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Abstract

This master-thesis investigates a new approach for state-dependent transport of atoms in
an optical lattice. It is based on a direct synthesis of light polarization by superimposing
two circular polarized beams and employing RF sources integrated with acousto-optic
modulators for phase control. An interferometrically stable phase between the two beams
is achieved by locking them actively with a heterodyne technique.
The in�uence of polarization crosstalk and erroneous components on the optical lattice
and the phase locked loop are investigated and the quality of the phase locked loop is
analyzed.
Compared to conventional methods [25] the direct synthesis method avoids the need of
an electro-optic modulator, where rotations on the Poincare sphere are limited by the
applicable voltage and restrictions on manufacturing and crystal quality exist. Overcom-
ing these limitations it is expected to reach higher polarization purity and larger shift
distances in the new design.
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1 | Introduction

1.1 | Motivation

Electrons in a solid material are moving in a landscape given by the crystal-structure
of the ions. Experimentally, their dynamics are evolving on a femto second time scale,
which makes local probing and observation is di�cult. Theoretical models with analytical
solutions exist mainly for one dimension, while higher dimensional systems need to be
calculated numerically [20] and eventually become intractable.
1982 Feynman suggested the simulation instead of the calculation of the Hamilton oper-
ator that describes the system of interest [11]. This is done by mapping the Hamiltonian
on another, which is easier to observe and control. For instance the electrons motion
through the attractive and repulsive crystal potentials could be mapped onto a slower
evolving system, governed by the same e�ective potentials.
For quantum simulation the power of neutral atoms in an optical lattice lies in their weak
coupling to the environment [40], while the lattice structure, the atom-atom interaction
strength and their tunneling rate to neighbouring lattice sites are tunable parameters.
In such a cold atom system the super�uid to Mott insulator transition predicted from
the Bose-Hubbard model has been observed with single site resolution [36] and recently
potassium atoms in a tunable honeycomb lattice have been used to investigate the be-
haviour of electrons in Graphene [39].

Quantum information processing with neutral atoms as qubits trapped in optical lattices
has been suggested by I. H. Deutsch, G. K. Brennen and P. S. Jessen [10]. On a quantum
computer problems like the 3D Ising model become feasable [6].
In a neutral atom system a qubit is encoded in the internal (hyper�ne) atom state. Large
scale entanglement can be achieved by bringing atoms in di�erent internal states into a
controlled collision with each other [26]. To realize such a controlled collision a transport
of the atoms depending on their internal hyper�ne state can be used - a state dependent
transport.

With the ability to transport an atom depending on its internal state one can also ex-
perimentally realize a quantum walk [17]. It is de�ned and motivated as the quantum
analogue of the random walk, in which a particle performs a random motion on a graph
[1].The classical random walk is used to describe systems in various �elds, such as Brow-
nian motion and stock market prices [17] and it forms the basis of algorithms, e.g. it can
be used in Monte Carlo simulations.
To obtain a classical random walk in position space, in each step a coin is �ipped and
according to the outcome the walker moves to the left or to the right. For a n step random
walk this is repeated n times and in the end the probability to �nd the walker at a certain
position is measured.
In the quantum walk, the walker is described by an initial wave function |ψinitial〉, which
has a spatial part that describes the position and a coin part, which describes its internal
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state. Here is is assumed that the internal state can have two values, called |0〉 and |1〉.
The coin �ip is implemented by an operator C. After the coin �ip the coin state of the
wavefunction is in a superposition of internal states, i.e. of |0〉 and |1〉. Applying now a
shift operator depending on the internal state will lead to a separation of state |0〉 and
|1〉. The state after this quantum walk step is described by a new wavefunction (see �gure
1.1). Applying the sequence of coin �ip and state dependent shift over and over leads to
interference of the probabilities. Therefore, the quantum walk obtains its properties from
coherence and interference of the walking particle, which creates di�erent distributions
compared to a classical random walk after the same number of steps. The exact proba-
bility distribution resulting from the quantum walk depends on the initial wavefunction
|ψinitial〉, the number of steps n and the used coin operator C. An example is shown in
�gure 1.1.

Figure 1.1 (a): Evolution of an initial wavefunction | ↓〉 ⊗ |0〉 with the Hadamard coin C [19]
for three steps.
(b): The expected probability distribution for the quantum walk after 20 steps in comparison to
a 20 step classic random walk distribution.

(a) (b)

The path interference causes the Quantum walk to spread out signi�cantly faster than
the classical counterpart [19]. This e�ect can be used as a general speed up for algorithms
based on random walks. The Quantum Walk can be represented as a quantum circuit
(see �gure 1.2) with a particular output state and a multi-particle quantum walk was
shown to be equivalent to a universal quantum computer [5].

Figure 1.2 Each step in the quantum walk includes a coin operator C which is acting on the coin
space and a shift operator S, which shifts the particle depending on its internal state. For a n step
quantum walk, this circuit is applied n times to the initial state |ψinitial〉 = |ψposition〉 ⊗ |ψcoin〉.

How successful a Quantum Walk can be performed by a system, depends on the preser-
vation of coherence and interference properties of the walker as well as the e�ciency and
accuracy of coin and shift operator, i.e. the state dependent transport.
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Recently a digital atom interferometer has been realized [38]. It uses a single, state
dependently shifted atom as an interferometer to probe potential gradients. A basic
sequence is illustrated in �gure 1.3. The potential gradient between the left and the right
path in �gure 1.3 leads to the accumulation of a relative phase Φ between them. In case of
a linear potential gradient ∆U the accumulated phase rises with enclosed space-time area
and therefore with the maximum separation distance and the time before the internal
states are transported back to the same position. Therefore, a state dependent transport
scheme which can achieve large coherent separations of the internal states would improve
the sensitivity of the single atom interferometer.

Figure 1.3 Basic (diamond) sequence in a digital atom interferometer: Initially the atom is
brought into a superposition of two internal states. Each of the internal states can be shifted
by a state dependent trapping potential. After two shift operations the atom has a distance of
433 nm from its initial position. In this con�guration the interferometer is held for a certain
time. Potential gradients will lead to a di�erent evolution of the wave function localized on the
left compared to the one on the right. The resulting phase di�erence Φ can be measured by
transporting the internal states back to the same position. (The �gure is taken from [38].)
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1.2 | State-Dependent Transport in Optical Lattices

1.2.1 Basics of State-Dependent Trapping

This section describes how and under which circumstances the con�nement of atoms in
an optical lattice can be achieved and how an optical lattice can be turned into a state-
dependent optical lattice, which is sensitive to the internal state of the trapped atom.

Mechanism for Trapping in an Optical Potential

A dilute gas of neutral atoms in an ultrahigh vacuum chamber can be cooled to sub-
millikelvin temperatures in a magneto-optical trap as described e.g. in [27].
Subsequently, an attractive optical lattice can be formed by the interference pattern of
laser light. The attractive behaviour of the optical lattice can be understood from the
Stark-Shift that a two level system experiences in a far o�-resonant light �eld, see �gure
1.4. In second order perturbation theory the resulting energy shift of the ground state
can be written as

∆E ∼ |〈a|d̂ · Ê|g〉|
2

~(ω − ω0)
,

where d̂ is the dipole moment of the atom and Ê the electrical light �eld.

Figure 1.4 The atom is described as a two level system with ground state |g〉, excited state |a〉
and a transition frequency ω0. Exposition to a far red detuned light �eld with frequency ω leads
to an energy shift ∆E.

There are two possibilities for the shift depending on the detuning. When the frequency
is larger than the transition frequency (blue detuned), the level will shift upwards and
the atom is repelled from the regions with high intensity. It can be trapped in vacancies
of the intensity pattern, as it is used for instance in Donut shaped traps [14].

For frequencies smaller than the transition frequency (red detuned) the energy of the
ground state will be lowered, such that the atom is attracted to regions of high intensity.
This can be used to align the atoms in the periodic intensity pattern formed in a standing
wave.

Mechanism for State Dependent Trapping and Transport

In a state dependent optical lattice internal states of the atom are trapped by di�erent
�parts� of the intensity pattern.

As shown in �gure 1.5 for two upper levels the light �eld will be red detuned with respect
to the upper level, causing the ground state energy to shift downwards. This leads to a
force which attracts the atom to high intensity regions.
With respect to the lower excited state the laser frequency will be blue detuned, which
shifts the level upwards and leads to a repulsive force.
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For a certain detuning of the light �eld from the excited states, the attractive and repulsive
force can cancel out and the atom in this state will feel no force at all. The atom wont
be trapped by the intensity pattern for such a detuning.

Figure 1.5 Left: For two excited states and a laser frequency lying in between, down- and up-
shift of the energy levels can cancel out for a certain wavelength.
Right: The simpli�ed level structure of the |0〉 = |F = 4,mF = 4〉, |1〉 = |F = 3,mF = 3〉
hyper�ne state of Cesium can be used for state dependent trapping by left-/right-handed circulary
polarized light, corresponding to σ+, σ− transitions.

The level structure for certain hyper�ne states of Cesium atoms (�gure 1.5) leads to a
state dependent trapping in the following way:
Circular polarizations σ+, σ− couple levels, which have di�erent magnetic quantum num-
bers ∆m = ±1. One di�ers between negative circular polarization σ− (∆m = −1) and
positive circular polarization σ+ (∆m = +1).
For state |1〉 in �gure 1.5 the σ− beam is always creating an attractive potential, since it
is red detuned with respect to the excited state 6 2P3/2.
The σ+ polarization for state |1〉 however couples the ground state |1〉 simultaneously to
6 2P3/2 and 6 2P1/2. When the right detuning from these energy levels is chosen, the atom
in state |1〉 wont be trapped by σ+ polarization.
Then the atom would only be trapped by the σ− polarized part of the lattice.

By choosing the right frequency � called the characteristic or magic wavelength � it
is possible to trap the state |0〉 by the σ+ polarization and the state |1〉 by the σ−

polarization1.

When a Cesium atom can be brought into one of the hyper�ne states |0〉 or |1〉 and is
exposed to an intensity pattern at a characteristic wavelength of λC = 865.9 nm [18]
it is trapped state dependently. State dependent transport is equivalent to a relative
displacement of σ+ to σ− intensity distribution.

1.2.2 Scheme Based on an Electro-Optical Modulator

A lin-θ-lin polarization con�guration means that a standing wave is created by two counter
propagating laser beams of linear polarizations with a angle θ relative to each other. This
will create circular polarized intensity distributions

Iσ+ ∼ cos2(kx+ θ/2) Iσ− ∼ cos2(kx− θ/2), (1.1)

for a wavevector k = 2π/λ at a position x. At a wavelength of λ = 865.9 nm, each of the
internal states |0〉 and |1〉 couples to one intensity distribution.
The resulting displacement ∆x between the trapping potentials is proportional to the

1In reality only one ground state will be perfectly trapped by only one polarization and the other one
will see a part of the other circular polarization. This will be discussed in section 3.2.
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rotation angle θ between the linear polarizations [17]:

∆x =
λ

2π
θ. (1.2)

Figure 1.6 The intensity maxima in the lin-θ-lin standing wave con�guration have a spacing of
λ/2. The intensity distribution of σ+ and σ− polarization given by equation 1.1 is plotted for
di�erent turning angles θ. For a turning angle θ = π a displacement of one lattice site is reached.

Accordingly, realization of a state-dependent transport is achieved by variation of the
rotation angle θ. The rotation of light polarization can be realized by a combination of
an electro-optical modulator (EOM) and a quarterwave plate. It contains a nonlinear,
electro optical crystal for which the birefringence can be controlled by an electric �eld. In
this way the applied voltage on the EOM will cause a rotation of the polarization direction.

Figure 1.7 A combination of EOM and retardance plates can be used to create a lin-θ-lin standing
wave con�guration, where the applied voltage controls the rotation angle θ (the �gure is taken
from reference [18].)

For technical reasons the voltage can only be increased to a certain maximum value, which
is approximately the voltage needed for a rotation of the polarization axis of θmax = π.
At the maximum voltage the σ+ and σ− distribution are overlapped again (see �gure
1.6).
This means that an atom which is initially prepared in a superposition of state |0〉 and |1〉
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will experience a separation of one lattice site at the maximum applicable voltage. De-
creasing the turning angle at this moment would lead to bringing the state |0〉 and state
|1〉 potential back together, while for a quantum walk and a single atom interferometer a
larger separation is desired.

To perform transport over several lattice sites experimentally, the roles of |0〉 and |1〉
need to be exchanged after each step. This can be achieved by a microwave pulse. The
microwave π pulse only transfers the populations with a certain e�ciency, which limits
the overall transport e�ciency [18].

1.2.3 Proposal: Scheme Based on Direct Synthesis

State-dependent transport realized with the EOM-scheme is limited by the e�ciency
microwave pulse, which needs to be applied in each step of λ/2 in the state dependent
transport.
In a �conveyor belt� [33] con�guration atoms are moved in a standing wave as well, but
they can be transported over macroscopic distances of one centimeter without application
of further microwave pulses.
However, this transport is state independent. This section shows how the idea could be
utilized for state dependent transport.

State Independent Transport by a Conveyor Belt

Transport of an atom in a standing wave potential means that the atom is still attracted
by the same potential, but in a moving reference frame.
The standing wave in the rest frame is created by two counter propagating waves of same
wavevector ~k and frequency ω:

E→ = ei(kx−ωt) E← = ei(−kx−ωt).

Transformation into a frame moving with velocity ~v, |~v| << c leaves the wavevector in-
variant ~k′ = ~k, but the frequency experiences a Doppler shift ω′ = ~k ·~v+ω [15, page 601].

The counter propagating beams are detuned from their frequency ω = 2πf0 by 2π+∆f/2
and −2π∆f/2 respectively. In a reference frame moving with

v = λ
∆f

2

the Doppler shift compensates the detuning. Once the relative frequency is detuned, the
standing wave pattern will keep moving with a speed proportional to the detuning until
the frequency of the beams is equalized again.

The optical conveyor belt for single neutral Cesium atoms has �rst been realized in 2001
[33]. A frequency detuning ∆f is introduced by an acousto-optical modulator (AOM)
(see �gure 1.8).

In the state dependent transport realized with the EOM scheme, the typical experimental
transportation speed of an atom is

vtyp ≈
200 nm

10 µs
⇔ ∆ν ≈ 50 kHz.

Acousto-optic modulators operate around a large center frequency which would lead to
transportation speeds that are roughly hundred times too large. To achieve a relative
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Figure 1.8 An optical conveyor belt is realized by shifting the frequency of one of the counter
propagating beams, which create a standing wave with an AOM.

detuning of ∼ kHz from the common center frequency an AOM is introduced in each of
the counter propagating beams.

A State Dependent Conveyor Belt

A Cesium atom in hyper�ne state |0〉 (|1〉) is trapped in a σ+ (σ−) polarized potential
(section 1.2.1). Thus, to achieve state dependent transport two conveyor belts are needed,
one σ+ and one σ− polarized (�gure 1.9).

Figure 1.9 A state dependent conveyor belt consists of two spatially overlapped conveyor belts of
orthogonal circular polarization at the characteristic (or magic) wavelength for the Cesium (Cs)
atoms. Half of the intensity is coupled out with a 50:50 beam splitter for the counter propagating
linear polarized beam. The other half is split again into orthogonal linear polarizations by a
polarizing beam splitter and mode cleaned by optical �bers. Frequency and phase of the linear
polarizations are controlled by two separate AOMs before they are recombined again. With a
quarterwave plate the vertical •-linear polarization (horizontal↔) is converted to circular σ−(σ+)
polarization.
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In the EOM scheme the state dependent transport is achieved by rotation of the linear
polarization of one of the counter propagating beams. The decomposition of a rotated
linear polarization ~elin, θ into the circular basis states2 ~eσ+ , ~eσ− shows that the scheme
based on overlapped circular polarized conveyor belts is equivalent to the EOM scheme:

~elin, θ =

(
cos θ
sin θ

)
=

1

2

(
e−iθ + eiθ

i
(
e−iθ + eiθ

)) =
1√
2

(
e−iθ~eσ+ + eiθ~eσ−

)
.

Superimposing two circular waves with constant phase relation and balanced intensity
creates linear polarization. The relative phase ∆φ between the circular polarizations
determines the rotation angle θ of this linear polarization:

~elin, θ =
1√
2

(
ei∆φ~eσ+ + ~eσ−

)
, where θ =

∆φ

2
. (1.3)

The relative phase of the circular polarized beams composing the state dependent conveyor
belt determines the rotation angle θ and therefore the transport distance ∆x ∝ θ (equation
1.2, page 6) A frequency detuning ∆f in one of the circular polarized standing waves is
equivalent to a relative phase

∆φ(t) ∝
∫ t

0
∆∆fdτ = ∆ft.

Therefore, once the frequency is detuned the composed linear polarization will rotate with
a speed proportional to the frequency detuning, equivalent to a state dependent transport
over several lattice sites.

1.2.4 Phase Stability

The di�culty in the proposed state-dependent conveyor belt scheme is the phase stability.
Generally, an interferometer is sensitive to temperature �uctuations and vibrations (see
�gure 1.10).

2In the Jones formalism the circular polarization basis vectors are given by

~eσ+ =
1√
2

(
1
i

)
, ~eσ− =

1√
2

(
1
−i

)

.
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Figure 1.10 Beams propagating in di�erent arms of an interferometer (here of Mach-Zehnder
type) aquire a relative phase di�erence due to changes in the optical path length. The phase dif-
ference arises from vibrations and the dependence of refractive indices on stress and temperature
variations.

This lead already to a disturbance in the interferometer experiment of Michelson-Morley
by passing horse tra�c [12].

Fluctuations in the relative phase will arise from coupling of vibrations into the optical
elements and changes of refractive indices along the optical path by e.g. temperature
variations or stress. In particular optical �bers, which are often used to clean the mode
pro�le of the lattice beams are sensitive to temperature and stress [24], as both induce a
change in the refraction index.

The upper part of the conveyor belt scheme for state-dependent transport in �gure 1.9
can be seen as a Mach-Zehnder type interferometer. The �uctuating relative phase ∆φ
between the two arms will lead to a change of the rotation angle θ of the resulting linear
polarization (see equation 1.3).

Magnitude and spectral distribution of the relative phase �uctuations can be measured
by recording the beat signal of the two beams on a spectrum analyzer (�gure 1.11). The
polarizer projects the orthogonal linear polarizations on a common axis. This leads to an
intensity

I(t) ∝ cos(∆ft+ ∆φ(t))

on a photodiode, where ∆f and ∆φ(t) are the frequency and phase di�erence of the two
beams. A spectrum analyzer is used to display the spectral distribution of the intensity
I(t). Without phase noise (∆φ(t) = 0), the spectral distribution would be the Fourier
transform of cos(∆ft) = δ(∆f), i.e. a sharp peak �called the carrier� at the frequency
di�erence.
The phase noise term ∆φ(t) will lead to a modulation of this signal and therefore broaden
the observed spectrum as indicated in �gure 1.11. A sharp spectral feature appears at
the carrier frequency with a broadened part caused by the relative phase noise.
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Figure 1.11 For the state-dependent conveyor belt setup the relative phase �uctuations can be
measured by driving both AOMs in �gure 1.9 with stable RF signals. On a spectrum analyzer
a beat signal at their frequency di�erence is observable. Without phase noise a δ-peak at this
frequency would be expected and the relative phase noise between the arms leads to a spectral
broadening into the grey shape.

For an interferometer on an optical table � under the in�uence of vibration, temperature
�uctuations and stress � the typical rms phase noise between the two interferometer arms
is 10◦ to 15◦ [22]. The �uctuation in the relative phase of σ+ and σ− polarization leads
to a relative displacement of their intensity distributions.

Excitation due to Potential Displacement

For a rms phase noise between σ+ and σ− polarization of 10◦ . . . 15◦ the relative rms
position �uctuations of the resulting intensity distributions are ∆x =10 nm. . . 18 nm.

This value has to be compared with the spatial extension of the atoms, described by
their wave function. The situation of their con�nement in the intensity maxima of the
standing wave potential can be approximated by a harmonic oscillator potential. The
mean population is in of the lowest vibrational states n̄ = 1.2 [18] and the con�nement is
described by the trapping frequency ω ≈ 2π × 120 kHz [17]. This results a size of 20 nm
for the ground state wavefunction.

The coin operation, which should only act on the internal states of the atoms, will actually
lead to a shifting term as well, which describes the displacement of the σ+ and σ−

potentials.
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Figure 1.12 A coin �ip C ⊗ I brings the internal states into a superposition and should leave
the spatial part of the wave function una�ected. With displaced potentials due to phase noise the
coin �ip will no longer be described by a unity action I on the spatial part of the wavefunction.

After the coin �ip the atom in motional state |1〉 will see a displaced harmonic oscillator
potential, see �gure 1.12. The probability to end in one of the vibrational states in
the second, displaced potential can be calculated as the spatial overlap of the initial
wave function |1〉 with the displaced eigenfunctions |m〉 of the second harmonic oscillator
potential [13]. The eigenfunctions displaced by ∆x can be written as 〈m|eip̂∆x/~, where
the momentum operator of the harmonic oscillator is p̂ = i

√
mω~

2 (â† − â).

Then the overlap with the initial state is given as

〈m|eip̂∆x/~|1〉 = 〈m|e−
1
~

√
mω~
2

(â†−â)∆x|1〉 = 〈m|eα(â†−â)|1〉,

with a parameter α =
√

mω
2~ ∆x. This can be solved analytically (e.g. [13, 43]) and the

result is known as the Franck-Condon factor

〈m ≥ 1|eip̂∆x/~|n = 1〉 =

√
n!

m!
αm−ne−

1
2
α2Lm−nn (α2),

where Lm−nn are the generalized Laguerre polynomials.
The excitation probability for the displaced harmonic operator potential is shown in �gure
1.13.

Figure 1.13 Excitation probability for a displaced harmonic oscillator potential after the coin
shift.

12



For a displacement of 10 nm the probability to end up in one of the excited states in the
second harmonic oscillator potential is about 23 %. The interference ability of the atoms is
lost after such an excitation, since the orthogonal eigenfunctions of the harmonic oscillator
will not be able to interfere in the subsequent steps. For the excitation probability to
be smaller than 99 % an estimated phase stability of 〈φ〉 ≈ 1.7◦ equivalent to a relative
position �uctuation of 〈∆x〉 ≈ 2 nm is needed.
The relative phase stability between the interferometer arms for the state-dependent
conveyor belt can be improved by a phase locked loop, which is described in the next
chapter.
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2 | Basics of Phase Locked Loops

To achieve a relative phase stability a phase locked loop will be used. This chapter gives
an overview of its working principle and how it can be described by transfer functions in
the frequency domain. It is based on the descriptions in [23, 29]

2.1 | Working Principle

Aim of the phase locked loop (PLL) is the stabilization (locking) of an oscillator phase to
a reference phase. In a minimal PLL always ful�l four basic functions:

• Reference

• (Controlled) Oscillator

• Phase Detector

• Filter.

A part of the oscillator signal is used to extract the phase information of the oscillator.
This part is fed back and compared to the reference phase by the phase detector..

The output of the Phase Detector can be a voltage signal which is connected to the phase
di�erence by a characteristic phase detector constant.
This error signal can be used to change the oscillator phase in the desired way, such
that the di�erence between oscillator and reference phase is minimized. Usually the raw
output of the phase detector is not suitable to directly control the oscillator in the desired
direction. To obtain a control signal which is �tting to the used oscillator, the error
signal created by the phase detector is processed by a �lter. A simple �lter would be an
ampli�er, which will simply adjust the amplitude of the error signal, so that it can control
the oscillator.

Subsequently the PLL changes the oscillator signal and in an ideal case the controlled
oscillator will be stabilized (locked) to the reference.

Once the controlled oscillator is locked, the phases of oscillator and reference have a �xed
di�erence, which is kept constant by the PLL. The residual �uctuations of the oscillator
around the reference phase describe the quality of the phase lock.
Since frequency is the derivative of the phase, a �xed phase ratio will imply that the
frequencies are proportional to each other as well. Therefore, a phase lock implies a fre-
quency lock.

On the other hand, since the phase is the integral of frequency over time, a frequency
lock is not equivalent to being a phase lock.
When the oscillator shows a residual frequency �uctuation around the main frequency
in the lock, it can oscillate e.g. faster for a period of time and then return again to the
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main frequency. The accumulated phase in this time will be di�erent from the one, that
would have been accumulated for running only at the main frequency. Therefore, the
phase relation between reference and controlled oscillator has changed, the phase lock is
lost at this point.

This leads to a distinctive spectral shape of a phase locked signal with a sharp carrier of
a spectral width below 1 Hz.

In the case that the oscillator is locked to the reference, a change in the reference phase
should result in a change of the oscillator phase. Since frequency and phase are connected
via

f =
dφ

dt
.

This relation can be used to scan the reference frequency or phase and change the oscilla-
tors phase or frequency in the same way. Their phases will stay locked during this process,
if the loop can track the changes in the reference and adjust the oscillator behaviour fast
enough.

2.2 | Description of Phase Noise

The standard deviation is divergent for noise types which are typically encountered in
oscillators with high precision [3]. Furthermore, stationary noise processes x(t) cannot
be described in the frequency domain by a Fourier transform, since they are invariant
under translation in time and the Fourier transform is only de�ned for square integrable
functions.
The solution is to use the Allan deviation [3] in the time domain or the power spectral
density Sx(f) obtained with the Wiener Khinchin theorem in the frequency domain.

Figure 2.1 The Wiener Khinchin theorem can be used to obtain the power spectral density for
stationary random processes x(t) for which the Fourier transform is not de�ned. It connects the
power spectral density with the autocorrelation function.

The random phase noise can be described by a power law in the frequency behaviour

Sφ(f) ∼ fα, (2.1)

where α can take values from typically [-3,3] [32]. A typical phase noise spectrum with
the approximation by a power law is shown in �gure 2.2.
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Figure 2.2 A typical random phase noise spectrum Sφ(f) can be approximated by a power law
according to equation 2.1. Additionally the presence of spurious peaks indicates the presence of
strong noise sources at this frequencies (e.g. here the presence of power supplies is indicated by
a spurious peak at 50 Hz).

2.3 | Laplace Transform and Transfer Functions

In �gure 2.3 the layout for the phase locked loop is shown in an equivalent circuit diagram,
where the �lter and the oscillator have been replaced by a black box G. The following
description is adapted from [23, 29].

Figure 2.3 Equivalent circuit diagram of a PLL, where the action of �lter and oscillator are
described by a function G.

The phase locked loop minimizes the error ∆φ between reference and controlled oscillator,

controlled oscillator: φosc reference oscillator: φref phase error: ∆φ = φref−φosc.

A part of the output signal φosc is used to compare it to the reference signal φref . The
function describing the black box will determine the new output signal. Therefore, the
output signal φosc at a time t will depend on the error signal ∆φ at a former time t− τ .
How strong the in�uence of ∆φ(t− τ) on the new output signal φosc(t) is, is be described
by the function G(τ)
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φosc(t) =

∫ t

0
G(τ)∆φ(t− τ). (2.2)

Therefore the system is described by a convolution in the time domain.
For two reasons it is more convenient to describe the convolution in the frequency domain
than the time domain: The initial and resulting phase noise are measured as a power
spectral density Sφ(f). Furthermore, the convolution in the time domain corresponds to
a simple multiplication in the frequency domain.
The goal is to describe the behaviour of the system under di�erent circumstances, for
example sudden changes in the reference signal. These sudden changes cause certain
systems to become unstable which results in a non-zero error ∆φ. Since the Fourier
transform is only de�ned for signals that drop to zero as t → ∞, the description in the
frequency domain has to take into account such possible unstable behaviour.
This is done by multiplying every signal f(t) with an exponentially decaying part e−δt

to ensure convergence to zero at in�nite time. The Fourier transform of the modi�ed
function f(t)e−δt is a Laplace transform

L{f(t)} =

∫ ∞
−∞

f(t)e−stdt , where s = δ + iω.

With the description in the Laplace domain the oscillator phase and the phase di�er-
ence are no longer connected by the convolution as described in equation 2.2. They are
connected by

φosc(s) = G(s) ·∆φ(s) ⇔ G(s) =
φosc(s)

∆φ(s)
.

The function G(s) is known as the open loop gain. It provides a formal gathering of
the transfer functions of the �lter action, �possibly more than one� voltage controlled
oscillator and other elements within the black box in �gure 2.3.
To characterize the PLL it is necessary to know the reaction of the phase locked loop to a
change in the reference signal, i.e. the dependence of φosc on φref and how well an error
∆φ can be compensated by the loop. The dependence of the oscillator phase φosc on the
reference phase φref is described by the system transfer function H(s)

H(s) =
φosc(s)

φref (s)
=

φosc
∆φ+ φosc

=
G(s)

1 +G(s)
,

and the dependence of the phase error ∆φ on the reference phase φref by the error transfer
function E(s)

E(s) =
∆φ(s)

φref (s)
=

∆φ

∆φ+ φosc
=

1

1 +G(s)
.

The ideal case is described by H(s) = 1, which means that the phases of reference φref
and controlled oscillator φosc are exactly the same. Then the error ∆φ between them is
zero, therefore in this case E(s) = 0.
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2.4 | Servo-Bumps and Loop-Bandwidth

The phase locked loop can not react in�nitely fast to a change in the reference signal,
since all components have a limited modulation bandwidth and response time. A fast
changing signal means a contribution of high frequencies in the Laplace transform. In the
case of a fast changing input the error ∆φ(s) can not be adjusted immediately.

Mathematically H(s) and E(s) are determined by the dependence on the open loop gain
G(s). Both have a pole at 1 + G(s) = 0, i.e. where the absolute value |G(s)| = 1 and
the argument ∠(G(s)) = 180◦ (e−iπ = −1). Divergence of the transfer functions that
describes the loop leads to instability of the system. As a measure of system stability the
phase margin is de�ned as the di�erence of ∠(G(s)) to −180◦ at the point of unity gain
|G(s)| = 1 [23, 29].

For |1 + G(s)| < 1 the system can still be stable but looses its ability to follow the
reference properly. Therefore controlled oscillator phase and reference phase di�er when
this condition is met. Therefore, the system transfer function H(s) will drop from unity,
while the error transfer function rises E(s) > 0 for large s. This is reminiscent of the
behaviour of a low- and a high-pass �lter when the cut-o� frequency is approached.

Following the suggestions of [31, eq. 23] the following form of G(s) is used as an example

G(s) =
2πfbw
s

e−sTdelay ·K. (2.3)

K is a linear gain constant, which could be for example an ampli�er for the error voltage
acting as a �lter. Usually every element will have a �nite bandwidth fbw. Additionally a
delay line can occur, e.g. a long cable. The delay results in an additional phase factor of
e−i2πfTdelay = e−sTdelay of the signal.

Assumed is that the reference oscillator shows stable spectrum Sφref , in which phase noise
is suppressed up to a high degree. This can be taken into account as rapidly decaying
phase noise, described by large negative powers α = −2 and α = −3 in equation 2.1 (page
15)

Sφref (f) ∝ f−2 + f−3.

The phase locked loop aims to minimize the di�erence spectrum of ∆φ(s) to the reference
spectrum Sφref (f). The connection between the reference spectrum and the di�erence of
the oscillator to the reference is given by the error transfer function

E(s) =
∆φ(s)

φref (s)
⇒ S∆φ(f) = |E(2πif)|2Sφref (f).

The observed oscillator spectrum is Sφosc(f) = S∆φ(f) + Sφref (f).
Equation 2.3 contains bandwidth fbw and delay time Tdelay as parameters. Arbitrary
values for the bandwidth (fbw = 2.5MHz) and for the delay time (Tdelay = 600 ns) are
chosen. Now that the reference phase noise spectrum Sφref (f) and the open-loop transfer
function are given for this example system, its transfer functions can be calculated.

A plot of the resulting system transfer functions H(s) and E(s) reveals that their Bode
plot looks reminiscent to the ones of a low and a high pass �lter (�gure 2.4).
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Figure 2.4 The system transfer function H(s) and error transfer function E(s) are shown for
G(s) given by equation 2.3 for di�erent ampli�cation factors K.

Figure 2.5 Open-loop gain G(s) as given by equation 2.3 for di�erent ampli�cation factors K.
The phase arg(G(s)) is the same for di�erent ampli�cation factors, since these only change the
absolute value |G(s)|.

A very small linear gain K results in a small feedback. In this case error transfer function
will be close to unity, which indicates a large error ∆φ.
Increasing the linear gain K leads to a suppression of di�erence to the reference signal in
the center region up to about 900 kHz. In the outer region of the spectrum the in�uence of
the delay line becomes visible: The delay leads to an o�set frequency dependent additional
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phase φadd = −2πfo�setTdelay. When an additional phase of −π/2 is gained, the system
starts to enhance phase noise since then the sign of G(s) becomes -1 and a servo bump
arises. In this example this would lead to

φadd = −π
2

= −2πfTdelay ⇔ f =
1

4Tdelay
≈ 420 kHz.

Whether the system becomes unstable depends on the absolute value |G(s)|. In case
|G(s)| = 1 the servo bump starts to diverge.

Figure 2.6 The phase locked oscillator spectrum will show the typical shape of a sharp carrier
at the reference frequency (here chosen as the center frequency) and servo bumps appearing at
an o�set frequency depending on the open-loop tranfer function G(s).
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2.5 | Experimental Setup: Overview

Each conveyor belt is composed of two counter propagating beams which create a standing
wave of the desired polarization at the position of the ultra cold 133Cs cesium atoms in
vacuum. Circular polarization σ+ (σ−) is created by a Quarter wave plate λ

4 from orthog-
onal linear polarizations ↔ (•). Each lattice beam contains an AOM which implements
relative frequency di�erences between the beams.
Splitting and recombination is done in a Mach Zehnder interferometer. Phase noise
which leads to position �uctuations of the conveyor belts is accumulated in the separate
optical paths of the orthogonal linear polarizations before they are overlapped again.
After the recombination further phase shifts by optical path variations will be the same
for both beams and therefore don't change the relative position. To obtain the relative
phase informations |ϕ↔ − ϕ•| a beam splitter is used to couple out a small part after
combination.
The error signals are beat signals of the respective linear polarization with a part of
the counter propagating beam. Each of them contains the information of relative phase
changes to the counter propagating beam φcp:

PD↔ ∼ |φ↔ − φcp| PD• ∼ |φ• − φcp|.

The phase locked loop stabilizes each of the signals to an electronic phase stable reference
φref . The feedback is given to the respective AOM driver, so that AOM driver and
AOM behave as the controlled oscillator. By changing the phase of polarizations •, ↔
the di�erences |φ• − φcp| and |φ↔ − φcp| are stabilized to the respective stable reference
spectrum

|φ• − φcp|
stabilized to−→ φref, • |φ↔ − φcp|

stabilized to−→ φref, ↔. (2.4)

To obtain relative phase stability between the two arms, the references have to be phase
stable to each other as well. This is suggested by the common clock signal.

φref,•
stable to←→ φref, ↔. (2.5)

Every optical element will only be operating within a certain error range. The size of this
error will a�ect the phase locked loop and the quality of the resulting optical lattice.
The PLL error signal and the optical lattice which could be created as shown in �gure
2.7 rely on

• Orthogonality of the linear •- and ↔-polarization after their recombination

• The ability to separate the orthogonal linear polarizations again for the error signal

• A Quarterwave plate which can create σ+ and σ− polarization with an acceptable
error.

In section 3.1 the error signal creation regarding the crosstalk is discussed. The retardance
error of the Quarterwave plate and its in�uence on the created lattice are discussed in
section 3.2.
The dynamic behaviour, i.e. its ability to stabilize and control the phases in equations
2.4 and 2.5 of the loop will be determined by the transfer function of each component in
the phase locked loop. They are discussed in chapter 4.
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Figure 2.7 The proposed scheme from �gure 1.9 extended by the components of two phase locked
loops, which stabilize each circular polarization.

2.6 | Summary

The proposed scheme (section 1.2.3) for state-dependent transport relies on two indepen-
dent conveyor belts, each controlled by one AOM. This con�guration is not phase stable
(section 1.2.4) and the initial relative phase noise between the channels is 〈φ2〉 ≈ 10◦,
corresponding to relative position �uctuations of 10 nm between the conveyor belts. This
will lead to an imperfect overlap of the ground state wave functions of the atoms, which
have a width of 20 nm. Experiments like the quantum walk or a single atom interferom-
eter require a phase stability of better than 〈ϕ〉rms < 1.7◦ (section 1.2.4).
As a possible way to stabilize the phase of an oscillator to a reference signal the phase
locked loop and its description by transfer functions G(s), H(s) and E(s) is introduced.
The power spectral density Sφ(f) is used to measure phase noise in the frequency domain
and the expected spectrum including the appearance of servo-bumps in the oscillator
phase noise spectrum in lock is shown by calculation of an example.
The result is the setup for a state-dependent conveyor belt extended by the components
needed for the relative stabilization of the circular polarizations shown in �gure 2.7.
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3 | Experimental Setup Part I: Or-
thogonality and Crosstalk

When the phase locked loop is not switched on the phase noise spectrum Sinitialφ shows
a shape, which can be compared to the illustration in �gure 1.11, consisting of a sharp
carrier and modulation by the phase noise.

The phase locked loop is setup as shown in �gure 2.7. When the phase lock is switched
on (Slockedφ in �gure 3.1), the power is accumulated in the carrier and two servo bumps

as in �gure 2.61.

The functionality of the phase lock will be decreased by crosstalk between the polariza-
tions.

Figure 3.1 When the phase locked loop is switched on the measured phase noise spectral density
Slockedφ (f) shows the expected shape of suppressed phase noise compared to the initial phase noise

without stabilization Sinitialφ (f) close to the carrier and two servo bumps.

3.1 | E�ect of Non-Orthogonality on the Phase Lock

To measure the in�uence of polarization crosstalk on the phase locked loop the phase
locked signal is recorded with crosstalk and without crosstalk.

1The measurement method and quantitative analysis of the signals is described in section 5.3.
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Qualitatively, when the phase locked loop is aiming to reduce the error caused by a signal
on which it cannot act, it will actually produce a "mirror"-noise peak on the opposite
site of the carrier (see �gure 3.2). Therefore crosstalk signals will always appear as actual
phase noise.

Figure 3.2 Measurement of the in�uence of crosstalk on the phase noise spectrum in lock.
Compared to a situation without crosstalk, a crosstalk signal from the other polarization leads
to the creation of two peaks in the locked phase noise spectrum.

3.1.1 Needed Extinction Ratio for Beam Separation

The most di�cult part in the creation of a crosstalk-free error signal is the �nal separation
of the beams (see �gure 2.7). To estimate the needed quality of the splitting element in
�gure 2.7, the beams are assumed to reach it in a perfectly orthogonal state and the
crosstalk is only resulting from their separation with a limited extinction ratio.
The information, how well an element can separate orthogonal polarization states is ex-
pressed in the extinction ratio. It is the ratio of the wanted polarization intensity versus
the unwanted polarization intensity in each output port of a polarizing element. Quali-
tatively, a splitting element with limited extinction ratio will cause a crosstalk signal as
shown in �gure 3.2.
Quantitatively, the power outside the carrier (Pfloor) will be increased by the crosstalk
with a certain amount compared to the situation without crosstalk. The resulting phase
noise 〈φ2〉 can be calculated by the fraction of power contained in the carrier Pcarrier [31]

η =
Pcarrier

Pcarrier + Pfloor
= e−〈∆φ

2〉.

The signal Pfloor can be rewritten as a fraction ε of the carrier signal Pfloor = εPcarrier

η =
1

1 + ε
and 〈∆φ〉 =

√
− ln

(
1

1 + ε

)
The crosstalk signal will appear as an additional peak in the �oor, which increases Pfloor.
The change of the rms phase noise d〈∆φ〉 with an in�nitesimal change in the power
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fraction in the carrier dε is given by

d〈∆φ〉 =
1

2(1 + ε)

√
− ln

(
1

1+ε

)dε =
η

2〈∆φ〉
dε. (3.1)

Crosstalk will cause the power fraction in the carrier to change by ∆ε = Pcross talk
Pcarrier

.

From equation 3.1 follows that the rise of the phase uncertainty depends on the initial
phase stability 〈∆φ〉 without crosstalk. For signals with very high phase stability the
crosstalk will cause a larger e�ect.

A very good polarizing beam splitter cube relying on multiple dielectric coatings can reach
an extinction ratio of 1/5000 in transmission and 1/500 in re�ection. Calcite prisms as the
Glan-Polarizer or the Wollaston prism reach extinction ratios of better than > 1/100 000
for both beams.

Figure 3.3 A crosstalk signal as shown in �gure 3.2 will increase the noise �oor. The additional
phase noise d〈∆φ〉 caused for a crosstalk at a suppression level Pcrosstalk/Pcarrier is plotted for
di�erent initial phase �uctuations 〈∆φ〉. Suppression ratios for typical extinction ratios of a
calcite prism and polarizing beam splitters are inserted as dashed lines.

According to �gure 3.3 a very good phase stability on the level of 〈∆φ〉 ≈ 0.1◦ . . . 0.3◦ can
not be achieved with a coated polarizing beam splitter. Even very good polarizing beam
splitter would lead to a large additional phase uncertainty of 0.2◦ . . . 0.6◦ in the re�ected
beam. A suppression of crosstalk to carrier of larger than -50 dB would be su�cient to
reach a phase stability of 〈∆φ〉 ≈ 0.1◦ . . . 0.3◦ and can be provided by birefringent calcite
prisms like the Wollaston prism.

3.1.2 Orthogonality after Combination

If the polarizations are not orthogonal after their combination, the angle ∆ϕ in �gure 3.4
is unequal to zero, which means that the polarization Î has a component in X̂ direction.
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Figure 3.4 After perfect recombination of the beams, the resulting beam contains the two
polarizations with ∆ϕ = 0.

The limit set by the acceptable crosstalk level for a phase stability of about 0.1◦ can be
obtained from the estimation in �gure 3.3. A crosstalk signal of -40 dB height below the
carrier would add acceptable phase noise in the order of 0.03◦. According to this the
orthogonality has to be better than

− 40dB ≥ 10 · log

(
| sin(∆ϕ)E2|2

|E1|2

)
⇒ ∆ϕ ≤ 0.57◦. (3.2)

Measurement of ∆ϕ with the Residual Beat Signal

The idea is to make use of the fact that signals with a frequency di�erence and polarization
components along a common axis will show a beat signal. This residual beat signal can
be used to extract the degree of orthogonality.

X̂ = x̂ei∆ωtE1 I = sin(∆ϕ) · E2x̂+ cos(∆ϕ) · E2ŷ

For a projection on the x̂-axis (µ is taking the �nite spatial overlap into account)

PAC,res = |E1 · ei∆ωt + E2 · sin ∆ϕ|2AC = 2E1E2 · sin(∆ϕ) cos(∆ωt)µ.

The height of the residual beat signal depends strongly on the spatial overlap of the
beams. Therefore the information obtained only from the residual beat signal is not
su�cient to estimate the orthogonality, but needs to be compared to the maximum beat
signal, which is obtained when a polarizer at 45◦ is inserted. The maximum beat signal
is given by

PAC,45◦ = |E1 · ei∆ωt + E2|2AC = E1E2 · cos(∆ωt)µ.

Then

sin ∆ϕ =
PAC,res

2 · PAC,45◦
±

√(
∆PAC,res
2 · PAC,45◦

)2

+

(
PAC,res ·∆PAC,45◦

2 · (PAC,45◦)2

)2

On the spectrum analyzer one can directly observe the di�erence of the peak power ∆dB

of the residual beat signal to the one with polarizer in dB2 . Using the relation above the
signal is related to the non-orthogonality by

sin(∆ϕ) = arcsin
(

10
1
2

∆dB/20
)
.

The residual beat signal method is used to measure the resulting orthogonality for com-
bination on the Wollaston prism and the result is shown in �gure 3.5.

2Displayed on the spectrum analyzer is the ratio of the electronic powers Pel. Optical power Poptical
and electronic power are related by Pel ∝ P 2

optical.
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The residual beat signal method is used to measure the resulting orthogonality of the
beams and the result is shown in �gure 3.5.

Figure 3.5 After combination on the Wollaston prism the orthogonality of the polarizations
is measured by comparing the beat signal with (PAC, 45◦) and without polarizer (P elres). The
underground is recorded by blocking the photodiode.

The residual signal is below the noise �oor at -70 dBm. With inserted polarizer the
maximum of the beat signal has a power of -2 dBm. This gives a relative suppression of
better than ∆dB = −68 dB, and therefore an orthogonality of

∆ϕ < 0.01◦.

3.1.3 Distortion of Orthogonality

Once the beams are combined and their othogonality is measured, this value can be used to
identify elements which distort orthogonality of polarization. Distortion of orthogonality
means, that the polarization of one beam is changed, so that it obtains a polarization
component in the orthogonal direction. The extreme case of such an element is a coated
polarizing beam splitter PBS which projects onto a common axis.

In the Jones formalism a rotated coated PBS can be written as

R(−θ) ·
(

0 0
0 1

)
·R(θ) R(θ) =

(
cos (θ) sin (θ)
− sin (θ) cos (θ)

)
,

where R(θ) is the rotation matrix and the PBS has its transmission axis along the y-
polarization. A polarizing beam-splitter re�ects one polarization tx = 0 and transmits
the other ty = 1 completely.

An ideal non-polarizing beam-splitter treats both polarizations completely equal tx = ty.
A general beam splitting element can be written as(

tx 0
0 ty

)
,
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which describes the polarizing beam splitter in one extreme case and the non polarizing
beam splitter in the other. A perfect (tx = ty), rotated non-polarizing beam splitter is
described by (

tx sin2 (θ) + tx cos2 (θ) 0
0 tx sin2 (θ) + tx cos2 (θ)

)
.

It has no diagonal elements and therefore it wont distort the orthogonality of the polar-
izations that enter it.
A real beam splitter only achieves equal transmission coe�cients for orthogonal polariza-
tions up to 10% (e.g. Thorlabs BS010 beamsplitter), so that tx = ty + ε and the rotated
beam splitter can be written as(

ty sin2 (θ) + (ε+ ty) cos2 (θ) −ty sin (θ) cos (θ) + (ε+ ty) sin (θ) cos (θ)
−ty sin (θ) cos (θ) + (ε+ ty) sin (θ) cos (θ) ty cos2 (θ) + (ε+ ty) sin2 (θ)

)
Therefore a beam splitting element with small di�erences in the transmission of x- and
y-polarization needs perfect alignment to a rotation angle of multiples of θ = π/2 and it
will show residual polarizing properties for every other angle.
Alignment of optical elements can be achieved by using the residual beat signal, which
rises for imperfect orientation. In �gure 3.6 the signal observed on the spectrum analyzer
is shown for di�erent orientations of a non-polarizing beam splitter in a rotary mount.
Reference for alignment is the suppression ratio of residual signal without polarizer to the
maximum beat signal in decibel. When the beam splitter is well aligned the suppression
ratio is equal to the one without beam splitter. For small rotations out of this direction
the beat signal rises.

Figure 3.6 Residual polarizing e�ects of elements like non-polarizing beam splitters, glass plates
and substrates can be detected with the measurement method for orthogonality. For slightly
misaligned components the beat signal rises rapidly. The residual polarizing e�ect of the non-
polarizing beam splitter cube measured here, can cause non-orthogonality larger than 0.57◦.

Other elements like glass plates and substrates have been tested. They all show visible
e�ects on the orthogonality of the polarizations depending on their alignment.
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3.2 | Estimation of the E�ect of Crosstalk on the Optical
Lattice

The linear polarizations are converted to orthogonal circular polarizations by a λ/4-plate.
As the Jones matrix of any retarding element is unitary it will not distort orthogonality.
Nevertheless, it wont create perfectly circular polarization, but polarization with residual
ellipticity due to the quarterwave-plate retardance error.

3.2.1 Measurement of Quarterwave-Plate Retardance

When a wave propagates through a birefringent material its polarizations along and per-
pendicular to the optical axis experience a di�erent phase shift. The di�erence of these
phase shifts is known as retardation Γ:

Γ

2π
=

∆x

λ
∆x = (nslow − nfast) · L.

In the Jones formalism a waveplate Λ(Γ) with its optical axis rotated by θ can be written
as

R(−θ)Λ (Γ)R(θ) with Λ(Γ) =

(
1 0
0 e−iΓ

)
.

For Γ = π/2 and a rotation angle of 45◦ one obtains the Jones matrix of a quarterwave
plate, which produces circular polarization from incident linear polarization along the x̂-
or ŷ-axis.

Now an erroneous quarterwave plate should be considered. Its retardance can be written
as the retardance of a quarterwave plate with an additional error ε

Γ =
2π

λ
∆x =

2π

λ

(
λ

4
+ ε

)
,

such that the out coming polarization wont be any longer purely circular. Nevertheless,
the Jones matrix of any retardance element and therefore any rotated wave plate with
arbitrary error is unitary. Since unitary operations preserve the inner product, orthogo-
nality of the polarizations will be preserved as well. This means, that the incoming basis
set of linear polarizations will be transformed into a new basis set that can be expressed
as a rotation/ linear combination of the purely circular basis:

|l1〉 = cos(α)|σ+〉 − sin(α)|σ−〉 |l2〉 = sin(α)|σ+〉+ cos(α)|σ−〉. (3.3)

The retardance error of the quarterwave plate and the resulting purity of circular polar-
ization can be measured with a rotating polarizer (�gure 3.7).
.
The measurement results are shown in �gure 3.8.
Expectation

When the incoming polarization is linear a rotation of the Glan-Polarizer would lead to
periodic minima and maxima of the intensity on the photodiode. Insertion of a perfect
quarterwave plate leads to creation of circular polarized light which is composed of equal
parts of x̂ and ŷ linear polarization. The intensity stays at half of the maximum value
for any rotation angle. A quarterwave plate with large error is obtained by setting Γ =
2π
λ

(
λ
4 + λ

40

)
. The calculated produced polarization is elliptical and shows a large residual

wiggling.
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Figure 3.7 Setup for the measurement of the quarterwave plate retardance error: A �rst polarizer
de�nes the linear polarization axis. A second polarizer acts as an analyzer after which the intensity
is recorded on a photodetector. By rotation of the second polarizer with and without quarterwave
plate the retardance error of the quarterwave plate can be determined.

Experimental Data

First the blue trace is recorded without the inserted quarterwave plate. For rotation of
the Glan-polarizer a motor with a frequency of 6 Hz is used. Than the quarterwave plate
is inserted and the residual wiggling recorded. In this case a zero-order plate has been
used and the residual wiggling is on this scale not visible.

Zoom into the Wiggling

To obtain the error of the used quarterwaveplate, the peak to peak amplitude of the
residual wiggling is compared to the expectation for di�erent quarterwaveplate errors.

Figure 3.8 Measurement of the quarterwave plate retardance error.

Comparison between the experimental data and the expectation yields a retardance-error
of

ε ≈ λ

200
.

This can be connected to the angle α in equation by projection of the resulting polarization
after the erroneous quarterwave plate on the circular basis states. The resulting rotation
angle is α ≈ 0.8◦, i.e.

cos2(α) = 99.98 %,

is in the desired circular polarization state for this quarterwave plate.
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3.2.2 Estimation of the In�uence of Crosstalk and Retardance Error

on the Optical Lattice

Non-orthogonality in the linear polarizations before the quarterwave plate and the re-
tardance error of the quarterwave plate will lead to a crosstalk between the circular
polarizations, such that a phase shift that should only in�uence, say the σ+ lattice will
cause a part of the σ− lattice to shift as well.
The resulting lattice |lges〉 is the sum of the single lattices |l1〉, |l2〉, each of which is
controlled by an individual phase locked loop. First, the case without error is considered,
i.e. where |l1〉 and |l2〉 don't show a polarization crosstalk and a beam with twice the
intensity propagates in the opposite direction to create a standing wave:

|l1〉 = eikx|σ+〉 |l2〉 = eikx|σ−〉 |lback〉 = e−ikx(|σ+〉+ |σ−〉) k =
2π

λ
, x : position .

Relative phase changes θ between |l1〉 and |l2〉 can be considered in the superposition by

|lges〉 = e−iθ|l1〉+ eiθ|l2〉+ |lback〉.

Variation of the Trapping Frequency during a Transport Sequence

The di�erent coupling of the states to the σ+ and σ− polarization can be taken into
account by de�ning

ŝ0 = 0 · |σ+〉〈σ+|+ 1 · |σ−〉〈σ−| ŝ1 =

√
7

8
· |σ+〉〈σ+|+

√
1

8
· |σ−〉〈σ−|.

The resulting attractive potential seen by an atom in state |0〉 or state |1〉 is given by

U|0〉 = 〈lges|ŝ2
0|lges〉 U|1〉 = 〈lges|ŝ2

1|lges〉. (3.4)

Figure 3.9 shows how the potential depth for state |1〉 varies even without polarization
crosstalk due to the sensitivity of the state |1〉 to both circular polarizations.
During the transport the phase between the two lattices changes, so that minima and
maxima no longer overlap. At the point where the phase di�erence of σ+ and σ− po-
tential is 90◦ the minimum of the σ− potential coincides with the maximum of the σ+

potential.
In this con�guration the minimum of the state |1〉-potential is no longer at zero. The
sensitivity of state |1〉 to the σ− polarization lifts the minimum to 1/8 = 0.125. Equiva-
lently, the maximum is decreased to 1− 1/8 of the maximum potential value for θ = 0◦.
Therefore, the e�ective potential depth is decreases by 2/8 for θ = 90◦.

Since the potential follows the intensity distribution of a standing wave, its periodicity is
described by a cos2(kx)-function and its amplitude by U0(θ) is dependent on the phase
θ. In vicinity of the potential minima it can be approximated by a harmonic oscillator

UPotential(x) = U0 cos2(kx)
minimum
≈ U0(θ)k2x2 Uharmonic(x) =

1

2
mCsω

2
trapx

2,

with a trapping frequency of

ωtrap = 2π

√
2U0(θ)k2

mCs
.

ωtrap varies with the square root of the e�ective potential depth during the transport as
shown in �gure3.10. For a phase of θ = 90◦ state |1〉 will experience a trapping frequency
which is decreased by a factor of

√
2
8 compared to the one for state |0〉.
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Figure 3.9 Shown is the potential for state |0〉 and state |1〉 at di�erent positions along the one
dimensional lattice created by σ+ and σ− polarization with a relative phase shift θ.

Variation of the Trapping Frequency during a Transport Sequency with Quar-

terwave Plate Errors and Non-Orthogonality

In the scheme based on direct synthesis of light polarization, the trapping frequency
dynamic during transport will change due to polarization crosstalk between the two phase
locks. Therefore, the |l1〉 potential will not be a perfect |σ+〉 lattice any more, but will
contain a |σ−〉 part, the same holds for the |l2〉 potential.
For a lattice crosstalk occurring due to non-orthogonality the resulting states can be
rewritten as

|l1〉 = |σ+〉eikx |l2〉 = (sinφ|σ+〉+ cosφ|σ−〉)eikx, (3.5)

while the quarterwave plate error leads to

|l1〉 = (cos ε|σ+〉 − sin ε|σ−〉)eikx |l2〉 = (sin ε|σ+〉+ cos ε|σ−〉)eikx. (3.6)

To stay within a region of 0.5 % of the case without error as shown in �gure 3.11 the
parameters ε and φ need to take the following values

ε = 0.4◦ and φ = 0.5◦.

The required value for orthogonality is very close to the value needed for the phase
stability of the lock in equation (φ ≤ 0.57◦) and was measured to be better than 0.01◦

(page 27) and with careful alignment of the following glass plates and substrates it can
be kept in the same order of magnitude.
The required value for the error of the quarterwave plate of ε = 0.4◦ corresponds to a
percentage of

cos2(ε) = 99.995◦

in the right polarization component. To ful�l this requirement, the retardance error of
the quarterwave plate has to be smaller than

λ

450
.
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Figure 3.10 Variation of the trapping frequency for state |0〉 and state |1〉 during a transport
sequence, i.e. during a variation of the relative phase between the circular polarizations.

Figure 3.11 The 0.5 % region around the trapping frequency variation without additional errors
caused by non-orthogonality and quarterwave plate error is indicated by the blue, �lled region.
The trapping frequency variation with errors is obtained by inserting equation 3.5 and 3.6 into
the expression for the resulting lattice.

This is larger than the error measured for the quarterwave plate (page 30), but quarter-
wave plates with a retardance precision of up to λ/1000 can be achieved [42].
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4 | Experimental Setup Part II: El-
ements in the Phase Locked Loop

4.1 | Reference: Direct Digital Synthesizer

The electronic reference signals for each phase locked loop channel have to be phase sta-
ble relative to each other. Each reference should have a output frequency of 80 MHz
determined by the resonance frequency of the AOM.

The used model AD9954 [8] generates two sinus-output waves of up to 160 MHz, each with
a phase resolution of 0.022◦. The sequences for state-dependent transport are controlled
by the two reference signals. For the AD9954 phase and frequency of each output can be
controlled rapidly �up to 10 million changes per second of frequency and phase� while it
o�ers �ne tunability � 0.09 Hz in frequency and 0.022 ◦ in phase.

Working Principle and Resolution

A Direct Digital Synthesizer (DDS) provides an output, which is synthesized with help of
a phase accumulator. Its way of functioning can be depicted as in �gure 4.1. An analogue
sine wave is represented as an arrow rotating over the outer circle. The speed with which
the arrow rotates gives the frequency and the angle the instantaneous phase.
A digitalized wave is depicted by dividing the continuous outer circle into discrete sec-
tions. The number of these sections determines the resolution of the device.

Two values provided by the user of the DDS determine the frequency output value: The
system clock fsys (maximally 400 MHz) and the frequency tuning word FTWO.
After each cycle of the system clock the phase accumulator jumps to the next value, which
is determined by the FTWO.
When one full cycle is completed the phase accumulator over�ows and a new cycle of the
sine-wave begins. Two phase accumulators driven with the same reference clock will show
a high phase stability to each other.
The generation of the output wave is shown in �gure 4.1.

The AD 9954 has a frequency tuning word of 4 byte, i.e. 32 bit length. Therefore the
outer circle is divided into 232 values and maximally 232 cycles of the system clock will
lead to an over�ow. The length of the phase accumulator also determines the frequency
resolution to

∆f =
fsys
232

=
400 MHz

232
= 0.09 Hz.

Additional to the control of the output frequency via the frequency tuning word FTWO
the user has also control over the output phase via the phase word POW.
The phase word has 14 bit length, therefore the output wave can be phase shifted with a
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Figure 4.1 At each rising edge of the reference clock the phase accumulator jumps to the next
instantaneous phase value. From a look-up table the amplitude belonging to the respective
instantaneous phase is pulled and the wave is synthesized with the resolution of the look-up table
in the digital domain. A digital to analogue converter creates the output signal.

resolution of

∆φ =
360◦

214
= 0.022◦.

fout =
FTWO × fsys

232
Φ =

(
POW

214

)
× 360◦

The AD9954 has an on-board RAM memory in which tuning patterns of 1000 steps for
frequency and phase tuning words versus time can be written.
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4.2 | Photodetector

In a LED the recombination of electrons and holes in a semiconductor pn-junction leads
to light emission. Similarly, a photocurrent can be created in the reversed process: by
photons, which are absorbed in the depletion region. The e�ciency of electron creation
per photon is given by the quantum e�ciency η. Related to η and ommonly found in
the data sheet is the ratio of incident light power Popt to created photocurrent IPD as
responsitivity

R(f) =
IPD
Popt

η =
IPD/e

Popt/(hf)
, (4.1)

where f is the frequency of the light.
Thermal processes in the pn-junction will lead to a dark current IDark in a direction
determined by the bias voltage over the photodiode.

Another important characteristic of the photodetector is its bandwidth ∆ν. Only alter-
nating optical signals which oscillate slower than the bandwidth can be detected. The
reason for limited bandwidth is that the charge distribution in the semiconductor results
in a capacitance which will form a low pass �lter together with load resistances.

The three main noise contributions in the photodetector are given by (e.g. [2])

σ2
IPD, shot

= 2eĪPD∆ν σ2
IDark, shot

= 2eĪDark∆ν σ2
IThermal

=
4kBT

R
∆ν, (4.2)

where ĪPD denotes the average of the photocurrent.
The �ow of current is not continuous, but created by single electrons. The statistical
description of their motion leads to a Poisson distribution of the current around its mean
value, which is known as electronic shot noise σ2

IPD, shot
. The dark current IDark will lead

to shot noise σ2
IDark, shot

. Thermal noise σ2
IThermal

is present in the resistance R of the
photodetector.
The noise contributions of thermal and dark current stay constant, while the shot noise
associated with the detection process rises with the incident light power. It is assumed,
that the incident power will be so large, that the noise contributions of thermal and shot
noise can be neglected1

The beat signal power which is not in the carrier contains the information about the noise.
At the point where the signal power outside the carrier drops below the photodiode noise
the signal doesn't contain useful error signal information any more.
Quantitative description of the phase noise 〈φ2〉 can be given by the fraction of power in
the carrier Pcarrier compared to the overall signal Pcarrier + P�oor [31]

η = e−〈φ
2〉 =

Pcarrier
Pcarrier + P�oor

. (4.3)

From equation 4.3 follows for a phase uncertainty of 〈∆φ〉 = 0.1◦ that 99.9996 % of the
power are accumulated in the carrier, therefore the noise information is contained in the
�oor with

Pfloor ≈ (1− 0.99996)Pcarrier.

The carrier signal is created by the beating of the two signals on the photodiode: For two
electrical �elds E1, E2 with identical polarizations the resulting time dependent optical
power Popt(t) on a photodiode with active surface A can be written as

1This can be justi�ed by comparing the optical power in the calculation with the noise equivalent
power of 3.5 · 10−11W/

√
Hz from the photodiode datasheet [35].
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Popt(t) = I(t) ·A =
1

2
Aε0c|E1(t) + E2(t)|2 = P1 + P2︸ ︷︷ ︸

DC

+ 2
√
P1P2µ cos(∆ωt+ ∆ϕ(t))︸ ︷︷ ︸

AC

,

where Pi is the optical power of the single �elds Ei, ∆ω, ∆ϕ denote relative frequency
and phase di�erences between the electrical �elds and µ takes their �nite spatial overlap
into account.
The detected optical signal consists of a DC part which is constant in time and an AC part
that oscillates at the di�erence frequency ∆f and contains the relative phase information
∆ϕ.
For the shot noise resulting from this optical power only the average of the resulting photo
current is important. Using equations 4.1 and 4.2 this gives

ĪDC = (P1 + P2)R ĪAC = 0.

Thus, only the DC part contributes to the shot noise, since the oscillating AC signal
averages out over time. For the main square �uctuations this gives

σ2
IPD, shot

= 2eR(P1 + P2)∆ν.

The signal is contained in the AC (beating) part and its mean squared current is

〈I2
beat〉 = (2R

√
P1P2µ)2〈cos2(∆ωt+ ∆ϕ)〉 = 2R2µ2P1P2.

This results in a signal to noise ratio of

SNR =
〈I2
beat〉

σ2
IPD, shot

=
Rµ2

2e∆ν

P1P2

P1 + P2
.

Assuming equal optical powers in the beams (P1 = P2 = P ) and perfect overlap (µ = 1)
a SNR = 1 for the noise �oor power is reached at2

P =
SNR = 1

1− 0.999996

4e∆ν

R
≈ 53 µW.

2From the datasheet [35] of the photodiode ∆ν = 150 MHz, responsitivity R = 0.45A/W.
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4.3 | Controlled Oscillators: VCO and AOM

To change phase and frequency of the lattice beams Acousto Optic Modulators (AOMs)
are used, as indicated in �gure 2.7 (page 22). A voltage controlled oscillator (VCO) is used
to drive the AOM, such that the combination of VCO and AOM becomes the controlled
oscillator in the PLL.
The controlled oscillator should show a linear response to the �lter voltage, which is
veri�ed in section 4.3.2. Phase noise suppression is based on modulation of the frequency
of the controlled oscillator, which is characterized by the modulation bandwidth, see 4.3.4.
It becomes evident that the main e�ect of the AOM on the behavior of the PLL consists of
the signal delay time (dead time) caused by the traveling time of the sound wave through
the AOM crystal to the beam 4.3.5.

4.3.1 Working Principle of the AOM

The working principle of an Acousto-optic modulator is described in detail for instance
in [30].
It is illustrated in �gure 4.3.1. When an RF-signal is applied to a piezo-electric material
it will contract and expand with the frequency of the RF-signal. In the used AOM the
transducer is connected to a Tellurium Dioxide crystal [7], in which it will create an
acoustic wave. The acoustic wave travels inside the crystal as a modulation of the index
of refraction, which results in a moving grating structure. Light propagating through the
crystal can be di�racted on this grating into di�erent orders. The used material and the
RF center frequency and power depend on the used AOM model. Operated in the Bragg
regime the angle of incidence is given by Bragg's law for a di�raction grating, where the
spacing between the di�raction planes is the acoustic wavelength. Only one di�raction
order is produced in this case.
For the �rst order di�racted beam follows from momentum conservation for the wave
vectors

~k1 = ~k0 + ~kacoustic |~k| = 2πf

v
,

where f is the frequency of the respective beam and v its velocity.

From energy conservation follows the shift of frequency in the �rst di�raction order with
respect to the incident beam by the RF-frequency

f1 = f + fRF .

The incident light has a wavelength of 865.9 nm. The shift of 80 MHz in frequency is
equivalent to a change of ≈ 0.2 pm in wavelength.

4.3.2 Sensitivity Constant of the VCO

The RF signal applied to the AOM is the ampli�ed output of a VCO. Consequently the
frequency in the �rst di�raction order of the AOM can be varied around the center fre-
quency of 80 MHz by changing the voltage applied to the VCO.

The VCO should be linear in its response to the control voltage: The sensitivity constant
KVCO of the VCO relates the frequency change at the output ∆f to voltage changes ∆V
at the input [41].
For a non-linear controlled oscillator compensation of frequency or phase changes are
di�cult to achieve in the phase locked loop, since the �lter voltage will only depend on
the measured error. If the needed voltage to compensate for the error varies, the loop
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Figure 4.2 The used AOM contains a Tellurium Dioxide crystal in which a Bragg grating is
created by contraction and expansion of a transducer with the frequency of the driving RF-signal.
For operation in the Bragg regime one frequency shifted di�raction order will be created.

will need a longer time to compensate the error.
For a linear dependence ∆f ∝ KVCO∆Vcontrol, such that a certain change in the VCO's
output frequency is always accomplished by the same change in the �lter voltage.

The measurement of the VCO's sensitivity constant is shown in �gure 4.3.

Figure 4.3 Measurement of the VCO sensitivity constant KVCO.The control voltage of the VCO
is varied. The output frequency can be observed as a peak on a spectrum analyzer.

In the region of Vcontrol = 0.75 . . . 2.2V (f ≈ 72 MHz . . . 85 MHz) the dependence of
the VCO output frequency on the control voltage is found to be linear with a sensitivity
constant of

KVCO =
∆f

2π∆Vcontrol
=

1

2π
(9.07± 0.05)

MHz

V
.
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Thus the output voltage of the VCO can be written as

fout = KVCO · Vcontrol.

4.3.3 Modulation Bandwidth of the Oscillators

To obtain a phase locked signal, the phase of the oscillator has to be modulated to com-
pensate for measured deviations from the reference. Each device that can be modulated
in its output frequency has a characteristic modulation bandwidth in which this can be
done.

The origin of the AOMs modulation bandwidth can be explained as indicated in �gure
4.4. For large modulation frequencies, the e�ect averages out over the beam diameter.

Figure 4.4 An optical beam of diameter dbeam transverses the di�raction grating created in an
AOM-crystal for a driving voltage modulated around the carrier frequency. The carrier frequency
transverses the beam with the acoustic sound velocity vsound.

From the time tcross with which the acoustic wave transverses the beam, the bandwidth
frequency BWAOM (with period time TBW ) is antiproportional to the beam size [4]

tcross ≈
dbeam
vsound

1

2
TBW > tcross ⇒ vsound

2dbeam
≈ BWAOM .

For the modulation to be transferred to the beam e�ciently, the beam diameter dbeam
inside the AOM has to be chosen as small as possible. As the di�raction of the beam
on the refractive index grating is a Bragg scattering process, it is based on constructive
interference, which will result in a smaller di�raction e�ciency for smaller beam diameters.

Table 4.1: Dependence of di�raction e�ciency and modulation bandwidth from the AOM
datasheet [7]. .

Beam diameter 125 µm 200 µm 400 µm

Modulation Bandwidth BWAOM 19 MHz 12 MHz 6 MHz

Di�raction E�ciency 65 % 80 % 90 %

As a trade o� between di�raction e�ciency and modulation bandwidth a beam diameter
of about 200 µm should be chosen.

For the used VCO model the expected modulation bandwidth is determined by electronic
low pass �lters and BWV CO = 5 MHz is given in the datasheet as typical value.
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4.3.4 Measurement of the Modulation Bandwidth

With the sensitivity constant KVCO of the VCO, its output voltage can be written as

Vout ∝ sin(φ(t)) = sin(2π

∫
KVCO · V (t)dt).

If the input voltage has a constant DC- and a modulation (mod) AC-part the VCO output
will be

Vout ∝ sin(2πfcarriert+
KVCO · Vmod

fmod︸ ︷︷ ︸
=:m

· sin(2πfmodt)).

The strength of the modulating signal is given by the modulation index m.
The modulated spectrum is described by Bessel functions, which appear as sidebands to
the carrier at multiples of the modulation frequency fm

ei(ωt+m sin(ωmt)) = eiωt
∞∑

n=−∞
Jn(m)einωmt.

The carrier amplitude is given by the Jn=0(m)-function, which can be displayed on a
spectrum analyzer. When a modulation of strength m is applied, the carrier amplitude
decreases. Vice versa the suppression of the carrier can be used to determine the modu-
lation index m, as suggested in [41].
When the bandwidth limit is approached the resulting modulation begins to deviate from
the modulation index m calculated from the used modulation frequency fmod and voltage
Vmod. When the modulation index m decreases to 1√

2
= 0.7 of the desired value the

bandwidth limit is reached.

As an initial value a suppression following from a modulation index of approximatelym =
2.4 is chosen. Now the modulation frequency fmod is increased the ratio fmod/Vmod ∝ β
is kept constant. The carrier amplitude seen on the spectrum analyzer is recorded and
set into ratio with the unmodulated J2

0 (0) amplitude. The result for a purely electronic
circuit, containing only the VCO, and a circuit which contains VCO and AOM can be
seen in �gure 4.5.

Figure 4.5 Measurement of the modulation bandwidth of VCO and AOM: The amplitude of
the carrier for di�erent modulation frequencies fmod at a constant modulation index m (b). The
change in the carrier amplitude with the modulation index m is described by |J0(m)|2 (a). The
modulation index will decrease due to reaching the bandwidth limit.

(a) (b)
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From �gure 4.5 (a) follows that the point where the modulation index reaches 0.7 · 2.4 =
1.68 the amplitude of the carrier has reached 15.7 % of its initial amplitude. In �gure
4.5 (b) it can be seen that the amplitude of 15.7 % of the initial amplitude indicates a
bandwidth of

BWV CO ≈ 4.1 MHz BWAOM&V CO ≈ 2 MHz.

4.3.5 AOM as Dead Time Element

The electronic control signal is transferred to the optical signal by modulation of the
soundwave which is travelling through the acousto optical modulator. The soundwave
speed of 4.2mm/µs (∼ 1.4 · 10−5c, c: speed of light) is very small compared to the signal
speed on electronic lines (∼ 0.6 · c) and optical paths (∼ c).

Depending on the way from the transducer to the focussed optical beam the signal will
experience a delay. Additionally it needs time to transit the beam diameter d which will
appear as a rise time.

Therefore, the AOM is acting as a delay line in the setup, described by a transfer function
of a dead time element [23]

∝ e−sτtravel, AOM .

For measurement of the travelling time a gated 80 MHz voltage generated with a mixer
is used, as shown in �gure 4.6. Usually the L and R port of the mixer are used as inputs
for AC voltages and the I port provides their multiplied output. To gate an oscillating
signal with a square voltage, the DC voltage has to be applied to the I port, since the
transformator stages inside the mixer react only to voltage changes3.
The used setup for the delay time measurement is shown in �gure 4.6.

Figure 4.6 Measurement of the signal travelling time inside the AOM: A gated 80 MHz signal
is generated with a mixer and the intensity in the �rst di�raction order is monitored (a). The
gated 80 MHz signal (green) and intensity in the �rst di�raction order (yellow) are observed on
an oscilloscope (b).

(a) (b)

This method measures only the delay caused by the AOM, while the VCO might cause
dead time as well. By driving the VCO with a square voltage its frequency will jump
between 80 MHz (center frequency of the AOM) and about 72 MHz. Operation at the
lower frequency causes the intensity in the �rst di�raction order to change, since it is

3The control of the signal amplitude by the mixer has a small switching time of 30 ns compared to
an element like the Voltage Controlled Attenuator (for instance VCA ZX73-2500) with switching times
of 14 to 25 µs. It can be used for intensity stabilization and control with a high bandwidth.

42



away from the AOM center frequency.
By comparing the delay measured with this method to the delay measured with the mixer,
a delay of 35 ns can be attributed to the VCO.

With both methods the AOM can be realigned to optimize the travelling time and one
obtains ( �gure 4.7) before and after realignment an overall (VCO+AOM) delay time of

τdelay, before = 480 ns τdelay, after = 270 ns .

As demonstrated in section 2 the dead time element will cause the phase margin of the
PLL to shrink by adding a factor ei2πfoffsetτdelay to the open-loop transfer function G(s),
which causes a shift of the servo bump. The measured servo bump positions are shown
together with the measured delay times in �gure 4.7. The servo bumps show up at

SBbefore = 700 kHz SBafter = 1150 kHz .

This indicates that the transfer functions of the other elements have a large phase reserve
and the loop needs an additional phase of about 110◦ to change the sign of G(s) and
create the servo-bump in the spectrum.

Figure 4.7 With the setup shown in �gure 4.6 the delay of the intensity in the �rst di�raction
order to the square voltage is measured (upper left τdelay, before = 480 ns , lower left after re-
alignment τdelay, after = 270 ns ).
Then the PLL is switched on again and the spectrum of the beat signals recorded. The servo-
bump position is indicated as dashed line for the measurement with τdelay, before (upper right)
and τdelay, after (lower right).

In �gure 4.7 the signal does not show only a delay, but also a �nite rise time. The rise
time, that the signal needs to rise from 10% to 90% of its �nal value is connected to the
beam diameter d inside the AOM crystal by [4]

Trise =
0.66d

vsound
.

The observed rise time of about Trise ≈ 40ns gives with the sound velocity vsound =
4.2mm/µs a beam diameter of d ≈ 250 µm at which di�raction e�ciency and modulation
bandwidth show a good trade o� (see table 4.1)
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4.4 | Phase Frequency Detector

At the heart of a Phase Locked Loop lies the Phase Frequency Detector, which compares
the instantaneous signal with the reference. It will create an error-voltage which is con-
nected to the found di�erence. This error signal is provided to the �lter.
The Phase Frequency Discriminator (PFD) is based on a design from Professor Marco
Prevedelli (Università di Bologna).

PFD Working Principle

The internal setup of the PFD is shown in �gure 4.8. It has two inputs (RF and LO)
which are digitalized by a comparator. The actual PFD chip is represented by its logic
diagram from the datasheet. The output of the PFD chip is subtracted by a di�erential
ampli�er. Its output voltage verr contains the phase and frequency information between
RF and LO.

Figure 4.8 Internal setup of the PFD designed by Professor Marco Prevedelli (Università di
Bologna). The logic diagram of the PFD chip is taken from the datasheet [9]).

The logic model of the PFD chip tells when its output U , D pins will be in a low L or
high H state. This depends on the rising edges on the input channels R and FB.
Assuming that the initial state of the chip is state 2 (U = L, D = L) it will change to
state 1 and change D = H if �rst a rising edge on the FB channel is registered and to
state 3 (U = H), if the rising edge appears �rst on the reference input R. It will stay in
the respective state until a rising edge on the opposite pin is measured and return to the
initial state 2.
The signal on di�erent stages in the PFD is shown in �gure 4.9.

The phase detector output has a periodicity of the frequency di�erence between RF and
LO input.

The di�erential ampli�er (DA) will substract the output of the up and down pin of the
PFD chip:

DAout = UP −DOWN

When integrated this voltage can be used as a feedback for the local oscillator. In the
case shown in �gure 4.9 the output verr will be a negative voltage with period of the fre-
quency di�erence. The voltage controlled oscillator will therefore decrease its frequency
upon receiving the negative voltage as feedback. As the frequency of the local oscillator
decreases in turn the periodicity of the error signal will decrease until the frequency of
local oscillator and reference is the same.

If the frequency drops further, below the one of the reference, the PFD will be in pump
up mode and the feedback voltage is positive, such that the frequency is increased again.

When local oscillator and reference have the same frequency a frequency lock has been
achieved.

44



Figure 4.9 The �rst (upper) plot shows the measures incoming signals at the LO and RF port.
LO has a larger frequency than RF.
The second plot shows the measured comparator output for the LO and RF signals. The rising
edges of the comparator output are indicated by vertical lines.
The third plot shows the measured output of the PFD at the UP and DOWN port and in dashed
lines the expectation according to the logic model of the PFD chip.

PFD Measurement of Sensitivity Constant

Once the frequency lock as been achieved, the error voltage has to contain information
about the phase di�erence of local oscillator and reference. Since there is no more fre-
quency di�erence, the PFD output voltage will not have a periodicity, but it is a DC
voltage proportional to the phase di�erence.

In the case of no phase di�erence, the rising edges perfectly coincide and UP and DOWN
pin will both be low. When the phase of the reference advances a bit, the device will be
pulled into Power-Up mode and the UP pin will be high till the rising edge of the local
oscillator is registered. The integrated di�erential voltage UP-DOWN will then increase
to a positive DC value.
As the phase advance increases the UP pin will stay longer in its higher state. When
the phase advance is a 180◦, the up pin will be all the time in its upper state and the
averaged di�erential output will be

DAout = Vhigh − Vlow = 400 mV

where Vhigh and Vlow can be found in the PFD chip (Model MC100EP140) datasheet.
When the reference lags the local oscillator the output voltage will be negative until it
saturates for -180◦ phase di�erence at −400mV.

The di�erential ampli�er has a gain constant of G = +10 and the observed output is
expected to vary between ±4 V.
How the PFD output voltage changes with the phase di�erence is given by the "phase
detector constant" Kφ [V/◦]. By knowing this value one can connect the PFD output
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voltage in lock with the residual phase �uctuations. Furthermore, the transfer function
of the PFD in the phase locked loop is given by Kφ.

Kφ can be estimated to vary between its maximum values at ±4 V for a phase change of
360◦

Kestimation
φ = G

(
2(Vhigh − Vlow)

360◦

)
= 10 · 800 mV

360◦
= 22.2

mV
◦ .

To measure the phase detector constant Kφ the two DDS channels are used as input. The
output voltage of the PFD is monitored while a phase ramp from 0◦ to 360◦ is applied to
one DDS channel. The ramping time tramp is written as a parameter into the RAM of the
DDS and is therefore known 4 The recorded signal is the PFD output voltage versus time,
which can be rescaled to PFD output voltage versus angle by applying a factor 360◦/tramp.
The result is shown in �gure 4.10.

Figure 4.10 Measurement of the phase detector constant Kφ. Parameter is the ramp time tramp
or equivalently frequency framp = 1

tramp
.

In general the phase detector constantKφ shows a frequency dependence, i.e. Kφ = Kφ(f)
[34]. The variations of Kφ for ramping times in the 100 kHz region were found to be the
largest and are shown in the �gure. From several Kφ measurements for ramps occurring
on di�erent time scales a mean value of

Kφ = (31± 13)
mV
◦ = (1.8± 0.7)

V

rad

is found.

4Its value can be controlled by giving both DDS channels as input signals on a mixer. The mixed
signal will indicate the ramping time by one full oscillation.
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4.5 | Filter: PID Controller

A PID controller has three parts which provide the control voltage depending on the
error voltage by acting Proportional (KP · verror(t)) to it, on its change (Derivative
KD

d
dtverror(t)) or to its duration (Integral KI

∫
verror(t)dt). In the Laplace domain it

can be written as [23, page 373].

vcontrol =

(
KP +KD · s+KI

1

s

)
verror = KP

(
1 +

1

TIs
+ TDs

)
verror, (4.4)

In the used controller (Vescent; model: D2-125) each of the three parameters KP , TI and
TD can be set independently to more than ten di�erent values and the system response
is dependent for each of them on the settings for the other two values. This o�ers a large
parameter space for the tuning.
The goal is to tune the PID controller in a fashion that it will lead to a fast and stable
response. This can be done by applying a quick change in one of the reference phases, such
that the corresponding circular polarization should respond with an equivalent change in
its phase.
A schematic of the setup used for tuning of the PID controller is shown in �gure 4.11. For
balanced intensities the resulting signal behind the λ/4 plate is linearly polarized, with a
rotation angle θ, which is determined by the relative phase of the circular polarizations.
Change of the relative phase will cause a rotation of the linear polarization that can be
observed on a photodiode behind a polarizer as intensity variation. The dependence of
the measured intensity on the rotation angle θ is not linear, since it is described by a
cos2(θ)-function.
By rotation of the polarizer transmission axis to an angle of 45◦ to the polarization axis
of the linear polarization, the expression can be expanded, so that the measured intensity
change is proportional to the phase change in the circular polarization.

Figure 4.11 Each of the DDS reference channels controls one linear polarization via the PLL.
The λ/4 plate translates the orthogonal linear into circular polarizations.

KI on the PID controller is set to a small value, since the voltage controlled oscillator
already includes an integrating part. The results of the tuning procedure are shown in
�gure 4.12.
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Figure 4.12 A phase step is applied to one of the DDS channels and the system response is
measured: The intensity change on the photodiode in �gure 4.11 and the error signal from the
PFD are monitored.
1) KI ≈ 0, KD = 0, KP ≈ 0
Even before the step response the system doesn't show a steady zero error. The set value for the
step is not reached
2) KP ↑
The proportional action is increased, while integral and derivative part are kept zero. The system
shows a large overshoot and oscillates around the set value. It comes to a steady value after about
50 µs.
3) KD ↑
By increasing KD the system experiences more damping due to the derivative action on the
change of the error signal. The settling time and the overshoot decrease. Still the rise time is
large.
4) KP ↑
By increasing the proportional part the rise time of the system can be decreased, such that a
sharper edge, which is more similar to a step response, becomes visible.
5) KD ↑
Increasing KD again shows again a decreased overshoot and a faster settling time. Increasing KP

and KD iteratively will bring the system closer to the desired response.
6) Critical Settings
When KP is increased to a point where the open-loop transfer function G(s) of the system shows
unstable behaviour the oscillations can no longer be damped. The gain has to be decreased till
they can be fully damped out.

The proportional part has a coarse and a �ne control, with a gain constant relative to
the input error signal. The coarse gain can be varied in seven steps from -40 to +32 dB.
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Around each step a �ne tuner ± 6 dB can be used. From the settings of coarse and �ne
gain follows a proportional gain of

KP ≈ 5.

In general the transfer function of a PID controller has to take into account the limited
bandwidth of the device as well. The used PID controller has a bandwidth of 10 MHz,
which will have a small e�ect on the loop compared to the bandwidth of AOM and VCO
(section 4.3).

4.6 | Summary

Each element in the phase locked loop has been characterised in this section regarding its
transfer function and performance.

The references for both phase locked loops are realized by a Direct Digital Synthesis
(DDS) solution, which o�ers the possibility for phase- and frequency-modulation and
high relative phase stability of the output signals (section 4.1).

The achievable phase stability is limited by the signal to noise ratio of the detection on the
photodiode. A minimum optical power of 53 µW per beam contributing to the beat signal
(section 4.2) is estimated. This value holds for perfect beam overlap and intensity balance.

Controlled oscillator is the VCO and AOM combination with a sensitivity constant given
by KV CO. As the most crucial point the dead time caused by the travelling of the sound
signal through the Tellurium Dioxide crystal inside the AOM is identi�ed (section 4.3).
The modulation bandwidth of VCO and AOM is discussed and measured by the carrier
suppression during a modulation process.

By knowledge of the PFD constant Kφ, the achieved stability of the phase lock can be
estimated conveniently by monitoring the error signal on an oscilloscope. When changes
occur in the PLL, such as a frequency ramp of the reference, the PFD output indicates
how well the optical signal follows the respective reference or if the lock is lost at some
point.

The used �lter is a PID controller which o�ers a large parameter space and a high band-
width of 10 MHz. The tuning procedure for the controller is described in section 4.5.

Kφ = (1.8± 0.7)
V

rad
KV CO =

1

2π
(9.07± 0.05)

rad

s ·V
Tdead ≈ 270 ns KP ≈ 5
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5 | Analysis and Results

5.1 | Characterisation of the Phase Locked Loop

From the transfer functions and characteristics of the single components measured in
chapter 4 the system transfer function H(s) is calculated. H(s) can be measured with
help of the system step response and compared to the calculated transfer function.

5.1.1 Calculation of the System Transfer Function

The open loop transfer function G(s), introduced in section 2 is obtained by multiplication
of the transfer-functions of the single components.
The dead time caused by the AOM is approximated by [23, page 312]

e−sTdead ≈ 1

Tdead + 1
.

Furthermore is assumed that the proportional gain KP gives the main contribution to
the PID controllers transfer function (section 4.5).

Figure 5.1 Diagram of the phase locked loop with the main transfer functions.

The open loop transfer function is obtained by the product:

Gapprox.(s) ≈
KφKPKVCO

s(Tdeads+ 1)
=

K
s(Tdeads+ 1)

K = KφKPKVCO. (5.1)

From this the system transfer function can be calculated (section 2)

H(s) =
G(s)

1 +G(s)
⇒ Happrox.(s) =

K
Tdead

s2 + 2 ·
√

K
Tdead

· 1
2
√
TdeadK

s+ K
Tdead

. (5.2)

By identifying ω2
n = K/Tdead and ζ = 1

2
√
TdeadK

equation 5.2 can be written in the �stan-

dard form of a second order system� [29, page 176]:
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H2nd order(s) =
ω2
n

s2 + 2ζωns+ ω2
n

. (5.3)

A second order system with with a system transfer function of the form of equation 5.3
can be described by just two parameters, the

damping ζ and natural frequency ωn.

Since all system parameters have been measured or estimated in chapter 4 (page 49) the
natural frequency and the damping can be calculated from these

ζcalc =
1

2
√
TdeadK

= (0.27± 0.05) ωcalcn =

√
K

Tdead
= (7± 1) MHz. (5.4)
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5.1.2 Method: Step Response Characteristics

The quality of the step response can be quanti�ed by four parameters:

• Rise Time The output rises beyond 90 % of the desired value for the �rst time.
The rise time should be as short as possible, such that the system responds fast and
minimizes the di�erence to the reference again.

• Overshoot Peak level in the step response compared to the set value. Since the
desired shape is a step, the overshoot should be as small as possible.

• Settling Time The time it takes to converge to the steady state. A common
de�nition is to de�ne the signal as settled when it stays within the 2 % or 5 %
region of the set value [29].

• Steady State Error The di�erence between the steady-state and the desired out-
put for t→∞.

Figure 5.2 Illustration of a typical step response function with characterising parameters.

From the phase step response the system transfer function can be obtained:
In the Laplace domain a unit step of the reference signal φref (s) is described by

φref (s) = L{φref (t)} unit step=

∫ ∞
0

e−stdt =
1

s
,

which gives a connection of controlled oscillator and system transfer function

H(s) =
φosc(s)

φref (s)
⇔ φosc(s) =

1

s
H(s).

Additionally it can be used that taking the derivative in the time domain leads to multi-
plication with a factor s in the Laplace domain, then

H(s) = L
{
d

dt
φosc(t)

}
(s). (5.5)

A stable system will converge to a steady state and the derivative d
dtφosc(t) will approach

zero for t→∞. Therefore the Laplace transform can be replaced by the Fourier transform
in this case [23].
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5.1.3 Step Response Characteristics of a Second Order System

For a second order system overshoot and settling time can be directly related to the sys-
tem parameters ωn and ζ.

The expression for the step response in the time domain is obtained by Laplace trans-
forming the step response with help of equation 5.5. It is given as [29, page 177]

C(s) = H(s)
1

s
C(t) = L−1{C(s)} = 1− e−ζωnt

(
cosωdt+

ζ√
1− ζ2

sinωdt

)
, (5.6)

with ωd = ωn
√

1− ζ2.

Maximum Overshoot

At the point of the maximum overshoot the function C(t), which describes the step
response, reaches its maximum value. This is the case for ωdtM = π (and odd integer
multiples).
The resulting overshoot in percent is

M = C(tM )− 1
t=π/ωd

= = e−(ζ/
√

1−ζ2)π

The maximum overshoot depends only on the damping ratio ζ and the dependence is
shown in �gure 5.3.

Figure 5.3 For a second order system the damping ratio ζ can be directly obtained from the
overshoot in the step response.

Settling Time

The step response C(t) given in equation 5.6 has an envelope 1 − e−ζωnt. Since the
oscillating part will always stay within the envelope, the settling time can be expressed
in terms of the envelope function. To stay within the 2% region around the set value the
signal needs the settling time [29, page 183]

e−ζωntsettle ≈ 0.02 ⇒ tsettle ≈
4

ζωn
. (5.7)
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Both, settling time and overshoot reach better values for larger damping ratio, the opti-
mum region for ζ lies around ζopt = 0.76 [29, page 183].

For a second order system the natural frequency ωn and the damping ζ can be calculated
from overshoot and settling time of the step response.
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5.1.4 Measurement of the Step Response

Basically the step response is already used for the tuning of the PID controller with the
setup introduced on page 47, but in a very qualitative way. With the same setup as used
on page 47 the rotation of the resulting linear polarization, i.e. the system step response
can be observed when a phase step is applied to one of the reference channels.

The recorded phase step response of the optical system is shown in �gure 5.4.

Figure 5.4 A phase step 0 → 20◦ is applied to one of the reference channels. A part of the
references is used as a trigger signal relative to which the delay of the step response of the PLL
is measured.

The rise time to the 10 % value t10% = 260 ns is approximately the dead time expected
for the system.
From the measured overshoot and settling time the parameters for the description as a
second order system can be calculated

M = (43± 2)%
Figure 5.3−→ ζ = 0.26± 0.02

tsettle = (2± 0.25)µs
Equation 5.7−→ ωn = (7.7± 1.0) MHz

These values can be compared to the ones obtained from the approximation as a second
order system calculated in equation 5.4 (page 51):

ωstep response
n = (7.7± 1) MHz ωcalc.n = (7± 1) MHz

ζstep response = (0.26± 0.02) ζcalc. = (0.27± 0.05).

The agreement between the calculated second order system parameters and the ones ob-
tained from the step response is remarkable. For the approximation as a second order
system four parameters are still contained in the open-loop transfer function (Kφ, KP ,
KVCO and Tdead) and the PID controller and the dead time transfer function are only

55



described in approximation. These approximations seem valid and the measured param-
eters should all be in the right order of magnitude. Otherwise such an agreement would
be unlikely.
The description as a second order system is convenient. For instance from equation 5.4
(page 51) follows that the damping parameter ζ ∝ 1/

√
Tdead. This explains why the

overshoot M (�gure 5.3) can not be eliminated in the tuning process.
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5.1.5 Transfer Functions of the Phase Locked Loop

The un-approximated transfer function from which bandwidth and phase stability can be
calculated, is obtained from the step response of the phase locked loop.

To investigate the exact in�uence of the AOM-dead time, the step response of the circuit
with AOM is compared to the one of the purely electronic loop:
In this case the output signal of the VCO does not drive the AOM, but its output is directly
connected to the PFD, i.e. it substitutes the beat signal recorded on the photodiode.
The AOM contributes the largest amount of the dead time Tdead, compared to which the
dead time in the electronic loop without AOM is negligible, i.e.

electronic loop: e−sTdead ≈ 1.

In the schematic (�gure 5.1, page 50) the oscillator VCO+AOM would for this case be
only the VCO.
By comparison of the electronic loop without AOM and the full phase locked loop ("op-
tical" in the following) the in�uence of the dead time can be quanti�ed.

System Transfer Function H(s)

The phase step response for the electronic loop only (situation without AOM) and the
optical loop is shown in 5.5. The step response for the optical system is the same as
shown in �gure 5.4.
For the electronic loop without AOM the overshoot is only M = 2% which indicates a
damping value of ζ ≈ 0.78. This step response shows a short settling time of about 800
ns into the 2 % set value region. It indicates good tuning of the PID controller since the
settling time has an absolute minimum at ζ = 0.76 [23, page 183].
Remarkable is that the optical signal crosses the 90 % value at the same time with the
electronic signal, even though it crosses the 10 % value 100 ns later. This again shows
the low damping of the optical signal compared to the electronic one.

Figure 5.5 Step response function of the electronic loop without AOM and the full loop with
AOM.
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The system transfer function H(s) is obtained by Fourier transformation of the derivative
as shown on page 52

H(s) = F
{
d

dt
C(t)

}
.

Figure 5.6 Derivative of the step response functions of electronic circuit without AOM and
optical circuit with AOM.

Figure 5.7 From the step response the transfer function H(s) is calculated for the electronic
circuit without AOM and optical circuit with AOM.
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The -3 dB value from the system transfer function indicates the bandwidth of the loop.
It can be found at

f−3dB
electronics = 1.35 MHz f−3dB

optic = 1.2 MHz

and is therefore not very di�erent to the one obtained for the electronics alone. The
largest in�uence of the AOM consists in the phase decrease by the dead time. At 1 MHz
the phase of the system transfer function with the AOM is decreased by 70◦ compared to
the one where only the electronics with small dead times contribute.

Open Loop Transfer Function G(s)

From the system transfer function H(s) the open loop gain can be calculated

G(s) =
H(s)

1−H(s)
. (5.8)

Its absolute value and phase are plotted in �gure 5.8.

Figure 5.8 Open-loop transfer function obtained from equation 5.8 and the measurement of
H(s) by the step response function.

The crossing frequency for which the open loop gain |G(s)| is unity, lies at 487 kHz. The
stability of the system depends on the phase margin at this point, which can be read o�
from the plot as

ϕmarginelectronics = 180◦ − 110◦ = (70± 2)◦ ϕmarginoptics = 180◦ − 145◦ = (35± 2)◦.

The value for the phase margin of the optics estimated by the overshoot in the step
response was (27± 2)◦, which is not in agreement, but very close to the actual value.
The additional dead time caused by the AOMwas measured in section 4.3 to be TAOM, dead =
(270 ns− 35 ns) = 235 ns. At the cross frequency this should cause an additional phase
compared to the electronic circuit of

∆ϕadditionalexpected = 2π · 487 kHz · 235 ns ≈ 40◦ ∆ϕadditionalmeasured = 145◦ − 110◦ = 35◦,

which is approximately the value found in �gure 5.8.
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5.2 | Resulting Frequency Controllability

An actual transport sequence with the direct synthesis scheme would involve a frequency
ramp in one of the reference channels, such that the circular polarizations have a resulting
frequency di�erence ∆f .

This would lead to a phase di�erence ∆ϕ which is linear in time

∆ϕ(t) ∝
∫ t

0
∆fdt′ = ∆ft.

Overlapping two circular polarization creates a linear polarization (see page 9). The
relative phase ∆φ between the circular polarizations determines the rotation angle θ of
this linear polarization:

~elin, θ =
1√
2

(
ei∆ϕ~eσ+ + ~eσ−

)
, where θ =

∆φ

2
.

A frequency di�erence ∆f between the two circular polarizations therefore causes a con-
tinuous rotation of the linear polarization, that can be measured with the setup shown in
�gure 5.9.

Figure 5.9 Setup for the measurement of the rotation of the linear polarization: Each of the
DDS reference channels controls one circular polarization. Overlapping the circular polarizations
creates linear polarization. Changes in the relative phase of the circular polarization can be
monitored by placing a polarizer and a photodiode behind the quarter wave plate.

Initially both DDS channels run on 80 MHz, then a frequency ramps up to ∆f = 250kHz
and down after about 600 µs is driven. A part of the DDS output is monitored together
with the generated linear polarization and the error signal of the ramped channel. The
result is shown in �gure 5.10.
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Figure 5.10 In the setup shown in �gure 5.9 a frequency ramp is applied to one of the references.
"References Mixed(x10)": A small part of each reference is used to monitor the frequency ramp.
For this the reference channels are multiplied by a mixer and the resulting signal is low pass
�ltered. This leads to a signal oscillating at their frequency di�erence to each other.
"Resulting Signal": The signal recorded on the photodiode. Its maximum and minimum values
are indicated by dashed lines.
Lower Plot: To see if the lock is lost at any point the error signal (PFD output) of the ramped
channel is monitored during the ramp.

When the reference starts the frequency ramp the error signal rises up to about �ve times
of its rms value. A zoom into the error signal shows that after 5 µs the optical signal
follows the reference signal, so the error has been tracked out. The larger error at the
beginning of the sequence might be due to adjusting the I-part of the PID controller not
to a high enough value. Nevertheless, one should notice, that the achieved rms phase
stability of the optical to the DDS signal in this measurement is exceptionally good and
the excursion is one the order of a tens of a degree.

The intensity dependence on the polarization angle θ follows cos2(θ). Every turning of
180◦ of the tuning angle is indicated by a white or a gray bar in �gure 5.10. Expected is
a rotation of the polarization with half the frequency detuning ∆f between the reference
channels. In the middle of the ramp one can measure the time span (a white and a
gray bar) for a full rotation of 360◦ and �nds a rotation frequency of roughly 125 kHz as
expected.

Since the reference channels are mixed the resulting signal oscillates with the cosine of
the sum and the di�erence frequency, where the sum frequency of 160 MHz exceeds the
oscilloscope bandwidth and is not visible therefore.

An important point to note is that only the overlapped and intensity balanced part of the
σ+ and the σ− beams will result in the turning linear polarization, while the other part will
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prevent the signal from reaching the absolute minimum near zero when the polarization
of the resulting linear polarization is perpendicular to the one of the polarizer. Another
possibility to produce such a signal, would be that the turning of the polarization is
malfunctioning in the fashion, that only a part of the beam is actually phase controlled
and the spatial distribution of σ-polarizations with di�erent phases would result in the
underground. Especially in the situation where the modulation happens on short time
scales this might happen.
This can be excluded in the following way: The spatial quality of each circular polarization
is monitored with a beam pro�le camera behind the analyzer. This is done by blocking
the other, orthogonal polarization and rotation of the analyzer. For a perfect circular
polarized beam, no intensity variation is visible as discussed in chapter 3. If the beam
intensity changes uniformly and within the upper limit calculated in the characterization
of the quarter wave plate, each beam can be considered to have a good spatial quality.
Now both channels are opened and the analyzer is rotated slowly, while the intensity is
monitored again with the photodiode. If the upper and the lower limit (i.e. the visibility
of the signal) is the same as for rotation of the light polarization itself on the shorter
timescale, only the imperfect overlap of the beams is causing the underground and not
loss of phase control by the PLL.
In this measurement the visibility during the frequency ramp is 86.7 % and was checked
with the method above to be within 2-3% of this value for manual rotation of the analyzer.

Following f(t)

It is interesting to follow the evolution of the instantaneous frequency for ramps on the
relevant time scale of µs. The desired �nal frequency would be about 100 kHz in exper-
iments where atoms should be transported (see section 1.2.3). The problem is, that a
100 kHz signal performs only one oscillation in 10µs, therefore it is di�cult to track the
instantaneous frequency with this �nal frequency.

Instead a �nal frequency of 1MHz is chosen. If the loop can follow this frequency ramp
in 10µs, it is also able to follow a 100 kHz ramp in the same time. The measurement
result is shown in �gure 5.11.
Overall the found frequencies of the resulting signal follow the expectation from the
function implemented into the reference. Since typical frequency detuning ∆f lies in the
order of 1/10 of the detuning tested here (see section 1.2.3), it can be inferred that the
PLL is able to follow the desired frequency ramps.
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Figure 5.11 The solid lines indicate the frequency-vs-time function written into the RAM of the
DDS. Three di�erent ramp times tDDS to the frequency di�erence of ∆f = 1MHz are measured.
The optical signal is expected to follow this reference signal. The oscillations of the signals
during the ramp (as in �gure 5.10) are recorded. From them the instantaneous frequency can be
extracted. The found frequencies for the respective ramps are inserted as point in this �gure. The
expected �uctuations of the found frequencies due to the limited time resolution of the oscilloscope
are indicated by the grey shaded areas around the desired paths.

5.3 | Resulting Phase Stability

5.3.1 Methods for Phase Noise Measurements

The power spectral phase noise density with and without stabilization can be measured
with di�erent methods [34]. Each method o�ers di�erent advantages and is applicable in
certain phase- and amplitude-noise regions. Two of them are used in the following.

5.3.1.1 Phase Noise Measurement with the Signal Spectrum

The spectrum of an ideal waveform ∝ sin(ω0t) is a δ-peak at the carrier frequency ω0

which contains all the signal power

Sideal(t) = sin(ω0t)⇒ Sideal(f) = δ(ω0).

Now, if one supposes a phase modulation φ(t) at a frequency fm and with amplitude m
the resulting signal is

Smod(t) = sin(ω0t+m sin(2πfmt)︸ ︷︷ ︸
φ(t)

.

For this the mean square phase deviation can be calculated as

〈φ2〉 = lim
T→∞

1

T

∫ T/2

−T/2
|φ(t)|2dt =

m2

2
.

The modulated spectrum Smod(f) is described by Bessel functions, which appear as side-
bands to the carrier at multiples of the modulation frequency fm. If the modulation is
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small enough the higher order Bessel coe�cients become negligible and the modulated
signal can be written as

ei(ωt+m sin(ωmt)) = eiωt
∞∑

n=−∞
Jn(m)einωmt

m<0.4
≈ eiωt

[m
2
e−iωmt + 1 +

m

2
eiωmt

]
.

In this case two sidebands with power m2/4 in each will appear. This power will be
missing in the carrier. The amplitudes of the sidebands and the carrier are connected via
the modulation index m by

Psingle sideband
Pcarrier

=
m2

4
=
〈φ2〉

2
.

A continuous noise spectrum can be "build up" by small modulations at di�erent fre-
quencies.
From this one can �nd a connection between the mean square phase deviation and inte-
gration over the normalized signal spectrum seen on the spectrum analyzer

〈φ2〉 =

∫
both sidebands P (ν)[dBm/Hz]dν

Pcarrier
=

2
∫
one sideband P (ν)dν

Pcarrier
= 2

∫
one sideband

P (ν)[dBc/Hz]dν.

The unit dBc means that this spectrum has been normalized to the carrier amplitude.
Alternatively this can be written in a "power fraction in carrier"-form [31]

η = e−〈φ
2〉 =

Pcarrier∫∞
−∞ P (ν)[dBm/Hz]dν

.

Conventionally the power located in the 1 Hz region around the carrier frequency is
regarded as the carrier power. Therefore this region should be measured with a bandwidth
of 1 Hz. It would take a long measurement time to aquire the whole spectrum - up to
o�set frequencies of some MHz - with such high resolution. Usually only the region
around the carrier is measured with 1 Hz resolution. Then the span is increased and
with it the resolution bandwidth RBW. In the end all measured spectra are normalized
to their respective RBW value and combined as shown in appendix A.
The limit in which this approximation is still valid (m < 0.4) means that the suppression of
phase noise signal compared to the carrier has to be better than -14 dB for all frequencies.
This implies su�cient frequency stability, such that the carrier frequency stays at the same
value.
Furthermore, this method is sensitive to amplitude �uctuations. In the case of the used
external-cavity diode laser the amplitude noise is negligible compared to the noise added
by elements in the optical path. To di�er between amplitude and phase noise an I-Q
measurement method can be used [34].
Another limit to this measurement method is the free dynamic range of the spectrum
analyzer. The free dynamic range at a certain o�set frequency gives the smallest signal
that can be displayed together with a carrier of a certain strength. The e�ect of the
dynamic range limit will be shown on page 67.

5.3.1.2 Phase Noise Measurement via the PFD output

If two input signals to the Phase Frequency Discriminator are frequency locked, the error
voltage provided by the PFD is proportional to their phase di�erence. The used PFD
provides the error signal on two outputs HF and LF. The di�erence between them is that
LF (low frequency) contains a low pass �lter. By comparing HF and LF it can be tested
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up to which frequency o�set their output is identical.
Then error signal HF or LF can be used to obtain the phase noise spectral density

Sφ(f) = |F{φ(t)}|2

by measurement of the power spectral density of the output signal with a spectrum
analyzer

SV (f) = |F{V (t)}|2.

A possible setup is shown in �gure 5.12.

Figure 5.12 Setup for the measurement of the relative phase noise between the oscillator and
reference in locked condition: The HF output of the PFD is used to maintain the phase lock, the
LF output for the phase noise measurement.

One advantage of this method compared to the beat signal method is that no carrier is
present since for zero phase di�erence the voltage drops to zero as well. This avoids large
requirements on the dynamic range of the spectrum analyzer. Furthermore, the output
signal of the PFD shows only phase �uctuations between the signals and has no sensitivity
to amplitude �uctuations.

On the other hand the measurement takes now place in the region around 0 Hz, where
the spectrum analyzer has a large intrinsic 1/f noise peak.

Hence in this method a low noise pre-ampli�er . is used. To obtain a meaningful result
the noise �oor of the spectrum analyzer and pre-ampli�er and the ampli�cation factor .
have to be taken into account in the analysis.

The ampli�cation constant of the low noise pre-ampli�er can be measured by e.g. gener-
ating a low frequency ( 200 kHz) sinusoidal signal and observing one time the ampli�ed
version and one time the un-ampli�ed version on the spectrum analyzer. The ampli�ca-
tion can then be read of in dB.

The measurement of the system noise �oor is done by termination of the ampli�er input
with its input impedance of 50 Ω. The noise spectrum is recorded, so that it can be
subtracted from the measured phase noise spectrum. The noise �oor should be measured
every time a phase noise spectrum is recorded: Spurious signals can vary in amplitude by
up to 20 dB, depending on placing of components, cables and chosen ampli�cation factor
[34]
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SV (f) = |F{φ(t) ·Kφ · .}|2 = K2
φ · .2 · |F{φ(t)}|2.

To obtain the power spectral density with a high resolution and normalized to a 1 Hz
bandwidth, several spectra with di�erent spans are recorded and combined as shown in
appendix A.

Finally the rms phase noise 〈φ2〉 is obtained by considering that it is connected to the
spectral distribution by integration1

〈φ2〉 =

∫ ∞
−∞

Sφ(f)df = 2 ·
∫ ∞

0
Sφ(f)df.

Since the PFDmeasures the phase di�erence between the two input channels, their relative
rms deviation 〈φ〉 is given by contributions of local oscillator and reference

〈φ2〉 =
√
〈φ2
LO〉+ 〈φ2

REF 〉,

which are not common mode.

5.3.2 Phase Noise Measurements

To determine the quality of the lock, the phase noise spectral density Sφ(f) in lock is
compared to the initial phase noise without lock. To obtain spectra the methods above
are used.

Initial Phase Noise Spectrum

To determine the initial phase noise, a beat signal between the two interferometer arms
is recorded as shown in 5.13. The AOM in each arm is driven directly (without phase
locked loop) with the respective DDS channel. The resulting beat signal is centered at
the carrier frequency, i.e. the frequency di�erence between the two AOMs.

Figure 5.13 The (initial) phase noise between the interferometer arms is recorded with the beat
signal spectrum.

With the signal spectrum method from section 5.3.1.1 the initial phase noise spectral
density Sinitialφ (f) can be determined from the recorded beat signal. The result is shown
in �gure 5.14.

1Actually the �lter used by the spectrum analyzer is of a Gaussian form with a width given by the
resolution bandwidth. The peak at 0 Hz will therefore "mask" the phase noise in this region, i.e. the
spectral distribution will always be the one of the �lter shape. Taking this into account, the integration
starts at a lower limit of 1.2 Hz.
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Figure 5.14 Measured phase noise spectrum Sinitialφ .

The spectral distribution of the phase noise Sinitialφ (f) shows prominent spurious peak
lies at 50 Hz, which is caused by power supplies.

By integration over the whole spectrum an rms phase noise of

〈φ〉initial ≈ 12.5◦

is obtained. The largest part of the phase noise is concentrated in the region of up to 10
kHz, where acoustic and vibrational frequency are strong [28].
Critical for the state-dependent transport is the phase noise which occurs in the experi-
mental time scale2 of about 500 µs, or equivalently a frequency of fexp = 1

500 µs ≈ 2 kHz.
In the relevant time scale starting from 2 kHz a rms phase noise of 〈φ〉2 kHz to 1 MHz ≈
8.5◦ is contained. According to the estimation in section 1.2.4 (page 11) the needed
stability is better than

〈φ〉goal ≤ 1.7◦.

Relative phase noise of the reference channels

The phase noise of the resulting, phase locked signal is measured with the PFD method.
It is obtained from the relative �uctuations of the reference channels to each other 〈φ〉DDS
and the �uctuations of the optical signal against each reference channel 〈φ〉opt. vs DDS .
The PFD method only measures phase �uctuations between two signals, which are not
common mode. Therefore, each channel could still show large phase �uctuations, but
when they are performed in both measured signal at the same time, they will not appear
in the measurement.
The phase noise of each single channel could basically be measured with the signal spec-
trum method introduced in section 5.3.1.1. The measurement method relies on expression
of the phase noise level relative to the carrier strength. It would be expected that the

2This is approximately the coherence time [18].
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spectrum of one of the DDS channels shows a very strong carrier and only a small phase
noise.
The measurement SDDS, Spectrumφ (f) is shown in �gure 5.15. The observed spectrum has
the shape of the dynamic range, which can be found in the datasheet of the used spectrum
analyzer (Agilent N9010A). The dynamic range gives the smallest signal that is observable
on the spectrum analyzer when a strong carrier is present. When the spectrum method
is used it has to be veri�ed that the observed signal lies signi�cantly above the dynamic
range limit, otherwise the measurement method does not give valid results.

The relative phase noise between the reference channels can be measured by using them
as LO and RF input for the PFD. The measured rms noise values is composed of the rms
phase noise of each single channel as

〈φ〉DDS =
√
〈φ2〉ref 1 + 〈φ2〉ref 2.

The measurement is shown in �gure 5.15

Figure 5.15 SDDS, Spectrumφ (f) shows the spectrum of one DDS channel on the spectrum ana-
lyzer. The function follows the dynamic range, which can be found in the datasheet of the used
spectrum analyzer (Agilent N9010A). The relative phase noise between the reference channels is

measured with the PFD method resulting in the phase noise spectrum SDDS, PFDφ (f).

From integration over the spectrum SDDS, PFDφ (f) follows a relative phase noise between
the reference channels of

〈φ〉DDS = 0.037◦.

When this is equally attributed to both channels, this gives a phase noise of each reference
channel

〈φ〉ref 1 = 〈φ〉ref 2 =
1√
2

0.037◦ = 0.026◦.

From the datasheet [8] of the used DDS model a relative phase noise of 0.022◦ is expected.
The slightly higher value might be attributed to the fact that the used clock signal does
not have the optimum amplitude.
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Relative Phase Noise of the Optical Signal to the Reference

The second part of the resulting phase noise between the lattice beams is the �uctuation
of each phase locked optical signal against its reference channel Svs refφ (f). This means
that the residual error signal in lock has to be monitored in the setup shown in �gure
5.12.
The phase noise of the resulting signal is the relative phase noise SDDS, PFDφ (f) of the
reference channels to each other and the �uctuation of the optical signal against each
reference Svs refφ (f). Therefore, the phase noise spectrum in lock Slockedφ (f) is given as

Slockedφ (f) = SDDS, PFDφ (f) + 2 · Svs refφ (f).

The result is shown in �gure 5.16.

Figure 5.16 The phase noise spectrum Slockedφ (f) is obtained from the relative reference �uctu-

ations SDDS, PFDφ (f) and the �uctuation of both optical signals against their reference Svs refφ .

From integration over the spectrum Svs refφ (f) follows that the phase noise of the optical
channels against their respective reference is 〈φ〉opt vs ref = 0.7◦.

For the overall rms phase noise of the resulting signal follows an rms phase noise of

〈φ〉 =
√
〈φ2〉DDS + 2〈φ2〉opt vs ref = 0.99◦ ≤ 〈φ〉goal = 1.7◦.

The obtained value for the phase noise is smaller than the estimated value for which
heating processes due to displacement are suppressed.

For comparison the initial phase noise Sinitialφ (f) and the phase noise in lock Slockedφ (f)
are shown in �gure 5.17.
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Figure 5.17 Comparison of the initial phase noise Sinitialφ (f) to the phase noise spectrum in lock

Slockedφ (f).

The relative phase noise of about 1◦ between the locked beams can be compared to the
values achieved with other phase lock schemes:
Phase locked loops based on a piezo mounted mirror typically reach stabilities of 3◦

[21]. When additionally a set of tipping Brewster windows is inserted, stabilities between
0.1 . . . 0.9◦ can be reached [22, 37]. Regarding these values the found relative phase
stability for the set up phase locked loop is acceptable.
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6 | Conclusion and Outlook

Goal of the thesis was the setup and characterisation of a new scheme for state dependent
transport based on the interferometrically stable overlap of two independent conveyor
belts. It was estimated that a phase stability of better than 〈φ〉 ≈ 1.7◦ degree is needed
to perform experiments like a quantum walk and a single atom interferometer successfully
with this setup (see section 1.2.4). Besides the relative phase stability two points that
need to be investigated before a test on ultra cold atoms are

• the intensity stabilization: the intensity of the circular polarizations was not
stabilized during this thesis. Fluctuations in the lattice beam intensity causes the
trapping depth to vary and needs to be investigated.

• the mode matching: the rotation of the linear polarization tested in section 5.2
shows the missing mode matching between the overlapped circular polarizations.

The main point of this thesis is the test of phase stabilization and control in a prototype
setup, i.e. it does not contain the ultra cold atoms.
To achieve interferometric stability and control over relative phase and frequency a phase
locked loop as introduced in chapter 2 for each arm is set up. Two to each other phase
stable direct digital synthesizers provide the reference signals, each for one phase locked
loop. They o�er the possibility to implement various phase and frequency tuning pat-
terns. The resulting scheme for the phase stabilized superposition of the state dependent
conveyor belt is shown in �gure 2.7 and requirements on each element were estimated and
measured.
To prevent polarization crosstalk in the phase locked loop and the resulting optical lattice
the orthogonality of the lattice beams has to be ensured. Orthogonality is distorted by
beam splitting elements and glass plates with an angular deviation in the alignment (see
chapter 3). For creation of the error signal for the phase locked loop the orthogonally
combined beams need to be splitted again in their components. A birefringent Wollaston
prism with high extinction ratio compared to a coated polarizing beam splitter is used to
separate the beams again (see section 3.1).
A quarterwave plate is used to create circular polarized light from the orthogonal linear
polarizations. An estimation (section 3.2) for the tolerable retardance error is based on
comparison of the trapping frequency variation during transport. The estimation shows
that the tolerable retardance error is λ/450, which is better than the retardance error for
a non-customized quarterwave plate of λ/40 . . . λ/320, but achievable [42].

From analysis of the system transfer function (see section 5.1) it becomes obvious that
the delay time caused mainly by the signal travelling time through the AOM (see section
4.3) decreases the phase margin. The system is still stable, but the large delay prevents
complete tunability which is needed to achieve the optimum step response with smaller
overshoot. This is typical for the insertion of dead-time elements into a loop [23].
One way to circumvent this problem is to choose an AOM with a larger speed of sound.
For instance Lithium Niobate o�ers a transition time through the crystal which is only
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60 % of the one in Tellurium Dioxide, which was used in this case. Another and more
powerful way is to insert an electronic compensation, called a Smith predictor [23, page
531].
The found similarity in the phase locked loop behaviour to a second order system (see
section 5.1.4) opens a convenient way for tuning and optimization, since the response is
primary determined by just two parameters.
As a result for the characterisation of the phase locked loop it can be stated, that its re-
sponse is understood and can be connected to the second order transfer function resulting
from the measured system parameters. It can be improved by insertion of a dead time
compensation.
The quality of the phase locked loop expresses itself in the resulting phase noise sup-
pression. Two di�erent ways to measure the relative phase noise spectrum of the lattice
beams were presented and the resulting relative phase noise between the lattice beams is
approximately 1◦ (see section 5.3). A large part of the residual phase noise has its origin
in the servo-bump feature introduced in section 2.4. Since the height of the servo-bump
is dependent on the damping of the system, this value can be improved further in the
same way as the step response of the system.
Nevertheless, already now the achieved phase stability is comparable to the values achieved
with piezo based lock schemes. However, typical switching times for phase control in piezo
based setups lie in the order of tens of milliseconds [21, 37, 16] and are therefore large
compared to the switching time in the order of µs achieved in the direct synthesis setup.
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A | Stitching Phase Noise Spectra
for Di�erent Resolution Band-
width

Displayed by the spectrum analyzer is the average power found in a frequency interval
of width ∼ Paverage/RBW. Since the resolution bandwidth changes from spectrum to
spectrum, the spectra are always referenced to a certain RBW value.
The used Frequency Span S, resolution bandwidth RBW and number of recorded points
# are connected by a constant k

# = k · S

RBW
.

In the end each data point represents a frequency interval S/# and the spectrum analyzer
will choose the respective resolution bandwidth RBW which is optimized for the chosen
span, such that the spectrum can be acquired in the minimum time with optimized
information content. In case of the Agilent N9010A the factory preset is ∼ 1000 points.
This value can be changed to from 1− 40 000 points. Nevertheless, since RBW, # and S
are connected, the spectrum analyzer is used with its auto-settings for a chosen span.

Figure A.1 Several spectra with di�erent resolution bandwidth/ spans are recorded. The Gaus-
sian �lter used by the spectrum analyzer is clearly visible in the logarithmic scale.
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Figure A.2 To obtain the average power in a 1 Hz bandwidth, the measured spectra are nor-
malized to the respective RBW value.

Figure A.3 Now a stitched function can be found, that begins at the data with the largest span
and jumps to the data track with the higher resolution as soon as it is available, till it reaches
the curve with 1 Hz resolution bandwidth. This function can be used for further analysis.
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