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1 Introduction

During the last century, quantum mechanics has become one of the most important and
successful theories in physics. The theory can explain many experimental results which
were found in conflict with classical mechanics. Since then, many experiments have revealed
fundamental quantum mechanical phenomena. Currently, scientific research moves from
mere observation of these effects to their control and utilization. The shared goal is to
construct quantum simulators or quantum computers. The basis for calculations of a
quantum computer is the so called quantum bit or short qubit. It consists of two states
often called |0〉 and |1〉. In contrast to a classical bit which can be either in state |0〉 or
|1〉, the qubit can also be in any quantum mechanical superposition of these two states.
Operations on these qubits are done by quantum mechanical analogs to classical registers.
Quantum algorithms require the capability to entangle qubits in quantum registers.

There exist situations where it is already known that quantum computers could be faster
than classical computers. Today, the factorization algorithm of Shor is one of the most
famous examples [1]. Five general criteria which a candidate for a quantum computer
implementation must fulfill were published by DiVincenzo [2]. These criteria govern the
scalability and the universality of the system. Although theoretical concepts exist on how
a quantum computer could be realized [3] it is very challenging to build a flexible system
with many qubits.

First experiments where done with nuclear magnetic resonance techniques [4], but these
systems lack scalability. Cold trapped ions are nowadays employed for ultra precise time
keeping and to realize different quantum logic gates [5]. In a recent experiment it was
achieved to entangle 14 ions [6]. In solid state physics Josephson junctions are under
consideration to build quantum computers [7].

Another promising alternative are neutral atoms in optical traps. During the past
20 years, lasers made it possible to cool large an ensemble of neutral atoms down to a
Bose-Einstein Condensate [8] and also to study single trapped neutral atoms precisely. As
neutral atoms couple very weakly to their environment they are advantageous to carry
out experiments without disturbances. The interaction between two atoms needed to
entangle these can be realized by photons in high finesse cavities. Two Rydberg atoms can
also be entangled using the Rydberg blockade [9]. An alternative approach to realize a
controlled interaction could be via controlled coherent cold collisions [10]. So far, this has
been realized with Bose-Einstein condensates, without direct control of single qubits [11].
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2 1 Introduction

The system under consideration in this master thesis adopts the so-called "bottom-
up" approach, which consists in constructing the system atom by atom. It works with
single Cesium (Cs) atoms in a state dependent optical lattice [12], with the two hy-
perfine ground-states |F = 4,m = 4〉 and |F = 3,m = 3〉, forming the single qubit. The
system has been used to realize quantum walks [13] and a single atom interferometer. Real-
ization of entanglement of two or more atoms could be achieved via cold coherent collisions.

Initialization of atoms in the motional ground-state is a prerequisite of this technique,
and it is the main topic of my master thesis. It is proposed to cool the Cs atoms to their
motional ground-state using resolved Raman side band cooling. Resolved Raman side
band cooling has been realized for single trapped ions [14] as well as for Cs atoms in an
optical lattice [15]. Raman lasers are also used as high precision tools to drive Rabi pulses
in atom interferometers [16].

Resolved Raman side band cooling works only in the Lamb-Dicke regime, when the
trapping frequencies are bigger than the recoil energy. Because the current trap configura-
tion does not provide this, the trap frequencies have to be increased. Our plan to achieve
this is to superimpose a hollow blue-detuned laser beam, also called doughnut beam [17],
to our present 1D optical lattice. This already has been demonstrated for cold Rubidium
atoms in a different application[18].



2 Coherent cold collisions

Detailed examinations of collisions have driven the development of our current understand-
ing of physics. For example, Rutherford analyzed the scattering of α and β particles by
matter to deduce the structure of atoms and today, scientists at the LHC study intensively
the collision between two protons at very high energies. Collisions play an important role
for the formation of Bose-Einstein condensates and thus detailed studies of collisions had
to be made at very low energies before creating the first BEC [19]. Nowadays the collisions
can be precisely tuned with Feshbach resonances [20].
Our apparatus will allow us to study interacting atoms from a privileged point of view:
The ability to control the collision between just two cesium atoms will lead to a clear
signal. The apparatus makes it possible to control the precise state of each atom as well
as the interaction time between two atoms. The scattering length asc is the characteristic
parameter describing scattering at very low energies. The collision process between two
cesium atoms inside our trap can be calculated with the knowledge of this parameter. I
will present estimates for the phase evolution in different cases matching the experimental
conditions.

2.1 Theoretical considerations of cold collisions
I assume to have a spherical symmetric interaction potential with a short range interaction
of radius R. Beyond R, the interaction strength can be neglected. This problem can be
addressed in partial wave approximation [21]. For atoms with energy E and mass m only
partial waves with momentum eigenvalues l < R

√
2mE/h̄ acquire a significant collisional

phase shift. This corresponds to the classical case that atoms with higher energy do not
get close enough to interact with the potential due to their angular momentum [22]. In our
situation, the energy of the atoms is very low and just the partial waves with l = 0 have
to be taken into account. This case is also referred to as s-wave scattering. The scattering
length asc as a single parameter describing the scattering process can be introduced in the
limit of zero energy. The cross section σ of such a scattering process is then given as:

σ = 4πa2
sc.

For my experimenters the states |↓〉 = |F = 4,mF = 4〉 and |↑〉 = |F = 3,mF = 3〉 of the
Cs hyperfine ground-state manifold are under consideration. The scattering length has
been measured for pair |↓↓〉 to be a↓↓ ∼ −2700a0 where a0 = (4πε0h̄

2)/(mee
2) is the

Bohr radius. For the pair |↑↓〉 only ab-initio calculations have been done resulting in

3



4 2 Coherent cold collisions

a↓↑ ∼ 2500a0 [23].
For two atoms with momentum operator pa,b and position operator xa,b inside the potential
wells V a,b, respectively, the Hamiltonian

H =
∑
β=a,b


(
pβ
)2

2m + V β
(
xβ
)+ uab

(
xa − xb

)
. (2.1)

is adequate to describe the system [10]. Here uab describes the interaction between
both atoms and only depends on the distance between both atoms. The wave functions
ψa,b

(
xa,b

)
of the atoms are overlapped in a controlled adiabatic manner for a given amount

of time t and afterwards separated again in order to prevent each atom from changing its
wave function. The two atom state would transform as:

ψa (xa)ψb
(
xb
)

= eiφψa (xa)ψb
(
xb
)

(2.2)

and the phase φ of the state after the collision contains a contribution due to the interaction.
The time dependent energy shift ∆E (t) of the two interacting atoms can be calculated
using:

∆E (t) = 4πasch̄2

m

∫
d3x |ψa (xa (t))|2

∣∣∣ψb (xb (t)
)∣∣∣2. (2.3)

The contribution of this energy shift to the phase can than be evaluated as

φab = 1
h̄

t/2∫
−t/2

dt∆E (t). (2.4)

For my estimations, I neglect the overlap process and assume that the overlap could be
controlled such that the atoms interact with constant strength for a given time t. The
phase accumulated simplifies to

φab = 4πasch̄ · t
m

∫
dx

∏
β=a,b

|ψβ (x)|2. (2.5)

As being a global phase this interaction would not be noticeable. A sequence which allows
to measure the phase is shown in Figure 2.1. At the beginning, both atoms are in state
|↑〉 at the lattice positions n and n + 2 inside our state dependent lattice described in
Section 3.1. The process can be analyzed with the two atom wavefunction |↑ ,n〉 |↑ ,n+ 2〉.
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Figure 2.1: Sequence to measure the phase due to cold collision. The left atom is pre-
pared in the superposition between |↓〉 and |↑〉, the right atom is prepared in |↑〉. Using
state-dependent transport, the two atoms are overlapped for a controllable time at the in-
termediate lattice site. Thereafter they are separated again and the phase of the left atom
is read out using Ramsey like spin tomography.

During the sequence the wavefunction evolves as follows:

|↑ ,n〉 |↑ ,n+ 2〉 initial state
1√
2

(|↑ ,n〉+ |↓ ,n〉) |↑ ,n+ 2〉 π

2 pulse for atom in state n

1√
2

(|↑ ,n− 1〉+ |↓ ,n+ 1〉) |↑ ,n+ 1〉 state-dependent transport

1√
2

(
|↑ ,n− 1〉+ eiφ

↑↓ |↓ ,n+ 1〉
)
|↑ ,n+ 1〉 interaction

1√
2

(
|↑ ,n〉+ eiφ

↑↓ |↓ ,n〉
)
|↑ ,n+ 2〉 state-dependent transport

1
2 (|↑ ,n〉+ |↓ ,n〉) |↑ ,n+ 2〉+ eiφ

↑↓ 1
2 (|↑ ,n〉 − |↓ ,n〉) |↑ ,n+ 2〉 π

2 pulse for atom in state n

eiφ
↑↓ (cos

(
φ↑↓
)
|↑ ,n〉+ sin

(
φ↑↓
)
|↓ ,n〉

)
|↑ ,n+ 2〉 rewritten
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At the end of the sequence, the population in state |↑〉 can be read out using the selective
push-out technique explained in Section 3.1. The provability P (t) to detect atoms in state
|↑〉 |↑〉 is:

P (t) =
∣∣∣〈↑| 〈↑| eiφ↑↓ (cos

(
φ↑↓
)
|↑ ,n〉+ sin

(
φ↑↓
)
|↓ ,n〉

)
|↑ ,n+ 2〉

∣∣∣2 (2.6)

= cos2
(
φ↑↓
)

(2.7)

= cos2
(4πa↑↓h̄ · t

m

∫
d3x |ψa (x)|2 |ψb (x)|2

)
(2.8)

During the interaction, the two atoms occupy the same lattice site. The trapping potential
at each lattice site can be approximated to be a 3D anisotropic harmonic trap with
trapping frequency ω⊥ for the two axes perpendicular to the lattice (radial direction) and
ω‖ for the longitudinal axis (axial direction). Rewriting the integral in Equation 2.5 in
scale invariant variables points out the dependence on the trap frequencies and vibrational
quantum numbers.

xi =
√

h̄

mωi
x̃i (2.9)

ψ (x) =
∏

i=1,2,3

[(
mωi
πh̄

) 1
4
]
ψ̃ (x̃i) (2.10)

φab = 4πasch̄ · t
m

mω⊥
h̄

√
mω‖
h̄

∫
d3x̃

∣∣∣ψ̃a (x̃)
∣∣∣2 ∣∣∣ψ̃b (x̃)

∣∣∣2 (2.11)

As a first important result we can see that the phase accumulated during one collision is
proportional to ω⊥√ω‖. Figure 2.2 shows the values for the integral

∫
dx̃
∏
β=a,b

∣∣∣ψ̃β (x̃)
∣∣∣2

in one dimension for atom one in state n and atom two in state m. From this plot
it becomes obvious that the phase rate deceases strongly if the atoms are not in the
ground-state. The phase rate decreases even further if both atoms are in different motional
states.
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Figure 2.2: Integral
∫
dx̃
∏
β=a,b

∣∣ψ̃β (x̃)
∣∣2 evaluated in one dimension for atom one in

state n and atom two in state m.

2.2 Expected cold collisions
In the present setup atoms are cooled to the motional ground-state in axial direction with
microwave sideband cooling described in Section 4.1. However, no cooling mechanism is
applied to the radial directions, yet. The effect of not ground-state-cooled atoms can be
simulated assuming a Boltzmann distribution over the perpendicular motional states. In
the simulation of collisional physics I shall consider cold atoms with n̄ ≤ 5 for each radial
direction and in the ground-state for the axial direction. The Boltzmann distribution is
truncated at nmax = 25 as the probability for n > 25 with n̄ = 5 is less than 0.9%. The
interaction process has to be calculated for all combinations of the two vibrational states
of the two atoms and weighted with the corresponding probability. The total amount
of possible combinations is n4

max. Using the symmetries of the system the amount of
calculations can be reduced. Nevertheless, the computation time still scales with the
fourth power of the maximal vibrational number. The current setup works with atoms
with an average vibrational number around 200 and therefore simulation of this situation
would require a long computation time, however, such high n̄ are not necessary to simulate
for the purpose of giving a prediction.
The simulations are done for both atoms in the |↓〉 state as for this state the scattering
length was measured. The axial trapping frequency is ω‖ = 115 kHz [24] and the radial
trapping frequency is ω⊥ = 20 kHz, 20-times larger than the trapping frequency in the
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current system. These frequencies are expected from additional optical confinement (see
Chapter 3). The phase rate would be 20-times lower without this additional confinement.
Figure 2.3 shows the numerical calculation for the average interaction phase per time
µ = φ↓↓

t as well as the relative standard deviation of the phase per time. As expected, the
phase rate decreases for higher temperatures and the spread of collisional phase due to
thermal motion increases rapidly, indicating that ground-state-cooled atoms are needed.
From this simulation I deduce that the standard deviation of the phase for the atoms at
present radial temperature should be even higher, making interactions between atoms
hard to be detected.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

30

40

50

60

70

80

90

Figure 2.3: Left: Absolute value of the simulated phase rate in [ rad
µs ] Right: relative stan-

dard deviation of the simulated phase rate in [%].

In experiments the phase φ↑↓ is measured through quantum interference and detection
of the spin populations of the atoms. The signal for the sequence suggested above follows
cos2 if the atoms are always in the same state in all directions. For atoms in a thermal
state the signal washes out with higher temperature. Scanning the phase φMW of the last
π
2 pulse for a constant interaction time t changes the measured phase and a Ramsey like
fringe can be measured. The contrast C of the fringe is defined via:

P↑ (t) = 1
2 (1− C cos (φ↑↓t+ φMW)) . (2.12)

Measuring the population P↑ subsequent at two different phases of the last π
2 microwave

pulse, e.g. φMW = 0 (P↑ (0,t)) and φMW = −π
4 (P↑

(
t,−π

4
)
) is sufficient to determine the

phase φ↑↓ and the contrast C. The contrast C and the phase φ↓↑ are extracted from these
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probabilities as:

C =
√

(2P↑ (t, 0)− 1)2 +
(

2P↑
(
t,−π4

)
− 1

)2
(2.13)

φ↑↓ =


arctan

(
2P↑(t,0)−1

2P↑(t,−π4 )−1

)
+ π

2 for P↑
(
t,−π

4
)
≥ 0.5

arctan
(

2P↑(t,0)−1
2P↑(t,−π4 )−1

)
+ 3π

2 else.

(2.14)

The resulting behavior is shown in Figures 2.4 and 2.5. As expected from the previous
calculation the phase rate decreases with increasing mean vibrational states. For higher
mean vibrational states the contrast decay is slower because also the absolute phase
fluctuation is also smaller. Further studies of the overlap integral (see Appendix A) reveal
that the phase rate for two atoms in given vibrational states is determined by a constant
multiplied by a rational number which depends on the vibrational quantum numbers. This
allows revivals of the contrast because there are interaction times where several different
involved states have the same interaction phase modulo 2π . This effect has been seen in
interacting Bose-Einstein-Condensates where only discrete interaction energies are possible
[25]. The effect is not so dominant in the situation discussed here as the thermal averaging
is done over the cosine squared of these discrete interaction phases. One can expect
that the phase rate decreases further for mean vibrational quantum numbers higher than
simulated. At the same time the contrast is expected to increase again as the absolute
phase deviation also decreases. This is based on the assumption in this simulation that no
interaction phase would lead to a signal with perfect contrast. Realization of a defined
phase to implement algorithms is not possible in this regime as the interaction time to
reach a defined phase will increase as n̄ increases.
Both simulations clearly indicate that atoms have to be cooled to the motional ground-state
in all directions with a very high fidelity. Also, a reasonable phase rate can only be achieved
in a deep trap with high axial as well as radial trapping frequencies. In Chapter 3, I will
propose a possibility to increase the radial trapping frequencies and attain ground-state
cooling of the radial degrees of freedom (Chapter 4). Simulations including the overlap
process have been presented by [10]. More in depth calculation on dedicated servers could
be done with higher n̄ and could also include more experimental details as for example
the overlap process.
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Figure 2.4: Left: Phase vs. n̄; Right: Contrast vs. n̄. Both quantities are plotted for a
interaction time of 5 µseconds (blue) and for 20 µseconds (red). The contrast decreases for
increasing n̄ before it increases again. This increase can be explained by the smaller phase
rate.
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Figure 2.5: Left: Unwrapped phase vs. interaction time t; Right: Contrast vs. interaction
time t. Both quantities are plotted for n̄ = 1,2,4 (blue, red, green). As expected the phase
rate decreases with increasing n̄. Jumps in the phase might arise from uncertainties during
unwrapping. At lower n̄ one can see revivals of the contrast. For higher n̄ more states have
a significant contribution to the overall phase and the effect averages out.



3 Doughnut shaped optical dipole trap
The trapping frequencies in radial direction have to be increased to use resolved sideband
cooling to prepare atoms in the motional ground-state. As described in Section 2, this is
needed to investigate cold collisions. Furthermore, initializing atoms in the ground-state
will also bring significant advantages in terms of longer coherence time, thus enabling us to
perform complex experimental sequences. The plan here is to superimpose a blue detuned
beam with a hole at the center on top of the 1D lattice to increase the confinement in
radial direction. Such a beam is called a doughnut beam. It is an advantage of this method
that the atoms will be trapped at the dark center of the beam. Hence, the trapping
frequency can be increased and at the same time the scattering rate can be kept low
[17]. This scheme is compatible with present optical access, as the doughnut beam will
be superimposed on the 1D lattice in front of the vacuum glass cell where atoms are
trapped. The blue detuned doughnut beam represents a cost effective solution to the
need of increasing transverse confinement since the wavelength can be chosen close to the
atomic D2 transition of Cs atoms.

In this chapter, I will describe the experimental realization of the doughnut shaped
optical dipole trap and address problems which I encountered during the experiments. At
the end of the chapter, I will present first measurements done with this setup.

3.1 Present experimental setup
The current apparatus was designed to show state dependent transport in an optical
lattice and has recently been used to realize a quantum mechanical analogue of classical
random walks [13]. Figure 3.1 gives an overview of the setup, which I will describe shortly.
Detailed information can be found in PhD and Master theses and journal articles from
our research group.

The experiments are done under ultra high vacuum at a pressure of 3 · 10−11 mbar
inside a glass cell. We use neutral cesiums atoms for the experiment as well established
techniques exist to control these atoms. The Cs is provided by a reservoir connected to the
vacuum chamber via a valve to control the Cs pressure. The outermost Zeeman sub-levels
of the hyperfine ground-state, |↑〉 = |F = 4,mF = 4〉 and |↓〉 = |F = 3,mF = 3〉, are used
as a quasi two-level system. Magnetic fields lift the degeneracy of the Zeeman sub-levels
and tunes the transition frequency between |↑〉 ↔ |↓〉 sufficiently far away from transitions
between other Zeeman sub-levels of these two hyperfine levels. Primed (non-primed)

11



12 3 Doughnut shaped optical dipole trap

Fiber coupler

EOM

a b c d

e

fghi

j 1

j 2

k

l

Mirror Half-wave plate Quarter-wave plate Polarizing beam splitter

Ti:sapphire lasers

Figure 3.1: Schematic overview of the current optical setup: The Ti:sapphire laser (a)
produces the laser beam for the optical lattice which passes through an optical isolator
(b) and an AOM (c) used for power control. The beam further passes through a optical
fiber (d), a polarization control setup (e), a lens system (f) and is focused in a glass cell (g)
which is attached to the vacuum chamber (h). Thereafter it enters the polarization control
used for the state dependent transport and is retro-reflected. (j1) and (j2) indicate two of
three MOT beams, defining the x and y-axes, respectively. The third beam is perpendicular
to the sketched plain. (l) is the microwave antena used for single qubit operations and (k)
is first part of the imaging system. According to [24].

quantum numbers refer to the 62P3/2 (62S1/2) electronic state of Cs.

All experimental sequences start with the magneto optical trap (MOT). The average
number of loaded atoms can be adjusted by the field gradient strength. The Doppler
limited temperature of the MOT is 125 µK. Sub-Doppler cooling mechanisms lead to lower
temperature of the order of 10 µK [24]. After that between one and fifty atoms are loaded
into the optical dipole trap. A retro-reflected laser beam from a Ti:sapphire laser forms a
standing wave with a periodicity of λDT2 defining the optical dipole trap. The laser has a
wavelength of λDT = 865.9nm, especially chosen to allow state dependent transport. For
this wavelength, the |↑〉 state couples only to σ+ polarized light and the |↓〉 couples with



3.2 Higher radial trapping frequency with the doughnut beam 13

7
8 to σ− and only with 1

8 to σ+.
The electro-optic modulator (EOM) shifts in a controllable manner the phase of the back
reflected beam and thus shifts the lattices for the two used cesium states, with respect to
each other [24]. The relevant physical parameters of the atoms inside the dipole trap can
be found in Table 3.1.

Parameter Value
Axial trapping frequency 115 kHz
Radial trapping frequency 1 kHz
Scattering Rate 10 Hz

Table 3.1: Relevant parameters characterizing the present dipole trap [24].

The Cs atoms inside the dipole trap are further cooled with the optical molasses formed
by the same beams used for the MOT but with disabled magnetic field gradient. After
that, the atoms are optically pumped to the initial |↑〉 state. For that a σ+-polarized laser
beam, resonant with the F = 4→ F ′ = 4 transition is applied. A beam of the repumping
laser, stabilized to the F = 3→ F ′ = 4 transitions, ensures that the atom is transfered
back to the optical pumping cycle whenever it decays to the F = 3 ground-state [26].
Microwave radiation and the capability to shift the lattice allow us to cool the axial degree
down to the ground-state with a probability of 97% [27]. This is described in more detail
in Section 4.1.
One central part of the setup is the imaging system which allows us to resolve the single
atoms in the lattice potential. When needed, the exact position of each atom in the lattice
can be measured for sparse filling. For all sequences fluorescence images of atoms are taken
before and after manipulating the atoms. A state-selective push-out is applied before
the second picture. Therefore a laser beam resonant to the F = 4 → F ′ = 5 transition
removes the atoms in F = 4 (including state |↑〉), but leaves the |↓〉 state unaffected [28].
For the experimental sequences described in this thesis the relevant information to be
extracted is the spin state rather than the exact position. During the central part of the
sequence, between both images, the quantum state of the atom is currently manipulated
with microwave radiation and sideband transitions are enabled by the spin dependent
lattice. This gives complete control of the quantum state of the quasi spin 1

2 -system.

3.2 Higher radial trapping frequency with the doughnut beam
In Chapter 2, I showed that ground-state-cooled atoms are needed to measure cold colli-
sions and to use collisions to entangle atoms which requires higher trapping frequencies in
radial direction. I will present a way to increase the confinement in radial direction with a
blue detuned hollow laser beam. Stronger confinement will also favor resolving motional
sidebands in the Raman sideband cooling presented in Chapter 4.
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There exist several different approaches to generate a hollow laser beam. Laguerre-
Gaussian modes can be converted to Hermite-Gaussian modes which have a dark center.
Experimentally the mode-conversion was realized by [29]. Hollow beams can also be
obtained by computer generated holograms which are illuminated by a Gaussian beam
[30]. For my experiment a spiral phase plate (SPP) will be used to generate the doughnut
beam. The thickness of the SPP increases proportional to the azimuthal angle as shown
in Figure 3.2. This imprints a phase factor to the wavefront which is a function of the
azimuthal angle: eilφ, where l is called the topological charge. It is given by

l = ∆n · h
λ

(3.1)

Here ∆n denotes the difference of the refractive index of the material of the SPP to its
surrounding, λ is the wavelength of the incident laser beam and h is the maximal height of
the SPP structure as shown in Figure 3.2. I use a SPP manufactured by RPC photonics.

CCD

Figure 3.2: Left: Illustration of a spiral phase plate imprinting a phase pattern depend-
ing on the azimuthal angle on the incident beam. The height h of the step corresponds to
a phase difference of 2π. Two opposite points have a phase difference of π and interfere
destructively in the far field. Right: The SPP in this setup is placed at the focus of a Gaus-
sian beam. Figure 3.3 illustrates the intensity profile of the Gaussian beam at the position
of the CCD camera and the corresponding doughnut beam.

The electric field of the beam behind the SPP has the distribution:

E (ρ,φ,z) = E0
w0
w (z)e

−ρ2

w2(z) e
−ikz−ik ρ2

2R(z) +iζ(z)
eiφ (3.2)
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where

k = 2π
λ

, wave number

w (z) = w0

√
1 +

(
z

zR

)2
,

1
e2 - beam radius

R (z) = z

(
1 +

(
zR
z

)2
)

, curvature radius of the wavefront

ζ (z) = tan−1
(
z

zR

)
, Gouy phase

zR = πw2
0

λ
, Rayleigh range

E0 =
√

2P
πw2

0
, electric field at ρ = 0, φ = 0, z = 0

P , power. (3.3)

In paraxial approximation the propagation of the doughnut beam through a system of
optics can be calculated using the ABCD formalism in the Collins integral. The calculation
yields the following result [31]:

ED (ρ,φ,z) = 2π
λB

E0
w0
w (z′)

√
πb

8a 3
2
e−ikzei

kDρ2
2z e−ikz

′+iζ(z′)

× eiφe−
b2
8a

[
I0

(
b2

8a

)
− I1

(
b2

8a

)]
(3.4)

where Im is the modified Bessel function of the first kind an m-th order and

a = 1
w2 (z′) + ik

2R (z′)− iAk
2B

(3.5)

b = kρ

B
. (3.6)

The doughnut beam is still very similar to the incident Gaussian beam in the tails but
presents a dip down to zero intensity at the center. The doughnut beam and the Gaussian
beam are compared in Figure 3.3.

The doughnut beam is blue detuned with respect to the D2 line and even further with
respect to the D1 line of Cs; atoms are pushed towards positions with low intensity. The
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Figure 3.3: Beam profile of a Gaussian beam (red) and the corresponding doughnut beam
(blue). The Gaussian beam has a beam waist of w0 = 4mm and the SPP is placed at the
focus. The beam profile is shown for a position of 100mm after the SPP. The setup with
the SPP is shown in Figure 3.2.

dipole potential for this situation with big detuning ∆ simplifies to [17]:

Udip (ρ,φ,z) = 3πc2

2ω3
D2

Γ

∆
I (ρ,φ,z) , (3.7)

where only the D2 line with the resonance frequency ωD2 and linewidth Γ is considered,
while the D1 is neglected because it is far off resonant. The intensity distribution

ID (ρ,φ,z) = cε0
2 |ED (ρ,φ,z)|2 (3.8)

of the doughnut beam can be approximated to second order in ρ around the position ρ = 0
[31]. The dipole potential in this harmonic approximation reads:

Udip (ρ,φ,z) = 3πc2

2ω3
D2

Γ

∆
E2

0
πk4w6

0
64B4w2 (z′) |a|3

ρ2 +O
(
ρ4
)
. (3.9)

This results in a trap frequency of:

ω⊥ =
√

3πPΓ
m∆ |a|3

ck2w2
0

16B2w (z′) . (3.10)
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This denotes that the radial trap frequency scales with the power as ω⊥ ∝
√
P and with

the beam waist radius of the Gaussian beam as ω⊥ ∝ w2
0. The behavior of this formula

depending on the different parameters is discussed in more detail in [31].

3.2.1 Laser system
An optical trap operating close to a resonance is deeper and has higher trapping frequencies
but at the same time the scattering rate increases faster when approaching a resonance. To
avoid the need of a high power laser system, the doughnut laser beam is tuned relatively
close to the D2 line of the Cs atoms on the blue side of the transition. For my purpose
I set up an external cavity diode laser (ECDL) in combination with a tapered amplifier
(TA). This system is referred to as master oscillator power amplifier (MOPA). The output
power of the TA depends on the current running through the TA and also on the power
seeded into the TA. The measurements of these dependencies are displayed in Figure 3.4.
The output power does not show a saturation effect and it seems that higher output power
could be reached by either increasing the amount of seeded power or the current through
the TA. The manufacturer specifies the maximum output power with 1.2W. At higher
light intensity the output surface of the TA could be damaged.
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Figure 3.4: Left: Output power of the TA versus current with linear fit at 39mW input
power; Right: Output power of the TA versus input laser power at a current of1500mA,
both indicate that with a higher current or higher input laser power more output power
could be reached.

3.2.2 Spacial and spectral filtering
The laser mode leaving the TA has a strong astigmatism as it diverges differently in the
two axis. This is compensated using a collimation system composed of three lenses: a
aspherical lens, a convex lens and a cylindrical lens. The aspherical lens has a focal length
of 3.2mm and numerical aperture of 0.55. This lens is placed directly after the TA chip
to cancel the strongest divergence and to collect most of the light. The normal convex
lens and the cylindrical lens are used to collimate both axes and to match the size of the
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beam in both axes. This is illustrated in Figure 3.5. The final spacial mode cleaning is
done by fiber coupling the light. At the fiber approximately 50% of the light is lost. This
is due to not perfect fiber coupling and due to non Gaussian mode of the TA. The mode
leaving the fiber can be assumed to have perfect Gaussian shape.

Figure 3.5: Tapered amplifier collimation, not to scale: Red indicates the fast axis and
blue the slow axis. The lenses are chosen such that beam size is equal for both axes and is
optimized for the fiber coupler.

Figure 3.6: Spectrum of the tapered amplifier: The vertical red line indicated the position
of the cesium D2-line.

Figure 3.6 shows the spectrum of the light after the TA. You can see the amplified light
and a broad pedestal. This pedestal is due to spontaneous emission inside the TA. The
TA does not have a resonator which would efficiently reduce the spontaneous emitted light.
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The broad pedestal could induce transitions at resonant frequencies of Cs atoms. This
would heat the atoms and should be filtered out. For this reason a heated Cs cell will be
placed between the TA and the optical fiber. From the measurement in Figure 3.6 the
pedestal is about 105-times weaker than the amplified light. The integrated relative amount
of light resonant with the cesium D2-line using the natural linewidth is: 3 · 10−7 · Ptotal. It
is important to know the scattering rate of this light compared to the scattering rate of
the resonant rate to decide if filtering is necessary.
For this, atoms are modeled as a classical ensemble in thermal equilibrium at a temperature
of T = 10 µK. Only the two radial directions have to be considered. The motion in axial
direction leads to Doppler broadening of the absorption line. The two radial axes are
decoupled and the atoms have the same temperature in each direction. The probability
P (E) to find a atom with energy E follows the Boltzmann distribution:

PB (E) = 1
kBT

e
− E
kBT . (3.11)

The classical probability density function for a atom with energy E in a potential U (x) =
mΩ2x2/2 is:

PE (x) =


1

π

√
2E
mΩ2−x2

for |x| ≥
√

2E
mΩ2

0 else.

(3.12)

The spatial density function for a thermal average is the integral of PE (x) over all energies
E weighted with the corresponding probability [32]:

Pth (x) =
∞∫
0

PE (x)PB (E) dE (3.13)

=
√

mΩ2

2πkBT
e−mΩ

2x2/(2kBT ) (3.14)

This density distribution is assumed along both radial direction. The intensity I to which a
atom inside the doughnut beam is exposed to is given by the overlap of the radial intensity
distribution of the doughnut beam ID (r) and the density distribution:

I = 2π
∞∫
0

rID (r) mΩ2

2πkBT
e−mΩ

2r2/(2kBT )dr (3.15)

Knowing the average light intensity the scattering rate can be calculated for the resonant



20 3 Doughnut shaped optical dipole trap

light with [33]:

RSC =
(
Γ

2

)
I/Isat

1 + I/Isat
(3.16)

where Γ is the natural linewidth and Isat is the saturation intensity. For the peak with
larger detuning ∆ the following approximation is valid [17]:

RSC = 3πc2

2h̄ω3
D2

Γ

∆
I. (3.17)

Using the doughnut beam parameters described in Section 3.3 results in a scattering rate
of 345Hz for the peak and 23 kHz for the resonant light. This indicates that spectral
filtering of the resonant light is needed.

3.2.3 Integration into the current setup
The doughnut beam has to be overlapped with the existing dipole trap. This could be
done with polarizing or non-polarizing beamsplitter cubes but either solution limits the
polarization or bisects the available power, respectively. I rather decided to combine the
two laser beams with a dichroic mirror reflecting the doughnut beam while transmitting
the dipole trap beam. The specification of the mirror can be found in Table 3.2.
This configuration reduces losses and keeps the free choice of polarization compared to

wavelength λ measurement s-polarization p-polarization
850 nm Reflectivity >97% >65%
866 nm Transmittance >60% >80%

Table 3.2: Specification of the dichroic mirror provided by the LASER COMPONENTS
GmbH

the options with a beamspitter. The doughnut beam can be overlapped with the dipole
trap on either side of the glass cell as the telescopes on both sides of the glass cell are
comparable. Placing the dichroic mirror on the same side as the fiber coupler (on the
right side of the glass cell in Figure 3.7) of the dipole trap has the advantage that all
polarization disturbances of the dichroic mirror can be filtered and precompensated by the
existing polarizer and waveplates. However this configuration has the drawback that the
light will be back reflected just as the beam for the dipole trap. The atoms will be pushed
to the nodes of the formed blue detuned standing wave. This effect could be suppressed if
the two laser beams are only overlapped at the atoms and misaligned for longer distances.
The dichroic mirror could also be placed on the left side of the glass cell. With this
configuration one eliminates the standing wave for the doughnut beam. However it affects
the polarization of the dipole trap. Right now the relative polarization extinction of the
back reflected dipole beam is in the order of 10−4 and can be rotated in a controllable
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Figure 3.7: The doughnut beam can be integrated from both sides of the glass cell with
a dichroic mirror (geen): From the right side the doughnut beam forms a standing wave
and from the left side the polarization of the retro-reflected beam is affected as discussed in
Section 3.2.3.

manner to any desired linear polarization. This is needed for the state dependent lattice.
The birefringent dichroic mirror can be compensated for only one given polarization of
the dipole trap beam. If a voltage is applied to the EOM to rotate the polarization
of the back reflection of the dipole trap beam, the dichroic mirror is not compensated
anymore and the relative extinction ratio increases to 10−1. The amount of power back
reflected to the atoms would also depend on the polarization with this configuration as
the transmittance of the dichroic mirror is polarization dependent. This would prevent
the current experiments because they rely on a good state dependent transport which is
very sensitive to polarization inhomogeneities.
The dichroic mirror could also be placed on the left side of the glass cell. With this
configuration one eliminates the standing wave for the doughnut beam. However it affects
the polarization of the dipole trap. Right now the relative polarization extinction of the
back reflected dipole beam is in the order of 10−4 and can be rotated in a controllable
manner to any desired linear polarization. This is needed for the state dependent lattice.
The birefringent dichroic mirror can be compensated for only one given polarization of
the dipole trap beam. If a voltage is applied to the EOM to rotate the polarization
of the back reflection of the dipole trap beam, the dichroic mirror is not compensated
anymore and the relative extinction ratio increases to 10−1. The amount of power back
reflected to the atoms would also depend on the polarization with this configuration as
the transmittance of the dichroic mirror is polarization dependent. This would prevent
the current experiments because they rely on a good state dependent transport which is
very sensitive to polarization inhomogeneities.

The advantages of these two positions of the dichroic mirror can be combined if a so
called two arm setup is used. The dipole trap of the current setup is formed by a single
retro-reflected beam. This configuration is also called single arm setup. For the two arm
setup the dipole trap laser beam is split and sent to the atoms from two independent
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directions. The two counter propagating beams are overlapped and form again a standing
wave. With this configuration the doughnut beam cannot form a standing wave and the
polarization is also not affected with the dichroic mirror on the right side. This setup
needs twice as much power in the laser beam of the dipole trap to reach the same trapping
frequency which is not a limiting requirement with the present setup. The EOM has a
limiting retardation capability and must be operated in double pass. This can be overcome
with a new EOM. A recently bought EOM has a sufficiently higher retardation capability
and the polarization purity seems to be in the same order of magnitude. Measurements
with this new EOM, with longer crystals, inside the current setup have proven that the
new EOM can work as well as the former one. A schematic illustration illustrates this
setup in Figure 3.8.

Figure 3.8: Two arm optical lattice: Instead of using a retro-reflected beam the lattice is
formed by two counterpropagating lasers. This avoids the problem of a standing wave of
the doughnut beam.

3.3 Trap parameters
The telescopes before and after the glass cell have been optimized for the optical lattice
and I intend to use them for the doughnut beam as well. The doughnut beam should also
be collimated at the position of the telescope because the focus of the doughnut beam
should be at the same position as the focus of the dipole trap beam. The doughnut beam
has two free parameters which can be used to tune the trapping frequencies: intensity
and diameter at the focusing telescope. Equation 3.4 describes the propagation of the
doughnut beam for any optical system described by ABCD matrices. This is used to
calculate the expected shape of the beam to check for any possible clipping as well as
to calculate the resulting trap parameters. The calculations presented here are done for
the telescope on the right side of the glass cell (see Figure 3.7). The calculation for the
other direction would provide similar results. The light intensity used in my calculation is
250mW. This was the maximum which could be reached with the available laser source.
The highest trapping frequency can be attained for the largest initial beam waist. This
results in the shortest Rayleigh length. A initial beam waist of 4mm is a good compromise.
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It corresponds to a Raleigh length of 345 µm, 3 times the maximum loading range of the
atoms, and furthermore the existing lenses do not have to be changed. The trapping
frequency in this configuration is 21 kHz. The scattering rate as calculated in Section 3.2.2
is 345Hz. Higher scattering rates can not be tolerated because it would limit the time of
each experimental sequence. Higher trapping frequencies and at the same time lower or
equal scattering rates can be accomplished with a larger detuning. This requires a new
SPP and in addition a new laser source. The SPP produces a perfect doughnut beam only
for a single wave length and the current laser source is limited to a small range close to
the D2 line of Cs.
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Figure 3.9: The propagation of the doughnut beam is calculated using ABCD matrices.
The red line indicates the radial distance of intensity maximum and the blue line indicates
the beam waist of the corresponding Gaussian beam without the SPP. The solid vertical
black line indicate the positions of the lenses. The beam is not clipped at any lens as the
first lens is 25mm and the others are 50mm in diameter. For this configuration radial
trapping frequencies of 21 kHz are calculated.

3.4 First results
I will conclude this chapter by presenting first results of atoms confined in the blue detuned
doughnut beam. For first measurements the dichroic mirror is placed on the right side as
described in Section 3.2.3 but without the SPP inside the beam path. A clearly visible
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beat note between the two standing waves of the dipole trap laser and the doughnut beam
laser can be produced. Overlap between both lasers can be guaranteed with a pinhole
right after the dichroic mirror and a second pinhole right before the mirror for the back
reflection. Lattice sites are empty which would be occupied without the extra blue detuned
laser, because the blue detuned laser light pushes the atoms to lower intensities while
the red detuned light pulls the atoms to higher intensities. The dipole trap laser has a
wavelength of 866 nm and the doughnut beam laser a wavelength of 849.9 nm. This results
in a periodicity of 2π

46 µm for this beat structure. The measurement, shown in Figure 3.10,
agrees with this calculation.
The SPP was inserted into the setup, even so the interference effect was visible, which

Figure 3.10: Beat note between both dipole trap lasers: The upper picture shows the fluo-
rescence picture of the atoms inside the dipole trap. The lower graph shows the histogram
of the intensity and a fit to this data. The periodicity of the pattern is 2π

47 µm which agrees
to the expected value of 2π

46 µm .

inhibits a homogeneous increase of the radial trapping frequency. However no effect
on atoms trapped inside the optical lattice was visible. It was not possible to find a
configuration which suppressed the back reflection and which at the same time ensured
that the focuses of the doughnut beam and dipole trap were overlapped.
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Although the other configuration with the dichroic mirror on the left side does not allow
state dependent transport it was used to demonstrate the increased confinement due to
the doughnut beam avoiding a standing wave. The overlap between the doughnut beam
and the optical lattice is optimized by coupling the doughnut beam to the fiber of the
dipole trap. The coupling efficiency is low because the beam profile is non Gaussian.
I trapped very few atoms inside the dipole trap once with and once without the doughnut
beam such that a single atom could be isolated. Several pictures with a single atom at the
same lattice position were taken and fitted with a Gaussian distribution in the radial and
the axial direction as well. These images were overlapped with each other after shifting
the maximum to the same position. This increased statistics and resolution. The final
data is shown in Figure 3.11. The extension of the atoms in the radial direction was
decreased by approximately 30% while the extension in axial direction was not affected
significantly. The resolution along this axis is limited by the resolution of the imaging
system. If only the trapping frequency would have changed the decreased size in radial
direction corresponds to an increase in trapping frequency of almost 2. However there
are many parameters that can have changed which make it difficult to predict the actual
trapping frequency. It was not expected to reach trapping frequencies in the order of
20 kHz as the beam size was not increased with a telescope, reducing the highest possible
trapping frequency by a factor of 4. Further the collimation was optimized such that the
coupling efficiency to the fiber for the standing wave is highest without the SPP. The
advantage of this configuration is that the overlap can be measured quantitative without
any extra components, but is not the alignment with highest trapping frequency.

Figure 3.11: Fluorescence Light distribution of the trapped atoms recorded on the CCD
camera are fitted with a normal distribution and the corresponding variances σ are written
down. Left: The variances in axial direction is limited by the resolution of the imaging
system, no change was expected here. Right: The variance in radial direction is reduced by
more than 20% with the doughnut beam turned on. This can be attributed to increased
trapping frequencies in radial direction.
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As this experiment works with single atoms, measurements have to be repeated several
times to retrieve the quantum mechanical information in the system. Several observable
quantities depend on the motional state of the atoms; thermal motion results in a
degradation of the signal or even in the complete impossibility to measure the physical
effect, as in the case of cold collisions. In this chapter I will address this problem by
cooling the atoms to the motional ground-state in radial direction.

4.1 Sideband transitions in an optical lattice
The Cs atoms are trapped inside a deep optical trap as described in Section 3.1, inducing
quantized vibrational levels. Transitions between two states of the atom which also change
the vibrational states are called sideband transitions. These transitions are illustrated for
the two relevant states of cesium in Figure 4.1. Transitions which lower the vibrational
quantum number belong to the red sidebands and those which increase the vibrational
quantum number to the blue sidebands, when the transitions start at the energetic higher
state.

Figure 4.1: Energy level scheme for the two states used as a qubit considering the hy-
perfine states (internal) and the motional states (external). With a narrow driving field
selected sideband transitions with ∆n = +1(red), 0 (green), −1 (blue) or higher can be
addressed, starting from the upper level.

27
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The energy of the photon driving the transition between the atom in the initial state
|n,α〉 and the final state |n′,α′〉 has to be equal to the energy difference between the
two states. Here n and n′ are the vibrational quantum numbers and α and α′ represent
all the other quantum numbers. In addition to the energy constraint the probability
of the transitions depends on the transferred momentum ∆k by the photon along the
quantization axis of the harmonic oscillator. The transition probability reduced to the
vibrational state is given by:

〈n| e−i∆kx |n′〉 = F, (4.1)

which defines the Franck-Condon factor F . One can see directly that sideband transitions
are forbidden if ∆k = 0 as different vibrational states of a harmonic oscillator are
orthogonal to each other. The Franck-Condon factor can be further calculated if the trap
is approximated to be harmonic. The calculation of F can be simplified by introducing
"ladder operators" used by Paul Dirac:

〈n| e−i∆kx |m〉 = 〈n| e
−i∆k

√
h̄

2mCsω
(a+a†)

|n′〉 (4.2)

= 〈n| e−iη(a+a†) |n′〉 . (4.3)

Here the Lamb-Dicke parameter η with

η = ∆k

√
h̄

2mCsω
(4.4)

is introduced. Following the calculations of [34] leads to the analytic result of the Franck-
Condon factor F (η,n,n′):

F
(
n,n′,η

)
= e−

1
2 (∆k)2

√
n<!

(n>)! (iη)∆n L∆nn<
(
η2
)
, (4.5)

where Lαn (x) are the generalized Laguerre polynomials. n< is the minimum of the initial
and final vibrational state and n> the maximum and ∆n = |n− n′|. The ratio between
coupling to a higher band and coupling to a lower band for η � 1 is given by:

F (n,n+ 1,η)
F (n,n− 1,η) =

√
n+ 1
n

. (4.6)

It implies that the transition probability of increasing the vibrational state is higher than
lowering the vibrational state. It is important to resolve individual sidebands because if
the sidebands are not resolved this will in average lead to heating.
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4.1.1 Microwave-induced sidebands
The two hyperfine ground-states are used in the experiment because of their long lifetime.
The transition frequency between those is around 9.192GHz where microwave generators
with very narrow linewidth are commercially available. However, the momentum of a
microwave photon compared to optical photons is five orders of magnitude lower. The
transfered momentum ∆k is too small to drive sideband transitions directly. This problem
can be circumvented by shifting the position of the lattice site for the different state and
thus the wave functions with respect to each other. The shift of the wave function |ψ (x)〉
of one state by ∆x can be described by the shift operator T∆x:

T∆x |ψ (x)〉 = e
−i∆xp
h̄ |ψ (x−∆x)〉 . (4.7)

This is similar to transferring momentum and will again permit coupling different side
band transitions. These sideband transitions in axial direction can be driven with high
fidelity [27].
The atoms can be cooled in the axial direction to the motional ground-state with these
microwave induced sideband transitions. For this purpose the atoms are prepared in
|↑ ,n〉 with n representing the quantum number of the vibrational level in the axial
direction. The microwave field is tuned to the first blue sideband of the transition
|↑ ,n〉 ↔ |↓ ,n− 1〉, lowering the vibrational level by one as the initial state is energetic
higher. A σ+ polarized repumper laser coupling |F = 3〉 ↔ |F ′ = 4〉 pumps the atom to
the state |F ′ = 4,m = 4,n− 1〉. This state can decay to the state |↑ ,n− 1〉 by spontaneous
emission and the cycle starts again. It is important that the Lamb-Dicke parameter for
the repumper laser light ηrp is small and thus the absorption and spontaneous emission is
unlikely to change the vibrational quantum number. A third laser is used on the transition
|F = 4〉 ↔ |F ′ = 4〉. This brings the atom which decay spontaneously to |F = 4,m = 3〉
back to the cooling cycle. During one cycle the energy ∆E− = h̄ω is removed and due
to the photon recoil of the repumper and spontaneous emission at maximum the energy
∆E+ = 2

h̄2k2
D2

2mCs is added. For cooling this energy balance for a complete cycle has to be
negative. This can be written as:

1 >∆E+
∆E−

1 >2
h̄2k2

D2

2mCsωh̄

1 >2η2
rp

This also results in the requirement that the Lamb-Dicke parameter for the resonant light
ηrp has to be smaller than 1. The cycle is shown in Figure 4.2.
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Figure 4.2: Microwave sideband cooling scheme: The cooling cycle starts in the |↑〉 state.
The microwave (red) transfers atoms from |↑ ,n〉 to |↓ ,n− 1〉 which is possible as the lat-
tices for the two different states are shifted with respect to each other. The blue sideband is
used to reduce the vibrational quantum number by 1 as the cooling start from the energetic
higher state. The repumper laser (blue) pumps the atom up to the |F ′ = 4,n− 1〉 state.
From there it can decay spontaneous back to |↑ ,n− 1〉 (green). The second repumper laser
(blue) pumps the atoms back to the cooling cycle which decay to the |F = 4,m = 3〉-state.

4.1.2 Two photon induced sidebands
Stimulated Raman transitions use two photons as described in Section 4.2. The atoms
get the recoil of an absorbed laser photon of kR and of the emitted laser photon of kS .
After each scattering event the expectation value for the atomic momentum has changed
by h̄∆k, where ∆k = kR − kS is the difference between the wave vectors of the absorbed
and emitted photon. The momentum of the two photons is nearly the same |kR| = |kS |
and hence the maximum transferred momentum can be approximated by 2 |kR| = 2 |kS |
in the case of opposing beams. For the cooling scheme which I propose in Section 4.3,
the two Raman lasers are perpendicular to each other. The resulting momentum vector
has an angle of 45° to the radial plane, in which I want to cool the atoms. This leads to
an effective ∆k−1 of 852nm

2π and a Lamb-Dicke parameter ηRL = 0.32. Figure 4.3 shows
the Franck-Condon factor vesus the Lamb-Dicke parameter for different initial states and
fixed ∆n = 1.
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Figure 4.3: Franck-Condon factors from n = 1 to n = 10, ∆n = 1 for Lamb-Dicke
parameter between 0 and 1.

4.2 Theory of stimulated Raman transitions
Cooling has not been realized in the radial directions yet. Shifting the lattices associated
to the two hyperfine states with respect to each other cannot be used in this case and
sideband transitions cannot be driven with microwaves as described in Section 4.1. I will
show that Raman transitions offer a solution to this problem.

4.2.1 Raman transitions in an ideal three level system
In the following I will start with a theoretical introduction to Raman transitions in an
ideal three level system which is shown in Figure 4.4. The aim of the Raman transitions is
to couple the two state |↓〉 and |↑〉 via an auxiliary state |3〉, respectively. Here ∆ denotes
the detuning of the light fields coupling |↓〉 and |↑〉 to state |3〉 which is also called single
photon detuning. ΩS and ΩP denote the Rabi frequencies for corresponding transition. δ
is called two photon detuning and describes the detuning of the difference between the
light fields ΩP and ΩS from the transition between |↓〉 and |↑〉.
The Raman process can be described as follows:
The system initially in the state |↓〉 absorbs a photon out of the pump laser field. Thus
the system is brought into a virtual intermediate state detuned by ∆ from state |3〉. By
stimulated emission into the Stokes laser field the system passes over to state |↑〉. This is
a coherent process and works in either directions. It will lead to oscillations between state
|↓〉 and state |↑〉 and if the detuning ∆ is sufficiently large, the probability to find the
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F‘ 

Figure 4.4: Simplified three level system.

system in the state |3〉 can be considered negligible; in this approximation the three level
system reduces to an effective two level system. The characteristic variable describing this
system is the Raman Rabi frequency ΩR given by [35]:

ΩR = ΩS ·ΩP
2∆ (4.8)

if the two photon detuning is zero.

4.2.2 Magnetic substates of the hyperfine structure
The previous description assumed a pure three level system, I will now go into more detail
and explain the effect of the different hyperfine states. The Rabi frequencies ΩP and ΩS ,
as used above, depend on the precise final and initial state as well as the polarization of
the light field. The transitions have to fulfill the selection rules and hence ΩP and ΩS
have to be replaced by a state dependent Rabi frequency:

ΩF,m→F ′,m′ = 〈F
′,m′| d̂ · Ê |F,m〉

h̄
. (4.9)

Quantum mechanically several trajectories involving different intermediate excited states
are possible and they all have to be accounted for by summing their probability amplitudes.
The matrix element necessary to calculate the Rabi frequency can be reduced to algebraic
functions and a single constant using the Wigner-Eckard theorem. The prefactors are
closely related to Clebsch-Gordan coefficients and can be written using 3-j and 6-j symbols
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[33].

〈F ′,m′| erq · Ê |F,m〉 = (−1)2F ′+J+IC+m
√

(2F ′ + 1) (2F + 1) (2J + 1) (4.10)

·
(

1 F ′ F
−q m′ m′

)

The remaining dipole matrix element 〈J ′ = 3/2| |erq| |J = 1/2〉 generalized for the D2
transition is related to the lifetime and the measured value is (3.8014± 0.0068) · 10−29 Cm
[33]. This formula guaranties also that selection rules for single transitions are fulfilled.
The transitions with {∆m = 0,∆m = +1,∆m = −1} will be also called

{
π,σ+,σ−

}
tran-

sitions. The polarization of the light will determine which of these transitions will be
driven.

4.3 Cooling scheme
Cooling along the axial direction has been realized using microwave radiation as discussed
in Section 4.1. To cool atoms in the radial direction we need to have a ∆k between the
Rabi and Stokes laser beams which has a component along the radial direction. Having
just one ∆k would not be enough because this would only cool along the axis introduced
by the vector. Hence I plan to use two Stokes beams and one pump beam to have two
different ∆k pointing to different directions in the radial plane.

Existing optics and coils for the magnetic fields limit the optical access to the atoms.
Thus the decision was made to overlap the Raman laser beams with the laser beams for
the MOT. This also forces the polarization of the beams to be circular. See Figure 4.5
for a schematic illustration. For the Raman transitions the polarization of the light in
the reference frame defined by the quantization axis is relevant. The laser beams for the
MOT define my initial coordinate system, with the beams along the x,y and z-axes (see
Figure 4.5). This coordinate system uses the three unprimed unit vectors ex,ey,ez. The
coordinate system defined by the quantization axis is rotated by 45° around the z-axis
with respect to the previous. The unit vectors of the coordinate system are primed and
are given by e′x = ex+ey√

2 , e′y = ex−ey√
2 , e′z = ez. The pump light is entering the setup along

the z-axis (ez) and the stokes light along the x- (ex) and y-axis (ey) and are all circular
polarized. The normalized light fields in the coordinate system defined by the quantization
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Figure 4.5: Optical access for Raman laser beams: Taking care of the right polarization
the Raman laser beams are superimposed with the MOT beams on a polarizing beam
splitter. This illustration shows two of the three MOT beams on which the stokes beams
will be coupled to. The direction of the beams defines the x and y-axis as indicated by the
arrows. The pump beam will be coupled in the same way to the third MOT beam which
is perpendicular to the drawing surface. It defines the direction of the z-axis. The origin of
the coordinate system is at the crossing point of all three MOT beams.
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The final coordinate system is chosen because the electric field oscillating along e′x drives
π transitions. The electric field oscillating along 1√

2

(
e′y + ie′z

)
( 1√

2

(
e′y − ie′z

)
) drives σ+

(σ−) transitions, respectively. The amplitude of the Stokes light driving π is always the
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same, but the component driving σ+ or σ− depends on the axis and the polarization of the
Stokes light. For the cooling scheme proposed here, the component driving σ− transitions
is not needed but the components driving σ+ and π transitions. The MOT beams coming
from different directions have different circular polarizations and thus one beam of the
Stokes light has to enter from the side of the fiber coupler and the other from the side of
the back reflecting mirror. Otherwise the Rabi frequency will be reduced by a factor of
approximately 3.
There are two transitions involving different intermediate state which are not forbidden
and have to be considered: |↑〉 ↔ |F ′ = 4,m′ = 4〉 ↔ |↓〉 and |↑〉 ↔ |F ′ = 4,m′ = 3〉 ↔ |↓〉.
The first is driven by a π transition of the Stokes light and σ+ transition of the pump
light. For the second transition it is the other way around. These two paths interfere
constructively. The effective Rabi frequency for no two photon detuning and an efficiency
of ηOPLL for the phase lock between both lasers (see Chapter 4) is given by:

Ωeff = ηOPLL ·
√

7
6
ES · EP 〈J = 3/2| |er| |J = 1/2〉

h̄ · 2 ·∆ · 2π . (4.11)

The complete cooling cycle is displayed in Figure 4.6. The two pairs of Raman lasers
are tuned to the first blue sideband and pump the atom from |↑ ,n〉 to |↓ ,n− 1〉 and at
the same time lower the vibrational state by one. The blue sideband is used to reduce
the vibrational quantum number by 1 as the cooling start from the energetic higher state.
The repumper laser pumps the atom up to the |F ′ = 4,n− 1〉 state. From there it can
decay spontaneous back to |↑ ,n− 1〉. The probability that the spontaneous emission or
repumper laser changes the vibrational state is suppressed in the Lamb-Dicke regime. This
requires that the energy difference between two vibrational states ∆E is higher than the
recoil energy (Erec = h̄ ·2π ·2 kHz) resulting in a Lamb-Dicke parameter η =

√
∆E
Erec

smaller
than 1. The state |↑ ,n = 0〉 is a dark state because it does not couple to the Raman laser
as well as to the repumper. Thus all atoms will stay in this state and the cooling cycle
automatically stops assuming that there are no losses.
The Rabi frequency of the repumper beam should be twice the Raman Rabi frequency
for the sideband transition. If the scattering rate is higher the atoms would always stay
in their initial state due to the quantum Zeno effect and if the rate is lower the cooling
process will last longer.
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Figure 4.6: Resolved Raman sideband cooling scheme: The cooling cycle starts in the
|↑〉 state. The Raman laser beams (red) transfer atoms from |↑ ,n〉 to |↓ ,n− 1〉 via two
intermediate states. These two paths interfere constructively. The blue sideband is used to
reduce the vibrational quantum number by 1 as the cooling start from the energetic higher
state. The repumper laser (blue) pumps the atom up to the |F ′ = 4,n− 1〉 state. From
there it can decay spontaneous back to |↑ ,n− 1〉 (green). The second repumper laser (blue)
pumps the atoms back to the cooling cycle which decay to the |F = 4,mF = 3〉 state.

4.4 Optical phase lock loop
To drive coherent Raman transitions two, phase coherent light fields are needed. This can
be accomplished with an optical phase locked loop (OPLL). In general, a phase locked
loop compares the phase between two oscillators and controls the phase of one of these
oscillators (slave) such that the oscillator has a fixed phase relation to the other one
(master). The frequencies and electric field amplitudes of the two lasers will be labels with
m and s, respectively. For an optical phase locked loop the two oscillators are lasers. The
optical phase of the slave laser will be stabilized to a reference phase given by the master
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laser, which is free running in this setup. The two lasers are focused and superimposed
on a fast photo diode. The beam size is optimized for the size of the photo diode. The
beat note between both lasers is measure and used to adjust the phase difference between
both lasers. With both beams having the same polarization the photo diode detects the
following signal:

IPD ∝ |Em cos (ωmt+ φm) + Es cos (ωst+ φs)|2 (4.12)
= |Em|2 cos2 (ωmt+ φm) + |Es|2 cos2 (ωst+ φs)

+ 2EmEs cos (ωmt+ φm) cos (ωst+ φs)
=EmEs cos ((ωm − ωs) t+ φm − φs)

+ EmEs cos ((ωm + ωs) t+ φm + φs)
+ |Em|2 cos2 (ωmt+ φm) + |Es|2 cos2 (ωst+ φs) .

With the right experimental setup the term proportional to cos ((ωm − ωs) t+ φm − φs)
can be selected. The signal at this position will be called beat signal and is given by:

B(t) = A · cos ((ωm − ωs) t+ φm − φs) . (4.13)

An error signal proportional the phase difference φm − φs can be generated by mixing
this signal with a reference frequency of a local oscillator (LO). This generates a term
proportional to the sum of the frequencies and a term proportional to the difference of the
frequencies. After suppression of the term proportional to the sum frequency, by low-pass
filtering, the error signal is given as:

Error(t) ∝ cos ((ωm − ωs − ωLO) t+ φm − φs − φlo) . (4.14)

This signal simplifies for the case that the frequency of the LO is exactly the same as the
frequency difference between the two lasers. Additionally one of the three phases, here the
phase of the LO, can be fixed without loss of generality. If φlo = π

2 is chosen the error
signal becomes:

Error(t) ∝ sin (φm − φs) . (4.15)

In a first order expansion this signal is linear in the phase difference between both lasers.
The error signal is fed back to the slave laser to close the servo loop. This expansion is
valid to describe the system, as the phase difference in a closed PLL is supposed to be
zero.
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Figure 4.7: Setup of the optical phase lock loop: Left half: The two external cavity diode
lasers (ECDL) are each protected by an optical isolator. These two laser, labeled master
and slave, are overlapped on a beam splitter. The lasers are monitored by a cavity. The
beat note between both lasers is measured by a ultra fast photo diode. Right half: The
photo diode is connected to a bias-tee supplying the optimal bias voltage. The RF signal
out of the bias-tee is amplified and thereafter mixed down to 50MHz with the 9.15GHz
signal provided by a PLDRO. The PFD compares this signal to the LO. The LO and the
PLDRO are locked to a 10MHz reference clock. The loop is closed with a PID controller
connected to the piezoelectric ceramic acting on the grating of the slave laser and a lead-lag
filter connected to the current input of the slave laser to shape the frequency response of
the lock.

4.5 Experimental setup
In the actual setup the the realization of the OPLL is more advanced and contains more
components than the basic OPLL discussed above (see Figure 4.7). The beat signal
is mixed with a LO. The local oscillator will be labeled LO1 and it is realized by a
phase-locked dielectric resonator oscillator (PLDRO) with a frequency of 9.15GHz in
the experiment. It is phase-locked to a rubidium reference clock by a 10 MHz signal. A
term with the sum of the frequencies and a term with the difference of the frequencies is
generated. The term with the sum of the frequencies is filtered out by the finite bandwidth
of the electronics. The resulting signal oscillates at a frequency around 50MHz rather
than 9.2GHz and will be called mixed down beat signal.
Instead of directly mixing this signal with a second LO, a phase frequency discriminator
(PFD) compares the mixed down signal to the reference signal from LO. One advantage of
a dedicated PFD chip is that the error signal is proportional to the phase difference and
not only in first order approximation. More importantly, advanced chips offer also the
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ability to provide an error signal contingent on the frequency difference if the two input
frequencies vary so much that the corresponding phase difference increases rapidly.

The feedback to the slave laser is realized via two paths. The slow feedback loop
counteracts fluctuations in the bandwidth of 1 kHz covering an amplitude of a few hundred
megahertz. This is realized with a piezoelectric ceramic controlling the grating of the
external cavity diode laser via a PID servo loop. Fluctuations at higher bandwidth up to
3MHz and smaller amplitudes less than 1MHz are suppressed by modulation of the laser
diode current. This fast feedback loop contains a lead-lag filter to shape the frequency
characteristics of the error signal and was designed by K. Schörner. It ensures that the
gain is small 1 for frequencies where the total phase shift is higher than 120° [36].
This OPLL locks the frequency difference between the master and slave laser to the

sum of the PLDRO and LO frequencies (ωPLDRO, ωLO). The frequency ωPLDRO + ωLO
corresponds to the frequency ωLO in Equation 4.14. The frequency of the PLDRO is
fixed, but the frequency of the LO can be adjusted such that the frequency difference
between both lasers can be tuned to meet the required frequency for the Raman transitions
described in Section 4.2.
I list and explain here the main components used to realize an OPLL as shown in Figure
4.7. The heart of the electronic setup, the phase frequency detector, is explained in Section
4.5.1 in more detail.

Diode laser The two diode lasers are temperature stabilized external cavity diode lasers.
These diode lasers are self made and the external cavity is terminated on one side by the
diode itself and on the other side by a grating in Littrow configuration as described in
[37]. The output wavelength can be tuned over roughly 2 nm (with mode hops) around
the a center wavelength of 852 nm. This tuning can be realized by manually tilting the
grating, changing the temperature of the whole diode laser and changing the current. To
achieve tuning over a wide range during operation the grating can be also tilted using
a piezoelectric crystal. This can tune the laser mode-hop free over a several hundred
megahertz at a bandwidth of less than 1 kHz. Additionally the current of the laser can be
modulated to achieve a tuning bandwidth of few megahertz over a smaller tuning range of
up to 1MHz.

Fast photo diode A ultra-fast photo diode is used to measure the beat note between both
lasers at a frequency around 9.2GHz. This photo diode is a Hamamatsu G4176-03. It has
a typical sensitivity of 0.3 A

W at 850 nm and an effective sensitive area of 0.2mm× 0.2mm.
The responds time of the photo diode is 30 ps. A Mini-Circuits® ZX85-12G+ bias tee is
used to provide the optimal bias voltage. The photo diode, the power supply of the photo
diode and the further electronics are connected to the combined DC+RF, the individual
DC and individual RF connector of the bias tee, respectively. This guarantees that the
signal after the photo diode contains only the beat signal and no DC offset.
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Amplifier The signal after the bias tee is too weak to be used by the phase frequency
discriminator and thus two amplifiers are used. The first amplifier is the low noise
amplifier Kuhne Electronics KU LNA 922A which has a gain of 25 dB at 9.2GHz and
just a bandwidth of 20MHz. This acts directly as a band pass filter to reduce noise. The
second amplifier is a Miteq AFS5-08001200-40-10P-5 which has a gain of 32 dB between 8
and 12GHz.

Phase-locked dielectric resonator oscillator The Phase-Locked Dielectric Resonator
Oscillator (PLDRO) serves to mix down the beat note. For this experiment a PLDRO
manufactured by Resotech Inc. is used. It has a frequency of 9.15GHz and is phase-locked
to a reference frequency of 10MHz from a rubidium reference clock. A spectrum analyzer
phase-locked to the same reference shows a monochromatic signal with the resolution
bandwidth of 1Hz.

4.5.1 Phase frequency detector

Input 1

Input 2

Fast
Output

Slow
Output

AD96687

digitalization

MC100EP
140

AD8129

PFD amplification

low pass
filter

Figure 4.8: Simplified block diagram of the phase frequency detector board. The signals
are first digitized by the comparator AD96687. The MC100EP140 is used as the phase
frequency detector. The two output signals connected to the differential receiver amplifier
AD8129. The fast output is directly connected to the output and the connection to the
slow output includes a low pass filter. The complete circuit diagram provided by Professor
Marco Prevedelli, Università di Bologna, can be found in the Appendix B.

The electronic setup of the phase frequency detector (PFD) is based on a design by
Professor Marco Prevedelli (Università di Bologna) and its circuit diagram can be found in
Appendix B. Figure 4.8 shows a simplified block diagram of the PFD circuit board. The
purpose of this board is to compare two signals and generate an error signal proportional
to the phase difference. If phase difference is larger than 2π the output saturates at either
the maximum or minimum output voltage contingent on the sign of the phase difference.
After the input of the circuit board the two signals are digitized by the ultrafast comparator
AD96687. This chip can handle signals up to 500 MHz. Thereafter these ECL (emitter-
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coupled logic) signals are analyzed by the phase frequency detector MC100EP140 which
can work up to 2 GHz. Operating the chip at 5V instead of 3.3V increases the output
voltages slightlyAND8040. It has two differential outputs which provide an error voltage
after subtraction and integration. This integration and subtraction is done by frequency
filters and the differential receiver amplifier AD8129 which has a common mode rejection
ratio of 70 dB at 10 MHz. The amplification factor is controlled by passive elements and
is configured to have a gain of 200 at zero-frequency decreasing at higher frequencies to 20
for a frequency of 4.5 MHz.
Measurements with two phase-locked signal generators with variable phase and frequency
were used to test the circuit board. Figure 4.9 shows the signals at different positions
on the board. With this configuration it was only possible to simulate constant phase or
frequency differences. The PFD chip is specified with a transfer gain of 1.0mV/Degree at
1.4GHz and 1.2mV/Degree at 1.0GHz. This is amplified by 200 at zero-frequency and
the output signal saturates for larger phase differences.

0 20 40 60 80 100

0.0

0.5

1.0

Figure 4.9: Phase frequency discriminator signals: Red and blue are the two sinusoidal in-
put frequencies. Orange is one of the signals measured with a test probe between the PFD
chip and the differential receiver amplifier. For this setting the signal is nearly the same
amount of time in the lower state as in the higher state. The signal shape and hight is influ-
enced by the test probe. Green is the signal at the fast output. The shape is dominated by
digitalization noise of the oscilloscope. The signals for larger phase difference were recorded
with the same setting and thus a large scaling had to be chosen for this channel. The ratio
between the time of the orange signal in the upper state and the time in the lower state
changes. Likewise the mean value of the output signal changes.
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4.6 Characterization of the OPLL
4.6.1 Quadrature measurement

signal:

reference:

Figure 4.10: Schematic for quadrature measurement: The measured signal is mixed with
the reference signal once directly and once with an additional phase delay of π/2 to obtain
the in-phase and quadrature component of the measured signal.

The so-called quadrature signal of the beat signal between the Raman lasers provides a
measurement of the phase fluctuations. For that, one has to split the down converted beat
signal with amplitude a (t), where one is mixed directly with the LO2 and the other with
the LO2 with a phase offset of π. A BNC cable with the right length provides this phase
shift. This corresponds to splitting the signal into a part oscillating as cos (ωLO2) with
the amplitude I (t) and into a part oscillating as sin (ωLO2) with the amplitude Q (t). The
schematics are shown in Figure 4.10.
Plotting the I signal versus the Q signal is a convenient way to visualize the amplitude of
the signal and the phase with respect to the LO2. The amplitude of the original signal
is given by |a (t)| =

√
I (t)2 +Q (t)2, the radius from the origin. The phase is given by

the azimuthal angle of the point described by the I and Q values. A signal with constant
amplitude and fixed phase will be just a point in this coordinate system. Amplitude
fluctuations will extend the point along the radial direction and phase fluctuations will
extend the point along a circle around the origin.

The quadrature signals have to be low pass filtered for technical reasons. I used first
order low pass filters with a cutoff frequency of 27 kHz. The data measured for my OPLL
is visualized in Figure 4.11. The measured phase fluctuations are φrms = 0.01 rad.

4.6.2 Beat signal
My quadrature measurement was limited to determine fluctuations at frequencies less then
27 kHz, the cutoff frequency of the lowpass filter. The spectrum of beat signal provides
another method to characterize the OPLL at higher frequencies. After the amplifiers,
the optical beat signal is split with a power splitter and fed to spectrum analyzer. For
a perfect OPLL this signal should be a monochromatic signal at sum of the 9.15 GHz
coming from the PLDRO and the LO frequency used at the second input of the PFD
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Figure 4.11: Quadrature measurement: Left: I and Q value of the signal plotted for
100 000points. Right: 3D histogram of the measured points. The measurement yields a
phase fluctuations of φrms = 0.01 rad.

circuit board, which is set to 50 MHz for these tests. The signal will be broadened by
phase or frequency fluctuations of the beat signal.
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Figure 4.12: Spectrum of the optical phase lock loop signal: The center frequency is
9.2GHz, servo bumps can be seen at ±4.8MHz.

One figure of merit to characterize the phase stability of the system is the amount of
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power at the carrier frequency compared to the total power in the signal [38]. Several
spectra with rough resolution bandwidth spanning a large frequency range down to spectra
with fine resolution bandwidth and small frequency range are recorded and combined to
get the whole spectrum with enhanced resolution at the beat frequency. The resolution
bandwidth is 1Hz (smallest as possible) at a frequency range of 50Hz around the central
frequency and the resolution bandwidth is 910 kHz at the edges of the spectrum with
a total frequency range of 100MHz. The central part of the spectrum with a range of
40MHz is shown in Figure 4.12 and the deduced measurement values are given in Table 4.1.

frequency range relative amount of power
Carrier (0Hz) 93.5%
0- ± 54 kHz 0.02%
0- ± 1MHz 0.2%

±8MHz- ± 1MHz 5.5%
>±8MHz 0.8%

Table 4.1: Measured power distribution of the OPLL spectrum. This corresponds to a
overall root mean square phase noise of 0.2 rad.

4.7 Measurements
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Figure 4.13: Raman and microwave spectrum: The microwave spectrum (red) has
a height of 93% and the center frequency is 9.199 84GHz and is centered in this spec-
trum. The Raman spectrum (blue) has a height of 76% ans the center frequency is
9.199 88GHz.The frequency difference between both peaks is 40 kHz and is assigned to
fluctuations of the setup over time.

The first calibration measurements were done with both Raman laser beams co-linear
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along the z-axis of the MOT beams. Having both beams in the same optical fiber
guarantees perfect overlap but for this configuration no sidebands can be addressed since
the transfered momentum is zero. The power of each laser beam was 500-600 µW and
the beam waist w (z) of the Gaussian beam at the position of the atoms was measured
with a beam profile camera to be w (z) = 210±10 µm. The single photon detuning was
adjusted to 30GHz and fluctuated over a day by up to 1GHz. I measured the spectrum
of the transition between |↑〉 ↔ |↓〉 with the Raman laser beams and compared it with
the spectrum taken with the microwave generator. After preparing the atoms in state |↓〉
the laser beams were turned on for 14 µs. Afterwards the push-out is applied to remove
all atoms in state |↓〉 and the remaining atoms were counted. The frequency between the
two Raman laser beams is scanned. For the microwave spectrum the same is done but
with the microwave instead of the Raman laser. Both spectra are shown in Figure 4.13.
The spectrum taken with the Raman laser beams has a slightly lower efficiency and is
broader. Both measurements yield similar resonance frequencies of almost 9.2GHz with a
difference of 40 kHz. The difference between both spectra can be assigned to fluctuation
of the setup over time. This differs from the well known 9.192GHz for the hyperfine
transition frequency of Cs atoms because an external magnetic field is applied to lift the
degeneracy of the sub-states and because the Cs atoms are trapped in the lattice which
induces a differential light shift.

4.7.1 Rabi oscillations
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Figure 4.14: Rabi oscillation: The probability to find a atom in state |↑〉 is measured for
different times t for which the Raman laser illuminates the atoms. Equation 4.18 is fitted to
the data. The results are presented in Table 4.2.

After the the resonance frequency is located, I want to test the capability of coherent
interactions with the atoms. Therefore Rabi oscillations between the two spin states are
measured. Starting with all atoms in state |↓〉 the probability of atoms in state |↑〉 will
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oscillate with the time t according to

P↑ (t) = Ω2
0

Ω2
eff

sin2
(
Ωefft

2

)
(4.16)

if no damping is assumed. I assume that the 90% of the power is contained in the carrier
of the OPLL. The resulting Rabi frequency is calculated with Equation 4.11 as follows:

Ωeff = ηOPLL ·
√

7
6
ES · EP 〈J = 3/2| |er| |J = 1/2〉

h̄ · 2 ·∆ · 2π (4.17)

= 2π · 42 kHz

E =
√

2I
cε0

I (r = 0) = 2P
πω2 (z) = 2 · 500 µW

π · (210 µm)2 = 14mW /mm2

The measured data (Figure 4.14) is fitted including damping which results from loss of
coherence:

P↑ (t) =1
2
(
1− Ce

t
τ cos (Ωefft)

)
(4.18)

resulting in the data presented in Table 4.2. The reduced chi-square parameter of this fit
is 2.9. The scattering rate of the Raman beams is 54Hz. This cannot explain the short
coherence time. Fluctuation of the dipole trap intensity can also be excluded because
these would also affect analogously microwave induced coherent transitions. There a four
times longer coherence time of was measured. Intensity fluctuations of the Raman laser
at the relevant time scales can also be excluded because they should be visible in the
spectrum of the beat signal.
A further effect which has not been considered so far is inhomogeneous dephasing due

Estimate Standard error
Rabi frequency Ωeff 2π · 33.8 kHz 0.4 kHz

Contrast C 85% 8%
Coherence time τ 49 µs 8 µs

Table 4.2: Values obtained by fitting the measurement shown in Figure 4.14 with Equa-
tion 4.18.

to inhomogeneous illumination. The two Raman laser beams have a Gaussian intensity
distribution with w (z) = 210±10 µm. The MOT loads Cs atoms into the optical lattice
over a length of approximately 50 µm. At each lattice position the light intensity is different,
resulting in different Rabi frequencies. The readout technique used during these sequences
does not determine the location of the each atom. The recorded data is an average over
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all different Rabi frequencies. This effect can be numerically calculated assuming an equal
distribution of atoms over the possible loading range and a perfect Gaussian intensity
profile. The maximum of this beam does not have to be overlapped with the atoms central
location, because the pointing of the Raman laser beams was adjusted to have a good
overlap with the MOT beams which are five times larger. The measured data is fitted to
this model using only the distance between the central position where atoms are loaded
and the maximum of the Gaussian beam as a fit parameter. For this calculation the
Rabi frequency calculated in Equation 4.17 is assumed and 100 equally spaced atoms
positions are used to model the actual experimental situation. This results in a spacing
of ∆x = 0.5 µm between each position which is reasonable close to the actual spacing of
0.43 µm. This model has the following form:

P↑ (t) = 1
2 · 100

100∑
i=0

(
1− cos

(
Ωeffe

2(x0+(i−50)·∆x
w(z) t

))
(4.19)

and the fit results in x0 = 75.6±1.2 µm which means that the atom location does not reach
the maximum of the Raman beam. The reduced chi-square is 1.1. The data with this
fit is shown in Figure 4.15. This indicates that this model describe the data better than
the model used above. It should be noted that the second model can explain the lower
Rabi frequency and the contrast decay at the same time. The model is very simplified
and for example assumes a perfect Gaussian beam. Dust on the glass cell could disturb
the beam profile and would decrease the coherence length further. It also neglects all
other decoherence effects. Larger Raman beams with higher intensity should increase
the coherence time if the coherence time is limited by the inhomogeneous illumination
investigated here.
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Figure 4.15: Model fitted to Rabi oscillations assuming Equation 4.19. The resulting
misalignment of the Gaussian beam with respect to the center of the loading range is x0 =
(75.6± 1.2) µm.
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4.7.2 Ramsey oscillations
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Figure 4.16: Ramsey fringes measured by changing the phase of the last π/2-pulse for
three different waiting times t. Red: t = 10 µs, green: t = 110 µs, blue: t = 200 µs.

Ramsey oscillations offer an alternative to measure the Rabi frequency and the coherence
time. The simplest implementation uses two π

2 with a variable waiting time t between
both pulses. The phase θ of the last π

2 -pulse with respect to the first is scanned. This
results again in a fringe following the form:

P↑ (t) =1
2
(
1 + Ce−

t
τ sin (φ (t) + θ)

)
. (4.20)

Fringes are measured for varying waiting times (see Figure 4.16), and both the contrast
C (t) and the phase φ (t) are extracted. The phase and contrast evolution in time are
shown in Figure 4.17. The phase is expected to follow φ (t) = δt, with the two photon
detuning δ, and the contrast should decay exponentially in time C (t) = C0e

t
τ . The phase

can be fitted perfectly but the statistics is not sufficient to fit the contrast with good
videlity. The results are:

C0 = (88± 7)% τ = (634± 486) µs δ = 2π(13.9± 0.3) kHz.

Any remaining inhomogeneous dephasing mechanisms can be suppressed by spin echo
techniques. To eliminate time reversible effects, a π-pulse is applied exactly between the
two π

2 -pulses. However, more pulses will at the same time lead to more dephasing as shown
with the Rabi oscillations in the last section, because they are effected by fluctuations
of the Rabi frequency. The data taken to show this effect has to be interpreted with
caution. Problems with the laser stability make the whole setup run unstable and it was
not possible to reach the contrast of the measurements shown before. The spin echo
technique shows that the contrast can be increased regardless of these problems. The
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Figure 4.17: Left: Phase of the Ramsey fringe vs. time; Right: Contrast of the Ramsey
fringe cs. time. The phase follows a linear increase with a slop of δ = 2π(13.9± 0.3) kHz
corresponding to the two photon detuning.

absolute increase was not determined because of these problems.
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Figure 4.18: Ramsey fringes measured for a waiting time of t = 200 µs once with spin
echo (green) and once without (red). The spin echo leads to a small increase in contrast.





5 Outlook

Experiments, conducted with the experimental setup I have worked with, are focused on
single atom physics. Controlled interactions between two atoms open up new perspectives
in the study of few body physics. In this thesis I have presented a model to estimate cold
coherent collisions indicating that ground-state-cooled atoms are needed. A blue detuned
doughnut shaped optical trap can increase the trapping frequencies in radial direction as I
showed in an experiment. The suggested two arm setup will offer increased radial trapping
frequencies and at the same time the state dependent transport can be realized. Two
acousto-optic modulators will be used to control the intensity of both counter propagating
Gaussian beams separately. In combination with the doughnut beam, this configuration
will permit a greater flexibility in the control of the trapping frequencies independently.
Controlling the trapping frequencies one can enable or suppress interaction and thus use
this as a switch.

Increased trapping frequencies, realized with the doughnut shaped dipole trap, allow
resolved sideband transitions and the Lamb-Dicke parameter will be approximately 0.3
with an expected trapping frequency of 20 kHz in radial direction. Both conditions are
necessary to implement Raman side band cooling, leading to ground-state-cooled atoms in
three dimensions combined with single atom control. In [24] it has been suggested that
the dephasing in the single atom interferometer is mainly due to having thermal atoms.
This effect is already reduced by axial ground-state-cooling and will be further reduced by
radial ground-state-cooling.

Implementation of quantum computation algorithms have been realized with ions, lined
up in a single trap [39]. Similar experiments are planned with Rydberg atoms [40]. Cold
interaction between neutral atoms will lead to an additional alternative to realize quantum
computation [41]. This system has a good scalability as it can be extended to two or even
three dimensions. The ultimate goal is the realization of a system which fulfills all criteria
proposed by David DiVincenzo for a quantum computer [42].

Cooling atoms in the ground-state will allow us to study the atom analog of the Hong-
Ou-Mandel effect. This is a purely quantum mechanical effect of interference between two
indistinguishable particles. As such the experiment requires that two cesium atoms can
be prepared in exactly the same quantum state. A sequence realizing this experiment is
shown in Figure 5.1. At the end of this sequence the atoms are either both at the left
lattice site or at the right lattice site. The atoms are illuminated with resonant light
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Figure 5.1: Hong-Ou-Mandel like sequence: Two atoms are overlapped at the same lattice
site with the state dependent transport. Then a π/2 pulse is applied bringing both atoms
in a super position of both states. There after the state dependent transport is applied in
the opposite direction. At the end of the sequence both atoms are either at the left lattice
site or on the right lattice site.

during the final picture. This light will lead to light induced collisions whereby both atoms
are lost. The signature of the Hong-Ou-Mandel effect in this sequence would be that the
atoms loss rate increases significantly. Unlike the classical Hong-Ou-Mandel experiment
with photons we will be able to use interactions between both particles to modify the
results.
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A Further calculation of the overlap integral

The Integral In,m =
∫
dx̃
∣∣∣ψ̃1 (x̃,n)

∣∣∣2 ∣∣∣ψ̃2 ( ˜x,m)
∣∣∣2 also shown in Equation 2.11 can be further

calculated to deduce that this integral is a product of a constant and a rational number
which depends on the vibrational quantum numbers n and m. There for I write out the
harmonic oscillator wavefunction using Hermite functions Hn (x).

In,m =
∞∫
−∞

1√
π2nn!e

−x2 (Hn (x))2 1√
π2mm!e

−x2 (Hm (x))2 dx (A.1)

= 2√
π2nn!

√
π2mm!

∞∫
0

e−2x2 (Hn (x))2 (Hm (x))2 dx (A.2)

I now carry out the substitution y = 2x2:

In,m = 2√
π2nn!

√
π2mm!

∞∫
0

e−y
(
Hn

(√
y

2

))2 (
Hm

(√
y

2

))2 1√
2
y−

1
2dy (A.3)

(A.4)

Here I can apply the identity for the product of two Hermite polynomials:

Hn (z)Hm (z) = n!m!
min(n,m)∑
k=0

2kH−2k+m+n (z)
k! (n− k)! (m− l)! (A.5)

This is applied to the to
(
Hm

(√
y
2

))2
and

(
Hn

(√
y
2

))2
:

In,m =
√
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π2nn!
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2 (A.6)

· n!2
n∑
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y
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)
k! ((n− k)!)2 m!2
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l! ((m− l)!)2 dy
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I can now use the relation between Hermite polynomials and Laguerre polynomials Lαn (x):

H2n (x) = (−4)n n!L−
1
2

n

(
x2
)

(A.7)

For now I will just consider the Integral and I will move the sums out of the integral:
∞∫
0

e−yy−
1
2L
− 1

2
n−k

(
y

2

)
L
− 1

2
m−l

(
y

2

)
dy (A.8)

=
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0

e−yy−
1
2
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2
n− k − p

)(
−1

2

)p (
−3

2

)n−k−p
L
− 1

2
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·
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2
m− l − q
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−1

2

)q (
−3

2
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L
− 1

2
q (y)dy (A.10)

For the last step I used the rule for multiple arguments:

Ln (z1 · z2) =
n∑
k=0

(
n

n− k

)
Lk (z2) (A.11)

Considering again only the integral the orthogonality relation can be applied:

∞∫
0

dye−yy−
1
2L
− 1

2
p (y)L−

1
2

q (y) dy =
Γ
(
p+ 1

2

)
p! δp,q (A.12)

=
(2p)!
p!4p
√
π

p! δp,q (A.13)

This shows that the final result can be written in terms of polynomials of n and m
multiplied by a power of π. The first 4x4 values calculated with Mathematica can be
found in Table A.1
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2π

3
8

1√
2π

5
16

1√
2π

m=1 1
2

1√
2π

3
4

1√
2π

7
16

1√
2π

11
32

1√
2π

m=2 3
8

1√
2π

7
16

1√
2π

41
64

1√
2π

51
128

1√
2π

m=3 5
16

1√
2π

11
32

1√
2π

51
128

1√
2π

147
256

1√
2π

Table A.1: Values of the overlap integral



B Phase frequency discriminator circuit diagram
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