@article{2014-kleiSsler, Abstract = {This master thesis investigates the optical imaging properties of a state of the art in-house developed objective for the observation of single atoms trapped in a two-dimensional spin-dependent optical lattice. After the successful assembly of the objective lenses into a ceramic holder two different approaches for the characterization are presented. First a wave-front analysis for the estimation of the root-mean-square deviation to a planar reference using a Shack-Hartmann sensor and a Shearing interferometer is performed. In the second approach the imaging of a point-like light-source is utilized to determine the point-spread-function of the objective. The production of the probes is inspired by methods of optical microscopy in the nano-scale regime like Total-Internal-Reflexion-Fluorescence- and Scanning-Nearfield-Optical-Microscopy. Self-written MATLAB-routines are used to extract quantitative information on the imaging system. The analysis in this work shows that the objective can operate close to diffraction limit with a numerical aperture of 0.9. Numerically calculated point-spread-functions are compared to the measurements to explain the small deviations to the perfect Airy pattern. A very good agreement has been found between the point-spread-function calculated numerically and that measured in the characterization set-up.}, Author = {Kleißler, F.}, Journal = {}, Pages = {}, Title = {{Assembly and Characterization of a High Numerical Aperture Microscope for Single Atoms}}, Volume = {}, Year = {2014} }