser beam has a small
astigmatism, which can as well result in an ellipticity of the radial profile of the VDT at
the position of the MOT. The astigmatism could be caused by the beam going at an angle
through one of lenses of the optical system of the VDT.

In order to identify a potential reasons of the observed elipticity, I have numerically
modeled two cases: tilted retro-reflecting spherical mirror and tilted last focusing lens L,
see Fig. 2.7.

C.1 Tilted retro-reflecting mirror

Here, I assume that the retro-reflecting mirror is slightly tilted. Since the spherical mirror
is 25 cm from the MOT, any small tilts of the mirror will result in significant displacements
of the reflected beam at the position of the MOT. We limit ourself to the case, where the
reflected beam is displaced by not more than the waist of the incoming beam, which
correspond to the mirror tilts of less than 0.1 mrad.

The interference pattern created by two counter propagating beams with their waists
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Figure C.1: Trapping potential in the x-z-plane. a) Two beams without any displace-
ment (d = 0). b) Two Gaussian laser beams are displaced by one waist of the beam
(d = wVDT). The energy scale is in arbitrary units, but the same for a) and b). The
scale in the z-direction is stretched by about one order of magnitude for the visualization
purposes.

wVDT displaced by d along the x-axis is described by
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where the first two terms represent the running wave dipole traps, created by the incoming
and the reflected beams individually. The last term represents the interference pattern.
The resulting trapping potential is visualized in Fig. C.1 for the case of d = 0 and of
d = wVDT.

The depth of the trap is decreased by a factor of about two by the displacement, due to
the reduction of the contrast, see Fig. C.2. The corresponding axial oscillation frequency
is

Ωd
ax = Ωaxe

− d2

4w2
VDT , (C.2)

where

Ωax = 2π

√
2U0

VDT

mCsλ2
VDT

(C.3)

is the axial frequency for d = 0.
The radial confining potential along the x-direction for the case with beam displacement

is wider than without beam displacement, see the solid and the dashed lines, respectively,
in Fig. C.2. The width of the confining radial potential in the y-direction is the same in
both cases. Due to this ellipticity of the trap, there are two radial oscillation frequencies

Ωd
rad1 = Ωrade

− d2

4w2
VDT

√
1− d2

2w2
VDT

, (C.4)
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Figure C.2: Radial confining potential. The dashed line presents the profile of the
trapping potential without beam displacement at the antinode of the standing wave.
The potential has an 1/e2-half width of wVDT and a depth of 4 arbitrary units. With
a beam displacement of d = wVDT, the trapping profile at the antinode is shown as the
solid line. Its 1/e2-half width is 1.4wVDT. The dotted line presents the trapping profile
at the position of the antinode of the standing wave.

Ωd
rad2 = Ωrade

− d2

4w2
VDT , (C.5)

where

Ωrad =

√
4U0

VDT

mCsw2
VDT

(C.6)

is the radial oscillation frequency without displacement.
In order to reach the measured ratio of the two oscillation frequencies of Ωrad2/Ωrad1 =

1.4, the displacement of the beams at the position of the MOT should be d = 7.2 µm,
which is about the size of the MOT itself and is in the range of the experimentally realistic
values. For the given beam displacement d = 7.2 µm, the depth of the dipole trap will be
reduced from the ideal case of perfectly aligned beams of Uideal/kB = 7.5 mK by a factor
of exp

(
− d2

2w2
VDT

)
≈ 0.6. Due to the diffraction on the apertures, see Sec. A.3, we expect

an additional reduction of the laser intensity maximum in the focus, and thereby of the
depth of the trap, by [Siegman]:

η =
(

1− exp
(
− D2

4w2

))2

, (C.7)

where D is the diameter of the aperture, and w is the waist radius of the beam before the
aperture. For D = 32.5 mm, see App. A, and w = 9.2 mm, this equation yields η ≈ 0.9.
This gives an expected depth of the dipole trap of Ucalc/kB = 4.0 mK, which is higher
than the value of 2.7 mK obtained from the measured axial oscillation frequency.
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Figure C.3: A lens tilted relative to the incoming beam creates an astigmatic beam. It
has two foci at the positions A and B.

C.2 Tilted lens

The second effect, which can explain the ellipticity of the VDT during the oscillation
frequency measurement is the presence of an astigmatic aberration. In this case the
focused beam has two foci at two different positions along the beam in two perpendicular
planes, see Fig. C.3. The beam cross sections in the points A and B are elliptic.

Incoming beam

In this simulation, I assume that the final focusing lens L of the VDT, see Fig. 2.7, is
slightly tilted relative to the beam. This tilt results in the astigmatic aberration of the
beam, and consequently, in the ellipticity of the radial profile of the trap. The numerical
simulation with the Oslo programm shows, that a tilt of the lens by ϑ = 1.75◦ is enough
to explain the measured ellipticity of the trap. This is a realistic tilt, for we had to
align the lens to a big beam at a short distance. The program shows the beam will have
two foci separated by 190 µm. At the position A, the beam is focused to the waist of
wAβ = 7.1 µm in the plane β, whereas in the perpendicular plane α, the width of the
beam is wAα = 10.2 µm. At the position B the width of the beam is wBβ = 11.4 µm in
the plane β and wBα = 6.8 µm in the plane α.

Reflected beam

For the creation of the standing wave the beam is retro reflected from the spherical mirror,
see Fig. 2.7. Further, I assume in this simulation that the center of the curvature of the
mirror coincides with the focus A, see Fig. C.4.

We first consider the incoming and the reflected beams in the plane β. Since the center
of the curvature of the retro reflecting mirror co-insides with the point A, the beam in this
plane is retro reflected, see Fig. C.4a. The size of the reflected beam is wref

Bβ = 11.4 µm and
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Figure C.4: Incoming and the reflected beams in planes α and β. a) In the plane β, the
waists of the incoming and of the reflected beams are at point A, corresponding to the
center of curvature of the spherical mirror. b) In the plane α, the waist of the incoming
beam is at point B and of the reflected beam is at point C. On the righthand side is the
profile along the beam axis z of the beam size of the resulting interference pattern in
each case.

wref
Aβ = 7.1 µm in points B and A, respectively. The beam profile of the reflected beam

along the beam axis is the same as for the incoming beam. Therefore, the transverse
profile of the produced interference pattern can be easily determined. It has a width of
winterf

Bβ = 11.4 µm at point B and winterf
Aβ = 7.1 µm at point A, see Fig. C.4a.

For the plane α, the incoming beam is reflected and refocused at the point C, see
Fig. C.4b. The parameters of the reflected beam are calculated from the following consid-
erations: The distance between points A and B is three orders of magnitude smaller than
the radius of curvature of the spherical mirror R. Therefore, the distance between A and
C approximately equals the distance AB. Moreover, since AC ¿ R, we can neglect the
refocusing to a different waist size by the spherical mirror. Therefore, we approximate the
reflected beam by a Gaussian beam with the same waist as the incoming beam, but with
a new position at point C. The calculated sizes of the reflected beam at the points A and
B are wref

Aα = 10.2 µm and wref
Bα = 13.7 µm, respectively. The incoming beam interferes

with the reflected beam, producing a standing wave. The profile of the resulting standing
wave dipole trap is calculated in the following way.

Consider interference of two counter propagating Gaussian beams with different widths
w1(z) and w2(z) at a certain point z along the beam axis, neglecting the curvature of the
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Figure C.5: Transverse shape of the standing wave dipole trap from two different
Gaussian beams with the beam sizes w0 and 2w0. The profiles of the individual Gaussian
beams are shown as dashed lines. The solid line presents the resulting radial shape with
the width of 1.3w0.
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The transverse profile of this potential for the case of w2 twice as big as w1 at z = 0 at
antinode is presented in the Fig. C.5. From the Eq. C.8, one calculates the width of the
resulting potential at the point B from the two counter propagating Gaussian beams with
widths of wBα = 6.8 µm and wref

Bα = 13.7 µm to be winterf
Bα = 8.8 µm. For the point A

one has winterf
Aα = 10.2 µm from the interference of two Gaussian beams with the widths

of wref
Aα = 10.2 µm and wAα = 10.2 µm. From the analogous considerations one calculates

the profile of the standing wave at the point C.

Profile of the standing wave trap

The standing wave at the point A has an elliptic cross section with the beam sizes of
10.2 and 7.1 µm, see Fig. C.4. For the point B the beam widths are 8.8 and 11.4 µm,
respectively. This qualitatively shows that even a small tilt of the order of one degree of
the final focusing lens results in astigmatic aberrations of the focused beam, and thereby
in the elliptic profile of the resulting dipole trap. If we assume that the MOT was at
the position A of the trap during the oscillation frequency measurement, the measured
oscillation frequencies can be quantitatively explained with this model. The expected trap
depth can be estimated as well using this model. The Oslo program simulations show that
the astigmatism at the point A contributes a factor of about 0.7 to the reduction of the trap
depth relative to the ideal case without aberrations. The diffraction effects contribute a
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factor of about 0.9, see above. All together, one expects the drop of the maximal intensity
by a factor of about 0.6, relative to the ideal case. This yields the expected depth of the
dipole trap at the point A of 0.6 · Uideal/kB = 4.5 mK, which is higher than the measured
2.7 mK, see Sec. 2.2.4.

C.3 Analysis

We have demonstrated that both models are compatible with the results of the oscillation
frequency measurement, i. e., observation of the ellipticity of the VDT radial profile.
Therefore, it is not possible on the basis of this one experiment to rule out one of these
theories.

Nevertheless, the result of the measurement of the size of the optical tweezers, see
Sec. 4.3.2, is compatible only with the astogmatic beam assumption. From the fit of the
experimental data from this experiment, we have determined that the waist size of the
optical tweezers along the HDT axis is wVDT = 11.8(±0.2) µm. Although the VDT with
this radial size can be created by misaligning the beams, the profile of the axial force
exerted by the VDT during the extraction of the atoms from the HDT has a Gaussian
shape with the width, corresponding to the perfectly adjusted trap. This can be readily
see by taking the partial derivative of Eq. C.1 in the z-direction

F d
z = − ∂

∂z
Ud

VDT = U0
VDTe

− 2(x2+y2)

w2
VDT e

− d2

2w2
VDT sin(2kVDTz)kVDT (C.9)

Therefore this assumption does not produce the geometry of the VDT, necessary to ex-
plain the results of the extraction experiment. In contrast, if the ellipticity is caused by
astigmatic beams, the radial profile of the axial force equals to the profile of the potential,
as can be seen by taking the partial derivetive of Eq. C.8:

F x
z = − ∂

∂z
Ux

VDT = U0
VDTe

−x2

�
1

w2
1
+ 1

w2
2

�

sin(2kVDTz)kVDT. (C.10)

Therefore, this configuration produces the necessary geometry compatible with the results
of the extraction experiment.





Appendix D

Temperature of an atom from an
ICCD image

The radial extent (σv
HDT = 3.31(±0.08) µm) of the fluorescence image of an atom trapped

in the HDT micropotential, see Fig. 2.13, is defined by the temperature of the atoms
and by the resolution of our imaging system. The width of the point spread function can
be estimated from the axial extend of the image (σh

HDT = 1.3(±0.1) µm), see Sec. 2.2.5.
Since it is smaller than the radial extend, we can use the image to reveal information
about the temperature of the trapped atom. We extract this temperature by modeling
the thermal motion of the atom and comparing the prediction of the model with the
measured spatial distribution in the ICCD image. One of the methods of a derivation of
the final formula was presented in [29]. Here I present an alternative derivation.

Figure 2.13 shows an image of an atom trapped in a micropotential of the HDT and
illuminated with three dimensional optical molasses after one second of integration on the
ICCD. Since the typical velocity of a laser cooled Cs atom is ≈ 9 cm/s, this time is enough
for the atom to cover many possible trajectories in the trap. Therefore, the intensity
distribution in the image is proportional to the probability distribution to find an atom
in a certain point in space.

In order to calculate the probability distribution, we approximate the potential of the
HDT by a harmonic potential with a spring constant κ. The radiation force of the mo-
lasses (in the radial direction z) averaged over several scattering cycles and over several
wavelengths can be expressed as a friction force with the friction parameter α. Approx-
imating the atom as a point like particle at a temperature T , having a meaning of an
average kinetic energy, random fluctuations of the friction force can be characterized by a
diffusion constant D = kBT/α. We apply to this system the theory of Brownian motion
to calculate the probability distribution [69]. The corresponding Fokker-Planck equation
for atomic motion in the HDT illuminated with the optical molasses is [70]

∂

∂t
f =

κ

α

∂

∂z
(zf) + D

∂2

∂z2
f. (D.1)

Here, f(z, z0, t) is the probability density for an atom to be at time t at z for the initial
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atom position z(t = 0) = z0. The steady state solution of this equation reads

f(z, z0,∞) =
1√
π

exp
(
−z2 κ

2kBT

)
, (D.2)

which is a simple Gaussian with the 1/
√

e-radius of σFP =
√

kBT
κ and does not depend

z0 and D. In the case of the harmonic approximation of the radial potential of our HDT,
the spring constant is

κ =
U0

HDT

b2
, (D.3)

where U0
HDT is the depth of the HDT, and b is the 1/

√
e-radius of the HDT beam. Ac-

cording to this model, the temperature of the atom is

T =
κσFP

kB
. (D.4)

Assuming that the width of the distribution σFP is the width of the observed spot, we
infer the atomic temperature from an atomic ICCD image:

T =
U0

HDT

kB

(a

b

)2
(D.5)

with a ≡
√

(σv
HDT)2 − (σh

HDT)2 is the radial width of the fluorescence spot corrected for
the width of the point spread function of our imaging system. Note that, in [23] this
formula was erroneously given with an extra factor of 2 in the denominator.
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[25] T. W. Hänsch and A. Schawlow, Cooling of Gases by Laser Radiation, Opt. Commun.
13(1), 68 (1975)

[26] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable and A. Ashkin, Three-dimensional
Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure, Phys. Rev.
Lett. 55, 48 (1985)

[27] E. L. Raab, M. Prentiss, A. Cable, S. Chu and D. E. Pritchard, Trapping of Neutral
Sodium Atoms with Radiation Pressure, Phys. Rev. Lett. 59, 2631 (1987)

[28] S. Kuhr, A controlled quantum system of individual neutral atoms, Ph.D. thesis, Universität
Bonn (2003)

[29] W. Alt, Optical control of single neutral atoms, Ph.D. thesis, Universität Bonn (2004)

[30] W. Alt, An objective lens for efficient fluoresence detection of single atoms, Optik 113, 142
(2002)

[31] V. S. Letokhov, JEPT Lett. 7, 272 (1968)



BIBLIOGRAPHY 117

[32] A. Ashkin, Trapping of Atoms by Resonance Radiation Pressure, Phys. Rev. Lett. 40, 729
(1978)

[33] J. E. Bjorkholm, R. Freeman, A. Ashkin and D. B. Pearson, Observation of Focusing
of Neutral Atoms by the Dipole Forces of Resonance-Radiation Pressure, Phys. Rev. Lett. 41,
1361 (1978)

[34] S. Chu, J. E. Bjorkholm, A. Ashkin and A. Cable, Experimental observation of opti-
cally trapped atoms, Phys. Rev. Lett. 57, 314 (1986)

[35] R. Grimm, M. Weidemüller and Y. B. Ovchinnikov, Optical dipole traps for neutral
atoms, Adv. At. Mol. Opt. Phys. 42, 95 (2000)

[36] A. Ashkin, Acceleration and Trapping of Particles by Radiation Pressure, Phys. Rev. Lett.
24, 156 (1970)

[37] A. Ashkin, Observation of a single-beam gradient force optical trap for dielectric particles,
Opt. Lett. 11, 288 (1986)

[38] D. G. Grier, A revolution in optical manipulation, Nature 424, 810–816 (2003)

[39] J. Dalibard and C. Cohen-Tannoudji, Dressed-atom approach to atomic motion in laser
light: the dipole force revisited , JOSA B 2, 1707 (1985)

[40] D. Schrader, A neutral atom quantum register , Ph.D. thesis, Universität Bonn (2004)

[41] M. E. Gehm, K. M. OHara, T. A. Savard, and J. E. Thomas, Dynamics of noise-
induced heating in atom traps, Phys. Rev. A 58, 3914–3921 (1998)

[42] D. Schrader, Ein Förderband für einzelne Atome, Diploma thesis, Universität Bonn (2000)

[43] W. Alt, Private communication

[44] W. Waniak, Image restoration by simple adaptive deconvolution, Astron. Astrophys. Suppl.
Ser. 124, 197–203 (1997)

[45] G. M. van Kempen, Image Restoration in Fluorescence Microscopy , Ph.D. thesis, Technische
Universiteit Delft (1999)
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