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Abstract

This work reports on a high bandwidth (>0.5 MHz) digital controller for intensity stabilisa-
tion. Important properties of the digital hardware are characterised. The noise characteristics
of the digital to analogue converter limit the digital controller, making it inferior compared
to a state-of-the-art analogue controller in this respect. However, similar bandwidths are
achieved with both controllers in PI mode. In addition a proof of concept digital Internal
Model Controller is presented showing an increased bandwidth of 2.4 MHz. The results and
methods presented in this work may be used to improve intensity control for quantum optics
experiments using digital controllers.
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1. Introduction

Most experiments in physics rely on at least one parameter that can be controlled by the
experimentalist. In some cases passive stability of the controlled system is sufficient to
conduct the experiment. In many others however it is not. Then specialised devices are
needed to actively stabilise or steer the parameter relying on measurements of the parameter
to counteract any unpredicted behaviour of the system. Such devices are called feedback
controllers [1] and are the main focus of this work.

Specifically versatile control devices are needed for the control of optically trapped neutral
atoms which provide a flexible framework for the application and investigation of quantum
physics. Manipulation of quantum states of localized neutral atomswas used for fundamental
studies of quantum mechanics [2], [3], high precision metrology [4] and the implementation
of quantum information [5], [6] and quantum simulation protocols [7].

Despite the advances of digital electronics, feedback controllers are still commonly build
purely on analogue electronics. One goal of this thesis is to provide a comparison between a
state of the art analogue controller and a digital general purpose device to examine viability
of digital controllers for quantum optics experiments by the means of a test system stabilising
intensity using an acusto-optical modulator. The other is to explore the possible benefits of
digital controllers in practice.

Many advanced control schemes that provide increased performance including the one used
in this work can be realized both in analogue or digital hardware. However programmable
digital controllers offer easier and faster design of complex controllers. Also instead of
manufacturing hardware just for one system that might change at a later point, the same
hardware may be reused while changes and new developments are done in software [8].

Furthermore some advanced (adapting) schemes employing very complex logic (e.g. arti-
ficial intelligence) [1], [9] may only be practically realisable using the scalability of digital
hardware and the ability to store and transmit data nearly indefinitely without degrada-
tion [10]. These properties of digital hardware could also be used to reduce the amount
of time needed for maintenance of an experiment. The control hardware may provide
automated recovery from failures or remote access to analysis that would otherwise require
specialised hardware to be connected on site.

Outline

The remaining part of this thesis is structured as follows: In chapter 2 we analyse the
control schemes applied later in time and frequency domain. Chapter 3 is focused on the
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1. Introduction

use of digital devices to build and evaluate control loops. In chapter 4 the hardware used to
implement and test the digital controller is described. Finally, in chapter 5 we compare the
digital controller with a state-of-the-art analogue controller and shows some benefits of an
advanced control algorithm.
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2. Continuous time control theory

2.1. The PID controller
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Figure 2.1.: Block diagram of a PID feedback loop. The user puts setpoint r . Output y of
Process P ismeasuredwith a sensor adding noise n. The sum ŷ is then subtracted
from r to get error e. This is fed to the PID controller. In response it takes
control action u to obtain y = r even if there is an unpredictable disturbance d
in y.

The PID (for Proportional Integral Differential) controller is the most prevalent controller
type both in industry and in science. It owes this ubiquity to its simplicity and robustness [11].
The working principle is shown in fig. 2.1. The output value of the system to be controlled
(process) is subtracted from a desired level of this value given by the user (setpoint). The
result is then used to generate an input to the process (control action) influencing its output
value (controlled variable). This constitutes a feedback loop.

Assume for example that at t = 0 either the setpoint r is stepped up or there is a step down
in the controlled variable y because of a disturbance d. Disturbances are unpredictable
changes in the unregulated process output. Both possibilities will result in a step up in the
error signal i.e.:

e(t) = kΘ(t) (2.1)

with the step function Θ(t) and the step amplitude k.

The most intuitive approach is a controller only using proportional action (the P-part) whose
output is proportional to its input. However the steady state output of the process will not
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2. Continuous time control theory

match the setpoint exactly for finite controller gain kc but stay at y = e · kc = r · kc/kc−1.

To counteract this we apply integral action (I-part). It will keep rising, increasing y and
decreasing e, until (in steady state limit) e = 0. The drawback is that it cannot by its principle
be as immediate as the proportional part. The speed at which it reacts is governed by the
integral time constant τi . Therefore in most applications both P- and I-part are used together,
constituting a PI-controller.

The Differential action (D-part) is less frequently used in real world applications for reas-
ons that will become apparent later (see 2.5). It complements the integral action, since
its contribution will be largest for steep slopes i.e. fast changes in e. Ideally it nearly
compensates for the offset remaining from the proportional action and reduces as time goes
on while integral action increases due to a small remaining error. The obvious downside is
an overreaction (overshoot) to changes that are faster than the response time implied by the
derivative time constant τd . The opposite would be less problematic since with an appro-
priately set time constant integral action will be sufficient to keep the error small on longer
time-scales. Sources of the problematic steep rises can be step-like setpoint changes, random
(also step-like) changes in process behaviour (disturbances) or sensor noise (high frequency).

The overall continuous time equation describing the ideal PID is given as:

C(t) = kc

(
e(t) +

1
τi

∫
e(t)dt + τd

d
dt

e(t)
)

(2.2)

To better understand how we can avoid noise amplification by differential action and how
to design more advanced control algorithms we will switch to another perspective. This
perspective is the frequency domain.

2.2. System analysis by Laplace transformation

Instead of the widely used Fourier transform, in control theory we typically use the Laplace
transform. The bilateral Laplace transform of a function f (t) is defined as [12]:

F (s) = L { f (t)} =
∫ ∞

−∞

f (t)e−stdt (2.3)

for real t provided f (t) is integrable. Assuming t is time, s ∈ C is a complex valued angular
frequency. It can be written as s = σ + iω. ω ∈ R represents angular frequency and σ ∈ R
can be interpreted as coefficient of an exponentially damped sinusoid. This means functions
for which Fourier transform does not converge like f (t) = t or f (t) = et can be transformed
by the bilateral Laplace transform. We refer to the bilateral Laplace transform as the Laplace
transform from here on.

Evaluating F (s) ∈ C for purely imaginary s = iω will yield the Fourier transform:

F (s) |s=iω =
∫ ∞

−∞

f (t)eiωtdt = F (iω) (2.4)
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2.2. System analysis by Laplace transformation
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Figure 2.2.: The RC low pass and its transfer function. The critical angular frequency is
ωc = 1/τ at which the magnitude of the transfer function is |H (iω) | = 1/

√
2 ≈

−3 dB. Beyond it the magnitude decreases by 20 dB per decade. The high
frequency phase of −90◦ means the output lags behind the input by 1/4 period
(for a sinusoid).

Its absolute value |F (s) | represents an amplitude and its argument arg(F (s)) a phase.

A very useful property of the Laplace transform is the fact that a differentiation in time will
be transformed to a multiplication with s:

L
{

f ′(t)
}
= sF (s) (2.5)

More generally we can find that the nth derivative in time can be transformed to:

L
{

f (n) (t)
}
= snF (s) (2.6)

Therefore differential equations in timewill be transformed to algebraic equations in s. As an
example of the usefulness of this property let us evaluate a simple low pass filter consisting
of a resistor and a capacitor (see fig. 2.2, more details in [13]).

We want to find the transfer function of the RC-filter as a function of s. This is defined as:

H (s) =
y(s)
x(s)

(2.7)

x(s) and y(s) are the Laplace transformed input and output respectively. We first analyse
the individual components. An ideal capacitor will fulfil:

I (t) = C
dU (t)

dt
L
→ I (s) = CU (s)s ⇒ Z (s) =

1
Cs

(2.8)
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2. Continuous time control theory

with the current I, voltage U , capacitance C and impedance Z . For the resistor Z (s) = R.
Now we can combine this assuming x(s) and y(s) are voltage signals. By Kirchhoff’s
current law the current I (s) through both components must be the same, so:

H (s) =
y(s)
x(s)

=
I (s)Zy (s)
I (s)Zx (s)

=

1
Cs

1
Cs + R

=
1

1 + RCs
(2.9)

This is the representation of a low pass filter since the magnitude of this function is approx-
imately 1 for s � 1/RC and decreases as 1/iω for s = iω � 1/RC. The magnitude is also
known as gain and is shown in double logarithmic representation in the upper part of what
we call a bode plot [14] (see fig. 2.2). The lower part of the bode plot shows arg(H (s)) or
the phase in semi-logarithmic representation.

In general not only electrical circuits but all Linear Time Invariant (LTI) systems can be
analysed using this method. Once we have obtained its transfer function we can also analyse
the stability of a such an LTI system. It can be shown that if the transfer function has
poles in the right half of the complex plane mapping s, the system is unstable [15]. Cor-
respondingly it is stable if there is no pole in the right half-plane including the imaginary axis.

2.3. PID in frequency domain

Using the perspective of s-spacewe find the transfer functionT of a closed feedback loop [16]
(suppressing s dependency of all variables):

T =
y

r
=

ePC
r
=

(r − y)PC
r

= PC − T PC ⇒ T =
PC

1 + PC
(2.10)

with all variables as introduced in sec. 2. PC is the open loop transfer function as obtained
from the composition of the controller and process transfer function which is just the product
in s-space.

More specifically the ideal PID open loop transfer function, whose bode plot is shown in
fig. 2.3, is:

C(t) = kc

(
1 +

1
τi

∫
e(t)dt + τd

d
dt

e(t)
)
L
→ C(s) = kc

(
1 +

e(s)
τi s
+ τd se(s)

)
(2.11)

As mentioned in sec. 2.2 we can use this description to get deeper insight in the behaviour
of the control loop.

In steady state or s → 0 the integral part goes to infinity dominating the behaviour of C(s).
Assuming a stable process (P(s) has no right hand plane poles) this means for the closed
loop system:

lim
s→0

T (s) = lim
s→0

PC
1 + PC

= 1 (2.12)
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2.3. PID in frequency domain
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Figure 2.3.: Bode plot of the open loop transfer function of a PID controller. The transition
frequencies are ωi = 1/τi (from I- to P-part) and ωd = 1/τi (from P- to D-part).
For frequencies higher than the low-pass transition frequency, differentiator and
low-pass balance each other out leading to an HF gain limit.

Therefore there is no steady state offset since y = 1 · r .

Depending on the time constants for intermediate frequencies the proportional part may
contribute the most while for high frequencies the differential part will be dominant. This
leads back to the question of high frequency sensor noise amplification by differential action
discussed at the end of sec. 2.1. For high frequencies we can assume T ≈ 1 analogously
to our steady state calculation. Also high frequency noise is usually white i.e. it has the
same amplitude for all frequencies. The noise from the sensor distorts the feedback that
the controller receives and is increasingly amplified by the differential action for increasing
frequencies. This is undesirable since it will lead to wear of any control elements (especially
mechanical ones) or even exceed their input range. Therefore the maximum amplification
of the differential part is usually limited to 5 - 20.

To achieve this, differential action is filtered with a low-pass, yielding:

D(s)F (s) = τd s ·
1

ατd s + 1
(2.13)

with the D-part transfer function D(s), the low pass filter transfer function F (s) and the
filter coefficient α. For high frequencies this will go to the value lims→∞ D(s)F (s) = 1/α.
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2. Continuous time control theory

This approach also solves a more practical problem. A pure derivative cannot be physically
realized because no physical system can provide gain at infinite frequencies [17]. Since we
do not require a pure derivative we do not need to approximate it (e.g. with a backwards
difference). Therefore we rewrite eq. 2.13 to:

τd s
ατd s + 1

=
1
α

(
ατd s

ατd s + 1

)
=

1
α

(
1 −

1
ατd s + 1

)
(2.14)

meaning only a low pass and an amplification by 1/α is required.

With increasing frequencies time delay becomes increasingly important. Until now we did
not include this in our considerations. In s-space a time delay is represented as [18]:

L { f (t − θ)} = e−θs f (s) (2.15)

with the time delay θ.

The next section will show how to use s-space analysis and modelling to optimize a control
solution for a given process.

2.4. Internal model control

The basic idea of Internal Model Control (IMC) is to use the ability to model the process to
construct a controller specifically for it. The IMC design method described in the following
is closely based on [19].

The easiest way to use the model to our advantage would be to invert transfer function of the
process and use it as the controller without any feedback as shown in fig. 2.4:

T = PQ = PP−1 = 1 (2.16)

This is a basic feedforward. The most obvious drawback is the inability to counteract dis-
turbances. Also there are usually reasons why the inverse cannot be realised in a physical
system. For example inverting a process that behaves like an integrator will give a pure
derivative. Even if the inversion is possible the model may not be exact i.e. the parameters

r
Q

u y
d

+

+P ∑

Figure 2.4.: Block diagram of a feedforward control. The setpoint r is used by the controller
Q to produce a control action u suitable to achieve an output of y = r of the
process P. However y is also influenced by disturbances d that are not accounted
for.
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2.4. Internal model control

might not be known precisely enough or there might even be some behaviour that is not
modelled at all (typically at higher frequencies) [20].

Let us nevertheless attempt this, assuming the process behaves like a first order low pass:

P̃ =
kp

τs + 1
→ P̃−1 =

τs + 1
kp

(2.17)

where P̃ denotes the process model, kp the steady state process gain and τ low pass time
constant. The inverse looks like an ideal PID controller without integral action. The para-
meters can be read off the equation to be kc = 1/kp and τd = τ.

Besides the fact that the pure derivative action is problematic, most processes also contain
some time delay which is commonly referred to as the dead time θ. Including it in the model
of the process yields the so called First Order Plus Dead Time (FOPDT) model. Despite
its simplicity this model is sufficient for many real-world applications [21]. Yet inverting it
reveals a problem:

P̃ =
kp

τs + 1
e−θs → P̃−1 =

τs + 1
kp

eθs (2.18)

The factor eθs represents a time advance. That means the present output of the systemwould
be based on future inputs which would violate causality.

To obtain a realizable controller the model is factored into a realizable P̃− and an unrealis-
able P̃+ component. P̃+ contains all factors whose inversion would violate causality (time
advance) or lead to instability (poles in the right half plane). As far as the feedforward
controller Q is concerned we simply ignore P̃+ (see [19] for more details).

We also add a low pass filter Fn of suitable order n to make sure lims→∞Q < ∞ i.e. Q is
semi-proper. For the FOPDT model this means:

Q = P̃−1− Fn = P̃−1−
1

(λs + 1)n
=
τs + 1

kp

1
(λs + 1)1

(2.19)

Note that the form of the filter is just a simple example with the smallest possible value for
n. A good first estimate of the filter parameter for low-pass-like systems is λ = τ/2 [20].

To accommodate for disturbances and the effects of P̃+ we add feedback using the difference
between the output of the model and the output of the process to make corrections to
the setpoint, similar to a trim (see fig. 2.5). This feedback is the estimated disturbance
d̂ = (P − P̃)u + d. It is the sum of the true disturbance and the mismatch between model
and process. The controller action can be written as:

u = Q(r − d̂) = Q(r − (P − P̃)u − d) ⇒ u =
Q(r − d)

1 + (P − P̃)Q
(2.20)
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2. Continuous time control theory
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Figure 2.5.: Block diagram of the IMC structure. In addition to the feedforward structure it
contains feedback via a sensor introducing noise n and a model P̃ that is used
to estimate disturbance as d̂. The estimate is then used to obtain a trimmed
setpoint e.

Via the controlled variable y we obtain the closed loop transfer function:

y = Pu + d =
PQ(r − d)

1 + (P − P̃)Q
+ d =

PQr + (1 − P̃Q)d
1 + (P − P̃)Q

(2.21)

⇒ T =
PQ + (1 − P̃Q) dr
1 + (P − P̃)Q

(2.22)

In the steady state limit the non-invertible components of P̃ can usually be neglected. In
other words lims→0 P̃−1 = Q. For the FOPDT model this means:

lim
s→0

τs + 1
kp

eθs =
1
kp
= lim

s→0

τs + 1
kp (λs + 1)

(2.23)

When we use this with the expression obtained for the closed loop transfer function:

lim
s→0

T =
PQ
PQ
= 1 (2.24)

So the steady state offset is zero and disturbances are fully rejected.

Considering the FOPDT model and assuming the ideal case of P = P̃ and d = 0 we find:

PQ = PP−1− F = P+F ⇒ S = P+F =
e−θs

λs + 1
(2.25)

Setpoint tracking is only affected by the filter F and the unavoidable dead time. This shows
that, provided a good process model, the choice of F is the most influential step in our design
procedure [19]. It was introduced to avoid excessive controller action and suppress model
mismatch at high frequencies. But choosing it properly can also help to shape the setpoint
tracking behaviour.
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2.5. PID tuning

Let us consider a setpoint ramp input instead of a step. To obtain no steady state offset and
no offset to a ramping input would require:

lim
s→0

S = 1 (2.26)

dS
ds

�����s=0
= 0 (2.27)

Using our previous findings the second condition can be rewritten to:

d(P+Fn )
ds

�����s=0
= 0 (2.28)

One possible filter that matches this condition is given as:

Fn =

(
2λ − P′+��s=0

)
s + 1

(λs + 1)n
(2.29)

Here n has to be chosen large enough to get a proper controller Q while also taking the
derivative P′+��s=0 into consideration. The derivative may contain potencies of s which
would increase the order of the numerator making it necessary to increase the order n of the
denominator accordingly. The filter then also fulfils the condition for no steady state offset.

Considering the generality of the FOPDT model it seems reasonable to base tuning rules for
a PID controller on the internal model controller developed using it. The next section will
explore this subject.

2.5. PID tuning

As IMC relies heavily on a good model of the process, a measurement technique is needed
to either find the model or to adjust its parameters. To obtain an equal excitation of all
frequencies, an impulse, i.e. δ(t), as exciting input would be desirable. Yet such an input
is impractical because of limited input amplitude. Therefore we measure the step response
of the process. A step also theoretically excites all frequencies, albeit not equally, as can be
seen from the Laplace transform:

L {Θ(t)} =
1
s

(2.30)

Also for the FOPDT model all relevant parameters can be read off the time trace of the step
response (see fig. 2.6). To obtain the precise values of τ and θ from the approximates we
can use:

τ =
tr

− ln(0.1) + ln(0.9)
≈ 0.455 tr (2.31)

θ = t10 − ln(0.9) τ ≈ t10 − 0.105 τ (2.32)

This can be calculated from the fact that the step response has the form kp

(
1 − e−t−θ/τ

)
.
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2. Continuous time control theory
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Figure 2.6.: Step response of a first order plus dead time system. The steady state gain can
be calculated from the final values kp = y f/u f that are reached after sufficiently
long time � θ + τ. The dead time θ equals the time from the input step to
the onset of the response. In practice noise impedes finding the onset of the
response. Instead usually the time t10 from the step to 10% of final output y f
is measured. From this point the time tr ≈ 2τ to 90% of y f called rise time is
measured.

We can also evaluate the performance of the control loop based on the closed loop step
response. There is a plethora of criteria that may or may not apply to a certain application
(e.g. overshoot, rise time, settling time etc.). A relatively general figure of merit is based
on the idea that y should reach its desired value y = r as soon as possible after the step,
ideally without deviating after reaching it. To measure this, the square error e2 = (r − y)2

is integrated and yields the Integrated Square Error (ISE) [22]:

ISE =
∫ ∞

0
e2(t)dt (2.33)

In practice the upper limit of the integral is a time that is sufficiently larger than all process
time constants. The ISE should be minimized.

In addition we can obtain the impulse response as the first time derivative of the ideal step
response. Let the impulse response of a system, e.g. the process, be denoted by P(t). The
Laplace transform then gives us the transfer function of the system:

L{P(t)} = P(s) (2.34)
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2.5. PID tuning

A real measurement will only give a good estimation for frequencies f � fc = 1/2πτ as-
suming the real step behaves like an ideal step filtered by a first order low-pass with the time
constant τ.

This can also be used to find the closed loop transfer function of a feedback control system.
Employing Fourier transform to probe the values of the Laplace transform on the imaginary
axis of the s-plane we can create a bode plot of the transfer function. The frequency at
which gain falls below -3 dB for the first time is called the control bandwidth. The specific
gain of -3 dB is chosen by convention (in analogy to the low-pass transition frequency). It
indicates that the response is too slow to reasonably track inputs of frequencies higher than
this frequency.

We might also be interested in the lag introduced by the closed loop system. We can use the
frequency at which the phase falls below −180◦ as indication. For a pure delay by θ we find:

T (t) = δ(t − θ)
L
→ T (s) = e−θs (2.35)

Then the phase of T (iω) is −180◦ exactly for:

− θω−180° = −π ⇒ ω−180° =
π

θ
⇒ f−180° =

1
2θ

(2.36)

Given the dead time of a process we can compare this frequency with the −180◦ cross over
in the closed loop response to find how close the controller comes to the absolute limit set
by the process dead time.

Some additional figures that help determine if the system is stable cannot be found in the
bode plot of the open loop transfer function. Rearranging the general relation of closed loop
to open loop transfer function (eq. 2.10) we get:

PC =
T

1 − T
(2.37)

which is the open loop transfer function. This is helpful to measure the transfer function of
a controller with integral action. Without feedback it integrates any small offset on the in-
put until the output is saturated. Therefore directmeasurement techniques are harder to apply.

The frequency f1 at which the gain crosses 0 dB (i.e. a gain of 1, unity gain) and the
frequency f±180◦ at which the phase crosses ±180◦ are of special interest. Should they be the
same, the transfer function would be PC = −1 for this frequency and the closed loop transfer
function would go to infinity (denominator 0). This has to be avoided. Simple systems (like
an FOPDT system) that do not have multiple crossover frequencies are stable if f1 < f−180◦ .
How close the system is to instability is quantified by the phase and gain margins. The phase
margin is defined as:

∆φ = φ ( f1) − (−180◦) (2.38)
with the phase φ( f ) of the transfer function as a function of frequency. And the gain margin
is defined by:

∆g = −g( f−180◦ ) (2.39)
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2. Continuous time control theory

with the gain g( f ) in dB as a function of frequency. If they are both < 0 and gain reduces
with increasing frequency (which is typically the case for the simple systems considered
here) the above criterion is fulfilled and the closed loop system is stable. In practice to
achieve a smooth step response a phase margin of 45◦ - 60◦ and a gain margin between 5 dB
and 10 dB are recommended [23].
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- +
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Figure 2.7.: IMC scheme reordered to show equivalence to classic feedback control scheme.
The order of subtractions is switched with respect to fig. 2.5 and disturbance
and noise are not shown. The equivalent to the classic controller denoted C has
an internal feedback loop. Also note that e is the error signal in the traditional
sense as in the case of PID.

As can be observed in fig. 2.7 the IMC structure can be rearranged to yield the classic
feedback structure [19]. Classic here means an error input e = y − r that is driven to 0, as
in the PID scheme. The classical controller is then:

C =
Q

1 − P̃Q
(2.40)

For a low-pass without time delay this equation yields:

C =
P̃−1F

1 − P̃P̃−1F
=

τ

kpλ

(
1 +

1
τs

)
(2.41)

which is the s-space representation of a PI-controller. The tuning parameters can simply be
read off (compare eq. 2.41 and eq. 2.11):

kc =
τ

Kλ
(2.42)

τi = τ (2.43)

Unfortunately this is not as easy when dead time is taken into account. To be able to relate
the corresponding IMC design to a PID we first need to linearise the dead time term. To do
this the first order Padé-approximation is commonly used [19]:

e−θs =
1 − θs/2
1 + θs/2

(2.44)
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2.6. How to deal with nonlinearity

This is then added into P and P̃ in eq. 2.41 and we get:

C =
P̃−1− F

1 − P̃P̃−1− F
=

P̃−1−
F−1 + P̃+

=
1/kp (τs + 1)

λs + 1 − 1−θs/2
1+θs/2

(2.45)

By factorising out a low pass filter and decomposing the other factor in terms of potencies
of s we finally find an equation of the form:

C =
kc

τf s + 1

(
τd s + 1 +

1
τi s

)
(2.46)

which is a PID controller with a low-pass filter and coefficients:

kc =
τ + θ/2

kp (λ + θ)
(2.47)

τi = τ + θ/2 (2.48)

τd =
τ θ/2

τ + θ/2
(2.49)

τf =
λ θ/2

λ + θ
(2.50)

Note that the choice of λ only affects kc and τf . As explained in sec. 2.3 most PID control-
lers use a filter on the D-part but in general not on the other (PI) parts. For τ ≈ 2λ � θ this
is reasonable. In addition the opposite case τ ≈ 2λ � θ leads to a tuning that is effectively
a PI controller. This might be one of the main reasons why differential action often does not
seem to improve the behaviour of a control loop in practice. Based on our considerations
we can find out if this is the case just based on a reasonably good model of the process to be
controlled.

Analogous to the derivation of the PID tuning above we can find a PI tuning for the FOPDT
model:

kc =
τ + θ/2

kpλ
(2.51)

τi = τ + θ/2 (2.52)

Further research has shown how to best choose the tuning parameter λ in terms of the dead
time θ. For the PID tuning λ/θ = 0.8 is recommended and for the PI tuning λ/θ = 1.7 [19].

Since our considerations up to this point required the systems to be LTI systems we did not
yet consider the advantages of digital control in case of a controlled system that exhibits
nonlinearity. This will be subject of the next section.

2.6. How to deal with nonlinearity

All systems used in the previous descriptions were LTI systems. In reality neither linearity
nor time invariance is a given. For many real world systems time invariance is reasonably
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2. Continuous time control theory

well met. Slight deviations may be treated as disturbances.

Linearity is more rarely well met. In nonlinear systems the output amplitude for a given
signal shape is not linearly related to the input amplitude. One possible way to deal with
this problem is gain scheduling. We simply identify different sets of parameters for which
the system behaves approximately linear and find a linear controller that works well for this
set of parameters [24].

Using a digital controller and if the Process simply exhibits a non-linear steady state gain
this may be simplified even further. Based on the philosophy of IMCwe just write the steady
state output of the process as a function of the input:

y = κp (u) (2.53)

Factorising the process in an s dependent and a static part lets us replace the reciprocal of
the process gain in the controller Q by the inverse of κp (u):

Q = κ−1p (u) P̃−1−
���kp=1

F (2.54)

To implement such a measurement routine might not be necessary when using a PID
controller but is vitally important for the direct implementation of an IMC controller as was
explained earlier (see 2.4).
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3. Discrete time control theory

3.1. Conversion between continuous and discrete time signals

To be able to work with a digital system that is deterministic (predictability) and internally
free from potentially stacking noise sources (scalability) we first have to pay a price [8]. As
long as the process we control is not digital itself, we have to convert the analogue process
variable y to a digital signal and then convert the digital control action into an analogue sig-
nal u. The price is that the digitised signals are always only an approximate of the analogue
ones interacting with the process. Devices making such conversions are called Analogue to
Digital Converter (ADC) and Digital to Analogue Converter (DAC). Here we will not go
into the details of their operating principles but rather treat them as black boxes.
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Figure 3.1.: Effects of sampling and quantisation. This example shows part of a continuous
time and amplitude sine function and its digital approximate. To make the
effects visible a very coarse discretisation was chosen.

We consider a signal to be digital if its amplitude takes discrete values at discrete points in
time (see fig. 3.1). Therefore the two most important characteristics of the aforementioned
converters are sampling rate (discrete time-points per time unit) and resolution (discrete
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3. Discrete time control theory

amplitude values per amplitude unit). Let us first explore the latter.

The nominal resolution of the converters is given by the number of bits of the binary number
they may give (ADC) or take (DAC) as input or output respectively. This is a resolution
relative to the maximum values the analogue signal may take. Therefore, as an example, a
resolution of 14 bits with a voltage span from -1 to +1 V corresponds to:

14 bit =
1
214
≈ 0.061‰→ 0.061‰ · 2V = 0.122mV = 1 LSB (3.1)

This step in amplitude is the smallest possible one for a converter with a given resolution. It
corresponds to a change of the rightmost cipher in the binary number describing the signal
amplitude. This so called Least Significant Bit (LSB) is often used as unit of amplitude in
this context (as in [25] [26]).

With the assumption that the analogue signal changes slowly compared to the sampling
rate we may for now ignore the time discretisation. We find that our discrete amplitude
signal will deviate by up to ±1/2 LSB from the analogue signal. From this fact one can
derive a white noise power generated when an analogue sine signal with a given amplitude
is converted which is called quantization noise [26]. Then a ratio between sine signal power
and noise power can be found called Signal to Noise Ratio (SNR). Therefore a certain SNR
can be associated with the resolution measured in number of bits N :

SNR = 6.02 N dB + 1.76 dB (3.2)

When using this ideal relation to characterise the resolution that is available from a real
world converter based on a measurement of the SNR, N is called Effective Number Of Bits
(ENOB) [25]. This number is often lower than the nominal resolution because of other noise
sources besides the quantization noise.

Since oscillations are usually undesired in control applications a characterisation of the static
(i.e. no change in the analogue signal) behaviour is also important. We define an effective
resolution [25] based on the assumption that we deal with white noise. We can determine
the root mean square (rms) amplitude of this noise either directly or using its total power
(within a given spectral range). Then the effective resolution is:

Neff = log2 (Urms/ULSB) , Urms =
√

Pnoise · |Z | (3.3)

where |Z | is the magnitude of the impedance over which the noise measurement is taken
(usually 50 Ω).

For our considerations of time discretisation let us assume a continuous amplitude. Given
an infinite discrete time sampling xn of an infinitely long signal x(t) we want to estimate the
Fourier transform X ( f ) of this signal. We use the the Discrete Time Fourier Transformation
(DTFT) [27] with the sampling time T and find:

X̃ ( f ) =
+∞∑

n=−∞

xn · e−2πin f T =
+∞∑

k=−∞

X ( f − k/T ) (3.4)
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3.1. Conversion between continuous and discrete time signals

If X ( f ) is sufficiently small for f > fN = fS/2 then X̃ ( f ) is a good estimate for X ( f ) up to
fN .

This fact is closely related to the Nyquist-Shannon theorem. It states that we can only
measure frequencies smaller than half the sampling rate:

fN =
1
2

fS (3.5)

Therefore fN is often called Nyquist frequency.

Since we always deal with finite time signals in practice we use the Discrete Fourier
Transformation (DFT) to sample the DTFT based on a finite discrete time measurement
x0, x1, . . . , xN−1:

Xg =

N−1∑
n=0

xn · e−2πig
n/N (3.6)

where g ∈ Z are discrete frequencies and Xg ∈ C are spectral amplitudes.

Figure 3.2.: Spectral leakage from a sinusoid using a rectangular window [28]. The graph
shows the continuous frequency DTFT (orange) and the points at which a DFT
would sample it (DFT bins).

Simply transforming a finite time measurement is equivalent to multiplying the original
infinite signal with a rectangular function and then sampling the DTFT using the DFT. The
rectangular window function may be given in terms of two step functions:

wr (t) = Θ(t) − Θ(t − (N − 1)T ) (3.7)

This estimation will show two distinct deviations from the true spectrum. On one hand
for a spectrally sharp signal as a sinusoid spectral leakage will occur. Which means that
frequencies other than the frequency of the sinusoid also show a value , 0 although they
are = 0 for the true spectrum. The magnitude of these amplitudes depends on the window
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3. Discrete time control theory

function used [29].

Another deterioration occurs when the DFT sampling does not coincide with the maximum
of the main lobe, in the worst case resulting in two equally high amplitudes in the DFT
spectrum. This effect is called scalloping loss. The width of the main lobe and how flat the
top is can also be influenced by window functions [29].

If there is white noise present in the measured signal its amplitude in the DFT spectrum
will also be affected by the chosen window function. The so called Hann window is such a
function. It is given in terms of the samples in the measurement:

w(t) = cosα
(
2πn

N − 1

)
(3.8)

For example using the Hann window with α = 2 will yield a Noise Spectral Density (NSD)
that is 1.5 times higher than the true NSD [29]. For the rectangular window this factor is
1. Using the Hann window function could be compared to having the noise recorded with
a rectangular window with wider bins. Therefore this factor is also called the Equivalent
Noise Bandwidth. Also a maximum scalloping loss of 1.42 dB can be determined for the
Hann window while the maximum scalloping loss for a rectangular window is 3.92 dB [29].

3.2. PID in discrete time

To take advantage of the unique properties of digital signals, we have to translate the control
schemes presented in 2 to discrete time. A reasonable first approximate for the ideal PID
(see also eq. 2.2) may be written as [30]:

Cn = kc *
,
en +

T
τi

n∑
i=0

ei + τd
en − en−1

T
+
-

(3.9)

The proportional part remains unchanged besides discretisation. The indefinite integral is
replaced with a sum starting at t = nT = 0 where the controller is switched on. Also the time
differential that is part of the integration is translated to a multiplication of the sum with the
sampling time step T . The time differential is replaced with a backwards difference.

To evaluate how good this approximation is and to add the low pass filter on the differential
part that is missing we have to use frequency space as before. Similar to the way the DTFT
acts as the complement of the Fourier transform in discrete time, the so called Z-transform
is the discrete time complement of the Laplace transform. It is defined as:

X (z) =
+∞∑

n=−∞

xn z−n (3.10)

It maps the s-plane such that the imaginary axis from −2π fN to −2π fN is mapped to the
unit circle. The part of the right half part of the band delimited by Im(s) = ±2π fN is
mapped to the inside of the unit circle while the left part is mapped to the outside [31].
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3.3. Digital filters for control applications

3.3. Digital filters for control applications

In general digital filters are classified as either Finite Impulse Response (FIR) or Infinite
Impulse Response (IIR) filters. The difference is that a FIR filter hast an impulse response
that is non-zero only for a finite number of samples. It only takes a limited number of input
samples to determine its output e.g. the past 4 samples. An IIR filter on the other hand in
general has an infinite number of non-zero impulse response output samples. Such a filter
takes both past input and output samples into account i.e. it contains feedback.

In general FIR filters need a lot more input samples to accomplish a similarly good approx-
imation to the target continuous time spectral shape as an IIR filter. This means IIR filters
will have a lower internal delay time which makes them invaluable for control applications.
However they require more considerate design, since they can become unstable and require
higher internal precision [32].

Considering the way s is mapped to z we use a procedure called zero-pole-matching [33] to
construct our simple IIR first order low-pass filter:

1. Determine s-space poles and zeros.

2. Map poles and zeros to z-space using z = esT .

3. Based on these and additional information on the gain (low frequency limit gain for a
low pass) form the z-space transfer function.

4. Translate this function into a difference equation.

From previous considerations (see eq. 2.9) we know a first order low pass with time constant
τ has a pole at s = −1/τ. Therefore the pole of the digital filter should be at z = e−T/τ giving
the transfer function:

F (z) =
K̃

z − e−T/τ
(3.11)

From here we can compare the low frequency limit to find the gain constant K̃ . As
lims→0 z = lims→0 esT = 1 the low frequency limit is:

limz→1F (z) =
K̃

1 − e−T/τ
(3.12)

compared to 1 for the s-space transfer function. This gives K̃ = 1 − e−T/τ . To find the
difference equation we have to express eq. 3.11 in terms of z−n (which corresponds to a
time delay by nT):

F (z) =

(
1 − e−T/τ

)
z−1

1 − e−T/τ z−1
=

x(z)
y(z)

(3.13)

The nth output yn can then be expressed in terms of inputs xm, m 6 n and outputs yl, l < n:

yn = e−T/τ yn−1 +
(
1 − e−T/τ

)
xn−1 (3.14)
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3. Discrete time control theory

Device Advantage Disadvantage

PC (Central Processing Unit) High clock speed,
good availability

Few data per cycle,
large overhead

Digital Signal Processor Massively parallel,
low power consumption Limited utility

Field Programmable Gate Array Reprogrammable logic High power consumption

Application-Specific Integrated Circuit Custom logic,
low power consumption

High development cost,
long development time

Table 3.1.: Comparison of typical devices used in digital control. The properties collected
in this table are only very rough descriptions or tendencies. They represent the
state of technology of recent years [34], [35].

This can be used to filter the differential part of the PID and to construct the IMC controller
based on the FOPDT model.

Designing digital filters can be very involved and one should be aware of the possible
pitfalls. Nevertheless software is available to help with and speed up all steps of this process
(e.g. MATLAB). To realize the digital controller, a device that is suitable for the algorithm
described has to be selected and programmed which will be the subject of the next section.

3.4. Digital control hardware and programming

The hardware used to realize the digital controller contains a Field Programmable Gate
Array (FPGA) which is an integrated circuit that can be reprogrammed to represent complex
logic. This is usually done by describing the required logic using a Hardware Description
Language (HDL) and then having software convert this description into a combination of
connected logic gates and memory units.

A comparison of other devices used in digital control is shown in tab. 3.1. FPGAs avoid high
upfront costs application-specific integrated circuits (ASIC) [34] and do not have the over-
head problems often encountered on PCs (limiting control bandwidth due to delay amongst
others). However, the line between FPGA and Digital Signal Processor (DSP) is blurred by
the fact that current high-end FPGAs implement pre-manufactured DSP hardware-blocks to
be connected to the remaining design. Since the edge in power efficiency that DSPs have
is rarely a concern FPGAs tend to be the best platform for digital control applications in
experimental physics [35].

To implement algorithms developed above the HDL Verilog [36] was used. It is in some
regards similar to the commonly known programming language C. Much like C it tends to
keep quite close to the hardware and provides fine control over the way the available re-
sources are used. This enables highest performance but expert knowledge and considerable
time investments are necessary to achieve this [37].
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3.4. Digital control hardware and programming

As for digital filter design there is software available (e.g. MATLAB) to generate HDL code
from high level languages. This takes some fine control and possibly performance away but
requires less detailed knowledge and time investment making this an interesting alternative
for many experimental physicists.

This short description of digital control hardware in general directly leads into the following
part about the specific setup used here to explore the practical benefits and drawbacks of
digital control for quantum optics experiments.
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4. Building a digital control test set-up

4.1. Red Pitaya as a platform for digital control

As the platform for the implementation the Red Pitaya board was selected [38]. It is very
versatile featuring a Xilinx Zynq 7010 System on Chip as its main computing unit [39]. The
Zynq joins two ARM microprocessor cores and a Field Programmable Gate Array on one
die. It runs a Linux OS using the ARM cores, providing an environment that is familiar to
most programmers. There is also an Ethernet connection allowing most data transfers and
commands to be run using ssh. In addition the ARM cores are well suited for tasks that
require sequential programs (most user interface applications, some algorithms). However
for parallel computing and time-critical applications like high bandwidth control (or signal
processing more generally) the FPGA is the more appropriate choice.

An FPGA can be electronically programmed to contain any kind of digital logic based on a
connection of logic gates making it most flexible. Modern FPGAs as the one used here usu-
ally also have some more specialized hardware for digital signal processing (e.g. pre-made
integer multiplier units and RAM blocks) to help implementing typical applications more
efficiently both in terms of electrical power and in terms of number of FPGA gates used (see
also sec. 3.4).

Most FPGA vendors today offer software tools to implement a design using block diagrams.
This offers an easy start for anyone more familiar with analogue and small scale (in terms of
gates) digital electronics. However for large projects and a precise control over the details of
the implementation of the design (e.g. whether general purpose flip-flops or block RAM is
used as memory) the use of a Hardware Description Language (HDL), in this case Verilog,
is more convenient. In addition in the case of the Red Pitaya there is already a large amount
of code written in Verilog implementing some basic functionalities.

The Red Pitaya also features a 125 Msps two channel Analogue to Digital Converter (ADC)
with 14 bit nominal resolution and a Digital to Analogue Converter (DAC) with the same
nominal specifications [40], [41]. Thanks to all these features united on one board the Red
Pitaya can be used for various applications as demonstrated by software available from the
manufacturer including oscilloscope, arbitrary waveform generator, spectrum or network
analyser. However it cannot compete with high end laboratory equipment specialized in
these areas of course.

It is important to measure the characteristics of the converters since they are crucial com-
ponents of the digital control loop (see sec. 3.1). In the following section I focus especially
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4. Building a digital control test set-up

on the noise characteristics, since harmonic distortions are not as significant for most control
applications.

4.2. Characterization of the Red Pitaya AD and DA converters

To characterise the performance of the converters on the Red Pitaya board various power
spectra are measured. Where applicable we use a network analyser of the type HP 3589A
[42]. It is also used to measure the gain of pre-amplifiers. For reasons explained in
more detail in [43] the operator is required to turn off functions that enable detection of
monochromatic signals in wideband spectra to measure rms noise spectral density. This was
done unless otherwise noted.

Analogue to Digital Converter
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Figure 4.1.: Distribution of codes measured by the ADC for grounded input. It depicts the
results of ten measurements with 16k samples each. The standard deviation is
determined from the Gaussian fit to the histogram.

To measure the intrinsic noise on the ADC input for zero input voltage we simply apply a
short circuit termination to the input [25]. Then the FPGA reads the digital values (so called
ADC codes) that the ADC puts out at the full sample rate of 125 Msps (125 Mega-samples
per second). This is done using the acquire utility supplied with the board. 214 samples
were recorded which corresponds to a time interval of 131 µs. The result is a histogram (see
fig. 4.1) with an approximately Gaussian distribution of the number of times the respective
codes were recorded. Fitting a Gaussian to the histogram we find the standard deviation of
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4.2. Characterization of the Red Pitaya AD and DA converters

the noise distribution in units of ADC codes:

σADC |ω=0 = 4.5 codes (4.1)

To get a more intuitive measure we can convert the standard deviation to an effective number
of bits Neff [25]:

4.5 LSB→ Neff = 12 bit (4.2)

Comparing this to the specifications of the ADC manufacturer we find by reading the
histogram given in the data sheet [40] and applying the same technique as above:

σADC |ω=0 = 1.2 LSB→ Neff = 14 bit (4.3)

This should be understood as the upper limit that can be achieved by the ADC in question
under optimal conditions that may not be achieved on a circuit board under space and eco-
nomic constraints. This also applies to all following measurements that all show that the
converters perform worse than specified by the manufacturer.
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Figure 4.2.: Spectrum of a single tone 1.1 MHz input measured by the ADC. Many higher
harmonics of the carrier are visible. For this reason the noise floor has been
determined from frequencies above 11.2 MHz. Note that the resulting mean lies
at the upper end of the noise range since it is shown on a logarithmic scale.

To find the maximum Signal to Noise Ratio (SNR) of the ADC we apply a sine signal from a
specialized low noise sine generator (marconi 2032 [44]) to the ADC input. The amplitude
is set to -1 dB Full Scale = 9 dBm, i.e. -1 dB with respect to the maximum applicable input
(±1 V corresponding to 10 dBm over 50 Ω). A measurement of 214 samples is taken at
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4. Building a digital control test set-up

full sampling rate. An FFT with Hann windowing is applied to the data and the result is
presented in fig. 4.2. As described in sec. 3.1 using the Hann window can lead to a decrease
in apparent carrier power of up to 1.42 dB. The observed loss is greater than expected. We
also do not expect the broadening of the peak from data processing or the input signal. This
is most probably due to timing jitter of the ADC. By integrating over 10 bins around the
maximum a carrier power of +5 dBm can be recovered.

The measurement of the total noise power also proved difficult. Here the many higher
harmonics visible in the spectrum played a role. Although the input signal contained
a second harmonic at ≈ −60 dBc (dBc: dB relative to carrier), visible on the spectrum
analyser, the higher harmonics are distortions produced by the ADC. It is very hard to
separate the spectral leakage from the true noise up to approx. 11.2 MHz. For this reason
spectral noise density is integrated over the frequency range from 11.2 to 62.5MHz (Nyquist
frequency for a sampling rate of 125Msps) giving Ppartial. To extrapolate to the full frequency
span noise power we calculate:

Pfull ≈
62.5MHz

62.5MHz − 11.2MHz
Ppartial (4.4)

Setup Measured resolution Manufacturer resolution
relative bit relative bit

ADC static 3 · 10−4 12 bit 7 · 10−4 14 bit
ADC dynamic 8 · 10−4 10 bit 2 · 10−4 12 bit
DAC static 3 · 10−4 12 bit 6 · 10−4 14 bit

DAC dynamic 4 · 10−4 11 bit 9 · 10−5 13 bit

Table 4.1.: Summary of DAC and ADC resolution properties. The manufacturer specifica-
tions are given int the data-sheets of the ADC and DAC devices used on the Red
Pitaya board [40], [41].

From the two Powers we can now find the Signal to Noise Ratio, correcting for the Equivalent
Noise Bandwidth 3.1 of the Hann window:

SNR =
Pcarrier
Pnoise

· ENBWHann = 62dB (4.5)

From this we can infer an Equivalent Number of Bits of the ADC (eq. 3.2):

ENOB = 10 bit (4.6)

For the corresponding values specified by the ADC manufacturer see tab. 4.1.

Digital to Analogue Converter

First DAC output noise for a fixed voltage is measured. With grounded input the spectrum
analyser shows a Noise Spectral Density (NSD) of about -138 dB/Hz for most of its range
of operation (1 kHz to 150 MHz). To detect the DAC noise floor an additional pre-amplifier
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Figure 4.3.: Noise Spectral Density (NSD) at DAC output from 300 kHz to 62.5 MHz. This
measurement refers to the NSD at the input of the pre-amplifier. The DAC is
low-pass filtered on the Red Pitaya board with a transition frequency of 50 MHz
causing the NSD to decrease above that frequency. The average background
NSD shown is measured with the input of the amplifier connected to ground.

of type ZFL-500HLN+ [45] was used.

The pre-amplifiers nominal frequency range of 10-500 MHz does not fully cover the lower
frequencies. A transmission measurement of the pre-amplifier is taken using a network
analyser. The gain is 23.4 dB within the nominal frequency range and decreases to 21.6 dB
at 300 kHz.

To measure the background noise caused by amplifier and analyser the input of the amplifier
is connected to ground and a background noise spectrum is measured. Then the output of
the Red Pitaya DAC is connected while set to a DC voltage of +1 V and a noise spectrum is
measured. Both noise measurements are divided by the gain measured for the pre-amplifier.

The result is shown in fig. 4.3. From this spectrum an average noise level at the DAC output
can be determined giving:

NSDDAC,full = −140.8 dBm/Hz→ Neff = 13 bit (4.7)

This assumes a flat noise spectrum and only applies to the measured frequency range (see
also tab. 4.1 for comparison).
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Note that this graph uses a logarithmic frequency scale. Above 300 kHz the
amplifier used for this measurement distorts the results. Also note that this is
not 1/f noise, which would resemble a linear function with a slope of 20 dB per
decade.

The lower frequency range (0.1-300 kHz) was measured in a similar way using a Stanford
Research SR560 [46] as pre-amplifier. The result presented in fig. 4.4 shows a huge excess
noise below 100 kHz. For the frequency range below 40 kHz the NSD is above:

NSDDAC,intermediate & −112 dBm/Hz (4.8)

The cause of this excessive low-frequency noise seems to lie on the Red Pitaya board. Due
to the smaller frequency range the total noise power is only approximately double, yielding
an effective number of bits of:

Neff = 12 bit (4.9)

Finally a measurement of the DAC spectrum with a single tone at 110 kHz and 0 dBFS =
10 dBm output power is taken (see fig. 4.5). The noise floor was measured at 4 frequencies
with an average of -136 dBm/Hz. The measurements indicate that the noise spectrum is flat.
Analogous to the dynamic measurement for the ADC we integrate the NSD and find the
SNR:

SNR =
Pcarrier

NSDDAC,dynamic · 62.5MHz/1Hz
= 68 dB→ ENOB = 11 bit (4.10)
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Figure 4.5.: Spectrumwith suppressed low frequency carrier and additional point-wise noise
measurements. In order to preserve the full sensitivity of the spectrum analyser,
the carrier is suppressed with a simple RC high-pass filter with a transition
frequency of ~25MHz. The spectrum analyser was set to detect monochromatic
signals. The point-wise measurements show the true noise level (start of sec.
4.2).

This is only a rough estimate since the noise floor may be lower for high frequencies and
should also exhibit the intermediate frequency properties measured for the static case. In
addition this calculation disregards harmonic distortions.

Input to output delay

The delay introduced by the entire signal chain (AD, digital signal processing, DA) is
significant compared to the sampling rate of 125 Msps which corresponds to a sampling
time of 8 ns. The delay of a signal from entering the ADC input over the FPGAwith minimal
processing to the output of the DAC is:

∆t ≈ 130 ns (4.11)

which corresponds to ~16 sampling time steps. It limits the bandwidth that may be achiev-
able by reducing the phase margin (see also sec. 2.5).

Although it is part of the physical device, that would usually be called the controller, it
may be added to the process dead time absorbing ADC and DAC into the process. This is
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Figure 4.6.: Delay of a signal from input to output of the Red Pitaya. A rectangular input is
sent to the Red Pitaya and also used as trigger for the oscilloscope. The delay
is measured from the midpoint of the input signal to the midpoint of the output
signal.

justifiable since the delay arising due to the calculations for the control algorithm (3 clock
cycles at 125 MHz clock frequency i.e. 24 ns) is small compared to the delay introduced by
the converters and possible processing that is done before or after the controller calculations.

The control bandwidth limitation due to the delay may be estimated by calculating the
frequency at which it causes a phase of −180◦. This is the case for:

f−180◦ =
1
2∆t

(4.12)

For 130 ns delay this yields a maximum achievable control bandwidth of ≈ 4 MHz (for a
more details see eq. 2.36).

We may compare the results for resolution and bandwidth to the values necessary for some
control applications (see tab. 4.2). We find that most applications require a better output
resolution than can be achieved by the Red Pitaya. However bandwidth should not be a
problem and for standard dipole traps Red Pitaya could be used without limitations.

4.3. The intensity stabilization test setup

The setup shown here (see fig. 4.7) can be used to control light power fast (≈1 µs) and
over a wide range (> 1 decade). Usually this cannot be achieved by changing typical laser
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4.3. The intensity stabilization test setup

Stabilized parameter Input resolution Output resolution Bandwidth
Laser frequency via spectroscopy 10−2 10−5 5 kHz

Laser phase in an optical phase-locked loop 10−2 10−5 3 MHz
High finesse cavity length 10−2 10−5 to 10−6 50 kHz
Temperature of a laser 10−5 10−4 1 Hz

Intensity, high end dipole trap 10−4 10−4 0.5 MHz
Intensity, planned high end dipole trap 10−5 10−5 0.5 MHz

Intensity, standard dipole trap 10−3 10−3 0.5 MHz

Table 4.2.: A table of performance requirements for different control applications in quantum
optics experiments. The basis of the shown estimates is experience in the labor-
atory [47]. Some simple estimates are shown in A.1. The effective resolution of
the Red Pitaya DAC is not suitable for most applications while the delay is not a
problem. State of the art converters can solve most of these issues (see 6).

operating parameters, e.g current, which may be used for frequency stabilisation. This is
why we rely on an Acusto Optical Modulator (AOM) [49] to achieve this.

In an AOM a running acoustic wave is sent through a transparent, refractive material (usually
a crystal or glass). Since density changes lead to changes in refractive index this running
wave can be considered a moving refractive transmission grating. In the configuration used
here the frequency of the sound wave and with it the direction of the first diffraction max-
imum is held constant. An aperture is then used to only transmit the first maximum. Since
the fraction of light diffracted into the first maximum depends on the amount of change in
refractive index induced by the density changes as a result of the sound wave we can control
the amount of power that is transmitted via the intensity of the sound wave [51].

There are two characteristic time intervals related to this working principle. On the one
hand the time that a change of amplitude needs to travel from its source to the beam. On
the other hand the time it takes for the change to propagate through the beam diameter.
Typically the first is much longer than the latter. They of course depend on how strongly the
beam is focused and how far away from the sound source it passes the refractor. Based on
this knowledge we can predict that the time travelling to the beam will produce a dead time.
The time travelling through the beam will result in a rise of optical power in the shape of a
Gaussian error function provided the beam has a Gaussian transversal intensity profile and
the rise in amplitude is instantaneous.

Indeed when taking the step response of the system (see fig. 4.8) we observe a rise in optical
power after some delay. It has approximately the shape of an error function. However since
we use the FOPDT model we apply the rules stated for the pure exponential (see fig. 2.6) as
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Figure 4.7.: Setup for intensity control with fibre-coupled AOM. The diode laser [48] with
external cavity is running at 852 nm. The AOM [49] transmits a fraction of
the incoming laser power depending on the electrical power it receives from the
driver which is steered by the controller. Behind the AOM the beam is split into
two each going on a photodiode [50]. One photodiode is used as feedback for
the controller, the other to take out of loop measurements.

approximation to obtain dead time θ and characteristic time τ:

θ = 693 ns (4.13)
τ = 23 ns (4.14)

The fact that the error function is clearly visible suggests that the amplitude changes fast
enough. Nevertheless this was also tested directly. The AOM driver has a rise time of:

tr,driver ≈ 20 ns (4.15)

which of course does not take the behaviour of the sound source inside theAOM into account.

The measured times can be used to tune a PI, PID or IMC controller based on the FOPDT
model. As discussed (in sec. 2) this controller requires feedback which is provided by the
in loop photodiode. The out of loop diode provides an independent measurement of the
beam power which is needed for the evaluation of the closed loop noise characteristics. Both
photodiodes are of the same type (Thorlabs PDA10A-EC [50]).

Besides the timing characteristics of the AOM the change in light power when changing the
input electrical power depends on the power i.e. the steady state gain of the AOM is not
linear. This leads to a nonlinear behaviour of the process.
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5. Comparison of a digital and an analogue
controller

5.1. Analogue reference controller

To benchmark the performance of the Red Pitaya we implement a digital PID controller
compare it to a state-of-the-art analogue laser servo. For this purpose we choose the D125-2
laser servo by Vescent Photonics, as reference [52]. It is a PI2D controller with a bandwidth
of >10MHz, which is sufficient for this comparison. The I2 means that it has two integrators
connected in series. The integrators and the differentiator can be set to discrete transition
frequencies or deactivated individually.

Furthermore there is a voltage offset knob which corresponds to a static setpoint. For a
reasonable step response measurement however an electronic input is needed. Since the
available input has an extremely limited dynamic range the setpoint was instead subtracted
from the photodiode signal.

In difference to the digital controller, for the Vescent laser servo the setpoint voltage has to
be subtracted from the analogue voltage provided by the photodiode.

5.2. Step responses

Since our system is dead time limited we use the improved PI tuning (see eq. 2.51 in sec.
2.5). The transition frequency for the Red Pitaya can be calculated from the dead time
θ including the delay introduced by the Red Pitaya (total ~820 ns) and the low pass time
constant τ (~23 ns):

f i =
2π
τi
=

2π
τ + θ/2

= 373 kHz (5.1)

The digital controller can be set to exactly this frequency while for the analogue controller
the nearest setting of f i = 500 kHz is selected.

One can calculate an estimate of the controller gain based on the approximately linear part
of the process gain kp via:

kc =
τ + θ/2

1.7 · θkp
= 0.24 (5.2)

The digital controller can be set to this value conveniently and it only deviates slightly from
the value of kc = 0.23 chosen for the comparison of the controllers.
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Figure 5.1.: Comparison of closed loop step response for the two controllers in PI mode.
Both controllers are set to similar transition frequencies (Red Pitaya: 373 kHz,
analogue controller: 500 kHz) while the controller gain is adjusted to get a slight
overshoot of approx. 10 %. In order to suppress 80 MHz modulation caused by
the AOM during analysis a digital lowpass with a transition frequency of 62.5
MHz is applied to both traces.

The step response of each lock after the described tuning are presented in fig. 5.1 and show
very similar behaviour. After the process dead time (caused by AOM) has passed both re-
sponses rise rapidly because of the proportional action. From looking at the step response of
the two locks it seems that both systems have the same dead time. However the trigger signal
was generated using the second DAC output of the Red Pitaya. Therefore any delay between
the command to change the setpoint from the PC connected to the Red Pitaya and the DAC
output is not included here. The rapid rise then stops and continues linear. As mentioned in
sec. 2.1 proportional action can only raise the controlled variable, in this case intensity, to a
fraction of its desired value. During the dead time the error signal has not changed hence it
has been constant. Therefore the integrator has applied linearly rising control action which
is the reason for the linear rise of the response. When the rapid rise of the intensity is fed
back to the controller after one dead time the error signal is decreased as rapidly albeit not by
the same amount as in the first rise. This of course is visible in the response one dead time
after the initial rise of the response as a kink downwards that ends the linear part. Which is
then followed by a quadratic part, another smaller kink and so forth converging to the setpoint.

The most significant difference can be found comparing the position of the kink at the end of
the linear rise. For the Red Pitaya it is slightly delayed compared to the analogue reference
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5.2. Step responses

by ~0.1 µs. Considering that the analogue controller may also have some delay time this is
in good agreement with the added delay of the Red Pitaya measured in sec. 4.2.

-20

-10

 0

 10

G
ai

n 
/ d

B

Red Pitaya closed loop PI impulse reponse

-3dB cut-off at 530kHz

-240

-180

-120

-60

 0

 10  100  1000  10000

P
ha

se
 / 

°

Frequency / kHz

-180° cut-off at 490kHz

Figure 5.2.: Bode plot of the closed loop impulse response from the step response of the Red
Pitaya (see fig. 5.1). Gain stays close to unity (0 dB) up to the lowpass-like
cut-off at 530 kHz. The phase decreases approximately linear (exponential in
semi-logarithmic representation). This tells us that the behaviour is dominated
by the combined delay of Red Pitaya and Process (830 ns).

To evaluate control bandwidth using the closed loop step response data, we numerically
compute the first time derivative of the step response and then use a DFT that gives the
closed loop transfer function T ( f ) shown in fig. 5.2 for the Red Pitaya and in fig. 5.3 for
the analogue reference. As described in sec. 2.5 the frequency at which the gain falls below
-3 dB indicates the control bandwidth. The bandwidth of the analogue reference is higher at
610 kHz than the one of the Red Pitaya PI which reaches 530 kHz. The difference is ~15%
(of the higher bandwidth) which is also the approximate amount of dead time added by the
Red Pitaya. We therefore assume this to be the origin of this difference.

Next we examine the frequency at which the phase falls below −180◦. For the analogue
reference this is the case at 500 kHz and for the Red Pitaya PI at 490 kHz. The reason this
is more similar than the control bandwidth is that the delay of the initial response is not
increased by the Red Pitaya. However the upper limit from the process dead time of 695 ns
is 720 kHz (eq. 2.36). Neither PI controller can reach this limit because of the relatively
slow linear rise that makes up the second part of their response.
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Figure 5.3.: Bode plot of the open loop impulse response calculated from the closed loop PI
step response of the analogue controller (see fig. 5.1).

After comparing the step responses we also want to compare the noise characteristics of the
two controllers in the following section.

5.3. Closed loop noise

A typical goal when building an intensity control loop is to not only stabilize the intensity
at steady state but to also achieve a low root mean square (rms) noise amplitude. The ratio
of this noise amplitude to the average intensity is called Relative Intensity Noise (RIN). The
average intensity is considered a carrier signal at frequency zero. Therefore the spectral
density of the RIN is denoted as dBc/Hz (dBc: dB relative to carrier).

There are two monitoring ports on the analogue controller where the error input signal is
available amplified by 20 dB and filtered. The AC monitor covers a frequency range of
10 Hz-20 MHz and was used as pre-amplified signal for the RIN spectral density measure-
ments with a spectrum analyser.

The closed loop RIN measurement of the two controllers in comparison shows some sim-
ilarities and some differences between Red Pitaya and analogue controller (see fig. 5.4). It
is important to keep in mind that both controllers do not operate at their full dynamic range
and therefore not under optimal conditions. The input voltage for the controller of 0.2 V
is only 10% of the input range of the Red Pitaya (±1 V) and 20% of the input range of the
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Figure 5.4.: Relative Intensity Noise (RIN) spectral density measured via out of loop pho-
todiode using a spectrum analyser. The RMS Voltage noise from the bare
photodiode is treated as if it was intensity noise to provide a comparable estim-
ate of the electronic background noise. The shot noise limit (being the lowest
physically achievable RIN spectral density) is not shown here since it is far lower
at -147 dBc/Hz with 0.23 mW optical power at 852 nm [53].

analogue controller (±0.5 V). The output voltage is similar to the input voltage and therefore
at 10% of the output range of the Red Pitaya (±1 V) and only 1% of the output range of the
analogue controller (±10 V). This arguably favours the Red Pitaya since it uses a larger part
of its total dynamic range.

At frequencies < 1kHz residual harmonics of the mains frequency (50 Hz) are visible in
all measurements including the background. This indicates that they are caused by the
photodiode and subsequently imprinted on the laser power by the controller. From 1 kHz
up to about 500 kHz the analogue controller shows a flat RIN spectral density approx. 5
dBc/Hz higher than the electronic background. At 500 kHz the control bandwidth limit is
reached and the RIN spectral density decreases. At frequencies >1000 kHz both controllers
exhibit a series of peaks of unknown origin in the RIN spectral density.

The Red Pitaya does not reach the same noise levels as the analogue reference. Its RIN spec-
tral density is generally higher by approx. 7-12 dBc/Hz and shows a broad peak between 10
kHz and 100 kHz probably caused by the DAC noise which shows a similar spectral feature
(see fig. 4.4). From 300 kHz on it decreases in a similar way as for the analogue controller.
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5. Comparison of a digital and an analogue controller

We integrate the RIN spectrum from 1 kHz to 1000 kHz and obtain the total relative rms
noise amplitude within the control bandwidth. The lower limit was chosen to exclude resid-
ual harmonics of the mains frequency. The upper limit corresponds roughly to the control
bandwidth. The bare photodiode produces 0.5% relative noise. The closed loop with ana-
logue controller is measured at 0.8% and the Red Pitaya PI at 1.5%. This measurement only
provides a rough comparison and could be improved by adapting the input and output ranges
and another photodiode. Nevertheless it shows that the Red Pitaya is as expected from the
measurements of the converter properties not able to provide the same noise performance
as the analogue reference.

The comparisons between analogue reference and Red Pitaya are made on the basis of noise
and bandwidth of a simple PI controller on the Red Pitaya board. But what is possible with a
more advanced algorithm? The next section will present some results regarding an internal
model controller.

5.4. Application of internal model control

After comparing the capabilities of a PI controller based on the Red Pitaya with a state-of-
the-art analogue controller, here we present an application in which the digital aspect of the
controller plays a crucial role. A proof of concept implementation of an Internal Model
Controller (IMC) based on the First Order Plus Dead Time (FOPDT) model is tested (see
sec. 2.4). I measured steady state gain of the process and selected an approximately linear
amplitude range to perform a step response test of the IMC.

The result of this test is shown in fig. 5.5. Owing to feedforward, the response of the
intensity to a stepwise change of the set point displays approximately the same slope over
most of the step amplitude. In contrast, the response of the PI controller exhibits the same
steep slope only in the initial part and becomes about 15 times slower during the linear part
of the response driven by the integrator (see sec. 5.2). This leads to a smaller ISE:

ISEIMC(12 µs) = 8.0 µs2, ISEPI(12 µs) = 8.7 µs2 (5.3)

The long term behaviour shows several kinks similar to the ones visible in the PI response.
They are a clear sign of model mismatch. The internal model prediction does not fit the
measured value of the controlled variable (i.e. the beam power) and the setpoint is changed
to correct this (sec. 2.4).

From our theoretical understanding of the IMC scheme we can argue that the dips visible
in fig. 5.5 after the initial rise of the response are indications that two parts of the model
do not match the process. One is the dead time. In the shown case it is underestimated so
the output of the model rises earlier and faster than the output of the process. This leads to
a decrease in control action and therefore a decrease in the controlled variable (intensity)
one dead time later. When the controlled variable catches up to the predicted rise shortly
after (~10 ns) the control action returns to its intended value. The dead time can be changed
in multiples of two clock cycles (2 · 8 ns). Comparing the discrete resolution to the overall
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Figure 5.5.: Normalised IMC and PI step responses using Red Pitaya. The responses were
recorded over different amplitudes and normalised to make them easier to com-
pare. This explains why the noise associated with the PI signal appears stronger.
The responses are low pass filtered as described above (see fig. 5.1).

dead time of 820 ns, one could argue that the slight mismatch is not a limitation. However,
the prediction must be correct on a much shorter time scale corresponding to a fraction of
the rise time of about 50 ns.

In addition the modelled response is of the from 1 − exp(−ωt) while the actual response is
of the form of erf(t) (see fig. 4.8 and sec. 4.3). The predicted response should then rise
faster than the process response in the beginning and slower in the end. This exacerbates
the dip in the controlled variable introduced by the dead time mismatch and adds the slight
overshoot at the end of the dip.

These considerations cannot explain, though, why the output stays above its final value for
a relatively long time. This might be caused by the nonlinearity of the process gain. Since
the IMC can be viewed as a classic feedback controller (sec. 2.5) we may also evaluate
the closed loop impulse response of this equivalent controller in the same way as for the PI
controller. The result presented in fig. 5.6 shows that control bandwidth is more than four
times higher for IMC (2400 kHz) compared to PI (530 kHz).

The phase cut-off is also slightly improved from 490 kHz (PI) to 620 kHz (IMC). The limit
of 720 kHz is not reached in part due to computational delay caused by the IMC algorithm
(~24 ns) and various other effects that require further investigation.
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Figure 5.6.: Bode plot of the closed loop impulse response from the step responses shown
in fig. 5.5. Gain stays close to unity (0 dB) up to the lowpass-like cut-off at
530 kHz for PI and at 2400 kHz for IMC. The phase decreases similarly for
both control schemes while reaching −180° at 620 kHz for IMC as opposed to
490 kHz for PI.

Possible ways to improve over this proof of concept test will be outlined in the next section
among other ideas.
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6. Conclusion and outlook

In this work I have presented
The digital controller based on the Red Pitaya compared to the Vescent laser servo can be
used as an example and help to guide the selection of a digital device more suitable to reach
or even surpass the performance of the Vescent laser servo. Special attention has to be paid
to the converters and the board they are placed on to achieve low noise and good resolution.
High resolution ADCs and DACs with 20 bit nominal are available for sampling rates of up
to 1 Msps [54], [55] . A resolution of 20 bit corresponds to a relative resolution of 10−6.
This is sufficient for all intended applications (tab. 4.2). If the sampling time is 1 µs for
both devices the delay amounts to at least 2 µs limiting the achievable control bandwidth to
approx. 250 kHz (eq. 4.12). This is fine for most relevant applications.

For high bandwidth applications converters with 16 bit corresponding to 1.5 · 10−5 relative
resolution with lower delay times of 100 ns (ADC) and 20 ns (DAC) can be used [56], [57]
. Provided computation time delay added by the FPGA can be kept under 20 ns such a con-
figuration would provide a control bandwidth of >3 MHz (closer to the one of the analogue
reference). Adding an analogue low pass filter after the DAC, excess bandwidth can be
sacrificed to reliably reach the nominal resolution by oversampling and noise shaping [25].
This master thesis can serve as guideline how to characterise such ADCs and DACs, which
is a crucial part of evaluating if a digital controller is fit for a given task.

To then harness the possibilities of an FPGA based controller a pure FPGA system should
be considered removing the overhead of programming for a heterogeneous system which in
return does not lead to any advantage for our intended applications. It is also possible to
use software tools for designing digital filters and converting the design to HDL code (e.g.
MATLAB). Preprogrammed and optimised modules provided by the FPGA manufacturer
(that are usually well documented) can implement utility functions (such as user interface
etc.) and may help avoiding some technical difficulties encountered during this project (see
5.4).

Using these tools one the presented IMC scheme could be improved by implementing a
better frequency space model of the AOM and applying a digital band-stop filter eliminating
unwanted resonances. Since such resonances often limit the bandwidth when using piezo
elements (e.g. cavity length stabilisation) they too might benefit from IMC. In addition auto-
mated linearisation or gain scheduling can help with nonlinear systems. Further automation
like automated search of and lock to a dispersive signal as used in many control loops is
possible.
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6. Conclusion and outlook

In the long term artificial intelligence could be used to supervise and adapt control loops
as conditions change as well as provide data logging and remote analysis of the controlled
system. This would ensure optimal conditions for experiment and researchers.
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A. Appendix

A.1. Performance necessary for typical quantum optics control
applications

This section presents some rough estimates leading to numbers shown in tab. 4.2 [47]:

• Laser frequency via spectroscopy:
– Output resolution, typical linewidth of <100 kHz divided by typical scan range
of 10 GHz

– Bandwidth, mechanical resonances in a piezo actuator system with high mass
load

• Laser phase in an optical phase-locked loop [58]:
– Bandwidth, modulation bandwidth for laser diode current

• High finesse cavity length [59]:
– Output resolution, inverse finesse, since Fabry-Perot resonance frequency propto
length, finesse = free spectral range divided by width of resonance

– Bandwidth, piezo actuator system with low mass load

• Temperature of a laser [60]:
– Input resolution, resolution of a high precision temperature sensor divided by
typical temperature range of 10 K

– Bandwidth, time scale at which typical devices change temperature (1 s)

• Intensity, dipole trap:
– Bandwidth, limited by the dead time of the AOM (typ. <1 µs)
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