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“Accurate and minute measurement seems to the non-scientific ima-

gination, a less lofty and dignified work than looking for something

new. But nearly all the grandest discoveries of science have been

but the rewards of accurate measurement and patient long-continued

labour in the minute sifting of numerical results.”

William Thomson, Baron Kelvin1 CHAPTER 1

Introduction

Breakthroughs such as the discovery of the laser, laser cooling, particle trapping, and the development of

methods for manipulating and detecting the state of single quanta enable impressive control of complex

quantum systems. Applications are prominent in quantum communication and cryptography [2–4],

quantum metrology and sensing [5–8], as well as quantum information and simulation [9–13]. One

promising architecture for the latter are ultracold neutral atoms trapped in optical lattices [13, 14].

Our group has built a two-dimensional discrete quantum simulator (DQSIM) where an ensemble of

caesium atoms are trapped and cooled at discrete positions of a three-dimensional optical lattice [15].

Two long-lived hyperfine ground states form an effective qubit. The particularity of our experiment is the

usage of two independent lattices of orthogonal polarization, each coupling to one of the qubit states [16].

A relative shift of the two lattices allows two-dimensional state-dependent transport, such that quantum

mechanical interference effects of multiple indistinguishable atoms can be studied or exploited for other

measurements. For instance, the atoms prepared in the apparatus were used as sensitive samples for

magnetic fields and differential light shifts [17]. With Ramsey imaging, the in situ reconstruction of

optical potentials is achieved [18]. The direct measurement of the Wigner function of the cold atoms

was proposed [19], as well as simulations of topological insulators [20, 21], direct measurements of the

exchange phase in a two atom interferometer [22], and boson sampling with cold atoms [23].

Imaging is at the heart of most experiments with cold atoms, including ours, because it provides

access to desired observables [14, 24–27]. Established methods include absorption imaging [28–35],

fluorescence imaging [18, 36–49], and dispersive coupling to a cavity [50–58]. Our DQSIM machine

uses fluorescence microscopy with a state-of-the-art objective of high numerical aperture NA = 0.92

providing an optical resolution at the level of an Abbe radius of 463 nm. Being smaller than the horizontal

lattice constant of 612 nm, this enables single-site resolved imaging and addressing of individual atoms

in the lattice [59], making it a so-called quantum gas microscope [24].

Usually, imaging involves integration along the observation axis resulting in information loss. While

this is irrelevant for experiments in one- or two-dimensional geometries, in the three-dimensional case

special techniques are needed to circumvent the loss of information and to resolve the position of atoms

in all three dimensions. One possible approach is tomography, in which multiple images are acquired

with the microscope set at different focal planes each time [46, 60, 61]. However, the need for multiple

images represents an experimental restriction which is undesirable, for example due to finite coherence

times. Although not suitable for imaging optical lattices, an approach involves letting three-dimensional

1
In an address to the British Association for the Advancement of Science in his role as its president [1], p. 91.
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Chapter 1 Introduction

ensembles of atoms fall through a thin light sheet while capturing images in a pulsed fashion [62].

Another imaging method resolving three dimensions, but so far realized only for noble gases relies on

metastable atoms, falling onto a microchannel plate detector once the trapping potential is switched

off. The atoms are spatially resolved by detecting the free electrons generated at the detector surface

by the quenching of the internal state and concomitant release of energy. The measured arrival times

provide information about the vertical position [63, 64]. Ion microscopes for cold atoms work on the

same principle, except that the atoms are ionized before being accelerated onto the detector [65–67].

This method exceeds the diffraction-limited resolution limit of optical systems and exhibits a much

higher depth of field (DOF). However, the axial resolution is still in the range of 1 ➭m [67] and the

micro-channel plates have a limited detection efficiency in the range of 40 to 86 % [24, 68]. This is

significantly less than well over 99 % achievable with fluorescence imaging due to the large number

of photons detected [24]. Light field microscopy using microlens arrays has also been used [69], but

has a limited spatial resolution. The recently realized method to image cold atoms entirely without a

microscope objective, but using a multimode fiber, also enables the capture of all three dimensions, as

the measured field can be reconstructed for several planes from a single measurement [70].

In this thesis, I present a novel technique enabling three-dimensional localization of single atoms in an

optical lattice up to sub-micrometer precision over an enhanced DOF from a single experimental image.

It consists of changing the microscope’s response to a point source, the so-called point spread function

(PSF), such that it has an azimuthally structured shape, performing a rigid rotation along the observation

axis, the angle of which provides information about the axial position. This is done by imposing on

the collected fluorescence light a phase modulation built up from a superposition of Laguerre-Gauss

(LG) modes in the pupil plane by a spatial light modulator (SLM). I demonstrate this method using the

DQSIM quantum gas microscope with an engineered double-helix-shaped PSF. As I show, this enables

axial resolution at the level of the vertical lattice separation of 532 nm even at lower numerical apertures

while preserving the lateral resolution, overcoming the limitations of retrieving the axial position through

the defocus alone.

Axially rotating intensity distributions were first described in 1996 [71] and were later proposed for

depth estimation [72]. Thereafter, such PSFs have been employed for three-dimensional localization of

single molecules beyond the diffraction limit in the field of microscopy of biological structures [73–75].

It has since become an active field of research with a variety of advancements [76–83].

In the DQSIM apparatus the information about the axial position of the atoms is important, for

instance, when measuring multi-particle interference using state-dependent transport. In fact, it must

be insured that all atoms lie in the same vertical plane. The novel three-dimensional quantum gas

microscope allows one to identify and thus post-select atoms in a desired plane. This complements the

spectroscopic method of preparing single planes from a lattice of which many planes were originally

filled, as presented in Reference [84]. Three-dimensional imaging however also entails the ability to

bring quantum simulations into three-dimensional geometries.

Following this introduction in Chapter 1, I present the experimental setup of the DQSIM experiment

in Chapter 2. I particularly address the aspects necessary for the understanding of the subsequent

measurements, as well as my contributions to the setup. Chapter 3 is about my contributions to a deep

horizontal lattice. In Chapter 4, I present the three-dimensional imaging of single atoms. I describe

the technique of preparing atoms in a single plane, the concept of PSF, and the resolution limit. I then

discuss existing methods of three-dimensional imaging, in particular the rotating PSFs. Finally, I present

the experimental realization and the measurements performed. Chapter 5 draws a conclusion and gives

an outlook to this thesis.

2



CHAPTER 2

Experimental apparatus and techniques

Several unique properties make neutral atoms in optical lattices a promising platform for quantum

simulations [10–13]. Laser cooling techniques and optical pumping allow to establish a well-defined

initial state. Hyperfine states, for instance, can be conveniently coupled by microwave radiation, or by

Raman transitions. The final states of individual atoms pinned in an optical lattice are made accessible

by recording their fluorescence. High-resolution imaging systems make it possible to detect many atoms

in close proximity at once. Yet, the atoms do not interact unless they are made to do so.

Building on a conceptually analogous experiment in one dimension [16, 85, 86], the two-dimensional

discrete quantum simulator (DQSIM) was developed to combine the powerful tool of state-dependent

transport with the extended possibilities of richer geometry. For example, the exchange phase of two

indistinguishable atoms may be measured without the atoms ever having to come close to each other,

ensuring that the contribution of the exchange to their interaction energy is negligible [22]. Control over

the internal state and the position of atoms in two dimensions will also enable the study of topology and

artificial gauge fields with two-dimensional discrete quantum walks [20, 21] and the direct measurement

of the Wigner function [19]. The additional dimension allows a significant scaling of the atoms available

for experimentation.

The expansion to two dimensions brings new challenges that led to the development of improved

experimental components, such as a NA = 0.92 objective for high-resolution single-site detection [59]

and a vacuum glass cell with ultra-low birefringence to reduce decoherence [87]. Many details of the

experimental apparatus have been presented in the related dissertations, namely references [15, 17, 84].

In this chapter, I will briefly summarize the main experimental components and experimental

techniques used. I begin by presenting a typical experimental sequence in Section 2.1. The imaging

system and the optical lattice are described in more detail in Sections 2.2 and 2.3, respectively.

2.1 Overview and typical experimental sequence

The DQSIM experiments are stochastic in nature and are performed in repeated runs of an experimental

sequence consisting of state preparation, manipulation of states, and subsequent detection. In this section,

I provide an overview of the experimental setup and a typical experimental sequence.

Shielding atoms from their environment. Experimentation with cold atoms requires good isolation

from the environment so that they can be well controlled. For this purpose, only a thin background gas

3



Chapter 2 Experimental apparatus and techniques
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Figure 2.1: Cutaway drawing of the experimental setup’s central part. Taken and modified from Reference [15].

of atoms is prepared in a vacuum system. Figure 2.1 shows a cutaway drawing of the main part of the

experimental setup, namely the vacuum cell with the objective enclosed therein, surrounded by several

magnetic coils within a magnetic shielding. In this thesis, vertical always refers to the direction towards

the lens, whereas horizontal refers to the dimensions orthogonal to it.

The vacuum cell consists of a uniform prism with dodecagon base allowing a high degree of optical

access. As (e.g. stress-induced) birefringence leads to distortions in the polarization of laser beams

passing through the glass cell causing uncontrolled vectorial light shifts, special effort was put in reducing

it as much as possible [87].

Pre-cooling and trapping in a MOT. The
137

Cs atoms in the background gas initially at room

temperature must be trapped and cooled in order to gain control over their internal electronic and external

vibrational states. A magneto-optical trap (MOT), first demonstrated in 1985 [88], is used as a first

step. It consists of simultaneous cooling and trapping along all three directions by a combination of an

optical molasses and a magnetic quadrupole field. The optical molasses is a pair of counter-propagation

beams for each direction which is red-detuned to the cooling transition, which is chosen to be the

|𝐹 = 4⟩ → |𝐹′
= 5⟩ transition of the caesium D2 line. The level scheme is shown in Figure 2.2 a). The

scattering rate of photons is highest on resonance and decreases for larger detunings. For atoms moving

towards a red-detuned laser, the light will be Doppler shifted closer to resonance, leading to a higher

scattering rate. As the momenta of the spontaneously re-emitted photons average to zero, this results in

a radiation pressure in the direction of the beam. The six beams from all directions lead to a viscous

force effectively cooling the atoms. For an effective two-level system, the achievable temperature limit

is limited by the randomness of spontaneous emission to the Doppler temperature 𝑇D = ℏΓ/2𝑘B [89],

which amounts to 125 ➭K for the linewidth of the caesium D2 transition Γ = 2𝜋 × 5.2 MHz. However,

when accounting the degeneracy of the atomic states lifted by the AC Stark effect, is can be found that

even lower temperatures up to the recoil temperature can be reached [90].

Off-resonant scattering events lead to atoms decaying into the |𝐹 = 3⟩ dark state. To close the cooling

4
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Figure 2.2: a) The caesium level scheme showing the transitions for cooling and optical pumping. The Zeeman

sub-levels of the ground state are shown with lifted degeneracy from a magnetic field. The energy spacings are not

to scale. b) MOT configuration showing the anti-Helmholtz coils, the magnetic field lines and the 𝜎
±
-polarized

(red-detuned) beams. Taken and modified from Reference [15]. c) Sisyphus cooling principle on a transition

between a 𝐽 = 1
2

ground state |𝑔⟩ and a 𝐽 = 3
2

excited state |𝑒⟩.

cycle, a repumper beam tuned to the |𝐹 = 3⟩ → |𝐹′
= 4⟩ transition is therefore overlapped on the MOT

beams.

A position dependent force is needed to confine the atoms in a small region and prevent diffusion. A

MOT in a 𝐽
′
= 𝐽 + 1 configuration realizes this by an orthogonal circular polarization of each pair of

MOT beams and a quadrupole magnetic field. Figure 2.2 b) shows the configuration schematically. The

spatial linear inhomogeneity of the magnetic field creates a proportional differential Zeeman shift whose

sign is depending on the sign of the difference of angular momentum quantum number Δ𝑀𝐽 . This leads

to atoms being more likely to scatter with the red detuned beam of 𝜎
+

or 𝜎
−

polarization, depending on

their relative side of the magnetic field center, thus resulting in a restoring force acting towards the center.

The MOT is created about 1 mm below the surface of the objective lens and subsequently transported

to the objective’s working distance of 150 ➭m by changing the center of the quadrupole field using

compensation coils (cf. Figure 2.1).

Further cooling in the optical lattice. The atoms are transferred into the three-dimensional optical

lattice by turning on the lattice beams and turning off the MOT. Light-assisted collisions between pairs

of atoms lead to single-atom occupancy [91]. Being confined within single lattice sites, their motional

state is given by the respective lattice site’s vibrational level.

Polarization gradient cooling (PGC), or Sisyphus cooling, is employed for further sub-Doppler cooling

and imaging [90]. Horizontally, we use PGC on the D2 line (together with a repumper), while vertically

the D1 line is used in order to be able to collect the D2 fluorescence light for imaging while blocking the

D1 light by filters in front of the camera. We use beam pairs overlapped with the lattice beams which

have orthogonal linear polarization (lin⊥lin configuration) in each direction resulting in the polarization

varying between linear and circular every half wavelength. This causes spatially periodic light shifts in

Zeeman sublevels of the ground state. A schematic is shown in Figure 2.2 c). Atoms moving through the

5



Chapter 2 Experimental apparatus and techniques

potential landscape will be optically pumped into the Zeeman sublevel with lowest energy. As the optical

pumping takes some time, atoms will more likely be further ‘uphill’ when being optically pumped,

thus repeated pumping cycles dissipate the kinetic energy previously converted into potential energy.

Intensity and detuning of the PGC beams are optimized for optimal cooling by maximizing the atom’s

survival between consecutive images. For imaging, the PGC beams are optimized to yield a higher

scattering rate in order to collect more fluorescence photons.

State preparation. Sideband cooling techniques mediated by microwave photons for the horizontal

direction and by Raman transitions for the vertical can be employed to prepare about 95 % [17] or

90 % [84] of the atoms in the motional ground state along the different directions, respectively. This

enables the indistinguishability of the atoms required to probe quantum statistics and enhances coherence

times. However, these techniques were not used for the purposes of this thesis.

To prepare atoms in a certain internal state, a 𝜎
+

polarized beam resonant to the |𝐹 = 4⟩ → |𝐹′
= 4⟩

transition is used to optical pump the atoms into the outermost 𝑚𝐹 level of the ground state |↑⟩ :=

|𝐹 = 4, 𝑚𝐹 = 4⟩, cf. Figure 2.2 a). The degeneracy is lifted by a magnetic field defining the quantization

axis.

Coherent manipulation. Resonant microwaves couple |↑⟩ to the |↓⟩ := |𝐹 = 3, 𝑚𝐹 = 3⟩ at ≈ 9.2 GHz.

Together, |↑⟩ and |↓⟩ form an effective two-level system, or qubit, on which coherent manipulations

can be performed. For example, a 𝜋/2-pulse can create a coherent superposition ( |↑⟩ + |↓⟩)/
√

2. It

was proposed to utilize a spatial light modulator (SLM) to shine a site-resolved Raman beam through

the objective, adding to the global operations by microwaves the possibility to perform site-resolved

operations [20], thereby considerably extending the experimental toolbox.

The state-dependent lattice allows to perform position or momentum shift operations on each qubit

state separately. During the coherent manipulations, the intensity of the optical lattice potential is

adiabatically lowered to reduce the off-resonant scattering rate of lattice photons and thus maintain long

coherence times. The physical observables under investigation are mapped onto the qubit.

State detection. A projection on the qubit basis state |↓⟩ is performed by illuminating the atoms with

cooling beams tuned to resonance, heating out all atoms in |𝐹 = 4⟩. Subsequently, atoms remaining in

the |𝐹 = 3⟩ state, or specifically |↓⟩, can be detected by fluorescence imaging.

2.1.1 Laser system

The light for the horizontal PGC and the MOT is provided by a titanium-sapphire laser
1

and both the

repumper and the vertical cooling light each come from interference-filter-stabilized external cavity diode

lasers
2
. The lasers are actively frequency-stabilized using polarization spectroscopy setups. Acusto-optic

modulators (AOMs) in double-pass configurations allow for modulation of frequency and intensity, the

setting of which must be optimized for optimal cooling. I performed the realignment of all cooling and

imaging beams and the readjustment of cooling parameters. For the latter, I iteratively scanned (coupled)

intensities and frequencies of each beam and optimized survival between two fluorescence images in a

small central region.

1
Matisse CR from Sirah Lasertechnik, pumped by a Millennia 20eV from Spectra Physics.

2
Build in our group based on a design reported by [92] and characterized by [93].
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Figure 2.3: a) Schematic of the imaging setup. The fluorescence light of the atoms is collimated by the high-

numerical aperture (NA) objective at the working distance of 150 ➭m into a beam of 22 mm diameter. It then

passes a beam splitter (for the vertical MOT and PGC beams) with 90 % transmission for the imaging wavelength

of 𝜆D2 = 852 nm. A motorized iris aperture allows to reduce the NA. The light is then focussed down onto the

electron-multiplying charge-coupled device (EMCCD) camera by the tube lens. Filters in front of the camera

block residual light from the vertical cooling (at 𝜆D1 = 895 nm), the vertical lattice (at 𝜆𝑣 = 1 064 nm) and stray

light. A tube system (not shown in the figure) further reduces stray light. The optics (but not the camera) are

mounted on a vertical breadboard located above the vacuum cell. b) Example image of an isolated single atom and

of two atoms in adjacent lattice sites. Taken and modified from Reference [15].

2.2 Imaging system

An essential part of any experimental sequence is the detection of the number and position of atoms in

the optical lattice. The imaging system used for this purpose is shown schematically in Figure 2.3 a).

The in-vacuo objective lens collects and collimates the light from the fluorescing atoms. The maximal

half-angle 𝛼max of rays passing the lens defines the NA

NA = 𝑛 sin(𝛼max) (2.1)

with the refractive index 𝑛 of the medium in which the lens is working, which is 𝑛 = 1 for our case

of vacuum. With the high NA of 0.92 [59], the DQSIM microscope has an optical resolution of

𝑟Abbe = 𝜆D2/(2 NA) = 460 nm (Abbe criterion) and a depth of field (DOF) of 𝜆D2/(2 NA
2) = ±250 nm.

Example images of single atoms are shown in Figure 2.3 b). The field of view (FOV) (area within which

the microscope is diffraction limited) expands over ±38 ➭m [59] or equivalently, a total of about 120

lattice sites. The magnification of the system 𝑀 = 𝑓tube/ 𝑓obj is defined by the effective focal lengths of

the objective 𝑓obj = 11.96 mm [59] and the tube lens 𝑓tube. Depending on the NA, which can be variably

adjusted by a motorized iris
3
, the magnification is set by the choice of the tube lens so that the field of

view covers the chip of the EMCCD
4

as fully as possible. This way an Abbe radius 𝑟𝐴 is covered by as

many pixels as possible, but at least by the minimum number given by the Nyquist-Shannon condition

𝑟𝐴 > 2Δs [39], where Δs = Δpx/𝑀 is the sampling spacing in the object plane and Δpx = 16 ➭m is the

pixel size of the EMCCD camera. The imaging system was designed with a tube lens 𝑓tube = 1 250 mm for

3
IBM 65 from OWIS GmbH.

4
iXon Ultra 897 from Andor Technology Ltd.
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Chapter 2 Experimental apparatus and techniques

NA = 0.92, but as atoms were still loaded into several vertical planes, the DOF was meanwhile increased

by reducing the NA to ≈ 0.35, while also reducing the magnification by choosing 𝑓tube = 500 mm in

order to image a wider field of view [18].

The changes I made to the imaging system in view of three-dimensional localization of atoms in the

lattice are described in Section 4.5.2 of Chapter 4.

2.3 State-dependent optical lattice

The interaction of atoms with light far from resonance can be used to create conservative potentials in

which the atoms can be trapped. Besides optical tweezers or tweezer arrays consisting of tightly focussed

laser beams [60], an important realization in the field of quantum simulations are optical lattices formed

by interference of counter-propagating laser beams [13, 14, 94]. Optical lattices allow to trap arrays of

atoms at distances smaller than the wavelength.

Using two orthogonal polarizations, the lattice in the DQSIM experiment is designed to have two

state-dependent components which can be arbitrarily moved with respect to each other along the two

horizontal directions. This enables state-dependent transport of atoms, an experimental tool which

allows for instance to perform discrete-time quantum walks [20] and multi-particle entanglement [22].

2.3.1 Optical dipole potentials

A semi-classical description based on the Lorentz model applied to a two-level atom gives an intuition

on the potential created by a suitably off-resonant laser beam. As shown for example in Reference [95], a

light field at a large detuning Δ = 𝜔 − 𝜔0 at which saturation can be neglected causes a dipole potential

𝑈dip(𝒙) =
3𝜋𝑐

2

2𝜔
3
0

Γ

Δ
𝐼 (𝒙) (2.2)

and a scattering rate

Γsc(𝒙) =
3𝜋𝑐

2

2ℏ𝜔
3
0

(
Γ

Δ

)2

𝐼 (𝒙) , (2.3)

where 𝜔0 denotes the atom’s resonance, Γ the decay rate and 𝐼 (𝒙) the field intensity. Both𝑈dip and Γsc

are proportional to the intensity. Thus, atoms are attracted towards high intensities for red detunings

Δ < 0 and towards low intensities for blue detunings Δ > 0. Furthermore, it follows from Equations 2.2

and 2.3

ℏΓsc =
Γ

Δ
𝑈dip . (2.4)

High coherence times require a low rate of incoherent scattering of dipole trap photons. Therefore, for a

certain potential depth, large detunings and high intensities are used. A residual photon scattering due to

the absorptive part of the dipole interaction is however inevitable.

For a complete quantum mechanical description of the two-level system with ground state |𝑔⟩ and

excited state |𝑒⟩, a Hamiltonian describing the atom, the (quantized) field and their interaction has to be

considered. The interaction part HI = −�̂�𝑬 with the dipole operator �̂� = −𝑒𝒙 yields for second-order

8
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HDT 1 HDT 3

HDT 2

a) b)

Figure 2.4: a) AC Stark shifts in a two-level system with red-detuned perturbance. On the right side, the resulting

potential for a local intensity maximum is schematized. Modified taken from Reference [95]. b) Configuration of

the beams and trapping potential of the horizontal optical lattice. Taken and modified from Reference [84].

time-independent perturbation theory shifts of the energy eigenstates by

Δ𝐸 = ± |⟨𝑒 |𝜇 |𝑔⟩|2

Δ
|𝐸 |2 = ±3𝜋𝑐

2

2𝜔
3
0

Γ

Δ
𝐼 (2.5)

compared to the ‘bare’ eigenstates without the interaction. For the ground state, this AC stark shift

exactly corresponds to the dipole potential of Equation 2.2. The excited state shows the exact opposite

shift. As shown schematically in Figure 2.4 a), this allows to produce potential wells through spatially

inhomogeneous fields for the ground state.

Real atoms have of course a considerably richer level structure. The coupling strength between all

sub-levels (which also depend on the laser polarization) has to be taken into account. This leads to

the potential depth to be in general depending on the particular atomic state, a fact that will become

important in the following Section.

2.3.2 Lattice conĄguration

We trap atoms in anti-nodes of a bi-chromatic three-dimensional optical lattice. Vertically, i.e. along the

optical axis of the imaging objective, the atoms are confined within a standing wave formed by a beam at

𝜆𝑣 = 1 064 nm focussed to a waist of 𝑤 = 50 ➭m at the objective lens at which it is retro-reflected.
5

The

corresponding vertical lattice spacing thus amount to 𝜆𝑣/2 = 532 nm. I will refer to it as the vertical

dipole trap (VDT).

The horizontal dipole trap (HDT) is a square lattice created by the interference of two counter-

propagating beams (HDT 1 and 3) along the quantization axis and a third orthogonal beam (HDT 2).
6

Both HDT 1 and 3 are polarization synthesized, i.e., both intensity and phase of the orthogonal

polarizations 𝜎
+

and 𝜎
−

are independently controlled by a pair of AOMs [96]. I explain it in

Section 2.3.3 HDT 2 is linearly polarized along the vertical. Figure 2.4 b) shows the configuration. The

5
The laser light is provided by a Mephisto MOPA from Coherent Inc. with a maximal output power of 25 W.

6
The laser light is provided by a titanium-sapphire laser Matisse CS with reference cavity from Sirah Lasertechnik, pumped

by a Millennia 20eV from Spectra Physics.
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electric field of the horizontal optical lattice is thus described by the superposition

𝑬 (𝒙, 𝑡) =
3∑︁
𝑖=1

𝑬𝒊 (𝒙, 𝑡) (2.6)

of the three horizontal beams of equal amplitude 𝐸0, wavenumber 𝑘 = 2𝜋/𝜆ℎ, and frequency 𝜔, given by

𝑬1(𝒙, 𝑡) =
1
√

2

(
e
−i𝜙1𝒆𝝈+ + e

−i𝜙2𝒆𝝈−

)
𝐸0 E1(𝒙) e

i𝒌1𝒙−i𝜔𝑡
, with 𝒌1 = 𝑘𝒆3 , and (2.7)

𝑬2(𝒙, 𝑡) =
1
√

2

(
𝒆𝝈+ + 𝒆𝝈−

)
𝐸0 E2(𝒙) e

i𝒌2𝒙−i𝜔𝑡
, with 𝒌2 = −𝑘𝒆2 , and (2.8)

𝑬3(𝒙, 𝑡) =
1
√

2

(
e
−i𝜃1𝒆𝝈+ + e

−i𝜃2𝒆𝝈−

)
𝐸0 E3(𝒙) e

i𝒌3𝒙−i𝜔𝑡
, with 𝒌3 = −𝑘𝒆3 . (2.9)

The respective polarizations with respect to the quantization axis (along 𝒆3) can be expressed by the unit

vectors

𝒆𝝈+ =
1
√

2

(
𝒆1 − i𝒆2

)
, 𝒆𝝈− =

1
√

2

(
𝒆1 + i𝒆2

)
, and 𝒆𝝅 = 𝒆3 (2.10)

in terms of the Cartesian standard basis 𝒆𝒊 . The factors E𝑖 (𝒙) describe the spatial amplitude and phase

deformations resulting from the diffraction-limited nature of the respective beams. In a small central

region of the lattice we can assume E𝑖 (𝒙) ≈ 1, i.e. the plane wave approximation. The total intensity can

be decomposed into the contributions of different polarizations 𝑞 ∈ {𝜎+
, 𝜎

−
, 𝜋}

𝐼 (𝒙) =
∑︁
𝑞

𝐼𝑞 (𝒙) ≡
𝑐𝜀0

2

∑︁
𝑞

��𝑬 (𝒙, 𝑡)𝒆𝒒
��2 , (2.11)

which using the intensity of each beam 𝐼0 =
𝑐𝜀0

2
𝐸

2
0 gives

𝐼𝜎+ = 𝐼0

(
3

2
+ cos

(
𝑘 (𝑥2 + 𝑥3) − 𝜙1

)
+ cos

(
𝑘 (𝑥2 − 𝑥3) − 𝜃1

)
+ cos

(
2𝑘𝑥3 + 𝜃1 − 𝜙1

) )
, (2.12)

𝐼𝜎− = 𝐼0

(
3

2
+ cos

(
𝑘 (𝑥2 + 𝑥3) − 𝜙2

)
+ cos

(
𝑘 (𝑥2 − 𝑥3) − 𝜃2

)
+ cos

(
2𝑘𝑥3 + 𝜃2 − 𝜙2

) )
, and (2.13)

𝐼𝜋 = 0 . (2.14)

Choosing a wavelength between the D1 and the D2 line makes the dipole force sensitive to the qubit

states |↑⟩ = |𝐹 = 4, 𝑚𝐹 = 4⟩ and |↓⟩ = |𝐹 = 3, 𝑚𝐹 = 3⟩ as well as the polarization. This can be exploited

to make the dipole potential of the |↑⟩ state insensitive to 𝜎
−

polarized light. In fact, it can be shown that

the dipole potentials for the qubit states at 𝜆ℎ = 866 nm can be expressed by

(
𝑈↑
𝑈↓

)
= 𝑐0

(
1 0 1/2

1/8 7/8 1/2

) ©«
𝐼𝜎+

𝐼𝜎−

𝐼𝜋

ª®¬
, with 𝑐0 = −𝑘B × 2.717 pK/(W/m2) . (2.15)

The derivation is shown for example in Reference [97]. From Equations 2.12, 2.13, 2.14 and 2.15 it

becomes apparent that by controlling both phase (𝜙1,2, 𝜃1,2) and intensity of both circular polarizations,
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20
a) b) c)

Figure 2.5: State-dependent transport along orthogonal directions. Taken and modified from Reference [17].

a) Initial position of atoms in the lattice. Atoms are initially prepared in |↑⟩. After a certain waiting time, the

population becomes a mixture of |↑⟩ and |↓⟩. b) Image taken after state-dependent transport over 40 lattice sites

upwards for |↑⟩ and to the right for |↓⟩. c) Difference image between b) and a).

the lattice potential of both qubit states can independently be moved along both horizontal directions,

thus allowing state-dependent transport. Each qubit state experiences a square lattice with a lattice

constant 𝜆ℎ/
√

2 = 612 nm and an elliptical trapping potential with tighter confinement along HDT 1/3,

as shown in Figure 2.4. By setting all phases to zero and using the same intensity 𝐼𝜎+ = 𝐼𝜎− , the same

lattice potential is prepared for both qubit states.

A detailed description of the state-dependent optical lattice can be found in References [15, 20]. The

two-dimensional state-dependent transport was recently demonstrated as reported in Reference [17] and

shown in Figure 2.5.

2.3.3 Polarization synthesizer

The polarization synthesizer allowing independent control of the lattice potentials of both qubits is based

on digital intensity and phase control using a pair of AOMs modulating two orthogonal polarizations.

The setup is shown exemplarily for the HDT 1 arm of the lattice in Figure 2.6. An identical setup exists

for HDT 3. The light is split into two linear polarizations by a polarizing beam splitter. AOMs in

single-pass configuration modulate the phase and intensity. The first diffraction order is send through

Wollaston prism to further clean the polarizations and is then recombined by another Wollaston prim.

The beam is then mode-cleaned by a polarization-maintaining optical fiber. Pickup-plates split some

light for intensity and phase feedback, which is split into orthogonal polarizations using Wollaston

prisms and detected by amplified photodetectors. A pair of two waveplates allows to match the prism’s

polarization axes, thus minimizing feedback crosstalk between the polarizations. Finally, a quarter-wave

plate converts the linear polarizations into circular. As the quantization axis is parallel to the beam,

these correspond to 𝜎
+

and 𝜎
−

polarizations. HDT 1 and HDT 3 both have a reference beam of equal

optical length picked up shortly after the laser output to allow phase feedback. The feedback control is

realized by arbitrary waveform generators and a digitizer
7

with an integrated field programmable gate

array (FPGA)
8

on which PID-control is programmed.

The polarization synthesizer achieves a crosstalk extinction ratio of less than 10
−5

[17], which I was

7
M3300A6 from Keysight.

8
Kintex-7K410T, Xilinx, Inc.
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}
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Figure 2.6: Schematic of the polarization synthesizer for HDT 1. Parts were taken from Reference [84].

able to regain by readjustment after a longer shutdown of the experiment. As changing Rf powers
9

at

the AOMs cause pointing instabilities, an additional analog intensity lock precedes, allowing a higher

dynamic range and to run the AOMs at nearly constant Rf power. In order to augment the power usage

of the titanium sapphire laser for a deeper horizontal lattice, I changed the analog feedback as I report in

Section 3.2. My changes also include the replacement of the previous setup distributing the light for

each lattice arm into conventional polarization maintaining fibers
10

leading from the laser table to the

experiment table (cf. References [17, 84]) by a single large mode area photonic crystal fiber (PCF) fiber

and subsequent distribution into the lattice arms. Besides the thereby higher possible lattice intensities,

it has the practical advantage of recoupling into only a single fiber which is regularly necessary due

to pointing instabilities of the laser. Furthermore, this allowed me to move the photodetector giving

the intensity feedback on the other side of the fiber, thus including intensity changes due to coupling

efficiency changes into the feedback loop.

9
In a typical experimental sequence, the lattice is lowered during the coherent experimentation.

10
P3-780PM-FC-10, Thorlabs Inc.
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CHAPTER 3

Atom hopping suppression via deep lattice

potentials

Optical dipole traps have potential depths limited by the trapping light intensity. Typical trap depths

are below 1 mK [95]. Therefore, laser cooling techniques such as the optical molasses and polarization

gradient cooling (PGC) are employed to cool the atoms before loading them into the dipole trap (see

Section 2.1). In experiments simulating condensed matter Hamiltonians, finite tunneling probabilities of

atoms between lattice sites are part of the desired simulated system, for instance, electrons in a crystal

lattice [25]. In state-dependent transport experiments, however, uncontrolled hopping of atoms to other

lattice sites is undesirable. Therefore, sufficiently deep lattice potentials are employed bringing the

tunneling probabilities close to zero.

However, in our two-dimensional discrete quantum simulator (DQSIM), hopping could not be

suppressed to a satisfying level during imaging with PGC beams in the past [17, 84]. In this chapter, I

present my contributions to the apparatus allowing a twofold increase in horizontal dipole trap (HDT)

depth promising a higher suppression of hopping. This is not only a prerequisite for planned measurements

relying on deterministic transport and imaging, but also for the demonstration of three-dimensional

imaging which I present in Chapter 4. For this purpose, I have improved the power handling of the analog

intensity feedback as I describe in Section 3.2. Moreover, Section 3.3 presents the characterization of a

polarization-maintaining photonic crystal fiber (PCF) replacing conventional fibers, as its large mode

area allows significantly higher damage thresholds and lower stimulated Brillouin scattering. I designed

and built a fiber coupler to launch the beam with high coupling efficiency into the PCF. Finally, as I

present in Section 3.4, I measured and compensated the ellipticity and the astigmatism of the beam

originating from the laser resonator geometry allowing high fiber coupling efficiencies.

3.1 Optical lattice depths and hopping

For the simplified model of a cubic lattice of infinite extent, the hopping probability of an atom in the

vibrational ground state to a neighboring site gets below 1 % at a potential depth of𝑈/𝐸r ≥ 20
1

[25],

which assuming an average recoil energy of the D1 and D2 line of 𝐸r = 𝑘B × 189 nK [98] corresponds to

𝑈 ≥ 𝑘B × 3.8 ➭K for our optical lattice. During the coherent experimentation, the lattice is adiabatically

1
The hopping matrix elements of the single-particle Bloch eigenstates are computed on p. 897 of Reference [25].
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Chapter 3 Atom hopping suppression via deep lattice potentials

lowered to a depth of 50 ➭K for minimal scattering with lattice photons.
2

Following the simple model

calculation, it can be concluded that the lattice potential is deep enough to suppress hopping of motional

ground state atoms to a large extent. In fact, sideband cooling techniques allow temperatures of ≈ 1 ➭K

at which more than 90 % of the atoms are in the motional ground state [17, 84] (cf. Section 2.1).

However, during imaging, a higher thermal equilibrium of the PGC at ≈ 6 ➭K [17] is inevitable, as the

imaging relies on the scattered photons of the PGC beams. At this temperature, atoms also occupy higher

vibrational states which have larger tunneling probabilities. During imaging, the coherent evolution of

the qubit state becomes irrelevant allowing to use higher optical lattice intensities for deeper trapping

potentials. Being ultimately limited by available laser power, horizontal trap depths of 750 ➭K were

previously reached during the imaging, while vertically, a depth of 280 ➭K is used. The horizontal and

vertical hopping of atoms could however not be sufficiently eliminated [17, 84].

The frequency and intensity of the PGC beams are chosen to maximize the survival in a small central

region of the vertical dipole trap (VDT). However, the spatially inhomogeneous light shifts induced by

the VDT reducing to 50 % at a distance of 30 ➭m from the center make it challenging to optimize the

parameters over the entire field of view (FOV) simultaneously [84]. Since significantly more power is

available from the VDT laser, the VDT beam waist could be increased while maintaining the intensity,

allowing more homogeneous conditions. The intensity of the HDT is limited by the titanium-sapphire

laser power. Increasing the potential depth promises a reduction of the hopping rate.
3

For this purpose,

the entire setup was assessed for a more efficient use of available power.

In the previous setup [17, 84], the bottleneck in the HDT optical power was the laser damage threshold

(LDT) of the intensity-steering electro-optic modulator (EOM)
4

of 2.8 W,
5

a limited fiber coupling

efficiency due to astigmatism and ellipticity of the beam’s transverse mode and the damage threshold

and limit of stimulated Brillouin scattering of the three fibers guiding the light between the optical tables.

Overall, only 8 % of the 6.7 W laser power was arriving at the vacuum cell. This includes also the

losses arising in the polarization synthesizer (cf. Section 2.3.3), for instance due to maximal acusto-optic

modulator (AOM) diffraction efficiencies of ≈ 90 %, losses at optical surfaces and finite fiber coupling

efficiencies.

3.2 An AOM intensity control

The combination of a polarizer and an EOM is a common intensity modulator. Consisting of a crystal on

which a controllable electric field is applied, the linear electro-optic effect modulates the birefringence

of the crystal [99]. A linear polarization incident at 45
◦

with respect to the slow or fast axis is thereby

rotated depending on the electric field. The subsequent polarizer turns the polarization modulation into

2
In this section, I calculated the HDT potential depths by the Equations 2.12, 2.13, 2.14 and 2.15 with a peak intensity

of 𝐼0 = 2𝑃/(𝜋𝑤ℎ𝑤𝑣) in each lattice arm, where 𝑃 is the optical power per arm, 𝑤ℎ = 75➭m and 𝑤𝑣 = 25➭m are the

horizontal and vertical beam waists of the elliptical HDT beams.
3

It should be noted that the scattering rate of the (far off-resonant) lattice photons also increases proportionally with intensity

(see Equation 2.3), resulting in additional heating. Very high lattice beam intensities can thus lead to shorter lifetimes in the

deep lattice.
4

Conoptics Inc. M350-105 with high voltage amplifier model 302RM and Glan-Laser polarizer. The EOM M350-105 was

used to replace an EOM LM0202-IR from Gsänger Optoelektronik GmbH with 5 W LDT, whose crystal was damaged

presumably due to a change in pointing caused by a temperature excursion of the laboratory.
5

The manufacturer specifies a LDT of 5 W mm
−2

. Assuming the beam of total power 𝑃 to be Gaussian and using the measured

waist of 𝑤 = 0.6 mm, the LDT in optical power can be computed from the relation for the on-axis intensity 𝐼 = 2𝑃/(𝜋𝑤2).
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Chapter 3 Atom hopping suppression via deep lattice potentials

an intensity modulation. In order to increase the dynamic range of the digital intensity locks for the

optical lattices which have to be ramped up and down between coherent experimentation and imaging (cf.

Section 2.1), an EOM has been employed to steer the intensity within an additional analog feedback loop.

In addition, the higher achievable feedback bandwidth of 580 kHz [100] compared to the digital control

achieving 230 kHz [101] allows a higher intensity noise suppression which is important as intensity

noise contributes to decoherence [102].

AOMs on the other hand diffract incident light based on the acusto-optic effect [99]. An acoustic wave

at radio frequency is sent through a crystal creating a sinusoidal grating of the refractive index. In the

Bragg regime, the diffraction is mostly into the first order. By controlling the amplitude of the acoustic

wave, the diffraction efficiency can be tuned, thus allowing intensity modulation. EOMs typically have

higher LDTs as larger apertures are available. As the transmission efficiency of EOMs is only limited by

the optical surface qualities, they can reach ≥ 98 % with anti-reflective (AR) coated surfaces, while the

transmission efficiencies of AOMs suffer in addition from limited diffraction efficiencies, allowing up

to 90 % into the first order. For high powers, EOMs are therefore typically chosen. However, for the

available devices, the AOM’s LDT of 250 W/mm
2

is significantly larger than the EOM
6

with 5 W/mm
2
.

Despite the smaller aperture of the AOM, the full power of the laser can be used. AOMs are also

more resource-efficient as the crystals are easier to manufacture and no high-voltage drivers are needed.

Furthermore, the AOM at hand allows modulation up to 20 MHz
7

compared to the modulation bandwidth

of the EOM limited by the high-voltage driver to 200 kHz. Therefore, I decided to replace the EOM with

an AOM.

The AOM is operated in a so-called double-pass cat-eye configuration as shown in the highlighted

area of Figure 3.1, because it has higher beam-pointing stability than a single-pass configuration. The

technique is reported in the References [103, 104]. After the AOM, the beam passes through a lens and is

retroreflected by a mirror. The distances between AOM center, lens of focal length 𝑓 = 75 mm and mirror

are chosen to be 𝑓 each, such that diffraction angle drifts, for instance due to thermalisation processes in

the AOM crystal do not affect the beam pointing, as the beam is retro-reflected onto itself independent of

the angle (therefore cat-eye). Due to the finite sound speed, smaller beam sizes allow shorter reaction

times. However, they also reduce the diffraction efficiency. As the feedback bandwidth is not limited by

the AOM but rather the analog controller
8
, I chose a larger beam size for the highest diffraction efficiency.

The manufacturer specifies a maximal diffraction efficiency of 85 %
9

for a beam width of 𝑤 = 250 ➭m.

At the position of the AOM, the width of the ellipticity- and astigmatism-compensated beam amounts to

800 ➭m (cf. Section 3.4). Therefore, a 3:1 telescope
10

brings the beam to a width of around 270 ➭m. A

quarter-wave plate between AOM and cat-eye lens allows to turn the linear polarization of the beam by

90
◦
. After passing the AOM in the other direction, the beam is deviated by a polarizing beam splitter. In

order to reach high transmissions, I chose to stabilize the 0
th

order at the cost of a lower extinction ratio.

I achieved 91.6 % maximal transmission which corresponds to the losses at the optical surfaces and

1:900 extinction. The light in the 1
st

order
11

is reflected away using a knife-edge mirror in front of the

retro-reflecting mirror and sent towards the setup of the optical polarization gradient (see Reference [84]).

6
AOMO 3080-122 from Gooch & Housego PLC, driven by a RF driver built by and generously made available by the

Hofferberth Group.
7

As the analog PI
2
D-Servo has a bandwidth of 10 MHz, this can not fully be used.

8
D2-125 Laser Servo from Vescent with 10 MHz bandwidth.

9
At the wavelength 830 nm.

10
A telescope with 𝑓1 = 150 mm and 𝑓2 = −50 mm separated by 𝑓1 + 𝑓2 is chosen.

11
The maximal diffraction efficiency reached into the 1

st
order is 85 % when the HDT intensity is steered to extinction.
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Figure 3.1: Schematic of the HDT optical setup for beam distribution and intensity control.

The analog intensity lock is built using a Servo
12

and an amplified photodetector
13

. The photodetector

is placed after the fiber leading to the experiment table, improving the passive stability of the setup and

making it insensitive to pointing instability e.g. of the laser. This is made possible by using only one

fiber leading from the laser table to the experiment table and placing the setup distributing the beam

into the three HDT arms on the experiment table (cf. Figure 2.6). The step-response and the relative

intensity noise power spectrum were measured to quantify the quality of the lock. A feedback bandwidth

of 350 kHz and a relative intensity noise comparable to the stability achieved with the previously used

EOM [100] was reached.

With this setup, I was able to improve the maximum optical power incident on the fiber from 2.7 W to

4.2 W, i.e., by about 55 %. While this is a significant improvement, this also necessitates the use of a

large mode area PCF which can support this high optical power.

3.3 A large mode area photonic crystal Ąber

The delivery of laser light to the atoms on another optical table at the diffraction limit requires

polarization-maintaining guidance of the fundamental Gaussian mode. Optical fibers predestined for

this purpose (and commonly used) are single-mode step-index fibers with birefringence which retains

linear polarization when coupled into the fast or slow axis (therefore polarization-maintaining). In the

previous setup, the beam divided into the three HDT arms was launched into such 10 m long fibers.
14

However, at high optical powers, fibers suffer from stimulated Brillouin scatting causing back-reflections

12
D2-125 Laser Servo from Vescent.

13
PDA10A-EC Si amplified photodetector from Thorlabs Inc.

14
P3-780PM-FC-10, Thorlabs Inc.
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of a considerable part of the light. This effect is described, for example, in Reference [105]. For the

fibers in use, measurements have shown that incident optical powers of the order of 1 W could be used at

maximum [106]. Brillouin scattering is a non-linear effect in which photons are inelastically scattered

by acoustic phonons in the medium. At low intensities, such spontaneous events contribute to negligible

backscattering. There is however a threshold at which this non-linearity can lead to a stimulated Brillouin

scattering causing the back-reflection of most of the light. The threshold linearly increases with the fiber

length. As the local intensity is proportional to the effective mode area of the fiber, larger mode areas

can be used to guide higher optical powers.

Increasing the core size of regular step-index fibers does not allow for larger mode areas in single-mode

operation. However, the design flexibility given by PCF allows for large mode areas. PCFs have solid or

hollow cores and a periodic arrangement of air-filled holes spaced at the length-scale of the wavelength

and running through the entire fiber. I used a solid-core endlessly single-mode PCF
15

with a mode field

diameter of 12.4 ➭m compared to the 5.3 ➭m of the conventional fiber. This corresponds to a 5.5-fold

mode area and concomitant increase in stimulated Brillouin scattering threshold. The PCF is made of

pure silica with a hexagonally symmetric lattice of microscopic air-filled holes creating a cladding of

lower effective refractive index allowing light to be guided through the core. Two stress rods create

a linear birefringence that results in two different polarization modes and allows polarization to be

maintained. At the end facets, the holes are collapsed.

Return loss. A high cleavage angle of 12
◦

minimizes Fresnel back-reflections. However, the fiber has

no AR coating, which leads to a sub-optimal impedance matching causing ≈ 4 % reflection losses at

each surface. In the experiment, the HDT 1 and 3 beams are counter-propagation in the same transverse

mode. A considerable amount of light is therefore returning back towards the laser after passing through

the vacuum cell (cf. Figure 2.6). If this back-propagating light is reflected back into the polarization

synthesizer towards the vacuum cell, detrimental interference patterns could occur. Therefore, a high

suppression of back-reflection into the same transverse mode, has to be achieved for any utilized fiber. The

so-called return loss of the previously used step-index fibers specified by the manufacturer is sufficiently

high with 60 dB. However, the company splicing and cleaving the PCF
16

does not characterize the return

loss. I therefore measured the return loss. For this purpose, I used a setup as shown in Figure 3.2. A

beam splitter allows to separate the back-reflected light of a fiber under test towards a power meter. A

mode filtering fiber ensures that only light in the same transverse mode is measured.
17

Taking into

account the measured coupling efficiencies and the beam splitter reflectivities, the return loss can be

calculated from the measured optical power. I measured the return loss of the PCF and a self-built fiber

coupler to be (48 ± 3) dB.
18

This coincides with the measured (47 ± 3) dB for a conventional fiber

without AR coating and a commercial fiber coupler
19

, while (62 ± 4) dB confirmed the manufacturer’s

specification for a AR-coated fiber. When using custom-built commercial fiber couplers
20

for the PCF,

I reached only (41.5 ± 1.2) dB. I conclude that the PCF has a sufficiently high return loss, especially

15
LMA-PM-15 from NKT Photonics A/S.

16
Centre Technologique Optique et Lasers ALPhANOV.

17
The setup is aligned by replacing the beam dump with a mirror and maximizing the coupling efficiencies.

18
The reported measurement uncertainties were estimated from temporal fluctuations of the measured power, which I attribute

to imperfect polarization maintenance of the fibers.
19

Schäffter+Kirchhoff 60FC-4-M12-33.
20

Centre Technologique Optique et Lasers ALPhANOV.
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tested fiber

mode filtering fiber

power meter

highly absorptive
beam dump

laser source

Figure 3.2: Return loss measurement setup. A laser beam passing a non-polarizing 50:50 beam splitter is coupled

into a fiber under test and is subsequently blocked by a highly absorptive beam dump. Only light back-reflected at

refractive index interfaces within the tested fiber (or fiber couplers) is coupled into a fiber assuring only light in

the same transverse mode is measured. A power meter measures the power from which the return loss can be

computed.

when using the self-built fiber coupler. It could be improved by an additional AR coating.

Custom Ąber coupler. I have designed and built a fiber coupler for the PCF fiber ensuring a high

return loss, but especially also allowing high coupling efficiencies. A high fiber coupling efficiency is

not only needed to achieve deep dipole potentials, but also to prevent damage to the fiber ferrules due to

excessive heat generation and to ensure intensity stability. The coupler must focus the beam onto the

fiber end facet while matching the mode field diameter. It must furthermore have a high mechanical

stability while having the necessary degrees of freedom to optimize the fiber coupling.
21

I chose a design

based on a cage mount allowing to precisely adjust the axial position of the coupler lens with respect to

the fiber end facet.
22

The required angular degrees of freedom are achieved by two mirrors ahead of the

coupler. A lens of suitable focal length and sufficient optical quality to avoid aberrations leading to lower

coupling efficiency has to be chosen. By measuring the beam profile of a collimated beam coupled out of

a coupler with a specific lens, a lens is found that matches the beam width at the desired coupler position.

As can be seen in Figure 3.1, a beam expanding telescope was additionally used to match the beam

width of the chosen coupler lens.
23

At high powers ≥ 4 W a coupling efficiency of 71 % could be achieved

in the setup shown in Figure 3.1 after compensation of the beam ellipticity and astigmatism. Despite the

hexagonal cladding geometry, the PCF fiber mode has a high overlap with the mode of conventional

fibers, as coupling efficiencies of 89 % are achieved therebetween.
24

The coupling efficiency of the laser

beam into a (short) conventional fiber without AR coating was achieved with up to 84.7 % at the same

position. I therefore expect that improvements of the PCF coupling are possible. Moreover, the usage of

AR coated PCFs would yield about 7 % higher efficiencies.

21
The available commercial couplers have a strong coupling of the angular degrees of freedom with the axial lens position,

which makes coupling with them rather unwieldy.
22

The fiber ferrule with SMA connector is screwed on a custom made aluminium cage plate on which a hollow cylinder

with SMA thread at 6
◦

corresponding to the measured output angle allows an immediate correct coarse alignment (as with

common commercial mounts) as well as a centering in the cage system.
23

The lens is a AC254-030-B from Thorlabs. If a more suitable lens is available, the telescope is of course not necessary and

should be avoided.
24

This measurement was done at ≈ 100 mW with an AR coated conventional fiber. The commercial fiber couplers did not

yield better coupling efficiencies.
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3.4 Astigmatic-elliptical beam shaping

In this section, I report on improving the single mode fiber coupling efficiency for the titanium-sapphire

ring laser used for the optical lattice by astigmatic-elliptical beam shaping using a cylindrical telescope.

To this end, I measured the transverse mode profile of the laser beam exiting the ring resonator and

modelled it as an astigmatic-elliptical Gaussian beam. I then design a suitable setup for the cylindrical

telescope by simulating Gaussian beam propagation and finally test it experimentally. The fiber coupling

efficiency into a single mode step-index fiber could be increased from 78 % to 86 % in this way.

3.4.1 Matching the laser transverse mode to the Ąber mode

In order to have high fiber coupling efficiencies into single mode fibers, the coupled optical field should

have highest possible mode overlap with the guided mode at the fiber’s input end [107]. Owing to the

simplicity of Gaussian mode profiles and the usually good agreement, it is common to approximate the

fiber mode using Gaussian functions [108].

Lasers in single-mode operation often approach Gaussian beam shape given by the optical resonator

transverse mode [109]. Gaussian beams are the fundamental mode solution of the paraxial Helmholtz

equation (cf. Appendix A.1 and Section 4.4.1). For a given beam size, they represent the beam which can

be most tightly focussed and have the smallest divergence. Inhomogeneous optical media, for example

by thermal lensing in the gain medium, can cause deviations [110]. In fact, any deformations of the

wavefront lead to a reduction of the beam quality, for instance, due to aberrations of optical elements.

Gaussian beams have a transverse intensity profile

𝐼 (𝑟, 𝑧) = 𝐼0
(
𝑤0

𝑤(𝑧)

)2

exp

(
−2𝑟

2

𝑤
2(𝑧)

)
(3.1)

with a beam radius

𝑤(𝑧) = 𝑤0

√︄
1 +

(
𝑧

𝑧R

)2

, (3.2)

where

𝑧R =
𝜋𝑤

2
0

𝜆
(3.3)

is the Rayleigh range [109]. Figure 3.3 shows the instantaneous intensity of a Gaussian beam. The phase

profile at the waist 𝑧 = 0 is flat, however, diffraction causes a curved wavefront upon propagation. The

curvature is largest at the Rayleigh distance 𝑧R.

A beam is coupled into the fiber by a collimator lens, which for a Gaussian beam transforms into

another Gaussian beam of different waist and focus position, as we will see. For a high coupling

efficiency, the laser beam should be a Gaussian beam with a waist 𝑤0 and waist position which coincide

with the fiber mode width and input end position. Correspondingly, a low beam quality factor, ellipticity,

astigmatism, or simply a differing waist or waist position can significantly reduce the coupling efficiency.

The latter can easily be matched by carefully choosing the fiber collimator lens and/or the use of a

(de)magnifying telescope.

Figure 3.4 schematically shows the ring cavity of the titanium-sapphire laser used. As the two curved

cavity mirrors reflect the beam at an angle different from zero with respect to the normal direction, the
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Figure 3.3: Instantaneous intensity of a Gaussian beam with 𝜆 = 𝑤0. The full expression of transverse mode is

given by the fundamental Laguerre-Gauss (LG) mode Equation 4.6 in Section 4.4.1.

thin etalon

birefringent filter

output coupler

faraday isolatortuning mirror piezo etalon

pump laser

titanium-sapphire crystal

Figure 3.4: Titanium-sapphire laser system. A pump laser (diode pumped solid state laser) pumps the titanium-

doped sapphire crystal. The crystal is enclosed by a ring resonator consisting of four flat mirrors and two concave

mirrors focussing the resonator mode in the crystal. Etalons and a birefringent filter tune the longitudinal mode. A

Faraday isolator introduces a directionality in the ring resonator. The finite transmission of one mirror allows the

light to couple out of the resonator. Schematic created by Dr. Andrea Alberti.

focus of the resonator mode will differ in the horizontal and vertical direction, i.e. the mode will have

some astigmatism. The output field of the laser is coupled out through a flat mirror, thus the laser beam

retains the astigmatism. The circularity of the mirrors is effectively elliptical when viewed at a certain

angle, so the output mode of the laser beam also has a certain asymmetry of horizontal and vertical waist

size, i.e., it is elliptical. The Gaussian beam model can be easily extended to include ellipticity and

astigmatism by using distinct values of each parameter for the horizontal and vertical axis and distinct

definitions of the 𝑧 = 0 point [111].

Common techniques to circularize beams, widely used e.g. for diode lasers which output highly

elliptical beams, are anamorphic prism pairs [112], spatial filtering and cylindrical telescopes [113],

whereby only the latter offers full control over the beam’s astigmatism. We will therefore first characterize

the astigmatism and ellipticity of the laser beam to then compensate it with a cylindrical telescope.

3.4.2 Measurement and modelling of the laser mode

The output beam of the laser is characterized by recording transverse intensity profiles at different

distances, ideally covering both the near and far field. An example measurement is shown in Figure 3.5 a).

In our case, the waist lies outside the laser. As the laser mode depends on the laser output power due
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Figure 3.5: a) Example of a recorded intensity profile with corresponding two-dimensional Gaussian fit. b) The

normalized residual corresponding to the difference of the fitted and measured profile, divided by the maximum of

the fitted profile.

to thermal lensing, the measurement must be performed at the power used later. Our goal is to have

the highest possible power available on the other side of the fiber, we therefore set the pump laser at its

maximal 25 W, yielding 6.7 W output power of the titanium-sapphire laser at 𝜆ℎ = 866 nm. The camera

used to record the beam profile
25

can only be placed after a Glan-Laser calcite polarizer which allows to

significantly attenuate the beam. In our setup, this is preceded by an optical isolator and a pickup plate

(cf. Figure 3.1).

In order to predict possible fiber coupling efficiencies and find based on this model suitable focal

lengths and lens positions for a cylindrical telescope, the measured transverse intensities are modelled as

an astigmatic-elliptical Gaussian beam. For this purpose, I fit a two-dimensional elliptical Gaussian

function with symmetry axes rotated by some angle with respect to the camera axes. Figure 3.5 a) shows

an example least squares minimization fit. The angle degree of freedom is not expected to be needed, as

in our setup, the axes of the camera chip are expected to match the axes of the astigmatism, being the

horizontal and vertical with respect to the optical table (or the ring cavity). Yet we still measure an angle

6
◦
, which in a second iteration is set as a fixed fit parameter. I attribute this angle to a corresponding tilt

of the camera sensor with respect to the optical table.

The residuals shown in Figure 3.5 b) reveal a reasonably good description of the data by the chosen

model. The existing deviations show a non-perfect beam quality, which, as mentioned, are caused

by thermally induced optical inhomogeneities in the laser crystal and by aberrations of the preceding

optical elements. The almost horizontal stripe pattern visible in the example image originates from a

corresponding modulation of the infrared sensitivity of the camera chip due to etalon interference effects

between optical surfaces on the chip. Because of its homogeneity across the image area and its small

period relative to the beam width, it is not affecting the fit. The same applies to the two diffraction rings

visible on close inspection, presumably caused by dust grains.

The beam profile is measured this way at different distances, taking the end facet of the optical isolator

as position reference. To determine the parameters of our astigmatic-elliptical Gaussian beam model,

I then fit the beam radii 𝑤 obtained from each intensity profile measurement in both transverse axes

independently as

𝑤(𝑧) = 𝑤0

√︄
1 +

(
𝑧 − 𝑧0
𝑧R

)2

(3.4)

25
DC1545M complementary metal-oxide-semiconductor (CMOS) camera from Thorlabs.
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Figure 3.6: Beam radius as a function of distance with astigmatic-elliptical Gaussian beam fits. The 1𝜎-confidence

interval of the fits are shown as shaded surfaces. a) The transformation of a cylindrical telescope of lenses with

focal lengths 𝑓1 and 𝑓2 at positions 𝑑1 and 𝑑2 (shown as vertical dashed lines) acting on the horizontal axis is

computed using the Gaussian beam model. A fit of the vertical axis data to the transformed horizontal axis gives

the telescope’s parameters and is shown in red. b) Measured beam radii with and without the cylindrical telescope.

with the corresponding waist position 𝑧0. The fit result is shown in Figure 3.6 a). We get the waists

𝑤0,ℎ = (541 ± 2) ➭m and 𝑤0,𝑣 = (630 ± 5) ➭m and their positions 𝑧0,ℎ = (1 771 ± 11) mm and

𝑧0,𝑣 = (955 ± 26) mm. The astigmatism, i.e. the distance of the waist positions of each axis, amounts to

(816± 29) mm. This is not negligible compared to the mean Rayleigh range 𝑧R = 1.24 m. The ellipticity

is the ratio of the divergences, which equals the inverse ratio of the waists and amounts to 1.165 ± 0.011.

3.4.3 Finding a suitable cylindrical telescope

Cylindrical lenses act on one axis only. Therefore, a telescope of cylindrical lenses can circularize an

elliptical beam by enlarging or reducing one axis. By fine adjustment of the relative lens position, the

focus of the axis subject to the cylindrical lenses can be shifted, allowing the astigmatism of the beam to

be corrected.

In order to describe the effect of the lenses on a Gaussian beam in a simple way, I introduce a common

parameterization, which is well described in Reference [109]. A Gaussian beam of certain wavelength

is fully described by two real numbers, for instance the Rayleigh length 𝑧R and the waist position 𝑧0.

Accordingly, the Gaussian beam can be described by a single complex number, the so-called complex

beam parameter

𝑞 = 𝑧 − 𝑧0 + i𝑧R . (3.5)

A convenient way to mathematically describe the actions of optical elements on Gaussian beams within

the paraxial approximation is ray transfer matrix analysis. A (thin) lens of focal length 𝑓 is described by

a matrix [
𝐴 𝐵

𝐶 𝐷

]
=

[
1 0

−1/ 𝑓 1

]
(3.6)
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and acts on the complex beam parameter as

𝑞
′
=
𝐴𝑞 + 𝐵
𝐶𝑞 + 𝐷 . (3.7)

A free-space propagation by the distance 𝑑 can readily be described by[
𝐴 𝐵

𝐶 𝐷

]
=

[
1 𝑑

0 1

]
(3.8)

transforming a the complex beam parameter 𝑞 into

𝑞
′
=
𝐴𝑞 + 𝐵
𝐶𝑞 + 𝐷 = 𝑞 + 𝑑 . (3.9)

In principle, it is possible to select any of the two axes for the cylindrical telescope. It is however more

practical to let it act on the horizontal axis, as centering of the cylindrical lenses with respect to the beam

will require adjustments along the table surface instead of height adjustments. The compensation of

astigmatism and ellipticity is perfect, if we make the beam widths in each axes equal for all positions 𝑧.

To find focal lengths and lens positions that come closest to this, I fitted the data points of the vertical axis

to the horizontal Gaussian beam as transformed by the telescope while taking the focal lengths and lens

positions as fit parameters. The transformation of the horizontal Gaussian beam is computed by applying

the transformation of the first lens by Equations 3.6 and 3.7 on the 𝑞-parameter at the position 𝑑1 of

this lens of focal length 𝑓1. Equation 3.9 with 𝑑 = 𝑑2 − 𝑑1 is then used to calculate the 𝑞-parameter

immediately before the second lens of focal length 𝑓2 and at position 𝑑2. Subsequently, the transformation

of the second lens is calculated. The resulting waist and waist position of the transformed horizontal axis

are extracted according to Equation 3.5 from the imaginary and real parts of the resulting 𝑞, respectively.

We obtain a model for the transformed horizontal axis as a function of lens focal lengths 𝑓1 and 𝑓2 and

positions 𝑑1 and 𝑑2 using Equation 3.4 with the transformed waist 𝑤0 and waist position 𝑧0.

The fit of the horizontal component of the transformed Gaussian beam to the data of the vertical axis

is shown in Figure 3.6 a). As can be seen, parameters for which the transformed horizontal axis (in red)

comes very close to the vertical axis (in green) can be found.

In practise, the lens positions have restrictions given by the setup. In our case, the beam shaping

telescope should be placed as early as possible, so that the laser beam passing through the following

optics is already rectified. A range of 150 mm between the optical isolator and a mirror is available (cf.

Figure 3.1), shown as a blue area in Figure 3.6. Corresponding bounds are given to the fit parameters.

Initially, all four parameters 𝑓1, 𝑓2, 𝑑1 and 𝑑2 can be left as free fit parameters to get a sense of the

required ratio 𝑓2/ 𝑓1, the magnification of the telescope along the horizontal axis. It is useful to fix one

of the focal lengths, in order to have less degrees of freedom for the fit. Since lenses are generally

only available with certain focal lengths, a suitable and available combination is selected in a further

step. The fit is repeated with correspondingly fixed focal lengths. In our case, a good combination is

𝑓1 = 150 mm and 𝑓2 = −100 mm. The lens positions are computed to be 𝑑1 = (19.7 ± 1.4) mm and

𝑑2 = (64.1 ± 1.5) mm. With these parameters, a suitable telescope can now be built.
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3.4.4 Experimental realization of the cylindrical telescope

After centering the cylindrical lenses mounted in a cage system with respect to the beam, their relative

distance is fine adjusted by minimizing the astigmatism. To this end, a regular lens of focal length 𝑓 is

placed into the beam behind the telescope close to the vertical focus position. This creates a smaller

focus at a distance 𝑓 for the vertical axis. A beam profiling camera on a rail is used to investigate the

beam. The regular lens converts both axes to a Gaussian beam of smaller Rayleigh range, which makes

the adjustment more practical because the camera does not have to be moved as far. The position of the

vertical focus is most precisely found by determining two positions symmetrically around the focus at

which the vertical waist is equal. The focus position will be exactly in between. By tuning the telescope’s

relative lens distance, the horizontal focal position is overlapped with the vertical focus, using the same

technique to determine the focal position. Smallest possible changes in the relative lens distance have

visible effects on the astigmatism. The adjustment criteria is thus very sensitive, and is not limiting the

adjustment precision. Rather, precision is limited by the mechanical adjustability of the cage system.

Both the simulation and the experimental setup show a low sensitivity to changes of the absolute

position of the telescope in the order of magnitude of the precision of using a measuring tape. Therefore,

it does not need to be fine adjusted. This is to be expected since the beam does not change significantly

on this scale, which is much smaller than the Rayleigh length.

The corrected laser mode is remeasured as described in Section 3.4.2. The result along with Gaussian

beam fits is shown in Figure 3.6 b). The uncorrected beam is shown as a comparison. It can be seen that

the telescope transforms the horizontal axis such that it matches the vertical axis quite well, however not

as good as expected from the simulation (cf. Figure 3.6 a)). This can be explained by the finite precision

of the telescope alignment, as well as the deviations of the laser mode from an ideal Gaussian beam. It is

worth noting that the vertical axis has also changed marginally, contrary to expectations. This indicates

slight changes in the laser mode over time, which could be due to changes in the thermal equilibrium

within the laser crystal. The measurements were taken at an interval of 24 h. Nevertheless, it can be

concluded that the astigmatism and the ellipticity could be significantly reduced to (155 ± 29) mm and

1.063 ± 0.013, respectively. This corresponds to a reduction of the astigmatism by 81 % and of the

ellipticity 62 %. Thereby, an improvement of the coupling efficiency into a fiber is expected.

A suitable cylindrical telescope could also be found purely experimentally, without the need to measure

and model the laser mode. The prerequisite is the availability of sufficient cylindrical lenses of different

focal lengths. One can start with a pair of cylindrical lenses and place them apart by about 𝑓1 + 𝑓2, to then

minimize the astigmatism as earlier described. The astigmatism will be corrected, however the ellipticity

will have been changed, but a priori not such that the beam is circular. This can be iterated with a varying

ratio 𝑓2/ 𝑓1 which changes the ellipticity, until a telescope is found that can both compensate astigmatism

and ellipticity. The ellipticity can easily be measured by a beam profiling camera placed in the far field.

If the telescope is positioned at one of the waist positions, the required focal length ratio is equal to the

measured ellipticity, making this a particularly convenient configuration.

3.4.5 Fiber coupling and collimation

The efforts of astigmatism and ellipticity compensation allow higher fiber coupling efficiencies. In order

to create a high overlap of the mode impinging on the fiber with the guided mode, a focus with matching

waist has to be created at the fiber’s input. This is the purpose of a fiber collimator consisting of a lens

which is precisely positioned with respect to the fiber end.
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The focal length of the fiber coupler lens has to be chosen to match the beam width and the fiber mode

width. The lens can be translated to adjust the position of the beam waist to the input facet of the fiber.

The ideal collimator depends on the position within the beam, since the beam width itself is position

dependent. I used a fiber coupler
26

giving a collimated beam with a waist of 691 ➭m and placed it at

𝑧 = 1 700 mm. As can be seen from Figure 3.6 b), this matches the average beam width of the vertical

and horizontal axis at this position. The collimated beam waist of the fiber coupler was measured by

taking a near field image as in Figure 3.5 of a collimated beam coupled out using this collimator. A

Gaussian fit then gives the specific value.

The light is coupled into a conventional polarization-maintaining single mode fiber.
27

I achieved a

maximal fiber coupling efficiency of 86.3 % at an alignment optical power of 100 mW. Compared to the

efficiency of 78 % without the cylindrical telescope this is an enhancement of available optical power

behind the fiber of 10 %. Increasing the optical power to 5 W at the fiber input slightly reduces the fiber

coupling efficiency to 84.7 %.

3.5 Summary and conclusion

I conclude that the presented method of measuring and modelling the laser mode is well suited to correct

astigmatism and ellipticity of a laser beam. The fiber coupling efficiency into a conventional fiber could

be significantly increased using a cylindrical beam shaping telescope. I furthermore improved the optical

power handling of the analog intensity control by replacing an EOM by an AOM. To minimize losses of

optical power, I used a configuration using the 0
th

diffraction order where the 1
st

order is ‘recycled’ for the

optical polarization gradient setup. The comparable feedback bandwidth and intensity noise suppression

to the previous setup demonstrates an equivalent suitability. A PCF was employed to overcome the

stimulated Brillouin scattering limit of conventional fibers. I measured the return loss of the PCF being

comparable to conventional fibers using a self-built fiber coupler allowing high coupling efficiencies.

A further improvement of the 71 % PCF coupling efficiency is expected with more careful alignment.

Utilizing AR coated fiber facets is expected to give around 7 % more light. Overall, up to 3 W could be

guided to the HDT setup on the experiment table. This allows twofold horizontal lattice beam intensities

corresponding to an increase of the possible trap depth up to 1.5 mK. I expect a considerably reduced

hopping rate along horizontal directions during the imaging. Generally, higher available optical powers

could also be utilized to create larger dipole traps, thereby reducing gradients of light shifts allowing

optimal imaging parameters over larger areas of the FOV.

26
60FC-4-M12-33 fiber collimator from Schäfter+Kirchhoff.

27
A 1 m long uncoated PM780-HP from Thorlabs.
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CHAPTER 4

Three-dimensional imaging of single atoms by

point-spread-function engineering

In this chapter I present a novel extension of a so-called quantum gas microscope, giving the possibility

to extract the three-dimensional positions of individual atoms trapped in a three-dimensional optical

lattice from two-dimensional images. To this end, the point spread function (PSF) of the microscope is

phase-engineered into a double-helix point spread function (DH-PSF) using a spatial light modulator

(SLM) in the pupil plane. Thereby, a single atom is imaged as two separate peaks whose relative angle

depends on the axial position of the atom. The depth information for each atom can then be obtained

from the measured angles.

The near unity single atom detection efficiency of dense ensembles through quantum gas microscopes

revolutionized detection and control of lattice quantum gases, i.e. indistinguishable atoms arranged in

optical lattices [27, 47, 48]. The individual atoms are detected optically by observing fluorescence

photons through a microscope. Objective lenses with high numerical aperture (NA) are used to achieve

the required resolution in the order of the wavelength. This experimental platform allows the realization

of many-body systems in which fundamental effects can be studied in a fully controlled way with good

access to observables. Our two-dimensional discrete quantum simulator (DQSIM) described in Chapter 2

can be used, for example, to perform two-dimensional discrete-time quantum walks [20] or interference

experiments of multiple indistinguishable particles [22]. Previous quantum gas microscopes do not have

direct optical access to the axial position of individual atoms beyond the defocus. As we will see, the

axial resolution in such systems is limited. However, it is of interest to have not only transverse but also

axial single-site resolution available.

For instance, axial single-site resolution allows post-selection of single vertical lattice planes. This is

useful because common methods for plane preparation involve a trade-off between survival in the target

plane and fidelity of selection. I will discuss this in Section 4.1 using our experiment as an example.

High axial resolution over a large depth of field (DOF), as enabled by the DH-PSF, also opens up the

extension of quantum simulation into three dimensions. This is already of interest because of the thereby

scaling number of available qubits [46]. After an introduction of the PSF and the resolution limit in

Section 4.2, I present in Section 4.3 existing methods of three-dimensional imaging with special attention

to imaging single cold atoms. However, these techniques are of equally great interest beyond physics. In

particular, the rotating PSF emerges from the research field of super-resolved fluorescence microscopy

of biological systems. It has been an active research topic since the demonstration of three-dimensional
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super-resolution of single molecules in 2009 [74]. For quantum gas microscopes like ours, modifying

the PSF into a rotating PSF will prove to be a well-suited approach. I therefore describe this concept in

detail in Section 4.4.

Finally, I present the experimental realization and the evaluation of DH-PSF measurements in

Sections 4.5 and 4.6 respectively. These confirm the extension of single-site resolution of individual

atoms to the axial dimension. Section 4.7 draws a conclusion and discusses possible improvements.

4.1 Preparing atoms in a plane

To measure the interference of multiple particles, the ensemble of atoms must be confined to a single

vertical layer of the optical lattice. The state-dependent transport of our experiment operates in the two

horizontal dimensions. The optical lattice is first probabilistically loaded from the magneto-optical trap

(MOT) as described in Section 2.1. A release-retrap technique can help to compress the atoms along the

vertical as much as possible, so that a higher fill factor in a thin section of the lattice can be achieved [114].

Vertical microwave spectroscopy finally allows to precisely control in which vertical planes atoms remain

and allows the creation of a single vertical plane. The preparation of an atomic ensemble in a single

plane of an optical lattice is a common challenge of experiments exploring two-dimensional systems [37,

38, 47, 48, 84, 115–118]. Commonly used is a vertical position-dependent Zeeman shift induced by a

magnetic field gradient. This then allows thin volumes around the isosurfaces of the magnetic field to be

addressed spectroscopically.

In our experiment, instead of the Zeeman shift, an AC Stark shift is generated by a gradient of

polarization. Due to the analogy, this can be considered as an optically generated artificial magnetic field.

This is described in detail in Reference [84]. The polarization gradient is obtained by the interference of

two beams of orthogonal circular polarization at 866 nm entering the atomic cloud at a relative angle

to each other. Along the direction spanned by the angle, which coincides with the vertical axis of

the optical lattice, the polarization ellipticity of the light field is sinusoidally modulated just as in the

analogous polarization gradient cooling (PGC) configuration [90]. The modulation of the polarization

leads to a modulated differential light shift between |↑⟩ and |↓⟩. The theoretical spatial profile is shown

in Figure 4.1. As can be seen, the isosurface of vanishing light shifts is perfectly flat. The horizontal

capture range of the central vertical planes is larger than the horizontal extent of the atomic cloud. If

all atoms are prepared in the |↑⟩ state of the effective two-level system (cf. Section 2.1), the atoms in

the target plane can be transferred to the |↓⟩ state by applying a microwave radiation 𝜋-pulse. The

spatially modulated resonance condition allows to addresses only the target plane, provided that the

spectroscopic resolution is large enough. Subsequently, the atoms remaining in |↑⟩ of the undesired

planes are resonantly heated out of the dipole trap.

Gaining information about the vertical position of atoms directly from fluorescence images is a

valuable tool in this context. On the one hand, it relaxes the requirements on the strength and stability of

the gradient used for spectroscopic resolution of adjacent planes. Even if atoms are not located in the

target plane with high fidelity after plane selection, these atoms can always be assigned to a vertical

plane in a post-selection based on the acquired images. In fact, the vertical selection demonstrated in

Reference [84] was limited to a spatial width of 𝜎𝑧 = (2.0 ± 0.2) d𝑧vert, where d𝑧vert = 532 nm is the

vertical lattice spacing. By modifying the microwave pulse shape and using a higher optical power of the

polarization gradient, a resolution of a single vertical plane can be expected. Yet, about 2 % of the atoms

are still expected to remain in the undesired planes [84]. These could be deterministically sorted out by
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Figure 4.1: Differential light shift between |↑⟩ and |↓⟩ normalized to the light shift between adjacent planes at

the center. The vertical position 𝑧 and horizontal position 𝑟 =

√︃
𝑥

2 + 𝑦2
are given in units of the vertical and

horizontal lattice constants d𝑧vert = 532 nm and 𝜆ℎ/
√

2 = 612 nm respectively. Isolines of the color-coded light

shift corresponding to certain vertical lattice planes given by the numbers on the lines are shown. Each isoline

is enclosed by two lines corresponding to ±0.2 d𝑧vert of the lattice plane in question. The black lines indicate

the horizontal capture range, which is defined as the position where the light shift has changed by 20 % of the

light shift at the center. The dashed black line indicates the center position of the vertical dipole trap. Taken and

modified from Reference [84].

the optically resolved vertical localization. Moreover, there is generally a trade-off between the fidelity

of single plane selection and the survival in the target plane. Reducing the demands of the preparation

fidelity can be compensated for by the available post-selection of planes, enabling higher survival of the

target plane. On the other hand, the optical resolution of the vertical position is also an ideal tool for

more precise adjustment of any vertical plane selection technique. In our case, for instance, a vertical

drift of the polarization gradient could be detected and thereby corrected.

4.2 Point spread function and the resolution limit

An imaging system is described by its PSF, which determines what the image produced by the system

looks like. In particular, the PSF determines the information that can be obtained from an image of the

object. It is therefore useful to know the PSF exactly or even to be able to change it. As we shall later see,

three-dimensional images can be reconstructed using certain PSFs. Therefore, in this section I introduce

the concept of PSF, as well as its relation to the resolution limit.

4.2.1 Point spread function

The PSF of an imaging system is the image of an ideal point source. The concept is discussed in detail in

Reference [119], which I also refer to for what follows. Figure 4.2 show exemplarily the PSF of our

microscope at NA = 0.92. If the PSF is invariant with respect to the position of the point source, the

image 𝑖 of an object can be obtained by convolving the actual object 𝑜 with the PSF

𝑖 = 𝑜 ∗ PSF . (4.1)
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Figure 4.2: Measured PSF of our microscope at NA = 0.92 given in object space coordinates. Taken and modified

from Reference [59].

Here, the PSF, as well as the image and object are in general functions of the three-dimensional space

coordinates 𝒙. For a system that maps from an object plane to an image plane, these are often thought

as functions of the plane coordinates (𝑥, 𝑦) only. The PSF fully describes the response of an imaging

system. Note that we can use the same coordinates in object and image space by ignoring magnification

and image inversion for the sake of simplicity.

One further abstraction of the optical system turns out to be very helpful in order not to have to

consider each optical element separately to explain the shape of a system’s PSF. In general, an optical

system can contain several different apertures, but these can be summarized by a single effective aperture,

the aperture stop, which most severely restricts the bundle of rays passing through the system. Let us

then define the entrance pupil as the image of the aperture stop as seen from an axial point in object

space through the optical elements in front of the aperture stop. Accordingly, the exit pupil is the image

of the aperture stop as seen from the image plane. It is then sufficient to describe the propagation from

the entrance pupil to the exit pupil by geometrical optics, and to consider the diffraction-causing finite

aperture only at the exit pupil. Similar for the conjugate object and image planes, the conjugate entrance

and exit pupils
1

can also be expressed using same coordinates, which is why they are often referred to as

the pupil for short. The pupil is described by the pupil function 𝑃(𝑢, 𝑣), which describes the transmission

in the pupil plane. In an aberration-free system, the amplitude PSF is then the Fraunhofer diffraction

pattern of the pupil, which can be described by a Fourier transform (see Appendix A.2). By forming the

magnitude square, the intensity PSF is obtained. This remarkably simple relationship is the fundamental

rationale of Fourier optics. A circular aperture yields, for example, the well-known Airy disk as PSF,

which is very close to the PSF of Figure 4.2.

4.2.2 The fundamental resolution limit

The three-dimensional (or when restricted to a plane object and image space two-dimensional) Fourier

transform of the PSF is called optical transfer function (OTF). The modulation transfer function (MTF)

is obtained by taking the absolute value. The MTF describes how different spatial frequencies are

processed by the optical system. The finite aperture of an optical system acts as a low pass filter for the

spatial frequencies with the Abbe cut-off frequency

𝑘Abbe = 1/𝑟Abbe , where 𝑟Abbe =
𝜆

2NA
(4.2)

1
According to the definitions, the exit pupil is the geometric image of the entrance pupil with respect to the complete optical

system.

29



Chapter 4 Three-dimensional imaging of single atoms by point-spread-function engineering

is the Abbe radius, with the wavelength 𝜆 and the NA defined in Section 2.2. An image is therefore

always blurred to a certain degree.

The sharpest PSF is realized by a diffraction-limited system, which for a circular aperture is the

Airy disk. For such a system, the Abbe radius gives the optical resolution, or diffraction limit
2

[120].

For our microscope objective that collects fluorescence light at 𝜆D2 = 852 nm, the maximal NA of

0.92, for example, gives the Abbe radius of 463 nm, which is lower than the horizontal lattice spacing

𝜆h/
√

2 = 612 nm. The horizontal lattice can thus be optically resolved. At the intermediate NA of 0.6,

an Abbe radius is 710 nm.

For objects that are distant from the focal plane, the PSF becomes blurred, the so-called defocus

aberration. To a certain extent, this allows conclusions to be drawn about the axial position. Similar to

the Abbe radius, the sharpness of the PSF along the optical axis can be characterized by the DOF, which

depends on the NA as

DOF =
𝜆

2NA
2
. (4.3)

For our microscope, the maximal NA yields DOF = 503 nm. We will come back to what this means for

axial resolution.

It should be noted, however, that employing the knowledge of the physical system, such as the shape of

the PSF or the structure of the imaged object (e.g. atoms in a lattice), the optical resolution limit can be

exceeded to a certain extent. Such methods are known under the term super-resolution, and are developed

and applied in particular in the field of microscopy of biological systems, where the non-linear response

to excitations, or the temporal behavior of the employed fluorophores is used to ensure that there are only

isolated emitters per image [122–124]. Exploiting the knowledge of the PSF, the emitter position can

then be super-resolved by deconvolution of the image. The diffraction limit could also be overcome for

three-dimensional localization of single molecules [74, 78, 79]. Super-resolution methods also have

application in the context of microscopy of single atoms in optical lattices [39, 125]. The fundamental

resolution limit for an unbiased position estimator is given by the so-called Cramér-Rao lower bound

(CRLB), the inverse of the Fisher information matrix [126–128]. This limit can be approached by

knowing the imaging system response and all physical noise properties.

4.2.3 Diffraction-limited systems and aberrations

Following Reference [119] again, we can further define the previously mentioned concept of a diffraction-

limited system. Its defining property is that an incoming diverging spherical wave (originating from

an ideal point source) is transformed by the system into a converging spherical wave at the exit pupil,

converging towards an ideal point in the image plane.
3

In real imaging systems, this is at best the case

within limited regions of the object or image space. The system can then be considered diffraction limited

over these regions. If the wavefront emerging from the exit pupil deviates from the ideal spherical wave,

such a system is said to have aberrations.

2
Ernst Abbe derived this in 1873 within his theory of image formation in microscopes [120]. A similar expression for the

resolution limit is provided by the heuristic criterion named after Lord Rayleigh, according to which two adjacent points can

just be resolved if the first minimum of one Airy disk coincides with the maximum of the other [121]. The Airy radius

𝑟Airy = 1.22 · 𝜆/(2NA) i.e., the first zero of the Airy disk is thus also the resolution limit defined in this way.
3

The position of this ideal image point is related to the position of the original object point only by a scaling factor (the

magnification), which is the same for all points in the image field, and possibly an inversion.
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Concretely, such wavefront errors can be described by imagining that a perfect spherical wave enters

the pupil, but that the wavefront gets distorted there. With the effective optical path-length error𝑊 (𝑢, 𝑣),
we can define the generalized pupil function

P(𝑢, 𝑣) = 𝑃(𝑢, 𝑣) exp (i𝑘𝑊 (𝑢, 𝑣)) , (4.4)

with 𝑘 = 2𝜋/𝜆. The PSF of an aberrated system is determined by the Fraunhofer diffraction pattern of the

aperture, as in the aberration-free case (see Section 4.2.1), but this time with the amplitude transmittance

P(𝑢, 𝑣). Specifically, it is given by

PSF(𝑥, 𝑦) =
��F {

𝐸0 P(𝑢, 𝑣)
}
(𝜅𝑢, 𝜅𝑣)

��2 , (4.5)

where 𝐸0 is electric field in the pupil plane and the Fourier transform is evaluated at the spatial frequencies

𝜅𝑢 = 𝑘𝑥/ 𝑓 and 𝜅𝑣 = 𝑘𝑦/ 𝑓 . Here, 𝑓 is the distance from the exit pupil to the image plane provided that

(𝑢, 𝑣) are the coordinates in the exit pupil and (𝑥, 𝑦) in the image plane. A useful basis for describing

arbitrary aberrations in a system with circular aperture are the orthogonal Zernike polynomials defined

on the unit disk [129] (see Appendix C.3). The lower-order polynomials correspond to the typically most

pronounced aberrations such as the tilt, astigmatism, defocus, trefoil, coma, or also spherical aberrations.

Aberrations generally lead to a (not necessarily axially symmetric) broadening of the Airy disk. This

is usually undesirable due to the resulting lower achievable resolution. The combined effect of diffraction

and aberration is fully described by the PSF. The high-NA objective lens used in our experiment was

previously examined with respect to aberrations, as reported in Reference [59]. The measured PSF at

different positions in the object plane using a fiber tip with a diameter of approximately 100 nm, was

then fitted with the PSF calculated from Equation 4.5 using the expansion in the lowest-order Zernike

polynomials by means of non-linear least squares minimization. The Strehl ratio was used to quantify

the aggregate aberrations
4
, and is defined as the ratio of the maximum of the PSF and the maximum of

the corresponding ideal Airy disk. According to the Maréchal criterion, an optical system with a Strehl

ratio ≥ 80 % can be considered diffraction limited [130]. It could be concluded that the field of view, in

which this is fulfilled, has a diameter of 76 ➭m. The further away from the optical axis, the stronger

the aberrations, which is the result of both the measurement and the theoretical prediction based on the

objective lens design.

4.3 Methods of three-dimensional localization

The ability to resolve minute structures has rapidly made optical microscopy an important pillar of the

natural sciences ever since its emergence at the beginning of the 17th century [131]. Nonetheless, major

advances are still being made centuries later. In 1953, for example, Frits Zernike was awarded the Nobel

Prize in Physics for the development of the phase contrast method, with which phase shifts of light

passing through an object can be observed as intensity modulation [129]. Super-resolution microscopy

techniques, mentioned in Section 4.2.2, have overcome the Abbe resolution limit and enabled resolutions

at the molecular level [122], for which the 2014 Nobel Prize in Chemistry was awarded. Remarkably,

such methods combined with PSF engineering have recently led to three-dimensional super-resolved

4
A relationship between the Strehl ratio SR and the root mean square (RMS) deviation of the wavefront is provided by the

Maréchal approximation SR ≈ 1 −
(
𝑘𝑊rms

)2
[130].
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microscopy of biological structures [74, 78, 79].

In this section I present common methods of three-dimensional imaging of single fluorescing emitters

which, for instance, are reviewed in References [82, 83, 123, 132]. The mentioned reviews arose from

fluorescence microscopy of molecules, however, most results are applicable to the largely equivalent

fluorescence microscopy of single atoms. I therefore also discuss, in particular, the applicability of each

method to our experiment. The methods of three-dimensional imaging can be divided into those in

which sequential images of the object are acquired while scanning the focus, also called tomography,

and those in which the three-dimensional information is obtained in a single image. These rely on

simultaneously taking multiple images of the same object through different beam paths as in multifocal

plane microscopy, on recording the full field information as in light field microscopy, or on engineering

the three-dimensional shape of the PSF. Although the microscopy methods for our application in imaging

cold atoms are not different in concept from those used in biology, unlike the other methods, the

engineering of PSF has not yet been used with the goal of acquiring the three-dimensional positional

information of individual atoms.

In a conventional imaging system, the lateral position of an emitter can be readily extracted from the

location of its image. The axial position can be retrieved from differences in the shape of its image at

different distances from the focus, for instance, the defocus. However, as the DOF Equation 4.3 scales as

1/NA
2
, the standard PSF decays slower in the axial direction as in the lateral direction, where the width

scales with 1/NA (cf. Equation 4.2). Accordingly, the axial in-focus localization precision is worse, and

the smaller the NA, the more so. Moreover, in contrast to lateral localization, several axially distant

emitters cannot be localized from a single image, since these emitters have to be located within the

DOF to remain resolvable. Methods of three-dimensional imaging must accordingly increase the axial

resolution ideally also in the focus, and maintain it over as large an axial distance as possible.

4.3.1 Tomography

The idea of tomography is to sequentially create images of the same object while scanning the focus over

a desired range. Emitters at different axial positions thus appear sharp in different images. Subsequently,

the three-dimensional position can be reconstructed from the set of images. To change the focus, either

the object itself, the camera, or the objective lens can be translated.

The method has been used to localize atoms in three-dimensional lattices [46] as well as arrays of

optical tweezers [60], where in both cases the vertical plane separations are larger than in our case.

Reference [61] reports a quantum gas microscope whose piezo-steered objective lens of NA = 0.69

allows tomography of single atoms in a three-dimensional optical lattice with the same vertical lattice

spacing as ours. Figure 4.3 a) shows images taken at different focus settings. A fit of the measured

peak intensity as a function of the focus setting can then be employed to calculate the vertical position.

Given the finite lifetime of the atoms in the dipole trap, the need for multiple shots for this comparatively

simple method is a major drawback. Our microscope cannot be equipped with a piezo control of the

objective lens anyway, as it is in-vacuo. The displacement of the atoms is not easily feasible, nor can the

camera be moved by centimeters
5

within milliseconds.

5
A displacement in image space corresponds to a displacement in object space multiplied by the square of the magnification.
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Figure 4.3: a) Fluorescence images of single atoms in an optical lattice taken with different focal plane positions.

The focal plane is changed by a piezo-controlled shift of the objective lens position along 𝑧. The enlarged image

sections shows two atoms from which the frame-dependent defocus can be discerned. Modified taken from

Reference [61]. b) Schematic of multifocal plane microscope configuration using two different focal planes. The

fluorescence light is split into two paths by a beam splitter, each of which have a detector placed at a different total

distance from the objective lens. The two detectors thus operate with distinct focal planes. fluorescence signal is

detected from only one side of the sample. Taken and modified from Reference [133].

4.3.2 Multifocal plane microscopy

In multifocal plane microscopy, the same principle is used, except that images with different focus

settings are acquired simultaneously in different detectors or separate areas of the same detector instead

of being taken temporally separated. This significantly reduces the recording time. The number of partial

images of different foci is left to choice, although most microscopes work with two. Figure 4.3 b) shows

a possible configuration. Another architecture sometimes used are two objective lenses facing each other

around the object space (4𝜋 geometry), each with a camera, doubling the amount of collected light.

However, multifocal plane microscopy comes at the cost of a significant increase in instrumental

complexity. Moreover, the fluorescence imaging of atoms is a photon-limited process. I.e., for the same

signal-to-noise ratio (SNR), more photons must be scattered at the atoms due to the splitting of the light

into the different images, increasing the probability of atom loss and hopping. This is probably why

multifocal plane microscopy has not yet been used to image cold atoms.

4.3.3 Light Ąeld microscopy

Three-dimensional information can be captured with a single image in a light field microscope. An

overview of the technique is given in Reference [134]. A micro lens array partitions a sensor array, with

each micro lens covering an area of several pixels, just as in a Shack-Hartmann wavefront sensor. This

allows to measure not only the intensity, but also the parallax of the rays originating from a point in

object space, providing information about the field wavefront. The field gradient depends on the axial

position of an emitter and therefore allows conclusions to be drawn about the axial position. The micro

lens array is typically placed in an image plane where it samples the spatial domain, generally resulting

in a large pixel size. Reference [69] reporting the three-dimensional imaging of a rubidium MOT is an

example of such a configuration. The need for multiple pixels per microlens results in a loss of lateral

resolution, which is not an option for our application.
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Figure 4.4: a) Schematic of a Fourier light field microscope. A micro lens array is positioned in a conjugate pupil

plane. b) The micro lens array samples spatial and angular information of the incident wavefront. Depending on

the wavefront gradient on a certain microlens, the corresponding image is shifted. Thereby, two emitters located

below (blue) and above (red) the focal plane are imaged at different positions in each perspective view due to

their curved wavefront in the pupil plane. c) Simulated point spread functions as a function of the emitters axial

𝑧-position. Taken and modified from Reference [135].

However, the micro lens array can also be placed in a plane conjugate to the pupil of the microscope

objective, a configuration also known as Fourier light field microscopy. It is depicted in Figure 4.4.

Each microlens produces a focused image that is shifted according to the local average wavefront

gradient. Thus, axially displaced emitters are imaged at different positions in each subframe. Although

Fourier light field microscopy provides higher spatial resolution than the traditional configuration, it is

at the expense of field of view (FOV) and DOF. It should be noted that this method could be readily

implemented by programming an array of holographic lenses on the SLM in the setup present in this

work. Reference [135] reports on using the technique achieving three-dimensional super-resolution of

single molecules over a DOF of 6 ➭m.

4.3.4 PSF engineering

Based on the observation that axially dependent aberrations do carry information about the axial position,

it is conceivable to introduce such aberrations in a controlled manner into a conventional microscope. In

fact, when observing atoms in our optical lattice, those that are out of focus not only appear blurred,

but their measured PSF is deformed differently due to residual aberrations depending on which side of

the focus they are [84]. The PSF can be modified by modulation of the amplitude and/or phase of the

fluorescence light field. The three-dimensional PSF is designed so that the axial position of an emitter

can be unambiguously established from its measured two-dimensional intensity distribution.

The main advantage of PSF engineering is that quasi-volumetric images are obtained from a single

shot. The choice of PSF modifications is inherently broad. References [83, 132] review common choices.

A straightforward PSF modification consists of introducing astigmatism, creating elongated peaks along

a direction depending on the emitters side to the focal plane. However, although this increases axial

localization precision within the DOF, it does not extend the DOF and deteriorates lateral resolution.

PSFs which consist of azimuthally structured lateral intensity distribution that rotate along the axial
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dimension can be used to achieve both higher axial resolution and increased DOF while maintaining

high lateral resolution. As we will see, a PSF in the form of a double helix is particularly suitable and

can be created by phase modulation alone in the pupil plane.

Because of these advantages, we choose the rotating PSF technique for our experiment, which I

therefore discuss in detail in Section 4.4 hereafter.

4.4 Introduction to the rotating PSF

In conventional imaging systems, single atoms in fluorescence images appear as Airy disks in the absence

of aberrations, as we saw in Section 4.2.1. The position along the line of sight can only be determined by

the defocus. As we will see, this method suffers from a low resolution. For example, the vertical lattice

structure can be resolved only for very high NAs which are difficult to reach and also severely limit the

DOF. We will also see that the defocus is not suitable to determine on which side an atom is located

relative to the focal plane. The key idea is to break the axial symmetry of the PSF, and encode the axial

position into the rotation angle of the modified PSF. To determine the three-dimensional position of

an atom, the axial position must then be determined from the rotation angle of the measured PSF in

addition to determining the lateral position.

The rotating PSF was first proposed in 1996 [71], further developed in Piestun’s group [72, 73, 136],

and subsequently realized in fluorescence microscopy for biological systems [75, 76, 79, 81, 137, 138].

Also contributing here was the group of Moerner [74, 77, 80, 132], recognized with the 2014 Nobel

Prize in Chemistry for the development of super-resolution fluorescence microscopy.

4.4.1 Construction from Laguerre-Gauss modes

As shown in Reference [71], a rotating PSF in the paraxial approximation can be constructed from

Laguerre-Gauss (LG) modes. To understand the necessary conditions and to get analytical expressions

for the expected rotation angles, I briefly introduce the LG modes.

The LG modes form a complete orthogonal
6

(basis) set of solutions of the paraxial Helmholtz equation

(see Appendix A.1 for details) in cylindrical coordinates [109]. The LG transverse mode of order (𝑙, 𝑝)
is given by

𝑢𝑙 𝑝 = 𝐶𝑙 𝑝
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)
, (4.6)

6
The orthogonality relation is given by ⟨𝑙′, 𝑝′ |𝑙, 𝑝⟩ = 𝛿𝑙𝑙′𝛿𝑝𝑝′ , with the scalar product defined by ⟨Ψ|Φ⟩ =∫ 2𝜋

0
d𝜙

∫ ∞
0

d𝑟𝑟 Ψ
∗ (𝒙)Φ(𝒙). The notation is explained in Appendix B.1.
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Figure 4.5: The first seven Laguerre-Gauss modes at 𝑧 = 0. The upper row shows the intensity |𝑢𝑙 𝑝 |2, the lower

row the phase arg(𝑢𝑙 𝑝). The fundamental mode 𝑢00 corresponds to a Gaussian beam. The azimuthal mode index

𝑙 determines the number and direction of azimuthal phase windings, while the radial mode index 𝑝 defines the

number of radial phase discontinuities. The intensity at phase discontinuities and singularities is zero, giving rise

to a ring-like intensity profile.

with

a normalization factor
7

𝐶𝑙 𝑝 =

√︄
2𝑝!

𝜋(𝑝 + |𝑙 |)! , (4.7)

the beam waist 𝑤0 ,

the beam radius 𝑤(𝑧) = 𝑤0

√︃
1 + (𝑧/𝑧R)2

, (4.8)

the Rayleigh distance 𝑧R = 𝜋𝑤
2
0/𝜆 , (4.9)

the phase curvature radius 𝑅(𝑧) = 𝑧
(
1 + (𝑧R/𝑧)2

)
, (4.10)

the Gouy phase 𝜓𝑙 𝑝 (𝑧) = (2𝑝 + |𝑙 | + 1) arctan(𝑧/𝑧R) , (4.11)

and the generalized Laguerre polynomials 𝐿
𝑙
𝑝 .

Figure 4.5 shows the intensity and phase profiles at the waist 𝑧 = 0 of the seven first LG modes. The

azimuthal mode number 𝑙 ∈ Z gives the number and direction of phase windings e
i𝑙𝜙

around the optical

axis, giving rise for 𝑙 ≠ 0 to an optical vortex of topological charge 𝑙. In addition to the spin angular

momentum associated with polarization, a photon in this mode will carry an orbital angular momentum

ℏ𝑙 [139, 140]. Interestingly, beyond the paraxial approximation, it is no longer true that spin and orbital

angular momentum are decoupled, and spin-orbit coupling occurs [141, 142]. The radial mode number

𝑝 ∈ N determines by the zero crossings of the Laguerre polynomials the number 𝑝 and position of radial

phase discontinuities. The intensity at phase discontinuities must be zero, which is manifested by the

ring-like structure of the intensity profile with 𝑝 rings of vanishing intensity. Moreover, for 𝑙 ≠ 0 the

intensity on the optical axis is zero because of the phase singularities located there. The LG modes, just

7
This normalization constant is chosen such that

∫ 2𝜋

0
d𝜙

∫ ∞
0
𝑟d𝑟 |𝑢𝑙 𝑝 (𝑟, 𝜙, 𝑧) |

2
= 1. The deviating normalization constant

reported in Reference [71] is chosen to yield max
(
|𝑢𝑙 𝑝 (𝑟, 𝜙, 𝑧) |

2
)
= 1.

36



Chapter 4 Three-dimensional imaging of single atoms by point-spread-function engineering

-2

0

2

-2

0

2

-2 0 2

0

π

-π

0

0.6
A B C Db)

c)

a)

A

B

C

D

0 0.5 1-0.5-1

-π
0
π

2π

-2π

0

0 5-5

-2π

2π
0

0

4

6

-5

5

2

A
B
C
D

d)

0 5-5
0

4

8

6

2

Figure 4.6: a) Plots of the beam radius (Equation 4.8), phase curvature radius (Equation 4.10), Gouy phase for

various combined mode indices 𝑛 = 2𝑝 + |𝑙 | (Equation 4.11), and rotation angle for various constants 𝑉 = Δ𝑛/Δ𝑙
(Equation 4.16) as a function of 𝑧-position. The asymptotes are indicated by gray dashed lines. b) Examples of

LG mode superpositions at the waist 𝑧 = 0. The Example A shows the superposition of the modes 𝑢00 and 𝑢10,

Example B of the modes 𝑢00 and 𝑢21, Example C of the modes 𝑢−10 and 𝑢20 and Example D of the modes 𝑢00,

𝑢42 and 𝑢−42, each with equal coefficients preserving normalization. The upper row shows the intensity profile

|𝑢𝑙 𝑝 |2, the lower row the corresponding phase profile arg(𝑢𝑙 𝑝). c) Intensity profiles at different 𝑧-positions within

the Rayleigh range for the four examples. The color scale is the same throughout. d) LG modal plane with the

examples marked. Examples A-C lie on straight lines, Example D lies on two lines parallel to the 𝑙-axis.

like their fundamental mode (a Gaussian beam), have a point of smallest radial extent at 𝑧 = 0 and a

Gaussian envelope that diverges according to 𝑤(𝑧) (cf. equations 4.6 and 4.8) with increasing distance 𝑧

on the scale of the Rayleigh length 𝑧R (Equation 4.9). The LG modes have apart from the azimuthal

phase windings a plane phase front in the waist as well as at infinity. In between, however, they are

curved because of the non-constant amplitude distribution at the waist as opposed to plane waves, with

the maximum curvature being at the Rayleigh distance. This phase curvature is given by the reciprocal of

the phase curvature radius (Equation 4.10). A LG mode also undergoes a Gouy phase shift of 2𝑝 + |𝑙 | + 1

times the Gouy phase shift −𝜋 of a Gaussian beam when passing through the focus from −∞ → +∞
(cf. Equation 4.11). These 𝑧 dependencies are shown in Figure 4.6 a).

Each LG mode is stationary in 𝑧 (except for the scaling with 𝑤(𝑧) and the laterally constant Gouy
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phase) and an eigenmode of rotation around the 𝑧-axis.
8

In particular, this means that the intensity

distribution |𝑢𝑙 𝑝 |2 is axially symmetrical and stationary. To break the axial symmetry and stationarity,

two or more LG modes can be superimposed. The intensity of a superposition of two modes can then be

expressed by

𝐼 ∝ |𝑢𝑙 𝑝 + 𝑢𝑙′𝑝′ |2 = |𝑢𝑙 𝑝 |2 + |𝑢𝑙′𝑝′ |2 + 2 Re(𝑢𝑙 𝑝𝑢∗𝑙′𝑝′) , (4.12)

where the first two terms each originate from the two modes alone and thus continue to be axially

symmetric. However, the interference term

2 Re(𝑢𝑙 𝑝𝑢∗𝑙′𝑝′) = 2|𝑢𝑙 𝑝 | |𝑢𝑙′𝑝′ | cos
(
(𝑙 − 𝑙′)𝜙 − (2𝑝 + |𝑙 | − 2𝑝

′ − |𝑙′ |) arctan(𝑧/𝑧R)
)

(4.13)

has a phase term with azimuthal dependence as long as Δ𝑙 = 𝑙 − 𝑙′ ≠ 0 and is non-stationary in the axial

direction when Δ𝑛 = 𝑛 − 𝑛′ ≠ 0, where 𝑛 := 2𝑝 + |𝑙 | is the combined mode number. If these conditions

are met, the interference of the modes with different orbital angular momentum phases e
i𝑙𝜙

and e
i𝑙
′
𝜙

and

Gouy phases 𝜓𝑙 𝑝 and 𝜓𝑙
′
𝑝
′ let the intensity distribution undergo a scaled-rigid rotation along the 𝑧-axis.

For the sake of simplicity, I have shown this for the superposition of two LG modes with unity

coefficients, but the conclusions drawn below remain valid for the superposition with complex coefficients

of any number of LG modes, provided that all interference terms rotate at the same velocity. This is the

case if
𝑛 𝑗+1 − 𝑛 𝑗
𝑙 𝑗+1 − 𝑙 𝑗

=
Δ𝑛 𝑗

Δ𝑙 𝑗
=: 𝑉 𝑗 (4.14)

is the same for all LG modes 𝑗 in ascending order 𝑛 𝑗 ≤ 𝑛 𝑗+1, that is, 𝑉 𝑗 = const. holds. The derivation

for this general case is shown in Appendix B, which details the results in Reference [71].

Figure 4.6 b) shows examples of LG mode superpositions. As can be seen, the phase profiles of the

superpositions exhibit vortex singularities and discontinuities like the pure LG modes themselves, but

are no longer on the optical axis, respectively radially symmetric. Accordingly, regions of vanishing

intensity can be found again at these locations. This forms the azimuthally asymmetric intensity profiles

with several lobes off the optical axis. Example A results in a lobe ”anti-lobe” pair centered around

the optical axis, examples B and C result in two and three lobes respectively. Example D results in an

intensity profile where the brightest regions form a cross.

In the following, we will examine the properties of rotation in general, and then in relation to these

examples.

4.4.2 Properties of the rotating PSF

We will first restrict ourselves to PSFs obtained from LG mode superpositions that satisfy the condition

of scaled-rigid rotation (i.e., Equation 4.14). The angular velocity of the rotation following from

Equation 4.13 is
d𝜙

d𝑧
= 𝑉

d

d𝑧
arctan(𝑧/𝑧R) = 𝑉

1

1 + (𝑧/𝑧R)2
, (4.15)

8
Applying the rotation operator around the 𝑧-axis, R𝑧 (𝜃) 𝑢𝑙 𝑝 = e

i𝑙 𝜃
𝑢𝑙 𝑝 , it is easy to see that 𝑢𝑙 𝑝 is an eigenfunction of R𝑧 (𝜃)

with eigenvalue e
i𝑙 𝜃

.
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where 𝑉 := Δ𝑛/Δ𝑙 is the ratio of mode number differences. Integration gives the rotation angle of the

intensity pattern relative to the one at 𝑧 = 0

𝜃 (𝑧) = 𝑉 arctan(𝑧/𝑧R) , (4.16)

which is also plotted in Figure 4.6 a). The intensity pattern thus rotates by 𝑉 · 𝜋/2 within the Rayleigh

range, and overall by 𝑉 · 𝜋 from −∞ → +∞.

The intensity profiles at different 𝑧-positions of the previously discussed mode superposition examples

are shown in Figure 4.6 c). The scaled-rotating character is directly visible for examples A-C. It is also

apparent that they rotate to different degrees. Within the Rayleigh range shown, Example A rotates by

𝜋/2, since 𝑉 = 1 in this case. For Example B, 𝑉 = 2 results in a rotation of 𝜋 of the double-helix-shaped

intensity distribution along 𝑧. Remarkable is the very slow rotation of the triple helix in Example C,

which results from the fact that the azimuthal mode indices of the constituent LG modes have different

magnitude and sign and enter Δ𝑛 as their absolute value, but Δ𝑙 with their sign, giving 𝑉 = 1/3 and

thus a rotation of 𝜋/6 within the Rayleigh range. It becomes clear that the rotation speed can be chosen

arbitrarily large or small (in discrete steps) by careful choice of the mode numbers.

Example D does not exhibit scaled-rigid rotation, since the condition for such rotation (Equation 4.14)

is not fulfilled. Nonetheless, this mode superposition exhibits a rather interesting behavior: The cross

in the waist is imaged back on itself at exactly the Rayleigh distance (and again in the far field), and

appears at half the Rayleigh distance rotated by exactly 𝜋/4. In between, no rotation happens, but rather

a gradual switching of intensity from the vertically oriented cross to the twisted cross and vice versa.

In fact, rotating LG mode superpositions are only a subset of a more general group of so-called

generalized self-imaging beams, as elaborated in Reference [136]. Their defining condition, Equation 4.14

with Δ𝑙 ≠ 0 and Δ𝑛 ≠ 0, can also be represented in the modal plane spanned by the mode indices 𝑙 and 𝑛

as all mode combinations laying on straight lines. As can be seen from Figure 4.6 d), this is the case for

examples A-C. Example D can be classified into another subcategory, the scaled self-imaging beams, for

which the transverse intensity profile is self-reproduced at certain 𝑧-positions with in general different

orientations and scales. Such mode combinations lie on a set of equidistant lines parallel to the 𝑙-axis, as

in the case of Example D.

The scaling behavior of the generalized self-imaging beams remains unchanged from the LG modes.

For the group of rotating mode combinations, this can be seen from equations 4.12 and 4.13 (or from the

analogous Equation B.10 for any number of modes). Any lateral distance 𝑑0 within the intensity profile

at 𝑧 = 0 therefore scales as the beam radius Equation 4.8. By insertion of Equation 4.16 one obtains the

scaling

𝑑 =
𝑑0

cos
(
𝜃 (𝑧)
𝑉

) (4.17)

in terms of the rotation angle 𝜃 (𝑧).

4.4.3 PSF engineering in the pupil plane

The original PSF of an imaging system can be modified by modulating the amplitude and/or phase of the

light beam forming the image. In order to form the PSF as LG mode (superposition), phase modulation

is required, as this is the only way to create the essential phase vortices. Ideally, one has control over both

phase and amplitude, but phase-only modulation will be discussed here, as this entails less instrumental

39



Chapter 4 Three-dimensional imaging of single atoms by point-spread-function engineering

complexity. Since we want to change the PSF independently of the lateral position in the object plane,

the modulation must take place in the Fourier plane, which, as we saw in Section 4.2.1, corresponds to

the pupil plane.

The pupil function of a typical
9

imaging system is simply the circ-function,

𝑃(𝑢, 𝑣) = circ𝑎

(√︁
𝑢

2 + 𝑣2
)
, (4.18)

i.e. unity within the pupil of radius 𝑎 and zero outside.
10

The phase-modulated generalized pupil function

(cf. Section 4.2.3) can then be written as

Pmod(𝑢, 𝑣) = 𝑃(𝑢, 𝑣) exp (i𝑘𝑊 (𝑢, 𝑣)) exp (iΦ(𝑢, 𝑣)) , (4.19)

with the curved phase front due to aberrations 𝑊 (𝑢, 𝑣) and a phase mask Φ(𝑢, 𝑣). Hence, the phase

engineering can also be viewed as a controlled manipulation of the aberrations of the system.

Our objective lens was designed to fulfill the Abbe sine condition, which makes the objective insensitive

in first order to comatic aberration, so that off-axis objects can be imaged sharply [16]. It requires that the

sine of the object space angle is always proportional to the sine of the image space angle [143]. Given

the high numerical aperture of our objective lens, the amplitude of an isotropically emitting point source

is not constant in the pupil plane. This so-called apodization must be taken into account, and is described

in Reference [16]. In the case of the Abbe sine condition, the intensity increases as 𝐴Abbe = 1/cos(𝛼) at

the edges of the pupil plane, where 𝛼 is the incidence angle with respect to the optical axis.

The modified three-dimensional PSF may then be written as the absolute squared two-dimensional

Fourier transform of the modified electric field in the pupil plane

PSF(𝑥, 𝑦, 𝑧) =
���F {

E0(𝑢, 𝑣) Pmod(𝑢, 𝑣) e
i𝑘𝑧NA𝑤 (𝑢,𝑣)/𝑎

}
(𝜅𝑢, 𝜅𝑣)

���2 , (4.20)

evaluated at the spatial frequencies 𝜅𝑢 = 𝑘𝑥/ 𝑓 and 𝜅𝑣 = 𝑘𝑦/ 𝑓 , i.e. similar as for the two-dimensional

PSF (cf. Section 4.2.3). Here, 𝑓 denotes the system’s front or back focal length. The term e
i𝑘𝑧NA𝑤 (𝑢,𝑣)/𝑎

accounts for the defocus, where

𝑤(𝑢, 𝑣) =
√︂
𝑎

2/NA
2 −

(
𝑢

2 + 𝑣2
)
, (4.21)

using NA = sin
(
𝛼max

)
= 𝑎/ 𝑓 and the collimated beam radius 𝑎. It can then be thought as the defocus

aberration to add to the pupil function depending on the 𝑧-coordinate at which the PSF is evaluated. A

derivation based on References [144, 145] is presented in Appendix C.1. The incident electric field is

given by

E0(𝑢, 𝑣) = 𝐸0

(
1 − 𝑢

2 + 𝑣2

𝑎
2

NA
2

)−1/4

(4.22)

according to the apodization function written in pupil coordinates. A derivation can be found in

9
Typically, optical systems have a circular aperture stop, as is the case for our system.

10
Or in mathematical terms, circ𝑎 (𝜌) =

{
1, if 𝜌 ≤ 𝑎
0, otherwise

.
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Appendix C.2.

That gives us a model for a PSF of the microscope arbitrarily phase-modulated in the pupil plane.

We will also exploit this in Section 4.5.3 to simulate engineered PSFs by numerically computing

Equation 4.20. However, it is at first non-trivial how to find a suitable phase mask to form (superpositions

of) LG modes from the original PSF. However, we can take the same holographic approach as when

creating pure LG modes using phase-only modulation [146–149] and simply use the phase of the LG

mode combination𝑈 =
∑

𝑖 𝑎𝑖 𝑢𝑙𝑖 𝑝𝑖 at the waist as the phase mask, i.e.

Φ(𝑢, 𝑣) = arg
(
𝑈 |𝑧=0

)
. (4.23)

By applying the phase of the desired field𝑈 to the field incident in the pupil plane, we obtain the desired

field with high purity. The purity is given by the field overlap and is bounded in that we do not have

control over the amplitude.

The LG modes are eigenfunctions of the Fourier transform
11

[136, 150], so we also get the LG mode

combination in the image plane. Diffraction at the limited aperture must also be considered. Since the

field in the pupil plane is multiplied by the pupil function 𝑃(𝑢, 𝑣), the field in the image plane can be

described according to the convolution theorem
12

as the field without any aperture convolved with the

Airy disk.

From our considerations, the choice of the parameter 𝑤0 of the LG modes is not yet evident. In

fact, this choice is not simple either, as the amount of light in the desired modes
13

depends on the ratio

of aperture radius and LG mode waist 𝑎/𝑤0, even if we could modulate the amplitude, in a way that

depends on the modes themselves [151, 152]. This can be easily understood if one remembers that the

properties primarily determining a particular LG mode are the phase discontinuities and singularities,

which (especially also for LG mode superpositions) are located away from the optical axis. The more

the aperture cuts off in the pupil plane, the less of the desired mode components are still contained in

the resulting field. Moreover, since we do not modulate the amplitude and it is constant in the pupil

plane (leaving aside the apodization), too large 𝑎/𝑤0 would also reduce the mode purity again, since the

amplitude then deviates more and more from the amplitude of the desired field. As has been shown in

Reference [149], the theoretically achievable output mode purity of our method indeed has a maximum

of around 80 % at a certain value 𝑎/𝑤0, which depends on the LG mode.
14

Due to the complexity, for

our rotating PSF it is easiest to manually optimize the 𝑤0 used so that the resulting PSF in the image

plane matches the desired PSF as closely as possible.

The fact that we cannot produce the rotating PSF from LG mode combinations with perfect purity

raises the question whether the rotational properties remain unchanged. This is significant as our axial

localization is based on accurate knowledge of the rotational behavior. However, the fidelity of the

PSF engineering can be made large enough that it follows the simple model of scaled-rigid rotation of

Equation 4.16. This was verified for our choice of PSF in an optical test setup as well as in a simulation

11
This can be shown via the Hankel transform and gives the eigenvalue (−1)𝑝 (i) |𝑙 | = e

i(2𝑝+|𝑙 | ) 𝜋
2 = e

i 𝜋
2
𝑛

corresponding to a

LG eigenfunction 𝑢𝑙 𝑝 [150].
12

The convolution theorem states that F { 𝑓 ∗ 𝑔} = F { 𝑓 } · F {𝑔} for one- or multi-dimensional functions 𝑓 and 𝑔 [119]. As

corollary, applying the inverse Fourier transform also yields F { 𝑓 · 𝑔} = F { 𝑓 } ∗ F {𝑔}.
13

The projection of an arbitrary field 𝑉 on the mode combination𝑈 =
∑
𝑖 𝑎𝑖 𝑢𝑙𝑖 𝑝𝑖

is given by ⟨𝑉 |𝑈⟩, with the scalar product

and the notation explained in Appendix B.1.
14

For the LG fundamental mode, the Gaussian beam, the ideal 𝑎/𝑤0 is the one that gives the highest overlap with the Airy disk

(the diffraction pattern of a circular aperture).
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(see Section 4.5.3).

Moreover, as we will see in Section 4.4.5, the fidelity can be optimized beyond these limits.

4.4.4 Comparison with standard PSF

Engineering a rotating PSF is only useful if it also gives better three-dimensional position information

than the already present regular PSF. The information theoretic approach mentioned in Section 4.2.2

provides the mathematical framework to study this question and is introduced e.g. in Reference [153].

The Fisher information gives the possible precision of the localization. More precisely, the reciprocal

of the Fisher information with respect to a parameter is a lower bound for the variance of an unbiased

estimator of this parameter. This follows from the so-called Cramér-Rao inequality which also gives the

name CRLB to the lower bound. To define the Fisher information, consider an observable 𝑋 whose

probability depends on a parameter 𝜂. The Fisher information describes the amount of information that

the observable 𝑋 contains about the unknown parameter 𝜂. It is defined to be the variance of the partial

derivative of the log-likelihood function with respect to the parameter. For a single parameter 𝜂 and the

probability density function 𝑓 (𝑋; 𝜂), the Fisher information can thus be written as

𝐼 (𝜂) = E

[ (
𝜕

𝜕𝜂
ln 𝑓 (𝑋; 𝜂)

)2
����� 𝜂

]
=

∫ (
𝜕

𝜕𝜂
ln 𝑓 (𝜒; 𝜂)

)2

𝑓 (𝜒; 𝜂)d𝜒 . (4.24)

Note that it does not have to be a probability distribution over a one-dimensional space. The distribution

is assumed to be single-parametric here; for multi-parameter models, the Fisher information can be

written as a matrix.

A normalized transverse intensity distribution can be understood as a probability density. Thus,

Equation 4.24 can be used to calculate and compare the Fisher information with respect to a spatial

coordinate 𝜂 ∈ {𝑥, 𝑦, 𝑧} for transverse intensity distributions

𝑓 (𝑥, 𝑦; 𝜂) =
���𝑈 |𝑧=𝑧0

���2 (4.25)

at axial position 𝑧0. Accordingly, the integration d𝜒 is along both transversal dimensions. Figure 4.7

shows the Fisher information as a function of the axial position 𝑧 with respect to each coordinates 𝑥,𝑦

and 𝑧 for the DH-PSF (Example B in Figure 4.6) and in comparison for the fundamental mode (the first

example in Figure 4.5). The latter can be considered the standard PSF in terms of LG modes. For the

fundamental LG mode, one obtains the simple analytical expressions

𝐼 (𝑧) = 4

(
𝑤0

𝑧R

)2

· (𝑧/𝑧R)2(
1 + (𝑧/𝑧R)2

)2
and 𝐼 (𝑥) = 𝐼 (𝑦) = 4

1 + (𝑧/𝑧R)2
. (4.26)

For more complex expressions, such as those arising in the DH-PSF, the derivative and integration can

be computed numerically.
15

As can be seen in Figure 4.7, the DH-PSF provides higher Fisher information for the localization

along all dimensions as compared to using the standard PSF. In particular, unlike the standard PSF, it

15
To evaluate the numerical error introduced hereby, the numerical calculation for the fundamental mode was compared with

the analytical result from Equation 4.26, revealing a very high agreement.
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Figure 4.7: Fisher information as a function of axial position 𝑧 of the DH-PSF and the standard (Std.) PSF with

respect to the a) axial z-dimension, b) x-dimension and c) y-dimension. The DH-PSF corresponds to Example B

in Figure 4.6. The standard PSF corresponds to the fundamental Gaussian mode, shown first in Figure 4.5. Note

the different units of the ordinate.

provides high axial information even near the focus, as evident from Figure 4.7 a). The superior axial

information of the double helix thus provides a decisive advantage over merely relying on the defocus.

Moreover, it exceeds the axial information of the standard PSF over a large axial domain, meaning an

enhancement of the DOF by the DH-PSF. It is interesting to note that the double helix provides a larger

Fisher information even for localization along the lateral dimensions, as can be seen in figures 4.7 b) and

4.7 c). However, this does not necessarily mean that the double helix is better for applications involving

a single lateral plane, as the larger extent of the PSF makes the localization of closely spaced emitters

less trivial and the peak intensity is lower for a limited photon budget. The slightly higher maximal

Fisher information of the DH-PSF along the 𝑥-dimension compared to the 𝑦-dimension results from

its azimuthal asymmetry. In focus, it consists of two lobes displaced from the origin in 𝑥-direction,

wherefrom it becomes apparent that it gives more information about the 𝑥- than the 𝑦-position.

Here, for simplicity, we assumed no noise or other detrimental effects (such as the limited mode

fidelity described in Section 4.4.3), so that the Fisher information can be calculated analytically from the

theoretical intensities. But also when considering a limited SNR and taking into account the limited

mode fidelity, the conclusions remain, as shown in references [75, 83, 137]. The DH-PSF provides

higher and more uniform Fisher information for three-dimensional localization as compared to using a

standard PSF.

It should be emphasized here that the Fisher information evaluates local changes of a parameter.

Nonlocal properties of the PSF, such as its repetition along the optical axis, are in fact not incorporated.

Arguably, rotating PSFs also have a distinct advantage over the standard PSF in that they are not

symmetric about 𝑧 = 0.

For quantum gas microscope experiments with densely filled optical lattices [85], it is of relevance not

to lose the lateral single-site resolution due to the widening of a modified PSF leading to overlapping

PSFs. Taking the DH-PSF as an example, the larger extent and the task of correctly pairing lobes of

overlapping PSFs can initially be believed to be an inherent disadvantage. However, as reported in

Reference [79], the particular shape and spacing of the lobes can help determine the underlying positions

of the emitters. In fact, similar to the one-dimensional PSF case described in Reference [39], relatively

dense ensembles in which the PSFs of close-by emitters overlap can be super-resolved, in all three

dimensions [79].
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4.4.5 Optimization of the rotating PSF

The mode fidelity limitations arising from diffraction and sole phase modulation (see Section 4.4.3)

can be overcome by iteratively optimizing the phase mask. Optimization also permits to select a PSF

according to specific features. Reference [73] proposes for this purpose to optimize the pupil function

for a continuous rotation of the main lobes within a bounded axial range only, the maximum intensity

being directed into the main lobes, and the transfer function modulating only the phase. The intensities

in the pupil plane and the three-dimensional PSF must be constrained, and the phase degrees of freedom

of the two domains are used as the free degrees of freedom. The PSF we determined analytically (cf.

Section 4.4.3) is taken as a first estimate. To enforce the rotational property in the iterative process, the

field is projected onto the LG modes and multiplied in the LG modal plane by a weighting function that

amplifies the modes that lie on a cloud around the line defining the exactly rotating PSF. This method

is nothing but a form of computer-generated hologram calculation, a well-established way of creating

particular intensity patterns using a phase mask [119, 154]. The main disadvantage of rotating PSFs,

the distribution of intensity into a larger area, which is a problem for photon-limited applications like

ours, can be mitigated by this optimization, since over 30 times more intensity can be concentrated

into the main lobes compared to exactly rotating PSFs, as has been reported in Reference [73]. The

super-resolved three-dimensional localization of single molecules reported in Reference [74] uses a PSF

optimized in this way.

These geometric PSF design approaches are simple and computationally fast. However, they are

not optimal because they do not reach the fundamental limit of precision for a given physical system.

They also lack consideration of effects of existing noise statistics on their optimality. To achieve the

fundamental resolution limit of localization (the CRLB, see Section 4.2.2), the pupil plane phase

mask can be optimized by means of maximizing the information content of the PSF (including the

noise statistics). Reference [78] took the approach of optimizing the number and position of vortex

singularities used for an analytical phase mask in the pupil plane for maximum Fisher information, while

Reference [80] restricts the phase degree of freedom in the pupil plane to the first 55 Zernike modes.

Such optimization problems are generally not convex, so finding a global minimum is not guaranteed.

One approach is to run the optimization routine several times with random initial values and select the

best final result. The choice of optimization algorithm plays an important role for convergence, one

choice could be the genetic algorithm as described in Reference [155]. The optimization can be done on

simulated PSFs as in the presented literature. I suggest to do it directly in the system with the atoms, as

this way all noise sources are automatically taken into account correctly. I elaborate on this in more

detail in Section 4.5.1.

For experiments with high emitter densities, e.g. for densely filled optical lattices, an optimized PSF

should be laterally compact in order to minimize their overlap, especially in cases where the Abbe radius

is larger than the horizontal lattice constant. For example, the lobes of a DH-PSF can be moved further

together until a bean-shaped, helicoidally rotating distribution is formed. Therefore, I propose to include

in addition to the Fisher information an area cost function in any such PSF optimization, which penalizes

PSF with large extent. I expect this to facilitate the three-dimensional localization of dense ensemble as

reported in Reference [79].

For optical lattices, because of their discrete nature, the constraints on the axial form of the PSFs

can also be relaxed to require that only discrete axial positions have easily distinguishable PSFs. As

an illustrative example, consider Example D from Figure 4.6. Ultimately, the choice of PSF must be

tailored precisely to the intended experiment.
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4.4.6 Other approaches and applications

Inspired by the pioneering works of constructing rotating PSFs with LG modes, other methods for

creating rotating PSFs have been developed using Fresnel zones in the Fourier plane, where successive

zones carry spiral phase profiles with successively larger topological quantum number [156]. Interesting

extensions of the pupil plane engineering idea are described in reference [157, 158], which demonstrate

possible setups to engineer the optical wavefront independently in both polarization directions. This

allows, in addition to the three-dimensional localization, aberrations in both polarization channels to

be measured and removed independently. The rotating PSF has applications not only in fluorescence

microscopy of single molecules, or in our case, single atoms. The idea has also been used in laser

scanning microscopes [81]. PSFs consisting of LG mode superpositions were also used as optical

tweezers [159].

It should be noted that rigid rotation is by no means necessary, but is merely a simple way of

parameterizing the axial position from an axially changing PSF. As long as the axial behavior of the PSF

is known and unambiguous, the axial position can be inferred from the measured PSF.

A similar approach was recently reported in Reference [160]. Wave-front shaping in a quasi-image

plane, i.e., a plane in between pupil and image plane, enables to sharply image three-dimensional

configurations of atoms. For this purpose, different areas of the FOV are focused differently using

holographic Fresnel lenslets. As these areas have to be selected prior to a measurement, it is a priori not

possible to extract the axial position from a single image beyond the level of precision of the defocus.

4.5 Experimental implementation of PSF engineering

To implement the PSF engineering described in Section 4.4.3, we need a way to spatially modulate the

phase of the light emitted by the atoms. This can be done using a spatial light modulator (SLM), which I

describe in Section 4.5.1. In Section 4.5.2, I describe the design and adjustment of the new microscope

setup. I then discuss the choice of PSF for subsequent measurements in Section 4.5.3. In particular, a

simulation is used to to show that vertically adjacent lattice sites are expected to be resolvable.

4.5.1 Spatial light modulator

To realize the spatial phase modulation, a reflective liquid crystal on silicon (LCoS) SLM with parallel-

aligned nematic (PAN) arrangement is used.
16

To understand how SLMs can be used for this purpose, I

will give a brief overview of the principle of operation. A good description can be found in references [161,

162].

Principle of operation. Liquid crystals (LCs) simultaneously exhibit the viscous properties of a liquid

and macroscopic anisotropy as in a crystalline solid. In the so-called nematic phase, LC molecules tend

to align their long axes with respect to neighboring molecules, resulting in long-range orientation order

and hence optical anisotropy. The local average orientation of the molecules is called the director and is

described by the field of unit vectors �̂�(𝒓). Without external forces affecting the director field, nematic

LC materials are uniaxially birefringent. The refractive indices for light with polarization perpendicular

and parallel to �̂� are denoted as 𝑛𝑜 and 𝑛𝑒, respectively (ordinary and extraordinary ray). For light

16
SLM-100 from Santec.
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Figure 4.8: Section of two adjacent pixels of a PAN LCoS-SLM. No voltage is applied to the left pixel, so the LC

molecules align parallel to the alignment layer. The higher the AC voltage applied to the pixel on the right-hand

side, the more it aligns the molecules in the electric field direction. This results in a different refractive index and

thus a phase difference for the polarization lying in the sectional plane (i.e., parallel to the optical axis of the SLM)

in this pixel. The local average orientation �̂� is indicated at two points. Crosstalk occurs in the boundary region of

the pixels due to the smooth transition of the director field. Taken and modified from [161].

propagating at an angle 𝜃 relative to �̂�, the polarization component in the plane of �̂� and the direction of

propagation experiences an effective refractive index [161, 162]

𝑛
2
eff =

𝑛
2
𝑜𝑛

2
𝑒

𝑛
2
𝑜 sin

2(𝜃) + 𝑛2
𝑒 cos

2(𝜃)
. (4.27)

In the LCoS-SLM, the LC is located between two parallel oriented alignment layers, near which surface

interaction causes the molecules to arrange themselves accordingly (hence the term parallel-aligned

nematic arrangement), cf. Figure 4.8. In the presence of an electric field, LC molecules align in the field

direction due to induced molecular dipole moments. The alignment �̂�, and thus the refractive index 𝑛eff,

can therefore be controlled by varying the field strength. For light polarized in the plane of rotation of

LC molecules, the resulting optical path length difference is 2𝑑Δ𝑛, where 𝑑 is the thickness of the LC

layer and Δ𝑛 = 𝑛eff − 𝑛𝑜 is the birefringence. Note that the reflective design doubles the modulation

depth as the light passes through the LCs twice. This allows for variable phase retardation

Δ𝜑 = 2𝜋
2𝑑Δ𝑛

𝜆
(4.28)

of light at a wavelength 𝜆. The other polarization component, i.e. the ordinary ray, does not undergo any

modulation. The field is applied by a transparent indium tin oxide electrode at constant potential on the

top and reflective pixel electrodes controlled by complementary metal-oxide-semiconductor (CMOS)

technology on the silicon substrate on the bottom. To avoid damage to the LC material by ion migration,

the polarity of the applied field is switched [161–163], in our device at 1.2 kHz [164].
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SpeciĄcations and limitations. A requirement for the SLM used is a high spatial resolution, as well

as a high fill factor. This is fulfilled by 1 050 × 1 440 pixels of 10.0 ➭m length separated by 0.4 ➭m.
17

Indeed, the spatial digitization of the phase mask leads to a globally sinc
2
-weighted diffraction intensity,

which is more pronounced the coarser the sampling of the desired pattern [165]. Crosstalk occurs in the

inter-pixel region, which smoothens the phase response to a certain degree (cf. Figure 4.8). Depending

on the phase pattern, this can lead to both improved (e.g. for blazed gratings) and degraded phase

response [166]. Reference [167] has determined the effective size of a Gaussian smoothing kernel to be

at most 0.2 SLM pixels for our SLM. An anti-reflective (AR) coating minimizes losses from reflection at

the transparent electrode and allows the overall reflectivity to be close to the panel reflectivity of around

80 %. The panel reflectivity is wavelength-dependent and amounts to 70 % for our imaging wavelength
18

,

the caesium D2 line at 852 nm. The applied voltages have a 10 bit addressing resolution [164] and

provide a modulation depth of more than 4𝜋 at our wavelength [167]. This is important because phase

digitization generally degrades image quality, depending on the phase pattern displayed [165]. The phase

modulation is typically stable up to 10
−3 × 2𝜋 according to the manufacturer [164], whereas a stability of

8 × 10
−4 × 2𝜋 was measured on our device [168]. The driver of the SLM reads the grayscale pattern to

be displayed from a computer video signal and converts it to corresponding pixel voltages. The lookup

table (LUT) to convert phase response to gray value at our wavelength established by Reference [167] is

used. The response time depends on the phase pattern and is typically 100 ms.

The SLM also should not introduce aberrations into the system, i.e., the output light field should

have as little additional phase front distortion as possible. SLMs however have a spatially slightly

varying LC layer thickness and are slightly bend due to manufacturing conditions, causing a spatially

inhomogeneous phase modulation. This was precisely measured for the SLM being used through

phase shift interferometry, as reported in Reference [167]. The measured curvature amounting to

2.14𝜆 peak-to-valley (PV) can be compensated for up to 𝜆/15 PV or 𝜆/78 RMS by superimposing

a compensation mask on any desired phase pattern. It was rechecked by the method described in

Reference [169] that the curvature has not changed much since the characterization. The wavefront

distortion caused by the SLM after compensation is of the order of those arising from the (on-axis)

aberrations of the high-NA objective lens. For example, the largest RMS wavefront distortions are caused

by secondary astigmatism amounting to −𝜆/67 and primary astigmatism amounting to −𝜆/100 [59].

A major disadvantage of using an SLM is the need to work with polarized light, which means that

initially only half of the unpolarized light from the atoms can be used. However, optical configurations

have been designed that use both polarizations [157, 158]. Custom manufactured diffractive optical

elements do not have this disadvantage and can reach higher optical efficiency [83], but at the cost of

losing the programmable flexibility of an SLM.

How practical the SLM’s programmability can be is illustrated by the idea, that it can be exploited to

perform the optimization of the rotating PSF described in Section 4.4.5 directly on the system itself. To

this end, in each iteration of the optimization algorithm, the PSF is measured at different axial positions,

and the SLM is reprogrammed according to the optimization. In this way, all noise sources, such as the

noise of the SLM, background noise, shot noise and camera noise, but also any aberrations (e.g. also of

the SLM) are automatically taken into account correctly. This has not yet been done, instead in previous

literature only simulated PSFs have been optimized [73–75, 78, 80].

17
This gives a pixel pitch of 10.4➭m.

18
The manufacturer specifies a reflectivity varying from 70 % to 90 % over the spectrum. Newer models also achieve over

90 % at our wavelength.
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polarizer

beam splitter
10:90 (R:T)

Figure 4.9: Schematic of the optical setup for phase-engineering the PSF. The fluorescence light from the atoms is

collimated by the high-NA objective into a beam of 22 mm diameter at maximal NA, passes through a 10:90 (R:T)

beam splitter (for the vertical MOT and PGC beams), a motorized iris, a polarizer, achromatic doublets and a

knife-edge mirror to create another accessible pupil plane in which the SLM stands, and a tube lens to focus the

light onto the camera. Filters in front of the camera block residual light from the vertical cooling (at 895 nm), the

vertical lattice (at 1 064 nm) and stray light. A tube system (not shown in the figure) further reduces stray light.

4.5.2 ModiĄed imaging system

In order to integrate the SLM into the existing imaging system described in Section 2.2, the system

must be modified. Namely, the pupil plane of the system is located still inside the vacuum cell and is

therefore inaccessible. Moreover, the SLM has to be used in reflective configuration at an angle as small

as possible.

Experimental setup. The modified imaging system is shown schematically in Figure 4.9. A secondary

pupil plane can be conveniently brought to an external location using a 4 𝑓 relay. The focal lengths of

the two lenses of the resulting telescope are chosen so that the collimated beam incident on the SLM

is brought to the suitable size. To be precise, the collimated beam diameter of 22 mm at the maximal

NA must be demagnified to fit the SLM chip with 10.92 mm along the shorter side. The chip should

be utilized as much as possible to keep a high pixel resolution. A suitable choice are the lenses with

𝑓1 = 300 mm and 𝑓2 = 100 mm focal length respectively, so that a certain tolerance remains for centering

the imaging beam on the SLM.

The optical design was made to preserve the existing beam path (cf. Figure 2.3), thereby minimizing

new mechanical stresses caused by a different weight distribution on the optical breadboard, which could

otherwise lead to misalignment of the optical lattice beams. To realize the necessary perpendicular

incidence on the SLM, I used a knife-edge mirror
19

directing the light onto the SLM and back again,

as it is shown in Figure 4.9. The knife-edge mirror is mounted in the intermediate image plane, since

this is where the image beam has the smallest extent. For atoms at the edge of the field of view, the

corresponding intermediate image is formed about 1 mm away from the optical axis. The mirror is

therefore mounted such that the prism edge is more than 1 mm below the optical axis.

19
Right-angle prism with broadband dielectric coating.
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Figure 4.10: CAD model
20

of the mounts of the SLM, the SLM driver and the knife-edge mirror. The breadboard

is vertically mounted on top of the upper level of the experimental table above the vacuum cell. Both the SLM and

the knife-edge mirror are installed on a 5-axis stage. Translating cage segment plates allow to set the height of the

mirror prism relative to the beam (46 mm above the breadboard). The optical axis is marked by a light red line.

A polarizer is required in the beam path, as the SLM only works with linear polarization. It is mounted

in a switchable holder allowing the microscope to be used without a polarizer when the SLM is switched

off. Due to the relatively small free aperture of the polarizer, it is mounted just before the intermediate

image plane at the knife-edge mirror.

Finally, another telescope produces the image that can be captured by the electron-multiplying

charge-coupled device (EMCCD) camera. The focal lengths of the lenses are selected so that the overall

system has the desired transverse magnification while remaining compact. The magnification for this

setup amounts to

𝑀 =
𝑓1

𝑓obj

· 𝑓tube

𝑓3
= 125.42 , (4.29)

thus satisfying the Nyquist-Shannon condition 𝑟Abbe > 2Δs [39] with a factor of 3.6 at maximal NA,

where Δs = Δpx/𝑀 is the sampling spacing in the object plane and Δpx = 16 ➭m is the pixel size of the

EMCCD camera. The initial design magnification of 𝑀 = 104.5 (see Section 2.2) can be easily obtained

in this setup by reducing the magnification between the intermediate image plane and the camera plane.

For the purposes of this work, the field of view is not required to be as large as possible, which is why

the magnification chosen is perfectly suitable. The axial magnification is given by 𝑀𝑧 = 𝑀
2
.

To allow adjustment of the image beam through the microscope, especially relative to the installed

SLM, both the knife-edge mirror and the SLM are mounted on 5-axis stages. Figure 4.10 shows a

rendering of the designed CAD model. A tube system can be attached to the mounts to shield as much

stray light as possible from the camera.

Alignment procedure. The main challenge lies in alignment, as the light from the atoms is too faint

for coarse alignment and no brighter point source can be placed in the atom plane.

20
Kindly compiled by Waldemar Graf from the precision mechanics workshop of the institute. The rendering was done by me.
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As an aid to coarse alignment without the atoms, a collimated laser beam at 𝜆D2 = 852 nm is directed

to the free port of the 10:90 (R:T) beam splitter (from the right side in Figure 4.9). The vertical dipole

trap (VDT) beam retroreflected at the objective lens is used as a reference for the imaging optical axis.

Thus, the first step is to ensure that the VDT beam is well aligned and retroreflected into its fiber coupler.

Then, the top vertical MOT and PGC beams both impinging the beam splitter are overlapped with the

VDT by fiber coupling. Subsequently, the bottom MOT and PGC beams are overlapped with their

respective counterparts from the top. The auxiliary beam can now be overlapped with the upper MOT or

PGC beam and then used for a first coarse adjustment of the beam path through the microscope, at first

without knife-edge mirror, SLM and the lenses.

However, because of the finite thickness of the beam splitter, the auxiliary beam adjusted in this way

is slightly displaced relative to the optical axis defined by the VDT. In a next adjustment iteration, the

residual transmission of the VDT through the objective is therefore exploited. At high intensity (e.g. at

5 W) the VDT can be observed and centered on the camera with the filter for 𝜆𝑣 = 1 064 nm removed.

The optical axis is now also given by an iris diaphragm screwed to the camera and the motorized iris

diaphragm. The auxiliary beam can be matched to the optical axis by maximizing the power transmitted

through both nearly closed iris diaphragms, allowing it to be used for the adjustment of all optical

elements.

The positions of the lenses can be optimized based on the wavefront curvature measured by a shear

plate interferometer. The distance of the first lens ( 𝑓1 = 300 mm) from the back focal plane of the

objective can however only be positioned using a length measurement. Therefore, the pupil plane only

matches the SLM plane up to this precision. Using the 5-axis stages, the auxiliary beam can be precisely

adjusted through knife-edge mirror and SLM center. The axial camera position can then be optimized

based on the sharpness of atom images (with the SLM turned off). The polarizer is then placed in the

beam and its axis is aligned to the SLM polarization axis by maximizing the diffraction efficiency of a

blazed grating (for details, see e.g. Reference [167]) displayed on the SLM.

The last step is to fine-tune the centering of the SLM’s phase mask. This can of course be done using

the 5-axis stage, however this would be unwieldy given the iterative process involved. It is simpler

to display the desired phase mask on the SLM with the corresponding displacement. To determine

the required displacement, we first note that the image of the atoms can be shifted arbitrarily in the

image plane based on orientation and period of a blazed grating (equivalent to a wrapped linear phase

ramp) displayed on the SLM. As an illustration of this, compare Figure 4.11 a) without grating and

Figure 4.11 b) with gratings in opposite directions. Similarly, we can also set a (long focal length)

holographic lens, i.e., a parabolic phase mask, which shifts the atom images in a different direction when

there is a mismatch between the optical axis and the phase mask center.
21

The displacement of the phase

mask on the SLM is optimized in that the comparison between images with and without the holographic

lens no longer shows a displacement of the imaged atoms.

Compensation of aberrations Despite careful alignment, aberrations are clearly visible, see

Figure 4.11 c), taken at maximum NA. These can come from imperfect adjustment of the lenses

and inherent lens aberrations. It remains to be investigated by ray tracing methods how large the effect on

the aberrations is. However, I estimate them to be relatively insignificant due to the relatively small NAs

up to 0.037 on the image side of the objective. Another cause of the aberrations could be an imperfect

curvature compensation of the SLM (cf. Section 4.5.1). The phase curvature of the SLM could have

21
This is no different from the displacement of a beam centered on the optical axis after passing through an uncentered lens.
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a) b) c) d) e)

Figure 4.11: Example fluorescence images of the adjustment process. a) Filled three-dimensional optical lattice.

b) A phase mask consisting of a diagonal blazed grating inside a circle and an oppositely oriented grating outside

leads to diametrically diffracted images of the atoms. c) Sparsely filled lattice imaged with a regular PSF without

aberration compensation. d) Sparsely filled lattice imaged with a “doughnut” PSF (or more specifically the LG

mode 𝑢10) after aberration compensation. e) Sparsely filled lattice imaged with a regular PSF after aberration

compensation. Images a) and b) were taken at NA = 0.72, images c)-e) at NA = 0.92.

changed slightly, for example, due to the SLM chip lying horizontally in this setup in contrast to the

characterization measurements. Furthermore, the aberration could also result from an imperfect position

of the optical lattice relative to the objective lens. As follows from the aberration characterizations

outside the vacuum cell presented in Reference [59], the aberrations significantly deteriorate already

38 ➭m from the optical axis of the objective lens. The center of overlap of the VDT and horizontal dipole

trap (HDT) beams must therefore be adjusted to micrometer accuracy, a demanding challenge.

The aberrations could have been determined as described in Section 4.2.3 and Reference [59] by

fitting the measured PSFs with the lowest-order Zernike polynomials and subsequently compensated by

displaying the inverse Zernike decomposition phase on the SLM. As a less complex and time-consuming,

yet sufficient method for the purposes of proof-of-principle measurements, the Zernike aberration

compensation mask to be displayed on the SLM was manually optimized. For this, the lowest 13 Zernike

orders were used
22

, i.e., astigmatism, coma, trefoil, secondary astigmatism (each vertical and oblique),

and spherical aberration, but omitting piston and tilt (vertical and horizontal). The standard regular

PSF is to be optimized, which must resemble an Airy disk as much as possible. However, a more

clearly aberration-sensitive PSF helps with this type of optimization. I used the Doughnut-shaped LG

mode with an azimuthal phase winding 𝑢10 (cf. Figure 4.5) for which aberrations lead to an unevenly

distributed intensity across the ring. By iteratively changing the Zernike coefficients, a relatively uniform

Doughnut can be created, as can be seen in Figure 4.11 d), leading to sharp regular PSFs with clearly

less aberrations, as shown in Figure 4.11 e).

Visual optimization provided the best PSF with the coefficients 4.5𝜆 for vertical astigmatism and

−1.5𝜆 for oblique astigmatism, whereas changes in other Zernike coefficients did not provide visible

improvements and were therefore left at zero. This result is not surprising, since the aberration

characterization from Reference [59] already identified the primary and secondary astigmatism as

the strongest aberrations with respectively −0.010(1) 𝜆 and −0.015(1) 𝜆 RMS wavefront error of the

objective lens. The much stronger astigmatism in this system indicates that the center of the optical

lattice deviates from the optical axis of the objective lens, as this causes astigmatism in the first order.

However, other causes cannot be ruled out; further examinations would be required for this.

Owing to the flexible programmability of the SLM, the astigmatism could be identified as the strongest

aberration and could be compensated for the most part. This now enables specific engineering of the

PSF. A more detailed characterization of the residual aberrations is subject of future research.

22
The complexity rapidly increases with the dimension of the optimization problem.
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Figure 4.12: Ray tracing
23

of though the high-NA objective lens. Shown in different colors are the marginal rays

for the NAs 0.3, 0.6 and 0.92. The region just below the objective is shown enlarged on the right. The rays each

start on the axis at the working distance 𝑑 = 150 ➭m under different angles 𝛼.

Setting the aperture stop In the original microscope setup, the pupil size could be adjusted by the

motorized iris (see Figure 2.3). This then defines the NA as shown in Figure 4.12. However, the SLM

can alternatively be used to define the pupil size, as it is located in a secondary pupil plane by design. For

this purpose, a blazed grating with a sufficiently small period is displayed outside a circle corresponding

to the aperture, and diffracts the light impinging there away from the camera’s field of view. This is

advantageous in that the programmed aperture can be centered exactly around the SLM’s found center

pixel (cf. Section 4.5.2). To limit the amount of stray light and the small undiffracted component, the

motorized iris aperture is set as small as possible, but always slightly larger than the aperture defined on

the SLM. If both apertures are the same, lateral misalignments risk making the overall aperture stop of

the system asymmetrical by clipping.

Practically, the motorized iris is controlled by a step motor that adjusts the pupil diameter up to 35 mm

in discrete steps.
24

For a target NA, the pupil diameter 𝐷 is computed from

NA = sin
(
𝛼max

)
=
𝐷/2
𝑓obj

(4.30)

with the effective focal length of the objective lens 𝑓obj = 11.96 mm. For the pupil size in the SLM

plane, the demagnification of 𝑓2/ 𝑓1 = 1/3 has to considered. For instance, the diameters of 230, 460 and

705 SLM pixel are to be used to program the NAs 0.3, 0.6 and 0.92, respectively. The marginal rays

23
Using a MATLAB based ray tracing software written by Dr. Andrea Alberti and the lens design reported in Reference [59].

24
The possible motor positions range from 0

◦
to 90

◦
in steps of 1

◦
, linearly corresponding to the diameters 0 mm to 35 mm.
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corresponding to these NAs are shown in Figure 4.12.

4.5.3 The choice of the rotating PSF

We aim to extend the lateral single-site resolution to the axial dimension by engineering the PSF. In

Section 4.4, I introduced the rotating PSFs suitable for this purpose. The DH-PSF subclass has a

particularly suitable topology, since it allows a simple and robust determination of the rotation angle

using the two lobes, and yet, thanks to the compactness, it provides relatively high intensities for a good

SNR (cf. Figure 4.6). Based on the slope 𝑉 in the modal plane, the rotation speed and thus the total

rotation of the PSF along the optical axis can be set (see Section 4.4.2 and in particular Equation 4.16).

The finite resolution of any angle determination ultimately determines the axial resolution, which is why

the highest possible rotational speed is aimed for. However, the ambiguity of the intensity distribution

is undesirable, being repeated after its rotational symmetry angle or, at the latest, after one complete

rotation. Due to the defocus also occurring, the ambiguity is of course only complete in the angle of

rotation, and intensity distributions can be distinguished by their scaling.

A good compromise for the DH-PSF with twofold rotational symmetry is made with the choice 𝑉 = 2,

whereby the PSF rotates by 𝜋 within the Rayleigh range and overall by 2𝜋. With this choice, the angle

of rotation remains unambiguous within the entire Rayleigh range. To preserve lateral resolution as

much as possible, modes with smallest radial extent are selected, i.e., with small radial mode numbers

𝑝, respectively small combined mode numbers 𝑛. The simplest implementation of this PSF is chosen,

which is given by the LG mode superposition𝑈 = 𝑢00 + 𝑢21 (Example B in Figure 4.6).

The choice of the waist 𝑤0, or equivalently the ratio of aperture radius and waist 𝑎/𝑤0 has a certain

optimal value due to the finite aperture and the uncontrolled amplitude in the pupil plane, as we saw in

Section 4.4.3. In the following I will describe how this optimum is found. Subsequently I present the

simulation of the light propagation made to ensure a PSF engineering fidelity sufficiently large for the

PSF to follow the scaled-rigid rotation model (see the discussion in Section 4.4.3). This also allows to

test if the amount of rotation between adjacent vertical lattice planes is sufficient.

Choosing the LG waist The choice of the ratio of aperture radius and LG mode waist 𝑎/𝑤0 affects the

shape of the resulting PSF. For pure LG modes created by sole phase-modulation with a homogeneous

amplitude, it was shown in Reference [149] that the optimum of the resulting mode fidelity is given at

values around 𝑎/𝑤0 = 2 to 4 for low mode numbers 𝑝, 𝑙 ≤ 5, depending on the specific LG mode. As

our DH-PSF consists of a superposition of modes in this range, I expect an optimum in this order of

magnitude here as well. The waist was manually optimized in an optical test setup until the resulting

PSF most closely matches the desired DH-PSF, giving 𝑎/𝑤0 = 2.97. The optimization can certainly be

refined by a quantitative evaluation of the mode overlap. However, a variation of this parameter has

confirmed this optimum also for DH-PSF with the atoms.

Simulating the PSF. The basic idea of the simulation is to physically model the light field in the pupil

or SLM plane, then calculate the far field generated by the tube lens in the image or camera plane, to

then propagate it along the optical axis. The resulting intensity then corresponds to the measured PSF at

a given image space 𝑧-position of an object in the focus plane. This can also be understood as the PSF

measured in the (in-focus) camera plane of objects at different axial positions due to the conjugate nature

of the object and image spaces, where the respective 𝑧 coordinates are then simply related via the axial

magnification.
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The model of the light field in the pupil plane is described in Section 4.4.3. The field is given by

the apodization function of the objective lens (Equation 4.22) and the phase-modulated generalized

pupil function (Equation 4.20), which can capture arbitrary aberrations and selected phase masks. The

numerical simulation has to be performed in a discrete manner. Therefore, the pupil plane field is

defined in a 1 050 × 1 050 matrix with the physical pixel size corresponding to the SLM pixel size

for convenience. This is a reasonable choice, as the amplitude given by the apodization and Zernike

polynomials describing the aberrations vary smoothly and relatively slowly across the pupil plane. Phase

discontinuities are introduced only by the phase mask on the SLM, and in fact in discrete pixels due to

the digital nature of the device.

It is also straightforward to account for the smoothening effect of the cross-talk at the boundary of

adjacent SLM pixels described in Section 4.5.1 by dividing each SLM pixel into subpixels and then

convoluting with a Gaussian kernel. However, the inter-pixel cross-talk turns out to have negligible

effect on the PSFs obtained.

Exemplary, I present the simulation for NA = 0.3, 0.6 and 0.92, for which the corresponding pupil

diameters in the SLM plane are 𝐷 = 230, 460 and 705 SLM pixels, as we saw in Section 4.5.2. For

now, I neglect any aberrations and only add the phase of the double-helix LG mode superposition. For

comparability, I choose the same waist 𝑤0 as for the experimental measurements, for which the optimal

value of 𝑎/𝑤0 = 𝐷/2𝑤0 = 2.97 was found. The resulting SLM plane field for the NA of 0.6 is shown in

Figure 4.13 a).

The corresponding field in the image plane is given by the Fourier transform (see Appendix A.3),

which can be calculated numerically using the two-dimensional discrete Fourier transform (DFT).

Since the field outside the aperture is zero, the field matrix in the pupil plane can be zero-padded, i.e.

symmetrically embedded in a larger matrix of zeros. In this way, the resolution of the output plane is

arbitrarily increased. I choose a zero-padding factor of 10, giving a matrix of 10 500 × 10 500, as this

yields reasonably good resolution in the output plane. The output plane pixel size is given by 𝜆 𝑓tube/𝑑,

where 𝑑 is the physical side length of the input matrix. The microscope’s magnification 𝑀 relates the

image plane coordinates to the object or atom plane. Figure 4.13 b) shows the zoomed-in
25

resulting field

in object plane coordinates, the PSF. As can be seen, the resulting intensity is similar to the target LG

mode superposition (cf. Example B in Figure 4.6); two peaks surrounded by a fainter ring. The phase

retains its pattern of discontinuities, but on a new radial scale, as expected. However, discrepancies can

be observed. The deviations are not surprising, since we only modulate the phase, but the intensity in the

pupil plane is fixed (cf. Section 4.4.3 on the PSF engineering).

The field in the image plane can now be propagated to other positions along the optical axis using the

Fresnel diffraction as long as the near field conditions are satisfied. This is described in more detail in

Appendix A.2. Practically, one takes advantage of the fact that the Fresnel integral can be expressed

as a convolution with the so-called Fresnel kernel (cf. Equation A.12), and this can be implemented

computationally efficient as a multiplication in the Fourier plane according to the convolution theorem.

Both the standard PSF and the DH-PSF are shown for different axial positions and NAs in Figure 4.13 c).

For ease of interpretation, the axial distance in the conjugate object or atom space is given, in units of

the vertical lattice constant d𝑧vert = 𝜆𝑣/2 = 532 nm. The simulation reveals the helical behavior of the

DH-PSF. The amount of rotation strongly depends on the NA, as is expected from the LG treatment in

Section 4.4.2; a high NA corresponds to a small radial and axial scale 𝑤0 and 𝑧R of the PSF in the image

plane, giving a faster rotation and defocus. Note the inevitable increase in size of the DH-PSF compared

25
The zoom-factor is chosen to be 50. The part of the matrix shown in Figure 4.13 thus corresponds to 210 × 210 pixels.
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Figure 4.13: Simulation results of the DH-PSF. a) Intensity and phase in the SLM plane. The intensity normalized

to its maximum increases towards the edges due to the apodization of the objective lens. b) Resulting intensity and

phase of PSF in object/atom plane coordinates. Only a section of the center of the calculated output matrix is

shown, so that the PSF can be easily seen. The intensity is normalized to the maximal intensity of the standard PSF.

c) Intensity of the PSF field Fresnel-propagated to different axial planes in units of corresponding vertical lattice

spacings d𝑧vert for the standard (Std.) PSF and the DH-PSF at NA = 0.3, 0.6 and 0.92. In all cases, the image

size is chosen to be identical to the one shown in b). The intensity is normalized for each NA to the respective

maximum intensity of the standard PSF. Apparent is the progressive defocus, the helical behavior of the DH-PSF

and the NA dependent axial scaling of the rotation. d) Computed rotation angles and corresponding model fits

of the DH-PSFs at the three NAs. For this purpose, the PSF was calculated at each of 81 axial positions in the

interval from −4 to 4 d𝑧vert.
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NA MSE 𝑧R/d𝑧vert 𝜃 (1 d𝑧vert)/◦
0.3 0.000594 43.47 ± 0.02 2.6356 ± 0.0012

0.6 0.682 10.51 ± 0.04 10.87 ± 0.04

0.92 11.7 4.08 ± 0.04 27.5 ± 0.3

Table 4.1: Effective Rayleigh range 𝑧R and MSE of the fitted rotation curves at different NAs of the simulated

DH-PSF. For reference, the rotation angle between a lattice site in the focus to its neighbor is computed.

to the standard PSF. The dependence of the DOF on the NA (cf. Equation 4.3) can easily be seen from

the standard PSF. It scales inversely quadratic with the NA.

Differences in the standard PSFs of adjacent vertical lattice planes can be observed at NA = 0.92. In

this respect, at this NA axial localization with this precision is theoretically possible, which is also the

conclusion from the DOF being about one vertical lattice site. Practically, however, atoms lost towards

the end of the exposure time can also cause a lower brightness. Gradients of light shifts, for example due

to the finite profile of the lattice beams also cause spatially slightly different brightnesses due to changed

resonance conditions. This would make the vertical single-site resolution very difficult in contrast to

utilizing the clear difference in the DH-PSFs. In addition, the standard PSF is symmetric with respect to

𝑧 = 0, but this ambiguity is not present in the DH-PSF.

The rotation angle is shown in Figure 4.13 d), which is determined as I will describe in Section 4.6.2.

A non-linear least squares minimization is used to fit the rotation angle to Equation 4.16 describing

the expectation for a LG mode combination laying on a single line in the modal plane. The resulting

effective Rayleigh distances 𝑧R and the mean squared error (MSE) are listed in Table 4.1. As was already

apparent in the plot and is also expressed in the MSEs, the smaller the NA, the better the fit of the LG

model for this selected axial range. Despite the visible deviations from the targeted LG mode, we can

conclude that the DH-PSF created by sole phase modulation is still quite well described by this model, in

particular at low and intermediate NAs. This is partly because of the high mode fidelity, but also because

leakage into other LG modes occurs symmetrically about the straight line in the LG modal plane, as was

shown by Reference [73], thereby hardly influencing the rotational behavior.

This reinforces that Equation 4.16 can be a suitable model for recovering axial position from a

measured PSF, despite sole phase modulation. In case of significant deviations, a LUT of axial position

from the detected rotation angle can of course be established. By way of example, the rotation angle

between the focus and one vertical lattice separation as obtained from the simulation is also given in

Table 4.1. For all NAs investigated, this should be sufficient to be able to resolve the vertical lattice

structure and thus determine the vertical plane of an atom.

Measuring the PSF outside the experiment. As a proof-of-principle, the DH-PSF was generated

in a prior optical test setup outside of the experiment using the SLM. For this purpose, the SLM was

illuminated by a linearly polarized laser beam at 𝜆 = 852 nm. The beam incident under a small angle is

beforehand expanded to yield nearly homogeneous intensity on the SLM chip. The SLM is placed in the

front focal plane of a lens of focal length 𝑓 = 300 mm, creating the Fourier transform of the SLM output

light field in the back focal plane, where a charge-coupled device (CCD) camera is placed to record the

generated PSF. This setup is just a physical realization of the simulation, where the Fourier transform

was implemented by a lens. It has allowed a prior generation and optimization of the DH-PSF and, like

the simulation, has shown good agreement of the measured rotation angle with the expectation from the
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LG mode model.

4.6 Three-dimensional localization of single atoms

The fluorescence microscope equipped with phase engineering can be used with the help of a DH-PSF

to localize single atoms in the three-dimensional optical lattice along all three dimensions. Images of

axially thick atomic ensembles of a sparsely filled optical lattice are used to characterize the modified

PSF and test the three-dimensional localization. I describe how these are recorded in Section 4.6.1,

and how the atoms are detected in Section 4.6.2. Section 4.6.3 describes the required calibration of the

axial rotation; a certain rotation angle needs to be assigned to the corresponding axial position. I then

conclude by demonstrating the resolution of the vertical lattice in Section 4.6.4.

4.6.1 Imaging the lattice with the engineered PSF

The experimental sequence to load and then image atoms in the optical lattice remains largely unchanged

from previous experiments, as those presented in References [17, 18, 84]. In the following, I describe the

sequence with a focus on the differences and additions to the typical sequence described in Section 2.1.

In particular, I describe how the SLM is controlled throughout the sequence.

The experimental sequence. The phase mask on the SLM is set. After loading the MOT from the

dilute background vapor, it is moved by shifting the magnetic trap to the position of the dipole trap.

There, the optical lattice is turned on and the MOT beams are turned off, causing the atoms to transfer

into the lattice. No state preparation, and no vertical selection of atoms is performed. The lattice is

thereby filled with many atoms, such as in Figure 4.11 a). To obtain a sparsely filled lattice, a waiting

time of 4 s is used, resulting in an adjustable loss due to the finite lifetime of the atoms in the lattice.
26

The atoms are then molasses cooled by being illuminated with the PGC beams. They are subsequently

imaged by illuminating them with PGC beams within the camera’s exposure time, which cools them and

causes them to fluoresce. For a sufficient SNR at NA = 0.6 an exposure time of 1 s is necessary. The

fluorescence light passes through the microscope onto the camera and, depending on the SLM setting,

forms an image of the atoms with the corresponding PSF. After closing the camera shutter, a new phase

pattern is loaded onto the SLM within a 500 ms window, ensuring that the SLM is correctly set for the

second image. A second image of the atoms is taken, followed by a third after another change of the

SLM phase mask. All atoms are then pushed out by a resonant beam in order to take a background image

with the same settings as the previous images. The sequence is then repeated with the loading of a new

MOT. Each run takes about 9 s without the hold times for the SLM, the exposure times and the waiting

time for a sparsely filled lattice. Including these results in about 18 s.

Controlling the SLM. Timing the SLM is of importance if the phase pattern is changed within a

sequence. The desired phase masks are created in advance. The experiment control on the laboratory

computer
27

programs the digital and analogue real-time processing systems (see Section 2.3.3). Trigger

signals programmed into the sequence are sent to a second computer controlling the SLM when the

26
Here, the sequence could be shortened by partially heating out through resonant beams and subsequent cooling of the

surviving atoms instead. This was however discarded due to time constraints.
27

Implemented in MATLAB.
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Figure 4.14: Phase masks programmed on the SLM. a) Curvature compensation mask. b) Aperture-defining blazed

grating with a period of 6 pixel. c) Zernike polynomials for aberration compensation. d) DH-PSF phase mask.

e) Superimposition of all phase masks a) to d). f) Holographic lens with 𝑓hol = 7.4 m. g) Holographic lens with

𝑓hol = −14.8 m. h) Superimposition of all phase masks a) to d) and the holographic lens g). It should be noted that

the phase ramps originating from the blazed gratings may not be discernible or moiré patterns may appear due to

the small period.

phase pattern is to be changed. This computer waits for a trigger
28

and then changes the video signal

sent to the SLM driver accordingly.

The overall delay and settling time for the response of the SLM was assessed by adding to the second

image’s phase mask a blazed grating shifting the image with respect to the previous shot. The SLM

trigger is sent immediately after an image is taken. The following image is taken after a certain hold

time. By gradually decreasing the hold time, the time at which the image shift is not yet complete can be

determined. This is the minimum time that must be waited between two images. I estimated 400 ms,

which is why I chose a slightly longer hold time of 500 ms in the sequence, in order to account for

the variability of different phase patterns. I attribute the longer response time compared to the typical

100 ms given by the manufacturer to delays in receiving and processing the trigger signal from the SLM

controlling computer and in switching the video signal sent to the SLM.

The SLM phase mask. The phase masks of different purposes are displayed together on the SLM

by adding them modulo 2𝜋. The individual phase masks and the resulting total mask are shown in

Figure 4.14, exemplary at NA = 0.6 (i.e. with an aperture diameter of 460 pixel, see Section 4.5.2).

When the SLM is off, it acts as a mirror with poor flatness. In all cases, therefore, the curvature

compensation mask shown in Figure 4.14 a) is displayed, which flattens the phase response (see

Section 4.5.1). The aperture-defining blazed grating outside the aperture is shown in Figure 4.14 b).

For all measurements, the Zernike polynomials shown in Figure 4.14 c) are displayed for aberration

compensation (see Section 4.5.2). The Zernike coefficients were determined at full NA, and are therefore

tied to that specific aperture size. Finally, the LG mode superposition phase of the DH-PSF is added,

see Figure 4.14 d). According to the optimal ratio 𝑎/𝑤0, the waist is chosen as 𝑤0 = 77.3 SLM pixels

28
A MATLAB script is running, which waits for an incoming trigger read by a I/O device (National Instruments USB-6000).
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(cf. Section 4.5.3). All phase masks account for the shift of the optical axis relative to the SLM chip

center by −72 vertical and 70 horizontal SLM pixels. In addition, the geometrically determined angle

of incidence of 𝛼 = 2.9
◦

onto the SLM is compensated by stretching the phase mask along the 𝑢-axis,

which is given by the intersection of the SLM surface and the plane of incidence. The stretching is

realized by scaling all physical lengths along the 𝑢-axis with cos(𝛼). It is hardly visible in the phase

masks due to the nearly vertical angle of incidence.

Shifting the plane of focus. The SLM can also be used to change the focus of the microscope. This

can be understood as a controlled insertion of a defocus aberration, or equivalently as programming a

holographic lens or Fresnel lens of focal length 𝑓hol located in the SLM plane. It is simply a quadratic

phase

𝜑hol(𝑢, 𝑣) = −𝑘 𝑢
2 + 𝑣2

2 𝑓hol

mod 2𝜋 , (4.31)

where 𝑘 = 2𝜋/𝜆 [119]. Figures 4.14 f) and 4.14 g) show such holographic lenses for different focal

lengths. Figure 4.14 h) shows the addition of a holographic lens to the previous phase mask. The focal

plane is shifted by Δ𝑧I = − 𝑓 2
2 / 𝑓hol in the intermediate image plane, which corresponds to a shift

Δ𝑧 =
𝑓

2
obj 𝑓

2
2

𝑓
2
1 𝑓hol

(4.32)

in the object space. The derivation is shown in Appendix C.4. A focal length of 𝑓hol = 29.9 m is required

to shift the focus by, for example, one vertical lattice site, i.e. by 532 nm.

As we will see, moving the focal plane between subsequent images of the same atoms is an efficient

way to perform the axial localization calibration. This method is technically significantly easier to

implement than, for example, piezo control of the objective lens as reported in Reference [74].

4.6.2 Detecting atoms by their DH-PSF

The EMCCD camera provides images in the form of detected fluorescence photons, which are integrated

pixel by pixel over the exposure time. The camera converts the incident photons into electrons with

a quantum efficiency of 63 % at the imaging wavelength 𝜆D2 = 852 nm. The electron registers can be

amplified, hence EM for electron multiplication. Using the fluorescence images, the position of the atoms

can be determined. The common method of identifying the atoms based on the image’s local maxima

and approximating the PSF as a Gaussian peak evidently needs to be modified when using a DH-PSF.

Therefore, in the following I present how the atoms measured with the DH-PSF are detected, the PSF is

modelled and the rotation angle is extracted. I also show and comment an example of measured PSFs.

Preprocessing. The images contain a background which does not originate from the fluorescence

photons, but from unsought scattered light and camera noise. In order to correct the images, a background

image is always taken in each sequence run. This consists of an image taken with the exact same

experimental parameters as the previous images in the sequence, but a push-out beam ensures beforehand

that no atoms are left in the lattice. For each set of experimental parameters, a mean background image is

created so that shot noise is statistically suppressed. This is then subtracted from each individual image.

Figure 4.15 a) shows the gray value histograms of the raw atom images, the background images, and the
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Figure 4.15: a) Example of gray value histograms of raw atom images (blue), background images (orange)

and mean-background corrected images (green). The atom image histograms consists of 1 800 frames taken at

NA = 0.6 with the DH-PSF, the background histogram consists of 600 frames. The probability axis is logarithmic.

The histograms are truncated at a gray value of 1 800. Occasionally, brighter pixels due to cosmic ray events do

occur. b) Corresponding mean background image over 600 frames. Etaloning stripes are noticeable, as well as two

rings caused by dust grains presumably on the filters.

atom images after mean background subtraction. The read noise maximum at the bias level of 100 gray

values can be observed, followed by the tail consisting of signal and noise. The subtraction of the mean

background leads to a reduction of the noise. Figure 4.15 b) shows the corresponding mean background

image. The visible stripes originate from etalon interference effects typical of back illuminated EMCCD

cameras in the near infrared. These are caused by back and forth reflections within the depletion region,

which cannot be completely avoided due to the imperfections of the AR coatings at this wavelength. This

is how a static spatially inhomogeneous sensitivity arises, which can be compensated for by multiplying

acquired images by the inverse sensitivity. An inverse sensitivity mask can be created by a low-pass

filtered mean image of many frames taken with a homogeneous illumination. For our purposes, however,

the spatially rather slowly modulated sensitivity is not a problem, as we are not interested in absolute

brightness. The etaloning is therefore ignored. In rare cases, cosmic rays cause a very bright and

localized cluster of pixels up to camera saturation. Background images with such events are sorted out

beforehand by a brightness threshold.
29

Example PSF measurement. Figure 4.16 shows sections of typical images of the sparsely filled

lattice at NA = 0.6 with standard PSF and DH-PSF, respectively. Atoms with similar standard PSF

show a clear angle difference in the DH-PSF. In this example, the DOF enhanced by the DH-PSF can

be observed very well; even atoms that look blurry with the standard PSF can be localized well based

on the DH-PSF. Furthermore, this example demonstrates again that the symmetry of the standard PSF

with respect to 𝑧 = 0, which is problematic for an axial localization, does not apply to the DH-PSF.

It is noticeable that the in-focus rotation angle is not zero with respect to the horizontal as expected,

which we will come back to later. Also, this example shows a disadvantage of the DH-PSF, namely that

the energy is split between two peaks, giving a poorer SNR compared to the standard PSF. Ultimately,

further studies must be conducted to determine the extent to which this affects the gained resolution

given the noise present here. As was discussed in Section 4.4.4, References [75, 83, 137] have indeed

29
A threshold of 500 gray values is chosen which is above the regular background pixel brightnesses at the parameters used,

and below the bright cosmic ray pixels.
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Figure 4.16: Example of an image section taken with the standard PSF (left) and the DH-PSF (right). The

(background corrected) images at NA = 0.6 with an exposure time of 1 s have been consecutively taken from the

same ensemble of atoms. Note the different color scale as a result of the reduced SNR for the DH-PSF. Atom A

appears relatively in focus, while atom B is clearly out-of-focus, resulting in a different angle. Atom C also appears

moderately defocused, but based on its DH-PSF angle it can be concluded that, unlike atom B, it is located below

the focal plane. Atom D shows an example of an atom that is lost. The length scale in the object space is indicated.

shown an improved three-dimensional resolution in the presence of typical noise.

Detecting and pairing peaks. Figure 4.17 a) shows an example of a full image taken with the DH-PSF.

I specifically chose a slightly fuller lattice, as this defines the challenge of determining the position.

In the case of the DH-PSF, as for the standard PSF, the peak positions are obtained from the local

maxima. To avoid maxima caused by noise, the images are first smoothened with a Gaussian filter. This

is implemented using the convolution theorem as a multiplication in Fourier space, see Figure 4.17 b).

The filter kernel width is chosen as the Abbe cut-off frequency
30

(cf. Equation 4.2 in Section 4.2.2). This

suppresses high frequency noise and avoids loss of physical information. To find the local maxima of an

image, the pixels are determined where all eight neighboring pixels have a lower value.
31

In addition, the

image is thresholded beforehand, so that maxima in the background are disregarded and the computation

performance is increased. The resulting image on which the local maxima are searched is shown in

Figure 4.17 c). The threshold is selected based on typical peak amplitudes.
32

As an additional condition

for the peak search, any island above threshold is required to have a certain area, as is expected for a PSF

having a certain width.
33

This way, isolated bright pixels are not taken into account. An edge region of

12 pixels is ignored so that only fully captured PSFs are detected. In the given example, we find the

maxima marked as crosses in Figure 4.17 d).

30
At NA = 0.6, the Abbe cut-off frequency is 𝑘Abbe = 1/𝑟Abbe = 1.4➭m

−1
. This corresponds in the DFT of the 489 × 489

image to the spatial frequency 0.18 pixel
−1

, or 88 Fourier pixels.
31

I used the algorithm written by Adi Natan, Fast 2D peak finder (https://github.com/adinatan/fastpeakfind/

releases/tag/1.13.0.0), GitHub, 2013, Retrieved November 15, 2022, in a version modified by Otto Eliasson without

the filtering procedures.
32

For the DH-PSF at NA = 0.6 I chose the threshold of 180 gray values.
33

For the DH-PSF at NA = 0.6 I chose a minimum of 10 pixels.
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Figure 4.17: a) Example frame of a sparsely loaded lattice imaged with the DH-PSF at NA = 0.6. b) DFT of the

image shown in a). The colormap is logarithmic. Physical information is contained in a radius of 0.18 pixel
−1

,

corresponding to the Abbe cut-off frequency. c) Filtered and thresholded image. The islands above the threshold

of 180 gray values are demarcated by a white line. d) Filtered image with marked detected peaks (+) and identified

atoms as paired peaks (◦). In this example, a total of 44 peaks are detected, of which 24 are successfully paired to

12 atoms. Most of the unpaired peaks remaining are in regions with closely packed atoms, where the algorithm

used cannot establish a unique pairing.

However, in the case of the DH-PSF, not only the peak location, but in particular the information about

the pairing of the peaks constituting the PSF of a single atom is required. To obtain that information, the

pairwise separation of all peak combinations in an image is calculated. From these, only those pairs

are kept which are within a given distance range. The range is set by manual inspection of the detected

PSFs.
34

Then, those pairs are sorted out in which at least one of the two peaks is also paired with yet

another peak. This gives us unambiguous peak pairs, which by construction correspond to one atom

each. In Figure 4.17 d), the detected pairs are marked as circles.

For sequences in which the same atoms are acquired multiple times (e.g. with different SLM settings),

only the first image is scanned for atoms. Atoms will be found in the same place in subsequent images,

will be lost, or will hop a short distance. However, no atoms will appear at substantially other locations.

For the subsequent images, the localization algorithm is therefore limited to a region of interest (ROI)

around the detected positions from the first image, saving considerable computation time.

Sub-pixel localization. Taking the pixel of the local maximum of a peak as its position, despite the

spatial sampling of the camera, does not exploit all the positional information available. In the case

of the standard PSF, a Gaussian peak is commonly fitted to a ROI containing the peak, with the initial

position estimate as the previously established pixel position. In this way we get the position sub-pixel

34
For the DH-PSF at NA = 0.6, I chose a minimum of 8 and a maximum of 14 pixels distance.
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Figure 4.18: Examples of sub-pixel double Gaussian peak fits. The first column shows the filtered data (DH-PSF at

NA = 0.6), the second column the resulting fit and the third column the normalized residual, namely the difference

of fit and data normalized to the maximum of the fit. The previously determined peak maxima pixel positions (+)

and the determined sub-pixel peak positions (+) are marked. The fit is performed in a 21 × 21 pixels area (□) of

the 41 × 41 pixels ROI. The length scale in the object space is indicated.

resolved. This approach is in principle also possible for the DH-PSF, with two Gaussian peak fits per

atom. Due to the partially overlapping peaks in the DH-PSF, the fit may be distorted by the other peak.

Therefore, as a model for the measured DH-PSFs, the sum of two Gaussian peaks is used instead. To

account for the incomplete symmetry of the peaks in contrast to the standard PSF, an elliptical degree of

freedom is given. Figure 4.18 shows three examples of such fits. As initial estimates, the pixel positions

of the peak maxima are used for the position and the associated gray value for the amplitude. For the axis

angle of the elliptical two-dimensional Gaussians, the rotation angle determined from the pixel positions

is used as the initial estimate, given that the ellipticities are usually orthogonal to the line connecting the

two peaks. All widths are initially estimated with the same heuristic value.
35

Dictionary of detected atoms. A dictionary is compiled from the information on the detected atoms.

For each atom, it contains the run and image number of the sequence it was detected in, the peak pixel

positions, the Gaussian peak fit results in particular with the sub-pixel positions, and a cropped image of

a ROI around the center pixel.
36

The center pixel of a DH-PSF is calculated by the vectorial mean of the

peak pixel positions. In the same way, the sub-pixel position of the atoms is computed from the fitted

peak positions. The rotation angle with respect to the abscissa 𝜃 is calculated from the relative peak

positions, i.e.,

𝜃 = arctan

(
Δ𝑦

Δ𝑥

)
, (4.33)

35
For the DH-PSF at NA = 0.6 the widths are estimated as 2.5 pixels.

36
The ROI size is chosen depending on the PSF size. It was chosen as 41× 41 pixels for NA = 0.6. The ROI is centered on the

center pixel.
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with the position differences Δ𝑦 and Δ𝑥. Similar to creating the mean background image, cosmic ray

events are sorted out by defining a maximum brightness for individual pixels.
37

The ≈ 0.4 % of ROIs

containing such pixels are simply discarded.

4.6.3 Calibrating the axial localization

The mapping of the rotation angle extracted from a PSF to the vertical position is in theory directly

possible using Equation 4.16, as long as the Rayleigh length 𝑧R of the LG mode superposition in object

or image space is known. However, we define the 𝑧R of the mode combination by choosing the LG

waist 𝑤0 in the pupil plane, wherein only the scale of the phase, not of the unmodulated amplitude is set

(cf. Section 4.4.3). The resulting field in the image space has high overlap with the desired LG mode

superposition, but here the 𝑤0 or 𝑧R defining the LG basis are unknown a priori.38
Even with knowledge

of the effective Rayleigh length 𝑧R, a calibration of the vertical position would be desirable to account

for influences of experimental effects not captured in the simple model, such as aberrations.

A vertical length reference is required for calibration. This is given, for example, by shifting the focal

plane by a known distance, which we can do by programming a holographic lens (see Section 4.6.1).

I took images of sparsely filled lattices as described in Section 4.6.1, each with three images of the

same ensemble of atoms, programming the SLM with a holographic lens in the second image. An

example ROI of an atom in these three images is shown in Figure 4.19 a). The change in the measured

angle of the second image 𝜃2 compared to the first image 𝜃1 or third image 𝜃3 can thus be related to

the displacement of the focal plane. The comparison between the first and third images taken with the

same settings gives insight into detrimental effects such as vertical hopping. Measurements were made

with the four focal lengths 𝑓hol = ±14.8 and ± 7.4 m, which correspond to shifts of the focal plane by

roughly ±2 and ± 4 vertical lattice planes, or more precisely ±2.0186 and ± 4.0372 d𝑧vert. For each focal

length, 600 respectively 200 sequence runs are acquired. The intermediate NA of 0.6 is used because,

compared to the maximal NA, both the axial resolution through the standard PSF and the rotation angle

per vertical lattice plane of the rotating PSF are smaller, thereby posing a greater challenge. Furthermore,

the reduced solid angle also means a smaller SNR. Thus, the demonstration of the use of the DH-PSF at

the more common intermediate NA = 0.6 is of greater relevance.

The atoms are detected and listed in a dictionary as described in Section 4.6.2. Before creating the

calibration fit, vertically hopped, lost between successive images or incorrectly detected atoms must be

filtered out.

Filtering of lost, hopped and incorrectly detected atoms. The post-selection described in the

following consists of: 1⃝ the selection of atoms detected in all three frames; 2⃝ removing outliers due to

vertically hopped atoms or incorrect atom detections; 3⃝ restricting to a central area of the FOV.

During the experimental sequence, some atoms are lost from the lattice due to background collisions.

When this occurs, the atom detected in the first image is missing in further images. If the atom is lost

during the exposure time, it appears in the corresponding image with a lower brightness. Figure 4.19 a)

shows the total number of atoms detected for each frame number, with the expected exponential decrease.

Only the atoms detected in all three images are used for calibration. This portion is color-coded in the

37
A threshold of 2 000 gray values is chosen which is above the maximal signal pixel brightnesses at the parameters used (cf.

Figure 4.15), and below the bright cosmic ray pixels.
38

From the numerical simulations, this scale could be determined by maximizing the projection onto the target LG mode

superposition under variation of 𝑤0.
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Figure 4.19: Example images and distributions of parameters relevant for the selection of atoms for axial calibration.

In different color shades are the remaining distributions after selecting the atoms detected in all three images 1⃝,

filtering vertical hopping and incorrectly detected atoms 2⃝, and limiting to a central region of the FOV 3⃝. a) The

ROI and the detected angles 𝜃 of an example atom with a focus shift of Δ𝑧 = −2 d𝑧vert in the second frame, as

well as the number of detected atoms for the each frame number. b) Distribution of the root mean squared error

(RMSE) of the sub-pixel fits. c) Distributions of angle differences between two images for the different focal shifts

Δ𝑧 = ±2.0186 and ± 4.0372 d𝑧vert. By design, there is no shift in focus between frames 1 and 3. d) Distributions

of the measured position differences between two frames.
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figure as marked by 1⃝. It does not correspond to the total number of atoms detected in the third image,

because in some cases the atom imaged with modified focus is not detected in the second image. Figure

4.19 b) shows the distribution of the goodness of fit. There is a clustering in a certain range around the

RMSE of 30, followed by a tail towards large deviations of the fit model.

Atoms can also hop from one lattice site to the next. If the atom hops horizontally, its position in

the image changes, if it hops vertically, this is manifested in a different rotation angle of the DH-PSF.

To detect vertical hopping, the angle difference between each image is considered. Its distributions are

shown in Figure 4.19 c). As can be seen from the spread of angle differences between the first and third

image Δ𝜃31, which ideally should be zero, there is clearly vertical hopping. This can be attributed to

insufficient cooling of the atoms or a too shallow lattice along the vertical (cf. Section 3.1). Anticipating

the results of the calibration, 8.0
◦

corresponds to one vertical lattice spacing away from the focus. Ten

more lattice sites away, the angular difference between two planes is still 5.2
◦
. In fact, sidelobes can

be seen in the distribution in this range (cf. the inset in Figure 4.19 c)) and are caused by atoms that

vertically hopped between the images. If an atom hops vertically within the exposure time, this leads to

an additive contribution to the initial PSF by the PSF correspondingly rotated relative to it. This yields a

measured PSF angle corresponding to an effective position between the hopped and initial positions of

the atom. The statistical nature of hopping thus leads to smearing of the distribution of angle differences.

The nonlinearity of the relationship between position and angle results in an additional broadening. This

is all the larger, the greater the effective vertical distance between the respective images. Therefore, for

Δ𝜃21 and Δ𝜃32, the distributions for Δ𝑧 = ±4 d𝑧vert are wider than for ±2 d𝑧vert.

It can also be seen that the distribution of Δ𝜃31 is not exactly centered at 0
◦
, but rather at the median

of −0.63
◦
. A shift is also present in the distributions for Δ𝜃21 and Δ𝜃32. There, the average of the

medians of the sub-distributions of ±2 d𝑧vert give the shifts −0.43
◦

and −0.18
◦
, respectively. This can

be attributed to the preferred downward vertical hopping direction due to gravity. The displacement is

greatest for Δ𝜃31, since here the atoms have more time and thus fall further on average. The scattered

outliers in the angle difference distributions are due to incorrectly detected peak pairs, such as when a

peak is paired with a detrimental sidelobe maxima from aberrations. Such cases inherently have a high

RMSE. In principle, these can be avoided by improved detection algorithms. However, this is not of

concern here, as these cases are easily filtered out.

Vertical hopping obstructs the knowledge about the effective vertical distance between the respective

images and thus complicates axial calibration. However, the vertical length reference introduced into the

system for calibration, the focal plane shift, is significantly greater than the effective hopping distance.

This allows to statistically establish a calibration in the way as described below, including consideration

of the bias due to the preferred hopping direction.

To exclude far vertically hopped atoms and failed peak detections the Δ𝜃31 distribution is truncated by

10 % percentiles on both sides; for Δ𝜃21 and Δ𝜃32, 4 % percentiles each. This results in the distributions

indicated by 2⃝ in Figure 4.19. It can be seen that, as expected, the scattered outliers and the tail towards

large RMSE disappear.

Horizontal hopping can be detected by shifts of the PSF center. For this purpose, the difference of

the atom positions between images is shown in Figure 4.19 d). As can be seen, only few atoms hop

by the horizontal lattice constant 𝜆ℎ/
√

2 = 612 nm or diagonally in the square lattice by 𝜆ℎ = 866 nm

(see Section 2.3.2 for details about the lattice structure). The width of the distributions stem from the

positional uncertainty of the detection method, but is also broadened by hopping within the exposure time,

as in the case of vertical hopping. Since images 1 and 3 are separated by a longer period of time, there

is a higher hopping probability between them, which results in the wider distribution. Quantitatively,
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by setting a limit at half the lattice constant Δ𝑟 > 306 nm, we can say that 8 % of the atoms hopped

horizontally between images 1 and 2, 11 % between images 2 and 3, and 18 % between images 1 and 3.

Since atoms can also hop back, the percentages between the subsequent images are not expected to

sum to the percentage between image 1 and 3. Horizontal hopping is however not problematic for

vertical position calibration, as the rotation angle remains unchanged. The distributions of the position

differences also demonstrate that the horizontal localization precision from the DH-PSF does not affect

the single-site resolution, at least for isolated atoms.

When creating the calibration, it was noticed that atoms in the edge region of the FOV have PSFs

with systematically different rotation properties, which I will discuss in more detail in Section 4.6.4.

Therefore, only atoms in a central region of the FOV are considered. The resulting distributions are

indicated by 3⃝ in Figure 4.19. The central region is defined by a circle of 130 pixels or 16.6 ➭m of

radius centered around a point that is shifted by 5.5 and 45.5 pixels or 0.7 ➭m and 5.8 ➭m along the 𝑥

and 𝑦 axes with respect to the center of the images. This choice is also motivated in Section 4.6.4.

Calibration Ąt. The axial length reference introduced for calibration, the focal plane displacement,

corresponds for the measured angles to an effective relative displacement of the atoms by this distance.

For the programmed DH-PSF phase mask, we theoretically expect the measured angle 𝜃 of the connecting

line of both peaks with respect to the abscissa to be equal to the rotation angle with respect to the focal

plane 𝑧 = 0

𝜃 = 𝑉 arctan
(
𝑧/𝑧R

)
(4.34)

(Equation 4.16 from Section 4.4.2). Experimentally, however, we do not know their connection

𝛽 := 𝜃 − 𝜃 (4.35)

a priori, which is why we introduce this as a free fit parameter.

In the following, we define the zero position of the 𝑧-dimension as the focal plane of images without

shift of the focus. Next, we relate the measured angle in the unshifted images

𝜃𝑢 = 𝛽 +𝑉 arctan
(
𝑧/𝑧R

)
(4.36)

to the angle in the image focus-shifted by Δ𝑧

𝜃𝑠 = 𝛽 +𝑉 arctan

(
𝑧 − Δ𝑧

𝑧R

)
, (4.37)

giving by insertion of Equation 4.36 into Equation 4.37 the relationship

𝜃𝑠 = 𝛽 +𝑉 arctan

(
tan

(
𝜃𝑢 − 𝛽
𝑉

)
− Δ𝑧

𝑧R

)
. (4.38)

Finally, the experimental data sets with different shiftsΔ𝑧 are fitted to this model by non-linear least squares

minimization. Both the data pairs where 𝜃𝑢 corresponds to frame 1 and those where 𝜃𝑢 corresponds

to frame 3 are included. Furthermore, for Δ𝑧 = 0, the data pairs (𝜃1, 𝜃3) are taken. The rotation angle

factor is given by the mode combination as 𝑉 = 2. The result is shown in Figure 4.20. The measured

angles follow the model quite well. The nonlinearity determines the offset angle 𝛽 = (34.0 ± 1.4)◦, the

separation between stripes of equal Δ𝑧 the Rayleigh length 𝑧R = (14.39 ± 0.11) d𝑧vert. Due to vertical
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Figure 4.20: Axial calibration fit giving the effective Rayleigh range 𝑧R, the angle offset 𝛽 and the MSE. The angle

measured in the image with shifted focal plane 𝜃𝑠 is related to the angle measured in the unshifted images 𝜃𝑢
by Equation 4.38. Different focal plane shifts Δ𝑧 are shown in different colors. The lines corresponding to odd

integer focal shifts in units of the vertical lattice constant are marked in gray dashed lines.

hopping, the data points are scattered around the fit lines corresponding to a particular vertical plane,

which is also evident from the MSE of 11.4 despite the good description of the curve shape.

I expect that a reduction in vertical hopping will result in measured angles lying closer to the relevant

lines, making the separation of the planes in question clearer. However, the prediction of the calibration

parameters remains unaffected by the statistical spread. Systematic errors, for example due to limited

accuracy of the focus shift through the holographic lens (the axial length reference) cannot be excluded.

Because the fit includes both the (𝜃1, 𝜃2) and (𝜃3, 𝜃2) data pairs, angle shifts caused by gravity and the

resulting directional vertical hopping are statistically cancelled out, as the shifts happen in opposite

directions each. This is not true for Δ𝑧 = 0, since here (𝜃1, 𝜃3) are taken as data pairs, which as we

saw is expected to cause a systematic shift of the data points of around 0.63
◦

below the identity line

𝜃𝑠 = 𝜃𝑢. Upon closer inspection, a higher density of the blue points below the identity line can indeed be

discerned in Figure 4.20. However, this does not affect the fit since Equation 4.38 yields the identity

without free parameters for Δ𝑧 = 0.

The determined angle 𝛽 differs strongly from the value of 0
◦

expected from the simulation of the

DH-PSF (see Section 4.5.3). However, by including Zernike polynomials in the pupil plane in the

simulation, it can be shown that certain (low order) aberrations can have a strong influence on this offset

angle, namely vertical astigmatism, spherical aberration and secondary vertical astigmatism. This was

also reported in Reference [170]. For instance, assuming an RMS wavefront error of 𝜆/2 each, the offset
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angles 𝛽 = −12.4
◦
, −28.8

◦
and 23.3

◦
are obtained respectively. This indicates that residual aberrations

are still present after manual aberration compensation (cf. Section 4.5.2), and cause this offset angle.

The other low-order Zernike polynomials (up to a total of 13), apart from the trivial case of defocus

aberration, do not change 𝛽. The simulation also suggests that the uneven distribution of the intensity in

both peaks observed in the experiment (see e.g. Figure 4.19 a)) may be caused by oblique trefoil.

Also the Rayleigh length differs from the value 𝑧R = (10.51 ± 0.04) d𝑧vert obtained in the simulation

without aberrations (cf. Table 4.1). As the simulation shows, the higher value can be caused by

aberrations. In particular, oblique secondary astigmatism comes into question, since this increases

the effective Rayleigh distance of the rotation curve to a particular extent in contrast to the other

low-order Zernike polynomials. If we take again the RMS wavefront error of 𝜆/2, the simulation yields

𝑧R = (18.32 ± 0.05) d𝑧vert. It is also noteworthy that this aberration focuses the energy more strongly

into both main peaks and diminishes the ring-shaped structures in the DH-PSF (cf. the simulated PSF in

Figure 4.13 a)), which is a desired effect. Thus, it is possible that the manual optimization performed to

reduce existing aberrations left such PSF-improving aberrations unchanged. Another cause for a value

deviating from the simulation can be a systematic error due to an inaccuracy of the axial length reference,

the focal shift.

These effects emphasize the need for calibration on the experimental setup, and also the sensitivity of

the DH-PSF to aberrations, which may well be exploited for the characterization or optimization of an

optical system. The calibration now opens up the possibility of calculating the axial position of an atom.

This can be employed, for instance, to determine the vertical distribution of atoms in the lattice. In this

way, it is also possible to check the calibration against another known axial length reference, namely the

vertical lattice constant.

4.6.4 Resolving the vertical lattice

The calibration is used to convert measured rotation angles into an absolute axial position relative to the

focal plane. To this end, Equation 4.36 is rearranged into

𝑧 = 𝑧R tan

(
𝜃 − 𝛽
𝑉

)
. (4.39)

The distribution of the determined vertical positions in the first frame for the atoms selected for calibration

is shown as a histogram in Figure 4.21 a). Together with the determined lateral positions, the reconstructed

three-dimensional image of the atoms in the lattice in Figure 4.21 b) is obtained, with the vertical position

color-coded.

While atoms were detected over the entire FOV of the camera, it can be seen that those atoms remaining

after the filtering steps 1⃝ and 2⃝ (cf. Section 4.6.3) are clustered in a certain circular region. This can

be explained by the fact that the VDT with a waist of 50 ➭m is centered there. Imaging parameters are

optimized for high survival in the center of VDT. The decrease of the VDT intensity towards the edge

leads to a different differential light shift and thus to less optimal imaging parameters there. This finally

leads to a decrease of the survival in the edge regions, so that atoms detected there are less likely to

pass the selection. Since the VDT coincides with the optical axis of the microscope, a central region of

the FOV with respect to the objective lens can be chosen as a circle centered about this cluster. This

motivates the concrete centering choice for selection step 3⃝. A radius of 16.6 ➭m is chosen which

corresponds to about half the FOV within which the objective lens is diffraction-limited [59].
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Figure 4.21: a) Histogram of determined vertical atom positions. The bin width is 0.25 d𝑧vert. Atoms filtered from

outliers 2⃝ and in addition inside a central area of the FOV 3⃝ detected in the first frame (cf. Section 4.6.3) are

used, in total 1 173 and 846, respectively. b) Three-dimensional positions of the atoms. The red circle shows the

selection region for 3⃝. c) Spatial frequency spectrum of the vertical position histogram. The power spectral

density is computed based on the DFT method reported in Reference [171]. The chosen bin width results in a

frequency bin width of 0.0312 d𝑧
−1
vert and a Nyquist frequency of 2 d𝑧

−1
vert.

It can be seen in Figure 4.21 a) that the detected atoms are mostly above the focal plane within a

range of around 10 vertical lattice planes centered around 𝑧 = 5 d𝑧vert. This means that the focal plane

of the microscope is shifted relative to the center of the atom cloud loaded into the lattice by about

5 d𝑧vert ≈ 2.7 ➭m. The enhanced DOF by the DH-PSF is apparent from the fact that atoms can be readily

detected up to ±10 d𝑧vert away from the focus, i.e. a range of over 10 ➭m, as opposed to the theoretical

1.2 ➭m DOF of the standard PSF at NA = 0.6.

A clustering at integer lattice sites is observed as expected from the nature of the vertical lattice. To

investigate the periodicity of the vertical atom distribution in more detail, the spatial frequency spectrum

shown in Figure 4.21 c) was calculated using the DFT as reported in Reference [171]. As can be seen, the

spatial frequency spectrum peaks at the frequency 𝑘𝑧 = 1 d𝑧
−1
vert as expected. Vertical hopping during the

image exposure however leads to a smearing of the expected discrete structure in this histogram just as

in the calibration fit Figure 4.20, where the data points are smeared relative to the lines of corresponding

focal shifts of integer vertical lattice constants. Therefore, I expect to see more clearly separated clusters

at each lattice site by reducing vertical hopping. Another contribution to the broadening is due to

aberrations inhomogeneously distributed over the FOV. In fact, as was reported in Reference [59], the

Strehl ratio of our objective lens reduces to 0.8 within 38 ➭m (cf. Section 4.2.3). We have seen that the
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measured angle at the focus 𝛽 is sensitive to certain types of aberrations (cf. Section 4.6.3), leading to

an inhomogeneous angle 𝛽 over the FOV. Effectively, we are using an average angle 𝛽 determined by

the calibration fit and thus obtaining a bias in the vertical position determination. As atoms detected

within a larger region of the FOV are included in the vertical position histogram, different biases

lead to a smearing. This effect was also observed and characterized in DH-PSF microscopy of single

molecules [172]. In order to calibrate the PSF sampled across the FOV with an accurate axial and lateral

length reference, a regularly spaced sub-diffraction aperture grid filled with fluorescent dyes was used.

Thanks to our lattice geometry, such a calibration parameterized over the FOV is possible using the data

type described here. The reduced bias will thereby increase the accuracy of axial localization. All that is

needed is a sufficient number of recorded atoms per FOV area.

The lattice structure that is nevertheless visible demonstrates the capability of vertical single-site

resolution by the DH-PSF. It furthermore confirms the accuracy of the axial length reference used for

the axial calibration, namely the use of a focal shift by a holographic lens on the SLM. This renders this

novel calibration technique a much simpler alternative to the common technique of piezo-control of the

objective [74] in systems in which an SLM is used for PSF engineering.

4.7 Summary and conclusion

Prompted by the need to have access to the axial position of individual atoms trapped in a three-

dimensional optical lattice, I have presented a modification of our quantum gas microscope that

implements PSF phase engineering, allowing single-site direction along all three dimensions over an

extended DOF.

Quantum walks and single-atom interferometry using two-dimensional state-dependent transport

require atoms to be in the same vertical plane of the lattice. Although the initially thickly filled lattice

can be made to retain atoms only in a specific plane via vertical microwave spectroscopy, a few atoms

always remain outside the target plane. Given the trade-off between plane selection fidelity and target

plane survival, the ability to post-select the vertical position also allows one to choose a higher target

plane survival.

The response of the microscope to a point source, the PSF, determines the localization precision.

While the standard PSF is well suited for high lateral resolution, it retains little information about axial

position. Different techniques that either acquire the PSF at different focus settings or acquire the full

light field information allow axial localization with higher precision. The other approach is to modify the

PSF itself so that it carries more axial position information. PSFs with broken azimuthal symmetry that

rotate rigidly along the axial direction have been shown to provide easily detectable and unambiguous

depth information through their rotation angle. Their rotational property can be implemented and

understood in terms of the interference of orthogonal LG modes. A particularly useful example is

the DH-PSF, which consists of two peaks spiralling around each other. It is shown that the DH-PSF

inherently carries more information about the axial position, and in the noise-free case even about the

lateral position over an extended DOF. Albeit the DH-PSF extending over a larger area than the standard

PSF by construction, studies have shown that it is possible to retrieve the emitters position even in dense

settings. In addition, rotating PSFs can be algorithmically optimized to maximize position information

over target dimensions and regions.

In the fluorescence microscope at hand, the PSF is phase-engineered in the pupil plane by means of

an SLM. For this purpose, the imaging system was redesigned to include a secondary pupil plane, as
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the microscope’s pupil plane lies within the vacuum cell. The built-in SLM modulates only a linear

polarisation, which requires the use of a polariser and reduces the amount of usable light. However,

it introduces a high degree of flexibility into the apparatus, as demonstrated by the compensation of

residual aberrations by the SLM itself and its use in the alignment procedure. Moreover, I presented

a PSF simulation to help select an appropriate DH-PSF and to understand the detrimental effects of

aberrations.

Finally, I demonstrated the axial localisation of single atoms in the three-dimensional lattice by

determining the measured DH-PSF rotation angles. An algorithm is presented that detects peaks and

pairs them to give the PSF location and orientation of the corresponding individual atoms. The axial

localization is calibrated using sets of three images taken from the same ensemble of atoms, while

shifting the focal plane of the imaging system in the second image by a known distance. The focal

shift is achieved by a holographic lens of long focal length programmed on the SLM. The vertical

lattice structure could be resolved, demonstrating the capability of vertical single-site resolution. It

also confirms a high accuracy of the focal shift for the axial calibration, making the novel calibration

technique proposed a much simpler alternative to piezo-control of the objective. Moreover, it was shown

that atoms can be detected over an axial range of more than 10 ➭m, underlining the enhanced DOF by

the DH-PSF
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Conclusion and Outlook

In this thesis, I presented a novel quantum gas microscopy technique enabling the three-dimensional

localization of single atoms in an optical lattice with sub-micrometer resolution. The technique consists

of modifying the point spread function (PSF) of the microscope via phase-engineering in the pupil plane

to obtain an azimuthally asymmetric intensity distribution. With this, the position of an atom along the

imaging axis can be extracted from the rotation angle of its corresponding PSF. The lateral position of

the atom can be determined with unaffected precision from the center of the PSF in the image.

In particular, I demonstrated the method using a double-helix point spread function (DH-PSF) which

proved to be particularly suitable. The observation of the vertical lattice structure with a plane separation

of 532 nm has illustrated the single-site resolution at NA = 0.6. As the rotation rate of the engineered

PSF increases with the numerical aperture (NA), the achieved resolution is accessible to typical quantum

gas microscopes having NA ≳ 0.6 [14, 27, 38, 47, 48, 59, 61, 173, 174]. In the present work, DH-PSF

allowed the localization over an axial range of more than 10 ➭m, i.e., well over the 1.2 ➭m depth of

field (DOF) of the regular PSF. Many three-dimensional microscopes employing engineered PSFs use

piezo-control of the objective lens to perform an angle-position calibration [74]. I have presented an

alternative simple calibration method based on shifting the focal plane by a programmed holographic

lens between consecutive images, which, to the best of my knowledge, has not yet been used. We note

that it does not rely on the lattice geometry and could therefore be employed in microscopes for single

molecules using phase modulating spatial light modulators (SLMs).

The idea of the DH-PSF is inspired by super-resolved three-dimensional fluorescence microscopy

of single molecules [74, 78, 79, 132]. Sparse ensembles of fluorescing molecules can thereby be

localized well below the diffraction limit along all three dimensions down to precisions of 20 to 40 nm by

employing the knowledge of the PSF [132]. Detection methods reach the theoretical Cramér-Rao lower

bound (CRLB) of localization precision along all dimensions [76]. My use of double Gaussian peak

fitting as an estimator for the localization is computationally fast, as it is non-iterative. However, it uses

only a part of the PSF geometrical shape and does not include any noise statistics, thus it is not expected

to reach the CRLB resolution limit. Accordingly, the localization precision can be increased compared

to the presented method. While maximum-likelihood estimators including noise and a faithful PSF

model can reach optimal estimation, large calibration data sets required. Reference [76] reports a phase

retrieval method, allowing to recover the three-dimensional PSF using fewer calibration measurements.

As I discussed, the CRLB can in turn also be used as a metric to design PSFs optimized with respect to

achievable resolutions [80]. While the DH-PSF constructed from Laguerre-Gauss (LG) modes utilized
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5

a) b)

Figure 5.1: Aberration characterization for a DH-PSF molecule microscope. Taken and modified from Refer-

ence [172]. The spatial inhomogeneity of the DH-PSF angle across the FOV due to aberrations is apparent.

a) Measured DH-PSF in a transversal plane along the FOV. b) Scanning electron microscope image of a nano hole

array with a pitch of 2.5 ➭m and hole diameters ≤ 200 nm employed for the measurement.

in this thesis show clearly lower localization CRLBs than the regular PSF, I discussed several approaches

to further optimize the PSF. In some sense, the manual aberration compensation I performed can already

be understood as such an optimization, obviously unlikely to end in a global extrema.

The two fields of research, connected by a shared interest in precise detection of single fluorescent

particles, could benefit from common synergies. For instance, cold atoms in optical lattices have also

been localized well below the diffraction limit using computational methods [39, 125]. Furthermore,

light field microscopy has been used for three-dimensional imaging of atoms, however at resolutions of

16 to 100 ➭m [69]. Utilizing a Fourier light field microscope configuration, precision up to 20 nm (thus

comparing to the DH-PSF) have recently been attained with molecules [135]. Such a system could well

be useful for cold atoms as well.

In this thesis, I showed by simulation that, besides the high precision, the accuracy of the DH-PSF is

sensitive to certain aberrations. Ultimately, this high aberration sensitivity also allows to measure and

correct the aberrations precisely [170], or to remove the resulting bias from measured angles [172]. I

propose to parameterize the measured in-focus angle 𝛽 over the field of view (FOV) and thus improve

the accuracy of the axial calibration over the whole FOV. Figure 5.1 shows the measured DH-PSF of a

lateral plane in a microscope for molecules, illustrating this idea. Having a system with known geometry

at hand through the optical lattice makes this particularly easy. This is in contrast to microscopy of

molecules for which a nano hole array filled with fluorescent dyes had to be prepared as a controllable

sample of the DH-PSF along a transversal plane of the FOV.

In quantum gas microscopes, the use of only sparse distributions of atoms during imaging is a priori

not an option, in contrary to the various methods employed in super-resolution microscopy of biological

samples. There, the number of fluorescing molecules during an image acquisition can be tuned, e.g.

by employing their temporal behavior [122–124]. However, this so-called labeling density limits

data collection times. Therefore, efforts have been made to work at higher densities. In fact, a

localization scheme allowing the identification of emitters in images with overlapping DH-PSFs while

maintaining high localization precisions have been reported by Reference [79]. Figure 5.2 shows DH-PSF

reconstructions at low densities (comparable to the ones in this thesis) and at high densities of 1.2 ➭m
−2

.

As a comparison, a unit filling of our lattice would correspond to 2.7 ➭m
−2

. I however expect that the

DH-PSF allows reconstructions at such densities for atoms in optical lattices, as the knowledge about

the lattice geometry can be used. The increase of DOF by the DH-PSF complicates the imaging of
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a) b)

1 1

Figure 5.2: DH-PSF reconstructions at different densities (simulated images). The detected emitters are marked

by x. Taken and modified from Reference [79]. a) Emitter density of 0.12 ➭m
−2

. b) Emitter density of 1.2 ➭m
−2

.

ensembles with high axial densities. By means of PSF optimizations, PSFs maximizing a figure of merit

designed for a specific application could be constructed.

The polarizer required for the phase modulating SLM significantly reduces the reachable signal-to-

noise ratio (SNR) for a given photon budget in the presented setup. Considering the finite lifetime of

atoms in the lattice, increasing the exposure time for higher signals is not optimal, but still preferable

to taking multiple images as in tomography. Optical configurations have been designed that use both

polarizations [157, 158]. At the cost of losing the programmable flexibility of the SLM, a custom

manufactured diffractive optical elements could be used, reaching higher optical efficiency as the phase

modulation does not apply to a specific polarization [83].

In the measurements presented in this thesis, a substantial vertical and horizontal hopping probability

has been observed. Adjustment of the vertical polarization gradient cooling (PGC) on the D1 line is not

readily optimized over large FOVs due to light shift gradients caused by the inhomogeneity of the vertical

dipole trap (VDT). Therefore, an abundance of available power of the VDT laser should be utilized to

create a deeper and broader VDT giving more homogeneous conditions within the FOV. The vertical

PGC should correspondingly be verified and adapted. The horizontal hopping, while not as severe,

should also be addressed. I presented my contribution to a twofold increase of the horizontal dipole

trap (HDT) depth in Chapter 3 by increasing the laser power usage efficiency. Additional increase could

be achieved with by anti-reflective (AR) coating the employed photonic crystal fiber (PCF). However,

there is not too much more leeway, since the laser power is ultimately limited. Further research needs to

quantify hopping more precisely, and identify and address the heating effects.

The SLM in the pupil plane of the two-dimensional discrete quantum simulator (DQSIM) objective

lens can finally also be employed for local site-resolved addressing of atoms. A structured intensity

pattern can be holographically generated by an SLM as described in Reference [167] and characterized

in Reference [169]. While microwaves are well suited for global coherent operations, Reference [20]

proposes to shine a structured intensity pattern of Raman light onto the optical lattice, allowing spatially

inhomogeneous operations. The high spatial resolution given by the objective lens allows a sharp

addressability of single atoms. Another site-resolved addressing possibility is to induce AC Stark shifts

on the target atoms by the structured intensity pattern. Microwave radiation tuned to the shifted resonance

condition then locally drives the qubit state [17].

Ultimately, this new imaging technique broadens the toolbox for control in quantum gas microscopes.

75



Appendix

76



APPENDIX A

Short introduction to Fourier optics

In this appendix, the important principles of Fourier optics needed for the understanding of the experiment

are presented. Starting from the basic equations of optics, the paraxial approximation as well as the

diffraction integral and its Fresnel and Fraunhofer approximations are described. Building on that, the

Fourier transform property of lenses is derived. All derivations are supported by References [99, 119],

except stated otherwise.

A.1 The paraxial approximation

The Maxwell equations for linear, isotropic, homogene and non-dispersive dielectrics with refractive

index 𝑛 yields the wave equation (
∇2 − 𝑛

2

𝑐
2

𝜕
2

𝜕𝑡
2

)
�̃�(𝒙, 𝑡) = 0 , (A.1)

where �̃�(𝒙, 𝑡) is the electric or magnetic field. For monochromatic waves with harmonic time evolution

separation of variables �̃�(𝒙, 𝑡) = 𝑼(𝒙) e
−i𝜔𝑡

gives the Helmholtz equation(
∇2 + 𝑘2

)
𝑼(𝒙) = 0 , (A.2)

where 𝜔 = 𝑐𝑘 . An identical scalar Helmholtz equation holds for each components𝑈 of 𝑼.

The paraxial approximation holds for a wave that propagates only in directions with small angles with

respect to the optical axis, and approximates the scalar field as

𝑈 (𝒙) ≈ 𝑣(𝒙) e
i𝑘𝑧

(A.3)

for a function 𝑣(𝒙) slowly varying in 𝑧, i.e.

���𝜕2
𝑣/𝜕𝑧2

��� ≪ ��𝑘 𝜕𝑣
𝜕𝑧

��. The paraxial Helmholtz equation

∇2
⊥𝑈 (𝒙) + 2i𝑘

𝜕𝑈

𝜕𝑧
= 0 (A.4)

with the transverse Laplacian ∇2
⊥ =

𝜕
2

𝜕𝑥
2 + 𝜕

2

𝜕𝑦
2 is then obtained by insertion of Equation A.3 into the
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plane of diffraction

incident wave

plane of observation

Figure A.1: Geometry of Kirchhoff’s Diffraction Integral.

scalar version of Equation A.2 and using the slow variation of 𝑣(𝒙) in 𝑧.

A.2 The diffraction integral

Consider the scalar Helmholtz equation (cf. Equation A.2) for the field𝑈 (𝒙) = 𝐴(𝒙)ei𝜙 (𝒙)
with amplitude

𝐴(𝒓) and phase 𝜙(𝒙). Following Huygens’ principle, the field𝑈 (𝒙𝑃) at a point 𝑃 consists of the sum of

spherical waves of all contributing point sources 𝑄𝑖 at positions 𝒙𝑄𝑖
. The spherical waves

𝑈𝑄𝑖
(𝒙) = 𝑈𝑄𝑖

(𝒙𝑄𝑖
) e

i𝑘𝑟

𝑘𝑟
, (A.5)

with 𝑟 = |𝒙 − 𝒙𝑄𝑖
|, are solutions of the Helmholtz equation. Kirchhoff’s diffraction integral in the

paraxial approximation

𝑈 (𝒙𝑃) =
𝑈𝑆𝑘

2𝜋i

∮
𝑆

𝜏(𝑢, 𝑣) e
i𝑘𝑟

𝑟
d𝑢d𝑣 (A.6)

is derived by means of Green’s theorem, where the geometry is defined as in Figure A.1. The surface 𝑆

(the aperture) with the transmission function 𝜏(𝑢, 𝑣) is illuminated by a plane wave of amplitude 𝑈𝑆 .

The integral thus describes the field in the point 𝑃 of the observation plane, given an incident wave and

the transmission function of the aperture.

Expressing 𝑟 and 𝑟0 in the coordinates of the diffraction and observation planes, respectively, we get

𝑟 =

√︃
(𝑥 − 𝑢)2 + (𝑦 − 𝑣)2 + 𝑧2 = 𝑟0

√√
1 − 2(𝑥𝑢 + 𝑦𝑣)

𝑟
2
0

+ 𝑢
2 + 𝑣2

𝑟
2
0

≃ 𝑟0

(
1 − 𝜅𝑢𝑢 + 𝜅𝑣𝑣

𝑘𝑟0

+ 𝑢
2 + 𝑣2

2𝑟
2
0

)
,

(A.7)

with the spatial frequencies 𝜅𝑢 = 𝑘𝑥/𝑟0 and 𝜅𝑣 = 𝑘𝑦/𝑟0, so that the phase factor in Equation (A.6) is

decomposed into

e
i𝑘𝑟 ≃ e

−i𝑘𝑟0e
i(𝜅𝑢𝑢+𝜅𝑣𝑣)e

i
𝑘 (𝑢2+𝑣2 )

2𝑟0 . (A.8)

The last phase factor depending only on the aperture plane coordinates is called Fresnel factor. It

determines the possible approximations to the diffraction integral, which is difficult to numerically solve,

namely

the Fraunhofer approximation for 𝑎
2 ≪ 𝜆𝑧/𝜋 , (A.9)

and the Fresnel approximation for 𝑎
2 ≥ 𝜆𝑧/𝜋 and 𝑎 ≪ 𝑧 . (A.10)
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A.2.1 Fresnel diffraction

The Fresnel approximation valid in the near field is obtained by Tayler expanding the first expression in

Equation (A.7)

𝑟 ≃ 𝑧
(
1 + (𝑥 − 𝑢)2

2𝑧
2

+ (𝑦 − 𝑣)2

2𝑧
2

)
,

and inserting into the diffraction integral Equation A.6,

𝑈 (𝒙𝑃) =
𝑈𝑆𝑘

2𝜋i

e
i𝑘𝑧

𝑧

∮
𝑆

𝜏(𝑢, 𝑣) exp

(
i𝑘

2𝑧

(
(𝑥 − 𝑢)2 + (𝑦 − 𝑣)2

))
d𝑢d𝑣 . (A.11)

taking 𝑟 ≈ 𝑧 in the denominator.

This can be written as a convolution of the aperture plane field further propagated by 𝑧 with the kernel

𝐾𝑧 (𝑥, 𝑦) = 𝑘
2𝜋i𝑧

exp
(

i𝑘
2𝑧
(𝑥2 + 𝑦2)

)
, i.e.,

𝑈𝑧 (𝑥, 𝑦) =
(
e

i𝑘𝑧
𝑈𝑆𝜏(𝑥, 𝑦)

)
∗ 𝐾𝑧 (𝑥, 𝑦) . (A.12)

The Fresnel diffraction integral solves the paraxial Helmholtz equation [175] (cf. Section A.1).

A.2.2 Fraunhofer diffraction

If the condition of Equation A.9 is met, the far field is described by the Fraunhofer approximation. The

expansion of Equation A.7 is inserted in the diffraction integral Equation (A.6) taking
(𝑢2+𝑣2 )𝑘

2𝑟0
≈ 0. This

yields with 𝑟 ≈ 𝑧 in the denominator

𝑈 (𝒙𝑃) =
𝑈𝑆𝑘

2𝜋i

e
i𝑘𝑟0

𝑧

∮
𝑆

𝜏(𝑢, 𝑣)e−i(𝜅𝑢𝑢+𝜅𝑣𝑣)d𝑢d𝑣 , (A.13)

which corresponds to the spherical wave in point 𝑃 modulated with the Fourier transform of the

transmission function

𝑇 (𝑥, 𝑦) =
∬

𝜏(𝑢, 𝑣)e−i(𝜅𝑢𝑢+𝜅𝑣𝑣)d𝑢d𝑣 . (A.14)

As an important example, consider the circular aperture as the diffraction object, which is present in

most optical elements. Its Fraunhofer pattern has the well-known Airy disk as intensity.

A.3 The Fourier transform property of a lens

To work in the Fraunhofer far field, it is useful to reduce the distance imposed by Equation (A.9). This

is possible by a converging lens
1
, whose complex and thus phase modulating transmission function is

1
Here as an idealized thin lens with positive focal length 𝑓 .
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lens

diffracting object

a)

b)

Figure A.2: Geometry of the Fourier transform property of a lens with the diffracting object a) at the position of

the lens and b) at a distance 𝑑.

given by
2

𝑡 𝑓 (𝑢, 𝑣) = exp

(
−i

𝑘

2 𝑓

(
𝑢

2 + 𝑣2
))
, (A.15)

where 𝑓 is the focal length [119]. If the lens is superimposed on the diffraction plane as in Figure A.2 a),

the light field immediately after is given by

𝑈
′
𝐿 (𝑢, 𝑣) = 𝑈0𝜏(𝑢, 𝑣)𝑡 𝑓 (𝑢, 𝑣) , (A.16)

where𝑈0 is the amplitude of the incident plane wave. To compute the field𝑈 𝑓 (𝑥, 𝑦) in the back focal

plane, we use the Fresnel diffraction Equation A.11 with 𝑧 = 𝑓 , i.e.

𝑈 𝑓 (𝑥, 𝑦) =
𝑘e

i𝑘 𝑓

2𝜋i 𝑓
e

i𝑘
2 𝑓 (𝑥

2+𝑦2 )
∬

𝑈
′
𝐿 (𝑢, 𝑣)e

i𝑘
2 𝑓 (𝑢

2+𝑣2 )
e
− i𝑘

𝑓
(𝑥𝑢+𝑦𝑣)

d𝑢d𝑣 , (A.17)

where the exponent of the phase term inside the integral is multiplied out. By insertion of Equation A.16,

the quadratic phases exactly cancel, giving

𝑈 𝑓 (𝑥, 𝑦) =
𝑘e

i𝑘 𝑓

2𝜋i 𝑓
e

i𝑘
2 𝑓 (𝑥

2+𝑦2 )
∬

𝑈0𝜏(𝑢, 𝑣)e
− i𝑘

𝑓
(𝑥𝑢+𝑦𝑣)

d𝑢d𝑣︸                                  ︷︷                                  ︸
= F

{
𝑈0𝜏

} (
𝜅𝑢, 𝜅𝑣

)
, (A.18)

which is a Fraunhofer diffraction pattern with an additional quadratic phase (cf. Equation A.13). The

field is thus proportional to the two-dimensional Fourier transform of the light field incident on the lens

evaluated at the spatial frequencies 𝜅𝑢 = 𝑘𝑥/ 𝑓 and 𝜅𝑣 = 𝑘𝑦/ 𝑓 and a quadratic phase curvature, even

though the distance to the observation plane is only 𝑓 .

Considering now the more general case as in Figure A.2 b), that the diffraction plane is at distance 𝑑

of the lens, the field incident on the lens is the Fresnel diffraction pattern at distance 𝑑, which can be

expressed by a convolution according to Equation (A.12). Its Fourier transform can be calculated by the

convolution theorem to

F
{(

e
i𝑘𝑑
𝑈0𝜏

)
∗ 𝐾𝑑

} (
𝜅𝑢, 𝜅𝑣

)
= e

i𝑘𝑑F
{
𝑈0𝜏

} (
𝜅𝑢, 𝜅𝑣

)
· F

{
𝐾𝑑

} (
𝜅𝑢, 𝜅𝑣

)
. (A.19)

2
The lens is assumed to be infinitely extended. By an additional aperture factor which is 1 inside the lens and 0 otherwise, the

lens aperture can be taken into account.
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With F
{
𝐾𝑑

} (
𝜅𝑢, 𝜅𝑣

)
= exp

(
− i𝑑

2𝑘

(
𝜅

2
𝑢 + 𝜅2

𝑣

))
and under substitution of Equation A.18 we get the field

in the back focal plane

𝑈 𝑓 (𝑥, 𝑦) =
𝑘e

i𝑘 (𝑑+ 𝑓 )

2𝜋i 𝑓
e

i𝑘
2 𝑓

(
1− 𝑑

𝑓

) (
𝑥

2+𝑦2
)
F

{
𝑈0𝜏

} (
𝜅𝑢, 𝜅𝑣

)
. (A.20)

Note that the Fourier transform is again accompanied by a quadratic phase factor, which however vanishes

for 𝑑 = 𝑓 . If the diffraction plane is placed in the front focal plane of the lens, it yields an exact Fourier

transform in the back focal plane. This particular arrangement is called 2 𝑓 -configuration.
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APPENDIX B

Superpositions of Laguerre-Gauss modes

For completeness, and for consistent notation, I present here the derivations concerning the rotating

PSFs from the superposition of LG modes presented in Reference [71]. A simplified derivation for the

superposition of two LG modes is described in section 4.4.1. I begin in Section B.1 by explaining the

definitions used, and then examine the superposition of arbitrary LG modes in Section B.2.

B.1 Setting the stage: notation and the LG modes

The paraxial approximation is very useful in optics as it allows to derive simple analytical expressions. It

is valid for waves that propagate only in directions with small angles with respect to the optical axis [119].

As shown in Section A.1 of Appendix A, the Maxwell equations yield under this approximation the

paraxial Helmholtz equation A.4. In cylindrical coordinates, a complete orthogonal (basis) set of

solutions to this equation is given by the LG modes [109]. I shortly remind the reader about the

expression for the LG transverse mode of order (𝑙, 𝑝), which is given by

𝑢𝑙 𝑝 = 𝐶𝑙 𝑝

𝑤0

𝑤(𝑧) exp

(
− 𝑟

2

𝑤
2(𝑧)

)
exp

(
i𝑘

𝑟
2

2𝑅(𝑧)

)
︸                                         ︷︷                                         ︸

=:𝐺 (𝑟 ,𝑧)

(
𝑟
√

2

𝑤(𝑧)

) |𝑙 |
𝐿
|𝑙 |
𝑝

(
2𝑟

2

𝑤
2(𝑧)

)
︸                        ︷︷                        ︸

=: 𝑅𝑙𝑝 (𝑟 ,𝑧)

exp
(
i𝑙𝜙 − i𝜓𝑙 𝑝 (𝑧)

)
, (B.1)

with the definitions given by the equations 4.7 to 4.11. The field 𝑼(𝒙, 𝑡), for clarity, is then given by the

components𝑈 (𝒙, 𝑡) = 𝑢(𝑟, 𝜙, 𝑧) e
i𝑘𝑧−i𝜔𝑡

.

The notation used in this work differs from Reference [71] in that the LG modes are written out

with the azimuthal mode index 𝑙 and the radial mode index 𝑝, instead of the combined mode index 𝑛

and the azimuthal mode index 𝑚(= 𝑙). Furthermore, I group some terms in a different manner. E.g.,

Reference [71] calls only arctan(𝑧/𝑧R) the Gouy phase, while I follow the more common convention to

call (2𝑝 + |𝑙 | + 1) arctan(𝑧/𝑧R) to Gouy phase, as in Equation 4.11 and e.g. [109]. The normalization

constant reported in Reference [71] is chosen to yield unity for the maximal intensity of the mode, while

I prefer the normalization to yield unity when integrating the LG transverse mode over the radial and

azimuthal dimension, allowing direct comparison of the intensity of different LG modes of the same

total optical power.

Interestingly, the paraxial Helmholtz equation A.4 has the same form as the free space Schrödinger
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equation in two dimensions, i.e.

−ℏ
2∇2

⊥
2𝑚

Ψ(𝑥, 𝑦, 𝑡) = iℏ
𝜕

𝜕𝑡
Ψ(𝑥, 𝑦, 𝑡) ⇔ ∇2

⊥Ψ(𝑥, 𝑦, 𝑡) + 2i
𝑚

ℏ

𝜕

𝜕𝑡
Ψ(𝑥, 𝑦, 𝑡) = 0 (B.2)

under substitution of the 𝑧 coordinate by the time 𝑡, the transverse mode function 𝑢(𝒙) = ⟨𝒙 |𝑙, 𝑝⟩ by

the wave function Ψ(𝑥, 𝑦, 𝑡) = ⟨𝑥, 𝑦 |Ψ(𝑡)⟩ and the wave number 𝑘 by 𝑚/ℏ. This allows us to use the

quantum mechanics formalism for the analysis of paraxial waves by using time domain semantics to

describe the evolution along the 𝑧-axis, e.g. the convenient use of Dirac notation. For instance, the

orthonormality relation of the LG modes can concisely be written as

⟨𝑙′, 𝑝′ |𝑙, 𝑝⟩ = 𝛿𝑙𝑙′𝛿𝑝𝑝′ , (B.3)

with the scalar product defined by

⟨Ψ|Φ⟩ =
2𝜋∫

0

d𝜙

∞∫
0

d𝑟𝑟 Ψ
∗(𝒙)Φ(𝒙) . (B.4)

B.2 Rotating intensity proĄles from LG mode superpositions

Let us examine the intensity of any superposition of 𝑁 LG modes with normalized coefficients 𝑎 𝑗 ∈ C,

|𝐴⟩ =
𝑁∑︁
𝑗=1

𝑎 𝑗 |𝑙 𝑗 , 𝑝 𝑗⟩ , where

𝑁∑︁
𝑗=1

|𝑎 𝑗 |2 = 1 (B.5)

with the modes sorted according to their combined mode indexes 𝑛 𝑗 = 2𝑝 𝑗 + |𝑙 𝑗 | such that 𝑛 𝑗 ≤ 𝑛 𝑗+1. It

is, using the abbreviations defined in Equation B.1, given by

𝐼 (𝒙) = 𝜖0𝑐
2

|⟨𝒙 |𝐴⟩|2 =
𝜖0𝑐

2

������
𝑁∑︁
𝑗=1

𝑎 𝑗 ⟨𝒙 |𝑙 𝑗 , 𝑝 𝑗⟩

������
2

(B.6)

=
𝜖0𝑐

2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝑎 𝑗𝑎
∗
𝑖 ⟨𝒙 |𝑙 𝑗 , 𝑝 𝑗⟩ ⟨𝑙𝑖 , 𝑝𝑖 |𝒙⟩ (B.7)

=
𝜖0𝑐

2

©
«

𝑁∑︁
𝑗=1

|𝑎 𝑗 |2
��⟨𝒙 |𝑙 𝑗 , 𝑝 𝑗⟩

��2 + 2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑖= 𝑗+1

Re
(
𝑎 𝑗𝑎

∗
𝑖 ⟨𝒙 |𝑙 𝑗 , 𝑝 𝑗⟩ ⟨𝑙𝑖 , 𝑝𝑖 |𝒙⟩

)ª®
¬

(B.8)

=
𝜖0𝑐

2

©
«

𝑁∑︁
𝑗=1

|𝑎 𝑗 |2
��⟨𝒙 |𝑙 𝑗 , 𝑝 𝑗⟩

��2 + 2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑖= 𝑗+1

(
|𝑎 𝑗 | |𝑎𝑖 |

��⟨𝒙 |𝑙 𝑗 , 𝑝 𝑗⟩
�� ��⟨𝒙 |𝑙𝑖 , 𝑝𝑖⟩��) (B.9)

× cos
(
arg(⟨𝒙 |𝑙 𝑗 , 𝑝 𝑗⟩) − arg(⟨𝒙 |𝑙𝑖 , 𝑝𝑖⟩) + arg(𝑎 𝑗) − arg(𝑎𝑖)

)ª®
¬
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=
𝜖0𝑐

2
|𝐺 (𝑟, 𝑧) |2 ©

«
𝑁∑︁
𝑗=1

|𝑎 𝑗 |2𝐶2
𝑙 𝑗 𝑝 𝑗

𝑅
2
𝑙 𝑗 𝑝 𝑗

(𝑟, 𝑧) (B.10)

+ 2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑖= 𝑗+1

|𝑎 𝑗 | |𝑎𝑖 |𝐶𝑙 𝑗 𝑝 𝑗
𝐶𝑙𝑖 𝑝𝑖

𝑅𝑙 𝑗 𝑝 𝑗
(𝑟, 𝑧)𝑅𝑙𝑖 𝑝𝑖 (𝑟, 𝑧)

× cos
(
(𝑙 𝑗 − 𝑙𝑖)𝜙 − (𝑛 𝑗 − 𝑛𝑖) arctan(𝑧/𝑧R) + arg(𝑎 𝑗) − arg(𝑎𝑖)

)ª®
¬
.

For the case of two LG modes, this yields equations 4.12 and 4.13 derived in Section 4.4.1. The first

sum is axially symmetric and stationary in 𝑧 except for a scaling with 𝑤(𝑧). Thus, these terms do

not contribute to the targeted scaled-rigid rotation. The terms in the second sum rotate linearly with

arctan(𝑧/𝑧R) at the rotation rates

(
d𝜙

d𝑧

)
𝑗𝑖

=
Δ𝑛 𝑗𝑖

Δ𝑙 𝑗𝑖

d

d𝑧
arctan(𝑧/𝑧R) , (B.11)

where Δ𝑛 𝑗𝑖 := 𝑛 𝑗 − 𝑛𝑖 and Δ𝑙 𝑗𝑖 := 𝑙 𝑗 − 𝑙𝑖 . Again, for the case of two LG modes, Equation 4.15 derived

in Section 4.4.1 is obtained.

As can be seen in the Cosine term of Equation B.10, in order to break the axial symmetry, at least

two modes have to have different azimuthal mode numbers, Δ𝑙 𝑗𝑖 ≠ 0, such that their different orbital

angular momentum phases e
i𝑙 𝑗 𝜙 and e

i𝑙𝑖𝜙 give an azimuthal interference pattern. Similarly, the necessary

condition for dynamic behaviour along the 𝑧-axis is that Δ𝑛 𝑗𝑖 ≠ 0 for at least two modes. The different

Gouy phases 𝜓𝑙 𝑗 𝑝 𝑗
and 𝜓𝑙𝑖 𝑝𝑖

then lead to 𝑧-dependent interference patterns.

Without loss of generality, we can label the modes such that 𝑛 𝑗 ≤ 𝑛 𝑗+1. Scaled-rigid rotation occurs if

and only if all interference terms rotate at the same velocity. Evidently, a necessary condition for this is

that
𝑛 𝑗+1 − 𝑛 𝑗
𝑙 𝑗+1 − 𝑙 𝑗

=:
Δ𝑛 𝑗

Δ𝑙 𝑗
=: 𝑉 𝑗 (B.12)

is the same for all LG modes, that is,

𝑉 := 𝑉 𝑗 = const. ∀ 𝑗 ∈ {1, 2, . . . , 𝑁} . (B.13)

This condition is also sufficient, as can easily be by proven by induction: Assume that Equation B.13

holds. As by definition 𝑛 𝑗 = 2𝑝 𝑗 + |𝑙 𝑗 |, it follows that both Δ𝑛 𝑗 = const. =: Δ𝑛 and Δ𝑙 𝑗 = const. =: Δ𝑙

hold. We now need to show that ∀𝑖 ∈ {1, 2, . . . , 𝑁} with 𝑖 ≠ 𝑗 the fraction of mode number differences

are equal to 𝑉 , i.e.
𝑛𝑖 − 𝑛 𝑗
𝑙𝑖 − 𝑙 𝑗

= 𝑉 . (B.14)

Without loss of generality, we can take 𝑖 > 𝑗 (if 𝑖 < 𝑗 , just rename 𝑖 ↔ 𝑗). From our assumption directly

follows that Equation B.14 holds for 𝑖 = 𝑗 + 1. Thereby also 𝑛𝑖 − 𝑛 𝑗 = Δ𝑛 and 𝑙𝑖 − 𝑙 𝑗 = Δ𝑙 separately

84



Appendix B Superpositions of Laguerre-Gauss modes

hold for 𝑖 = 𝑗 + 1. We proceed by showing the induction step 𝑖 → 𝑖 + 1

𝑛𝑖+1 − 𝑛 𝑗
𝑙𝑖+1 − 𝑙 𝑗

=
𝑛𝑖 − 𝑛 𝑗 + 𝑛𝑖+1 − 𝑛𝑖
𝑙𝑖 − 𝑙 𝑗 + 𝑙𝑖+1 − 𝑙𝑖

=
Δ𝑛 + Δ𝑛𝑖

Δ𝑙 + Δ𝑙𝑖
=

2Δ𝑛

2Δ𝑙
= 𝑉 (B.15)

by using the induction hypothesis. It follows that Equation B.13 is also a sufficient condition for

scaled-rigid rotation.

In particular, any combination of only two LG modes yield scaled-rigid rotation. We can conclude

that for mode combinations meeting the condition of scaled-rigid rotation, the rotation velocity of the

transverse intensity pattern can be written according to Equation B.11 as

d𝜙

d𝑧
= 𝑉

d

d𝑧
arctan(𝑧/𝑧R) , (B.16)

which is nothing else but Equation 4.15 in Section 4.4.2.
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APPENDIX C

Miscellaneous

This appendix presents derivations of some equations used in this thesis. In Section C.1, I derive an

expression for the three-dimensional PSF. In Section C.2, I show how to obtain the field amplitude in the

pupil plane due to the apodization of an optical system. I then give a brief overview of the low-order

Zernike polynomials in Section C.3. Lastly, I derive the expression for the shift of the focal plane using a

holographic lens in Section C.4.

C.1 An expression for a 3D PSF

To derive the expression of a three-dimensional PSF Equation 4.20 in Section 4.4.3, I follow the reasoning

presented in References [144, 145]. Since the notation used differs with mine, I show the key steps in the

derivation.

Consider the amplitude PSF as the inverse Fourier transform of the amplitude optical transfer function

(OTF) (cf. Section 4.2.2)

PSFA(𝑥, 𝑦, 𝑧) =
∭

OTFA(𝑢, 𝑣, 𝑤) e
i(𝜅𝑢𝑢+𝜅𝑣𝑣+𝜅𝑤𝑤)

d𝑢d𝑣d𝑤 , (C.1)

with the pupil real space coordinates (𝑥, 𝑦, 𝑧) and the corresponding Fourier coordinates (𝑢, 𝑣, 𝑤). With

the front or back focal length 𝑓 , we have 𝜅𝑢 = 𝑘𝑥/ 𝑓 , 𝜅𝑣 = 𝑘𝑦/ 𝑓 and 𝜅𝑤 = 𝑘𝑧/ 𝑓 . For monochromatic

light, the OTF is non-zero only on a spherical surface delimited by the aperture angle 𝛼max, as sketched in

Figure C.1. For small NAs, this surface can be considered flat. However, in general, we can parametrize

Figure C.1: Sketch of the geometry in the pupil space. Both lateral dimensions 𝑢 and 𝑣 are shown on one axis.
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the surface by

𝑤(𝑢, 𝑣) =
√︃
𝑓

2 − (𝑢2 + 𝑣2) =
√︃
𝑎

2/NA
2 − (𝑢2 + 𝑣2) . (C.2)

The volume integral in Equation C.1 thus reduces to the surface integral

PSFA(𝑥, 𝑦, 𝑧) =
∬

E0(𝑢, 𝑣) P(𝑢, 𝑣) e
i𝜅𝑤𝑤 (𝑢,𝑣)

e
i(𝜅𝑢𝑢+𝜅𝑣𝑣)d𝑢d𝑣 , (C.3)

where we express the OTF on the non-zero spherical surface as the phase-modulated generalized pupil

function Pmod(𝑢, 𝑣) multiplied with the incident field amplitude E0(𝑢, 𝑣) as defined in Section 4.4.3.

The expression

e
i𝜅𝑤𝑤 (𝑢,𝑣)

= e
i𝑘𝑧NA𝑤 (𝑢,𝑣)/𝑎

(C.4)

can then be thought as the defocus aberration to add to the pupil function depending on the 𝑧-coordinate

at which the PSF is evaluated. Altogether we get Equation 4.20 in Section 4.4.3.

C.2 Field amplitude in pupil plane due to apodization

As described in Reference [16], a point source uniformly radiating into the solid angle of the aperture

leads to an intensity in the pupil plane scaling as

𝐴Abbe = 1/cos(𝛼) , (C.5)

where 𝛼 is the incidence angle with respect to the optical axis. Utilizing again the geometry of the pupil

plane as in Figure C.1, we can write

cos(𝛼) =

√︃
𝑓

2 − 𝜌2

𝑓
=

√︄
1 − 𝑢

2 + 𝑣2

𝑓
2

. (C.6)

For the electric field, this gives

E0(𝑢, 𝑣) = 𝐸0

(
1 − 𝑢

2 + 𝑣2

𝑓
2

)−1/4

. (C.7)

Using NA = sin(𝛼max) = 𝑎/ 𝑓 this yields Equation 4.22 in Section 4.4.3.

C.3 Zernike polynomials

Zernike polynomials are used to represent wavefronts, which can describe aberrations of optical systems

(cf. Section 4.2.3). The polynomials are orthogonal on the unit disk and are named after Frits Zernike,

who proposed them in 1934 [129]. The first 13 orthonormal Zernike polynomials are given in Table C.1,

sorted by the so-called Noll index [176]. Figure C.2 shows the first 21 Zernike polynomials on the unit

disk.
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Type Noll

index

Radial

degree 𝑛

Azimuthal

degree 𝑚

𝑍
𝑚
𝑛

Piston 1 0 0 1

X-Tilt 2 1 1 2𝜌 cos 𝜙

Y-Tilt 3 1 -1 2𝜌 sin 𝜙

Defocus 4 2 0
√

3(𝜌2 − 1)
Astigmatism (oblique) 5 2 -2

√
6𝜌

2
sin 2𝜙

Astigmatism (vertical) 6 2 2
√

6𝜌
2

cos 2𝜙

Coma (vertical) 7 3 -1
√

8(3𝜌3 − 2𝜌) sin 𝜙

Coma (horizontal) 8 3 1
√

8(3𝜌3 − 2𝜌) cos 𝜙

Trefoil (vertical) 9 3 -3
√

8𝜌
3

sin 3𝜙

Trefoil (oblique) 10 3 3
√

8𝜌
3

cos 3𝜙

Spherical aberration 11 4 0
√

5(6𝜌4 − 6𝜌
2 + 1)

Secondary astigmatism

(vertical)

12 4 2
√

10(4𝜌4−3𝜌
2) cos 2𝜙

Secondary astigmatism

(oblique)

13 4 -2
√

10(4𝜌4 − 3𝜌
2) sin 2𝜙

Table C.1: The first 13 Zernike polynomials [176].

Figure C.2: The first 21 Zernike polynomials on the unit disk. Adopted with modifications from Reference [177].
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intermediate

image plane
focal plane

at atoms

Figure C.3: Sketch of the lens system. The blue area represents a collimated beam passing through the system

without holographic lens. The red area is the equivalent for the system with the holographic lens. Where the two

overlap, the area is shown in magenta. The lengths shown are not to scale.

C.4 Focal plane shift of the holographic lens

I show the calculation of the displacement of the focal plane introduced by a holographic lens displayed

on the SLM in the setup described in Section 4.5.2 (cf. Figure 4.9). Let us first look only at the lens

system consisting of holographic lens and the lens with 𝑓2 = 100 mm creating the intermediate image, as

schematized in Figure C.3. Their distance shall be 𝑑. The shift is calculated from the difference of the

front focal length (FFL) of the lens system with and without holographic lens

Δ𝑧I = 𝑓2 − FFL = 𝑓2 −
𝑓2(𝑑 − 𝑓hol)
𝑑 − ( 𝑓2 + 𝑓hol)

(C.8)

which yields

Δ𝑧I =
𝑓

2
2

𝑓hol

(C.9)

for 𝑑 = 𝑓2. The corresponding shift Δ𝑧 with respect to the initial focal plane at the atoms is then related

by the axial magnification 𝑓
2
obj/ 𝑓

2
1 and yields

Δ𝑧 =
𝑓

2
obj 𝑓

2
2

𝑓
2
1 𝑓hol

. (C.10)

We have calculated backwards in the optical system, which is fully equivalent to the reverse.
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