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A novel type of macroscopic quantum system has re-
cently become available through the experimental real-
ization of Bose condensates from neutral atoms. We re-
view experimental results and the elementary quantum
mechanical approach and outline advanced theoretical
concepts regarding finite size, potentials, dimensional-
ity, and interactions.

Introduction: Macroscopic
Quantum Systems

Quantum theory is traditionally considered and
taught as a description of microscopic systems in
the first place. Its precision and prediction capacity
for simple physical systems such as the hydrogen
atom is without precedent and has remained unchal-
lenged for more than 70 years. On the other hand,
so-called “macroscopic quantum systems” continue
to draw much excitement. When we attribute “quan-

tum character” to an object, it is not only the dis-
crete energy level structure of a system with finite
dimensions. Perhaps more importantly it is the wave
aspect, which allows for interference phenomena of
particles with mass. Strictly speaking, any condensed
sample, even a simple electron gas in a metal, be-
longs to this class. The classical appearance, i.e.,
visualization in terms of a stochastic ensemble of
pointlike particles, is usually caused by a large num-
ber of degrees of freedom available for the motion
of such systems, resulting in a rapid dephasing of
quantum correlations at elevated temperatures. In
such systems quantum interferences can safely be
neglected.
The attraction of quantum systems that are called
“macroscopic” is, in contrast, derived from the fact
that quantum correlations of the system are impor-
tant or even dominant over conventional forces such
as the Coulomb interaction. Longer known exam-
ples include superconductivity and superfluidity of
liquid helium. More recently a novel macrosocpic
quantum state of matter has been produced from
a dilute gas of bosonic alkali atoms in a magnetic
container, which is considered to be the first real-
ization of a weakly interacting Bose condensate. It
is common to all such systems that their lowest en-
ergy level can be described by a single macroscopic
wavefunction, i.e., the ground state of this system
is occupied by numerous particles. We restrict the
term “macroscopic quantum state” here to this class
of many-particle systems.
The first part of this overview is devoted to a
naive analysis of thermodynamical properties of a
bosonic quantum gas. Quantum mechanics is em-
ployed through elementary quantum statistics and
through wavefunction analysis. In the second part
we make a bold attempt to introduce more advanced
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concepts of many-body quantum physics and field
theory to a general audience.

Atomic Bose-Einstein-Condensates

Elementary Predictions

In 1925 Albert Einstein [1] showed that for an ideal
Bose gas ofN particles, with massm confined in
a rigid container of volumeV , a macroscopic oc-
cupation of the ground state can occur at the finite
temperature

Tc =
h2

2πkBm

[ 1
2.612

N

V

]2/3

(1)

wherekB is Boltzmann’s constant andh is Planck’s
constant. He was inspired in this work by Satyen-
dra N. Bose [2], who had considered the problem
for a gas of identical photons. This purely quantum-
statistical phase transition is a consequence of the in-
distinguishability of bosonlike particles, and one of
the rare examples of a macroscopic quantum state.
This mysterious phenomenon has been known as
Bose-Einstein condensation (BEC) for more than 70
years, but it has proven difficult to achieve by ex-
perimenters in its pure form.
A naive way to “explain” the BEC makes use of the
thermal de Broglie wavelength:

Λ =
h√

2πmkT
(2)

We can rewrite Eq. 1 in terms of the particle number
densityn = N/V :

nΛ3 = 2.612 (3)

Thus the condition for Bose condensation to occur
in a 3D box requires the average distance between
particlesn−1/3 to be approximately equal to the de
Broglie wavelength.Λ is a quantum measure for
delocalization of a particle, i.e., the appearance of
wavelike properties. AtTc the wave packets describ-
ing the particle begin to overlap, indicating the onset
of quantum degeneracy. Add the known preference
of bosons to bale and one can “understand” the ef-
fect.
The productnΛ3 is called “phase space density.”
Phase space describes the configuration volume
(space×momentum) available to a given physical
system. In three dimensions it is divided into quan-
tum unit cells of volumeh3. A unit cell can be pop-
ulated by only one fermionic particle (with half in-
teger spin) at a time but by an arbitrary number of

bosonic particles (with integer spin quantum num-
ber) constituting a “degenerate quantum system.”
The prediction of Einstein is a consequence of the
Bose-Einstein distribution describing the occupation
numberNε of particles in an energy levelε and
given by:

Nε =
1

exp
(
ε−µ
kT

)
− 1

(4)

The chemical potentialµ is determined by the con-
straint that the total umber of particles in the system
is N :

N = N0 +
∑
ε/=ε0

Nε → µ(N, T ) (5)

It was recognized by Einstein that the occupation
numberN0 of the lowest energy levelε0 must be
treated in a special way in order to avoid divergence
of the sum in Eq. 5. It is therefore separated from
the rest of the sum. We see from Eq. 4 thatµ ≤ ε0
because the occupation number must be positive.
At room temperature all real gases behave classi-
cally, and one can neglect 1 in the BE distribution
(Eq. 4). For a rigid 3D box of radiusr0 one can
show [3] that:

Nε ≤ N0 =
(
Λ

r0

)3

N � 1 (6)

which means that all states are about equally and
microscopicallypopulated.
It is certainly not surprising that atT = 0 all parti-
cles are in the state of lowest energy. The striking
feature of the BE distribution (Eq. 4) is the possibil-
ity of a macroscopicoccupation (of the order of the
total particle numberN ) of the ground state also at
finite temperature. Consider what happens to a sys-
tem ofN bosons held at constant volume when we
decrease the temperature. To maintain the normal-
ization condition (Eq. 5) the chemical potentialµ
must adjust by increasing towards the ground state
energyµ → ε0. Below some critical temperatureTc
the number of particles in all states except the low-
est one can reach the value ofN only if µ = ε0
and then the chemical potentialµ no longer depends
on the temperature. [At this point we can draw a
clear analogy: For constantµ the BE distribution
Eq. 4 coincides with Planck’s law describing black-
body radiation (µ = 0). The Stefan-Boltzmann law
for the total radiation energy density scales asT 4,
and we can easily estimate the number of photons
from N −N0 ∝ E/~ω ∝ Eλ, where typical wave-
lengths are scaling asλ ∝ 1/T according to Wien’s
displacement law. The final result,N − N0 ∝ T 3,
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Fig. 1. Important thermodynamic properties of an ideal Bose gas in a large
3D box: fractional number of atoms in the normal and the condensed state
(N0/N ) and specific heat (CV /Nk) as a function of temperature

describes a special but very important case: the oc-
cupation of the normal phase (particles with nonzero
momentum) of bosonic atoms in a 3D harmonic po-
tential which has a density of states identical to the
photon gas (see Eq. 7). Of course, for a photon gas
N0 = 0.]
Further cooling further decreases the occupation of
all excited states, and all excess particles must go
into N0. Thus for T < Tc the population of the
ground state with zero momentum becomes macro-
scopic. This is called “condensed phase” while the
remaining fraction is called “normal phase.” In a ho-
mogeneous system, i.e. in a box with infinite walls,
the condensed fraction occupies the same volume as
the normal fraction – hence one speaks of “conden-
sation in momentum ork-space.”
This resembles the behavior of a saturated vapor in-
teracting with its solid phase. [It might seem more
obvious to compare the quantum phase transition to
a vapor-liquid interface. For this system, however,
no long-range order is established at the transition
point, as is, in contrast, the case for a crystal or a
Bose condensate. This situation is also manifested
by the existence of a critical point which shows that
a liquid and a vapor have the same type of sym-
metry.] Discontinuous behavior of thermodynamic
properties shown in Fig. 1 is also typical of phase
transitions. However, in contrast to usual phase tran-
sitions caused by intermolecular interactions, Bose
condensation is a consequence of the wave function
symmetry alone.

Experimental Efforts

It is easy to estimate from Eq. 1 that for air
molecules (M = 28) and normal density (N/V =
1019 cm−3) the BEC condition is met atTc ' 40

Fig. 2. Magnetic trap for paramagnetic atoms (Ioffe-Pritchard trap).Arrows,
direction of the current generating the magnetic field. The magnetic field
is designed to create a field minimum in thecentral region. A gas of
paramagnetic atoms with magnetic moments antiparallel to the magnetic
field lines is confined near the axis of the trap. Because magnetic dipole
forces are weak, only slow atoms can be trapped (typically< 10 mK)

mK. At such cryogenic temperatures, however, air
and all other conventional substances have long un-
dergone one or another type of structural phase tran-
sition due to intermolecular forces, resulting in a
solid phase. Only helium remains liquid down to the
thermodynamic zero point and shows unusual “su-
perfluid” behavior below the “lambda point” at 2.17
K. Due to strong interactions, however, its proper-
ties deviate widely from predictions for a pure Bose
condensate.
BEC was indeed considered an unphysical although
highly interesting theoretical concept [3] until exper-
iments were designed to produce quantum degener-
acy unobstructed by strong interparticle interactions.
One such procedure is to use a dilute spin polar-
ized gas of very cold neutral atoms which are sub-
ject to weak interatomic van der Waals interactions
only. Paramagnetic atoms can be trapped in suitable
magnetic fields, for instance, in the so-called Ioffe-
Pritchard trap, shown schematically in Fig. 2. There-
fore hydrogen or alkali atoms confined in a magnetic
trap had long been predicted [4] to form potentially
a Bose condensate. During the 1980s, laser cooling
(see e.g., [5]) was turned into an extremely uselful
tool of experimental atomic physics, and it was ap-
plied to atomic gases confined in a suitable trap. Un-
expectedly low temperatures in theµK range were
observed and opened the route to dramatically in-
creased phase space densitiesnΛ3 (Fig. 3) within
sight of the quantum degeneracy borderline. Note
that the high phase space density does not coincide
with very high particle density of such an ultracold
gas in an atom trap. The latter is of order1012cm−3,
which does not exceed the particle density of a good
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Fig. 3. Phase space accessible by conventional laser cooling techniques and
phase space volume of BEC (qualitatively). Spatial coordinates (∆x) are
normalized to the cooling laser wavelength (λ), and momentum coordinates
(v = p/m) to the recoil velocityvrec = h/λm, i.e., the velocity change
caused by a single recoil at photon emission or absorption. With laser
cooling density remains always less than 1 atom/λ3, and the recoil velocity
sets a practical lower limit to the temperature. This diagram is universally
applicable to all atoms prepared by laser cooling before evaporative cooling
takes the sample to the quantum condensed phase. Note that the entire
shaded “BEC” area contains a single unit cell (=h) of phase space only

vacuum chamber, corresponding to' 10−5 mbar
pressure at room temperature.
With slow laser-cooled atoms it was learned to store
very cold samples of alkalis for minutes or even
hours in magnetic traps, but in spite of large ex-
perimental efforts the critical density according to
Eq. 3 was not achieved. The presence of laser light
set a lower limit to the temperature through heat-
ing processes caused by spontaneous emission. At
this “recoil limit” the de Broglie wavelength equals
the cooling laser wavelength,Λ ≈ λ. The limitation
of particle densities is caused by multiple scatter-
ing of photons (Fig. 3) at the optical density limit
n ≈ λ−3.
The most decisive breakthrough was achieved by
three groups of experimenters in the United States
when they applied the evaporative cooling technique
(developed for cooling hydrogen gas [6], which is
technically inaccesible to laser cooling) to samples
of laser-cooled alkali atoms. Although evaporative
cooling is a well-known phenomenon, details of its
implementation are indeed crucial, since it is associ-
ated with a loss of particles: a Bose condensate can
be formed only if the increase in phase space density
occurs at a rate faster than the loss rate in particle
density [7]. After 3 years of successful operation this
method is now well established.

The First Atomic Condensates

The first and much publicized step across the bor-
derline to a truely degenerate quantum gas of neutral
atoms was taken in 1995 by Cornell and coworkers
at JILA, Boulder [8], with a gas of spin-polarized
rubidium atoms. In the first experiments samples of
up to104 atoms were analyzed by 2D-image absorp-
tion images (or its shadow) when they were released
from the trap (Fig. 4). The condensation was identi-
fied through a sudden appearance of a central com-
ponent of very high optical – and hence particle –
density corresponding to a very narrow momentum
distribution. It rapidly became possible to carry out
measurements of thermodynamical properties of the
condensed sample. Excellent agreement with theo-
retical predictions for the ground state occupation
N0 which in a 3D harmonic potential evolves ac-
cording to (see “Elementary Predictions”):

N0 = N

(
1 −

(
T

Tc

)3)
(7)

was, for instance, obtained by a measurement of the
occupation number in the JILA group [9] (Fig. 5).
When the attractive borderline to the quantum de-
generate regime was later also crossed by Ketterle
and his group at MIT [10] with a sodium sample,
dramatic technical advances were soon obtained in
the preparation of the condensate (now up to107

atoms in only 30 s) and using a nondestructive dark-
field imaging method [36]. It was this breakthrough
which opened the route to the observation of con-
densate interference which is described below.
A third experiment was carried out at the same time
by the group of Hulet at Rice University with a sam-
ple of lithium atoms [12, 13]. Lithium is interesting
since it provides both a bosonic and fermionic iso-
tope for comparative studies. Furthermore, bosonic
7Li atoms attract each other, and hence the forma-
tion of a condensate is completely suppressed in a
homogeneous system, i.e., in a large box. A trapping
potential can exert a stabilizing influence, however,
by confinement of the atoms. Increased zero-point
kinetic energies can compensate atomic attraction up
to an atomic density depending on the parameters of
the potential. A condensate of some 1000 atoms was
indeed observed, in fair agreement with theoretical
predictions.

Questions in BEC

Einstein’s initial discovery assumed an ideal quan-
tum gas of noninteracting particles in a homoge-
neous system of infinite extension. In theoretical in-
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Fig. 4. BEC in a gas of rubidium atoms was first identified by an extremely high optical density in the center of a cooled cloud of atoms. The 2D shadow
images were taken 60 ms after the magnetic trap had been switched off, and the cloud had been allowed to expand ballistically. Therefore the image
represents the 2D velocity distribution of atom.From left to right, the three images were taken just before (thermal Gaussian-like distribution) and just
after the appearance of the condensate (two-component cloud with a sharp increase in the peak density), and after further evaporation had nearly lefta
pure condensate. The condensate fraction is elliptical, indicative that it is highly nonthermal. The temperature can be determined from the noncondensed
fraction of atoms (Courtesy E. Cornell [8])

vestigations it was realized early on that a Bose con-
densate of weakly interacting particles is decidedly
more interesting than the ideal gas case. The rea-
son is that noninteracting particles “do not notice
each other” – i.e., they cannot have any collective
excitations. Theoretical work confirmed that “real”
BEC can show surprisingly rich and subtle behav-
ior depending on the details of the considered sys-
tems. Atomic condensates may provide a new test-
ing ground for more profound questions concerning
the many body quantum nature of a Bose conden-
sate. Below we illustrate several interesting aspects
of BEC.

Dimensions.In 1967 Hohenberg demonstrated that
BEC can occur only in 3D [14]; this is now known as
the Hohenberg–Mermin–Wagner theorem [15, 16].
Why does the intuitively clear picture of overlap-
ping de Broglie wavelengths which is successful in
3D fail in two or one dimension? Furthermore, the
impossibility of BEC in 2D and 1D turned out to
be valid only for homogeneous systems, that is for
systems confined by rigid boundaries. This was first
pointed out by Widom [17] who showed that BEC

occurs in a 1D gas in the presence of a gravitational
field.

BEC in a Potential.In all experiments described
above atoms are confined by a spatially varying po-
tential. In this case the coupling between energy
and space fundamentally alters the nature of BEC.
In general, a trapping potential supports BEC [18]:
as the mean energy decreases, the effective volume
available to the system also decreases enhancing the
growth of density. For example, in a power-law po-
tential BEC is always possible in two dimensions,
while 1D systems were predicted to display BEC
in traps that are more confining than parabolic [19].
Formally it is sufficient to evaluate the density of
states to resolve the quest for quantum degeneracy
in a potential.

Finite Numbers of Particles.The usual theory of
BEC assumes the thermodynamic limit of an infi-
nite system. An investigation of an ideal gas with
a finite number of particles [20] has shown that the
transition temperature in a 3D harmonic potential
is lower than in the thermodynamic limit, as one
would expect. Surprisingly, however, BEC in a 1D
harmonic potential can also occur ifN is finite.
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Fig. 5. Fractional occupation numberN0/N of the ground state in a Bose
condensate as a function of temperature. The scale temperatureTc(N ) is the
predicted critical temperature for an ideal Bose gas in a harmonic potential.
Solid line, expected occupation number for an infinite number of particles;
dashed curve, takes a finite number of atoms into account (see Eq. 7).
(Courtesy E. Cornell [9])

Particle interactions.In a real gas interparticle in-
teractions are extremely important and can totally
change the behavior of the system, especially in the
low-dimensional case. They are responsible for the
finite compressibility of the condensate and there-
fore for the existence of sound modes at long wave-
lengths instead of free particle excitations. Obvi-
ously the interactions are also very important for the
onset of condensation and for the build-up of co-
herence in matter waves, which is a field of active
research.

Generalized BEC Condition for Potentials
and Lower Dimensions

The conditions for a macroscopic population of the
ground state can be summarized by a transparent
formula which is derived from an analysis of the
phase space volume available to the system (see
“Appendix”). In d dimensions we find for a system
with N particles and a de Broglie wavelengthΛ ac-
cording to Eq. 2 the simple relationship which is in
comforting agreement with our physical intuition:

Λd
N

V ∗ ≈ 1 (8)

and in direct analogy with Eq. 3. The primary focus
of this formula is the introduction of an effective
volumeV ∗ ≈ rd which for an isotropic power-law
potentialU (r) ∝ rn is determined from the condi-
tion kT ≈ U (r). Let us demonstrate how well this
formula works with two examples.

BEC in Trapping Potential.The ground-state pop-
ulation fraction forT < Tc is given by (see “Ap-
pendix”):

N0

N
= 1 − (T/Tc)

η (9)

with η = d/2+d/n, reproducing the original predic-
tion by Einsteinη = 3/2 for a homogeneous system
(d = 3, n = ∞) and (Eq. 7)η = 3 for a 3D-harmonic
trap (n = 2) as in current experiments

Two-Dimensional Systems.When in a homoge-
neous 2D system (d = 2, n = ∞) the volumeV ∗
is restricted to the surface areaS we immediately
obtain from Eq. 8 a critical temperature:

Tc =
π~

2

2km
N

S
(10)

This result agrees perfectly with the transition tem-
perature deduced for a so-called quasi-condensate
with short-range correlations (or Kosterlitz-Thouless
phase [21]). Note, however, that our argument allows
an estimate only for the onset of quantum degener-
acy. The stability of such a “condensate” must be
determined from a more elaborate analysis.

Interactions and Sound in the Condensate

Although the occurrence of a phase transition on
pure quantum mechanical grounds has captivated the
minds of physicists ever since its discovery, Bose–
Einstein condensates would be rather boring objects
if it weren’t for the interactions within this appealing
state of matter. In a gas of noninteracting Bose par-
ticles the energy structure of the noncondensed sam-
ple is preserved, and the only effect of excitations is
to remove individual particles from the condensed
state. A quantum condensate of interacting particles,
however, can react collectively to an external dis-
turbance exhibiting low lying and novel excitations
within the condensed state. For instance, helium in
its quantum fluid state exhibits unusual phenomena
related to such disturbances which are usually called
“sound.”
It is indeed due only to the interaction of the con-
densed particles, or the finite compressibility, that
disturbances of, for instance, the density propagate
in a nontrivial manner.

Mean-Field Energy

In a gas of noninteracting particles residual veloci-
ties are determined by the zero-point kinetic energies
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in the trapping potential only. In contrast, the high
density of the condensate causes the average inter-
molecular potential energy in the condensate to be
much greater than kinetic energies. Once the con-
fining potential is switched off, the corresponding
internal pressure is released and dominates the ex-
pansion.
At very low relative velocities (“cold collisions”
[22]) rubidium and sodium atoms repel each other.
Since the interaction is of short range, it is justified
to describe the atom-atom interaction energy by a
simplified pseudopotential:

U (r ) =
4π~

2a

m
δ(r ) (11)

where theδ function denotes the quasipointlike in-
teraction. The relevant “s wave scattering” lengtha
is positive for87Rb (a = 60−100Å [23]) and 23Na
(a ' 27 Å [24]) but negative for7Li (a = −15 Å
[25]). The condensate is called “weakly interacting”
if the particle densityn satisfies condition:

na3 � 1 (12)

as is the case for the existing atomic Bose conden-
sates. In other words, the scattering lengtha remains
very small compared to interatomic separations.
For an individual atom the contribution of all other
atoms in a condensate is proportional to the local
densityn(r ) and gives rise to the mean field energy
by:

UMF(r ) =
4π~

2a

m
n(r ) (13)

and therefore proportional to the densityN/V . An
atomic Bose condensate is formed in a harmonic po-
tential which allows the condensate to expand with
N and weakens theN dependence ofUMF. For
T → 0 the meanfield energy can also be identified
with the chemical potential,µ → UMF.
The mean field energy becomes clearly negative for
attractive interaction or negative scattering lengtha,
which is the case for7Li and prevents BEC from
occurring in a large homogeneous system. It can,
however, be compensated by the zero-point energy
~

2/m`2
0 if the atoms are confined to volume of radius

`0. This limits the maximum number of atoms in the
metastable condensate to [26]

N0(max)' `0

|a| (14)

The BEC criterion used above (macroscopic occu-
pation of the lowest single particle energy level Eq.

0 Sw0 m kTC

Collective
Excitations

Single Particle
Excitations

» UMF/N

Fig. 6. Energy scales of a weakly interacting BEC. For a single particle
excitation, or removal of an atom from the condensed state an energy
above the gap is required. The lowest excitation energies (or oscillation
frequencies) below the energy gap always correspond to intrinsic many
body phenomena, or collective excitations

8) is meaningful for noninteracting particles only.
In order to account for interactions we introduce a
wavefunction which relates each atom in the con-
densate to the total particle densityn(r ) through:

n(r , t) = N |ψ(r , t)|2 (15)

The Schr̈odinger equation can then be constructed
from the the harmonic oscillator potentialV (r ) =
mω2

0r 2/2 and an effective single atom potential
caused by the meanfield energy per atom,UMF ·
n(r ) = 4π~

2a/m · |ψ(r )|2:

i~ ∂
∂t
ψ(r )

=
(
− ~

2

2m∇2 + V (r ) + 4π~
2a

m |ψ(r )|2
)
ψ(r )

(16)

Within the framework of BEC this nonlinear
Schr̈odinger equation is better known as the Gross–
Pitaevski equation [27, 28, 29]. An analysis of the
minimum energy state shows that in spite of the vol-
ume increase in the condensate, caused by increas-
ing intermolecular energy the chemical potentialµ
in a harmonic trap still grows asN2/5 resulting in
a mean field energy much larger than but also pro-
portional to the oscillator energy~ω0 [30]. In the
so-called Thomas-Fermi approximation kinetic en-
ergy terms in the Gross-Pitaevski equation (Eq. 16)
are completely negelected.
In Fig. 6 we summarize the energy scales relevant for
a weakly interacting Bose condensate. The average
mean field energyUMF = 4π~

2a/m ∼ µ of Eq. 13 is
also an estimate of the energy required to transfer a
single atom from the condensed to the normal state
[3]. This “energy gap” constitutes a threshold for
single particle effects.

Vibrations of Atomic Condensates

We concentrate on the case where the mean free path
of a condensate atom is much shorter than the exten-
sion of the condensate, establishing a local density
equilibrium. Furthermore, atT/Tc � 1 the normal

209



Absorption 0% 100%

Fig. 7. Quadrupolar shape oscillation of a cigar like condensate. The oscil-
lation period (20–50 ms) agrees well with theoretical predictions from the
mean field model. (Courtesy W. Ketterle [11])

phase is virtually absent, it can be neglected, and a
pure condensate oscillation is expected.
In an experiment the trapped condensates may be ex-
cited by (periodically) changing the magnetic trap-
ping fields or by exerting additional forces through
optical forces derived from a laser beam focused into
the condensate. Oscillations with frequencies in the
10–500-Hz domain have been observed [32, 11].
It is possible to excite collective mechanical exci-
tations of the condensed state which may be com-
pared to the normal mode oscillations observed with
standing sound waves in a liquid droplet confined
to a harmonic potential. The simplest motion is the
center of mass oscillation at the trapping potential
frequency. This is called “dipole mode” and is in
fact the lowest frequency excitation – for small dis-
placements it does not change shape and hence the
mean field energy of the object. Shape oscillations of
quadrupolar character have also been observed [32,
11, 33]. An example of the strobed shape variation
is shown in Fig. 7.
A theoretical analyis based on a linearized approxi-
mation of the Gross-Pitaevski (Eq. 16) gives an ana-
lytic solution in the hydrodynamic limit [30] and ex-
cellent numerical agreement with experimental ob-
servations for the lower density case [33, 34]. Mean-
while, not only standing but also propagating sound
waves have been observed [35], lending still more
support to the mean field approach. Note, however,
that the modification of oscillation frequencies is a
result of hydrodynamic flow and interactions only
and does not prove the quantum wave character of
the condensed sample. For an experimental investi-
gation of this phenomenon it is necessary to study
interferences, or correlations of particle densities.

Matter Waves

When “immaterial” optical waves are discussed we
are not surprised when their nature becomes man-
ifest through the occurrence of interference. When
it comes to matter waves, however, the concept of
interference still seems to be at odds with our imag-
ination of particles.
Indeed, the well-known quantum-mechanical anal-
ogy between light and matter, first recognized by

de Broglie and manifested in diffraction experiments
with electrons, has very severe limitations. For ex-
ample, there can be no classical field theory for elec-
trons [36]. To see this, we can consider a scalar field

ψ = Aeiφ (17)

with a phaseφ and an amplitudeA normalized on
such a scale thatA2 = N is the number of quanta
per field mode. Then the uncertainty relation is

δN · δφ ≥ 1 (18)

If we want to treat the field as a classical quantity
the uncertainty in the phase should be small com-
pared to unity, and the uncertainty inN should be
small compared toN itself. According to Eq. 18,
however, this requires thatN � 1. If we recall that
N is the number of quanta per mode, we see that a
classical field description is forbidden for fermions
by the Pauli principle. This difficulty does not ap-
ply to a boson field and one can verify that a laser
beam is usually intense enough (the photon number
is macroscopic!) to allow amplitude and phase to be
known with good precision [37]. The uncertainty of
the particle number in the coherent state poses no
problems for photons. Application of this concept to
material particles such as bosonic atoms left a rather
uncomfortable feeling, however.
Recent experiments carried out at MIT demonstrate
unambigously that coherent matter waves do exist
at a macroscopic scale. Let us examine experiments
which have begun to explore the true quantum nature
of an atomic Bose condensate, or the existence of
an amplitude and a macroscopic phase according to
Eq. 17.

Interfering Bose Condensates

Dramatic experimental progress in both preparing
and observing Bose condensates has enabled the
MIT group to record an image of two interfering
condensates of Na atoms [38]. For this experiment
the cigar shaped-magnetic potential was cut into two
halves by means of a focused far-off resonant laser
beam which allowed synchronous preparation of two
neighboring but independent condensates. The sam-
ples were then released from the trap and interfered
on expansion. They overlap horizontally, and inter-
ference fringes with a spacing of about 15µm, and
a contrast of 20–40% are clearly visible in Fig. 8.
Note that the image is derived from a single event
of condensate ejection since the relative phase of
the condensates varies randomly from shot to shot.
This experiment provides the first direct image of
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Fig. 8. Interference pattern of two Bose condensates. The fringes are due to
periodic density variations of the interfering condensates. Since the pattern
has a random global phase in each event, it must be recorded in a single
shot. This experiment demonstrates interference of matter waves beyond
single particle self interference. (Courtesy W. Ketterle [38])

matter waves interference. Earlier experiments al-
ways relied on self-interference of individual parti-
cles transmitted through an appropriate matter wave
beam splitter and recombined – a mind-boggling
phenomenon by itself, but clearly on the microscopic
scale!
The observed interference wavelength can be under-
stood in terms of relative atomic motion. When the
two samples are released from two points separated
by a distanced, they freely fall and expand trans-
versely at the same time. After a timet has elapsed
condensate portions moving atv = d/t overlap and
have a relative de Broglie wavelengthΛ = ht/md.
The interference pattern observed agrees well with
this rough estimate and also with more detailed the-
oretical analysis [41].

A Coherent Matter Wave Generator

A first step towards generation of propagating coher-
ent matter waves was also taken by the MIT group.
Using radiofrequency excitation it is possible to ex-
tract smaller portions of the condensate, as shown in
the strobed image of Fig. 9.
The question of whether two coherent light fields
emanating from two independent laser sources can
interfere at all was debated very intensely shortly
after the laser was invented – and rapidly settled
as well [40]. The observation of interference from
two independent atomic Bose condensates has al-
ready prompted the term “atom laser” in analogy
to a conventional laser, even though in contrast to
the optical laser robust and compact instruments are
not yet available and this designation is still under
debate [41]:

An atom laser is a device which generates
an intense coherent beam of atoms through

0               Density scale (arbitrary units)               1

Fig. 9. Pulses of coherent matter in free fall. The samples have been ex-
tracted periodically from the stored condensate (top) by radiofrequency
excitation. Their coherence is demonstrated by the experiment presented in
Fig. 8. (Courtesy W. Ketterle).

a stimulated process. It does for atoms what
an optical laser does for light. The atom
laser emits coherent matter waves whereas the
optical laser emits coherent electromagnetic
waves. Coherence means, for instance, that
atom laser beams can interfere with each
other... .

Beyond the Pedestrian’s Approach to
BEC

In the preceding sections we analyze the phase space
volume available for a quantum system depending
on dimension or potential shape, yielding estimates
for the onset of quantum degeneracy in a Bose gas
of atoms. Intuitive guidance for wave mechanical
effects is introduced by an analogy with classical
waves which are described by an amplitude and by a
phase. There is no consideration above of the stabil-
ity of such a system, however, which is determined
not only by the total energy of a system but also by
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the entropyS. This competition is usually described
by the so-called Helmholtz free energyF :

F = E − TS (19)

which is minimized in thermal equilibrium. We do
not analyze the entropyS of a Bose condensate in
detail but rather give a direct way to calculate the
free energy which is an example of athermody-
namic potential.
It is the purpose of this section to introduce the
reader to these important but more subtle aspects
of BEC, mostly on the basis of analogies. Let us try
the unspeakable and describe some of the abstract
concepts fascinating real theorists.

Fundamental Concepts of Many-Body Quan-
tum Physics

Formally the transition from classical to quantum
statistical mechanics involves replacement of classi-
cal quantities such as the energyE by their opera-
tor analogue, in this case the Hamiltonian̂H. The
state of a microscopic system is then given by the
expected value of the operator for a quantum state
characterized by a wavefunctionψ. For instance, the
energy of a quantum state is calculated from:

E =
∫
ψ∗Ĥψ (20)

A thermodynamic system consists of an enormous
number of particles. It is no longer the state of ev-
ery individual particle that we are interested in. It
is rather the knowledge of quantities such as tem-
perature or pressure of the sample which can be an-
alyzed by statistical methods. For this purpose we
use the density matrix̂ρ = exp(−βĤ)/Z, which
describes the occupation probability of individual
quantum states, and whereβ = 1/kBT is the inverse
temperature. The expectation value of the operator:

Z = Trace{exp(−βĤ)} (21)

is called partition function (in GermanZustands-
summe), it is a sum running over all quantum states
and assures the correct normalization of the density
matrix. The partition function is intimately related
to the free energy (Eq. 19) of a physical system:

F = −kBT ln(Z) (22)

Once the partition function is known, all thermody-
namic parameters can be derived from it.
Time evolution of a microscopic quantum state is de-
scribed by the Schrödinger equation, and there exists

a close formal analogy between the equation describ-
ing the time evolution of the density matrix:

i~
∂

∂t
ψ = Ĥψ → ~

∂

∂τ
ρ̂ = −Hρ̂ (23)

The only formal difference is that the time in the
Schr̈odinger equation must be replaced by an imag-
inary “time,” t → −iτ , which has the unit of an
inverse energy and runs from 0 toβ.
A very elegant approach to analyzing the evolution
of a quantum system is the method of path integrals.
The transition amplitude of the microscopic system
from an initial point(xi, ti) to a final point(xf , tf )
can be expressed by a path integral over all paths
leading fromxi to xf :

U (xf tf , xiti) = 〈xf |e i
~
H(tf −ti)|xi〉

=
∫ f

i
D [x(t)] e

i
~
S[x(t)] (24)

HereD [x(t)] is a generalized integration variable
demanding an integral over all the possible paths
that a particle can take. The action for a given path
S[x(t)] is defined by:

S =
∫ tf

ti
dtL[x(t)] (25)

whereL is the Lagrangian of the system, with con-
tributions of the kinetic energy and of the relevant
potentials:

L =
m

2

(
dx

dt

)2

− V (x) (26)

For example, the partition function,Z, for a sin-
gle particle can be viewed as the trace of the time
evolution operator in imaginary time if we write the
partition function (Eq. 21) as a trace over the posi-
tion eigenstates:

Z = Trace(e−βĤ) =
∫

dx〈x|e−βĤ |x〉 (27)

To carry out the analogy we express the transition
amplitude again as a path integral over all possible
trajectories of the system:

U (xfτf = β, xiτi = 0) = 〈xf |e 1
~
H(τf −τi)|xi〉

=
∫ f

i
D [x(τ )] e− 1

~
S[x(τ )] (28)

In analogy to (Eqs. 25 and 26), the microscopic ac-
tion S and the Lagrangian are now given by:

S =
∫ τf =β

τi=0
dτL[x(τ )] (29)
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and

L =
m

2

(
dx

dτ

)2

+ V (x) (30)

We can now implement this method for many-body
systems by replacing the microscopic Lagrangian
(Eq. 30) by the Lagrangian of the macroscopic sys-
tem. In the path integral we must sum over all pos-
sible paths of the entire physical system. This task
may be simplified by the use of an appropriate rep-
resentation.

Coherent States and Expectation Values

The coordinate representation of the wave function
turns out to be an awkward description for the many-
body system. Fortunately, there exists a more useful
basis, the basis of coherent states which is illustrated
in more detail in the next section. A coherent state,
|φ〉, can be defined as the eigenstate of the annihi-
lation operator for particle fields,̂ψ:

ψ̂ |φ〉 = ψ |φ〉 (31)

The basis of coherent states,|φ〉, is characterized
by their eigenvalues,ψ, which for bosons are just
complex numbers. For the evaluation of expectation
values of many-body systems also “adjoint” coher-
ent states|φ̄ > with eigenvalueψ are used instead
of the complex conjugate of the wave function used
for single particle systems. The coherent state repre-
sentation of the path integral is obtained by inserting
the basis of the coherent states at every step into the
time evolution.
The final form of the partition function is then:

Z =
∫

D
[
ψ̄, ψ

]
e−Smac(ψ̄,ψ)/~ (32)

where the macroscopic actionSmac is given in terms
of the coherent statesψ and ψ̄ by:

Smac(ψ̄, ψ) =
∫ β

0
dτ Lmac(ψ̄, ψ) (33)

The advantage of this approach is that we can in
fact evaluate any thermal expectation of a physical
observableÂ value from a path integral:

〈Â〉 =
∫
D
[
ψ ψ

]
e−Smac(ψ,ψ)/~Â(ψ, ψ) (34)

Properties of Coherent States

Before we proceed to describe properties of a Bose
condensate let us illustrate properties of the macro-
scopic wave functions (ψ, ψ) introduced in the pre-
vious paragraph. Matter is described in terms of
quantum fields which are associated with field oper-
ators, ψ̂(r), ψ̂†(r′). The particle density operator is
n̂(r) = ψ̂†(r)ψ̂(r), similar to the relationship of the
intensity and the amplitude of a light field. Extend-
ing the analogy to light field interference we may
also define a (first order) correlation function through
ρ(r, r′) = 〈ψ̂†(r)ψ̂(r′)〉 which reproduces the density
for r′ = r. Note that this quantity is measurable for
a single sample only if it is split and recombined,
for instance, by two beam interference in a Michel-
son type interferometer. Alternatively, two indepen-
dently prepared samples may be brought into inter-
ference, and exactly this was demonstrated in the
matter wave interference experiment at MIT [38].
A normal fluid is disordered at large distances, and
hence there is no correlation except for the imme-
diate vicinity of particles (at|r − r′| → 0). In a
quantum liquid such as superfluid helium, however,
correlations do exist at large separations, prompting
Penrose and Onsager [42] to introduce the concept
of “off-diagonal” long range order where the density
correlation function factorizes in a special way:

for |r − r′| → ∞ :
normal fl. 〈ψ̂†(r)ψ̂(r′)〉 → 0
quantum fl. 〈ψ̂†(r)ψ̂(r′)〉 = 〈ψ̂†(r)〉〈ψ̂(r′)〉 /= 0

(35)

In particular it does not vanish even at large sepa-
rations, and it is this criterion which is now taken
as the most satisfactory definition of a macroscopic
quantum state such as a Bose condensate [43]. Co-
herent states are then an obvious choice for a formal
description of such systems.
The coherent state representation of the path integral
(Eqs. 32, 34) is particularly suited for describing the
“off-diagonal long range order.” Coherent state wave
functions are also widely used to describe properties
of a laser light field [37].
The order is characterized by a complex order pa-
rameter,ψ, which has amplitude and phase. The
phase is a macroscopic dynamic variable of the sys-
tem and posseses real physical meaning. The number
operator,N̂ , and the phase operator,φ̂, are conjugate
variables, with expectation values obeying the un-
certainty relation of Eq. 18, as one can easily derive
from the definition of the coherent states. It is fur-
thermore possible to reconstruct a state with a fixed
number of particles,N , from the coherent state of
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the condensateψcond =
√
ρe−iφ by averaging over

the phase of the wave function:
∫ 2π

0

dφ

2π
e−iφN |ψcond〉 =

√
ρN

N
|N〉 (36)

Mean-Field Approximation

Our focus is directed towards an imperfect Bose gas
with coupling constantg = 4π~a2/m, in a potential
U (r ), governed by a chemical potentialµ, and ki-
netic energyεp = p2/2m. In this case the actionS
is given by:

S =
∫ β

0
dτ
∫
d3r

{
~ψ

∂

∂τ
ψ +

~
2

2m
|∇ψ|2

+(U (r ) − µ)|ψ|2 + g
2|ψ|4

} (37)

The important contributions to the partition function,
Z, according to Eq. 32 come from configurations
where the action,S, is small. The mean-field ap-
proximation is obtained by expanding the actionS
to quadratic order inψ andψ around such a station-
ary point. The free energy,F , is then given by:

F = −kBT ln (
∫
D
[
ψ ψ

]
e−S(ψ,ψ)/~)

≈ kBT S
(
ψMF , ψMF

)
/~ (38)

In Fig. 10 the potential contribution to Eq. 37 cor-
responding to the free energy in this case is shown
as a function of the order parameterψ:
The stationary point in time and space of the action,
S, is determined by a nonlinear Schrödinger equa-
tion for the field,ψ, and recovers the stationary case
of the Gross-Pitaevski (Eq. 16):

− ~
2

2M
∇2ψ + (U (r ) − µ)ψ + g|ψ|2ψ = 0 (39)

There are two solutions to this equation. The first is
ψ = 0. This is the normal state, no coherent state
with finite amplitude|ψ| is occupied. The second
has a finiteψ. The mean-field solution,ψ, possesses
a well-defined global phaseφ which is arbitrary but
fixed. The original action (Eq. 37) is invariant under
a global change of the phase

(
ψ → ψeiϕ

)
.

The mean-field solution,ψ, picks out a certain di-
rection of the phase angleφ, which is called spon-
taneous symmetry breaking, where in the language
of group theory it isU (1) group symmetry of phase
transformations, which is violated. The phase of the
mean-field,ψ, is coherent over the entire system.

Fig. 10. Thermodynamic potential (free energy) as a function of the order
parameterψ. Note that it corresponds to the potential term in Eq. 37. The
lowest energy state has a single selected phase (arrow) which is valid for the
entire condensate. This situation has been named “spontaneous symmetry
breaking.” Variations in the amplitude are called “longitudinal excitation,”
fluctuations of the phase “transverse excitation.” This designation can be
traced back to quantum descriptions of ferromagnetism, a phase transitions
with analogies to BEC

Fluctuations

In the previous section we discuss the mean-field ex-
pectation value for the order parameter. The question
is whether the mean-field solution is stable. Since
this depends on the spatial dimension of the system,
we discuss here a general homogeneous system ind
dimensions. The order parameter can be destroyed
by thermal or quantum fluctuations. To obtain the
contribution of the fluctuations we expand the ac-
tion S (Eq. 37) to second order in the fields̄ψ andψ
around the saddle point solutionψMF = |ψMF |eiφ.
Choosing the (arbitrary) phase,φ = 0, the longitudi-
nal, ψL, and transverseψT , fluctuations change the
mean field toψMF → ψMF +ψL + iψT . The fieldψ
“moves” in a potential depicted in Fig. 10.
Obviously there exist two kinds of excitations. One
corresponds to longitudinal fluctuations,ψL, of the
order-parameter which have a gap, and another cor-
responds to a global rotation of the phase,ψT , and
has no gap in the long-wavelength limit – so-called
Goldstone modes. We can see this formally if we
examine the the action of the fluctuations:

S =
∫ β

0
dτ
∫
ddr

1
2

×
{(

∂
∂τ
ψL
)2

+(∇ψL)2+∆2ψ2
L

+
(
∂
∂τ
ψT
)2

+(∇ψT )2
}

(40)

where∆ is the mean-field value of the fieldψ and
ψL, and ψT are the coordinates of the longitudi-
nal and transverse fluctuations, respectively. From
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Eq. 40 we can read off the dispersion of the longi-
tudinal and transverse mode:

ω2
L(q) = ∆2 + q2 (41)

ω2
T (q) = q2 (42)

The longitudinal mode corresponds to oscillations
in the amplitude of the order parameter. The order
parameter is robust since a change in magnitude re-
quires energy which causes a finite energy gap for
the longitudinal mode. Excitations of the transverse
mode, however, cost very little energy and therefore
begin without a gap. In this case the wave number
q may be understood as the lengthscale over which
the phase of the condensate varies in the sample.

Stability of the Condensate

The mean-field “condensate” is stable if small per-
turbations due to thermal noise or quantum fluctu-
ations do not significantly change the state of the
system. This stability of the system (the amount of
“noise”) can be investigated by determining the cor-
relation function of the fluctuations, which are dom-
inated at sufficiently low temperatures by transverse
excitations (Eq. 42) without energy gap. Their con-
tribution can be estimated from an analysis of their
density of states inq space:

〈ψT (r , τ )ψT (0,0)〉 ∼
∫

(dq)d
e−iqr

q2
(43)

If this correlation function diverges small external
fields – or noise – have a dramatic effect on the phase
of the system. For spatial dimensionsd > 2 the in-
tegral always converges atq = 0. The Goldstone-
modes disorder the system but result in a finite re-
duction in the order parameter only. In spatial di-
mensions ofd = 2 or less the effect of fluctuations
is more dramatic. They can disorder the system com-
pletely, which is the basic content of the Hohenberg-
Mermin-Wagner theorem [14–16].
Another way to understand the existence of a lower
critical dimension is to investigate the competition
between entropy and energy in the free energy, ac-
cording to Eq. 46. Let us for this purpose draw on
another analogy with ferromagnetism. The minimum
energy state of a simple isotropic ferromagnet is
characterized by domains which have internally ho-
mogeneous magnetization but different orientations.
Energy is stored in the walls separating these do-
mains. In analogy, a Bose condensate may consist
of domains having constant phase which are sepa-
rated by domain walls. The energy associated with

twisting the phase locally is parametrized by a phase
stiffness,ρ0, which has the units of energy per length
squared. The energy of such a domain wall scales
with the linear dimension of the systemL as:

E ∼ ρ0L
d−2 (44)

[The phase varies continuously over the domain
wall. This is different from an “Ising” domain-wall
whereE ∼ ρ0L

d−1 as naively expected.] On the
other hand, we might place the domain wall any-
where. The number of possible configurations isLd

and therefore the entropy connected with the domain
wall is:

S ∼ d lnL (45)

The free energy of the system with the domain wall
is approximated by:

F ∼ ρ0L
d−2 − Td lnL (46)

For d > 2 the first term always dominates the free
energy for low enoughT , and the ordered state is
stable. Ford < 2 the second term, entropy, domi-
nates and the ordered state is disordered by domain
walls. Hohenberg [14] and Mermin and Wagner [15,
16] made these statements more precise and showed
that the lower critical dimension for a homogeneous
superfluid is 2.

Confined Systems

All experiments to date have been carried out in a
3D potential. According to our estimate, the influ-
ence of fluctuations due to the low energy “phase”
mode leads to disorder (or entropy) but is not suf-
ficient to destroy phase coherence. Moreover, con-
finement due to the trapping potential causes even
the lowest phase mode excitation to have a finite
frequency,ω, the trap frequency, due to space quan-
tization. Therefore BEC is actually easier to achieve
in a potential because entropy, which is already dom-
inated by energy, is further suppressed. This is also
true in moderately anisotropic traps [44].
However, we can easily imagine experimental sit-
uations where the atomic clouds are put into a re-
duced dimensionality. In strongly anisotropic traps
the condensate stability question becomes more in-
teresting again. If for example one spatial extension,
say, in thez direction, becomes much larger than
the other two, the trap frequencies,ωz, depend con-
tinuously on the “wave number,”qz. The spectrum
has a discrete structure for the perpendicular quan-
tum numbers (ω⊥ � ωz). If the spectrum of the
lowest branch is dense enough (the linear extension
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of the cloud in thez direction being very large), the
long-range order can be destroyed again due to phase
fluctuation [45]. This can be also derived from the
observation that the 1D harmonic trap and the 2D
homogeneous system have an identical density of
states. The 1D system may give experimental access
to an extreme system where the scattering lengtha is
greater than the transverse extension of the system.
When in this situation the particles of the conden-
sate can no longer pass each other, the spectacular
difference of bosons and fermions disappears! This
entanglement of dimensionality, potential shape and
quantum statistics and many other unanswered ques-
tions are now a subject of increasing activity in the-
ory and experiment.

Summary

The novel Bose quantum systems now available ex-
perimentally are exerting a strong impact on both
atomic and condensed matter physics. On the one
hand, we must conclude that there have been no real
surprises so far; theoretical predictions have proven
well founded. On the other hand, atomic Bose con-
densates have just begun to open a unique experi-
mental opportunity with unanticipated flexibility in
comparison with liquid helium. Magnetic confine-
ment completely isolates the system from any walls
leading to a most refined situation where the kinetics
of the sample undergoes pure self-evolution; design
of the magnetic trap allows extremely anisotropic
situations to be achieved, yielding lower than three-
dimensionality; evaporative cooling control allows
the number of particles to be varied. Furthermore,
atomic Bose condensates have allowed us to peek
into the possibility of having a coherent matter wave
generator at hand – an intellectually and technically
highly attractive tool with consequences which can-
not be foreseen today. No doubt BEC will shape
many physics laboratories in the future, where ex-
tended work on condensed matter phyics with meth-
ods of atomic physics is the next step.

We thank Eric Cornell and Wolfgang Ketterle for providing their figures

for this review.

Appendix: Density of States and Quantum
Degeneracy

For an atom trap that produces energy-level spacings
which are microscopic compared to the mean energy
(kT � εi+1−εi), the sum in Eq. 5 can be evaluated
by converting it into an integral:

N = N0 +
∫ ∞

0
Nερ(ε)dε. (47)

[εi+1−εi is of the order of the energy of the first ex-
cited state which for a power-law potential is given
by h2/mr2

0. For example, for a box the validity of
the semiclassical approximation is equivalent to the
condition r0 � Λ, and for a harmonic potential to
kT � ~ω.] Here the ground-state energy is taken to
be zero. The density of statesρ(ε) depends on the
trapping potentialU (r ) and the number of degrees of
freedom. To visualize the interplay between the di-
mensionality and the potential shape let us consider
a simple example of an ideal Bose gas in an isotropic
potentialU (r) in d dimensions. Noting that the num-
ber of states equals the phase space volume divided
by hd, we calculate the density of states from:

ρ(ε)dε =
∫
V ∗(ε)

(dp)d(dr)d

hd

∝ h−d
∫ r∗(ε)

0
pd−1dprd−1dr

=
(
h2

2m

)−d/2 ∫ r∗(ε)

0

√
(ε− U (r))d−2rd−1drdε

(48)

where V ∗(ε) is the volume available for the
system at the energyε, and r∗ is defined by
U (r∗) = ε. Choosing a power-law potentialU (r) =
(h2/mr2

0)(r/r0)n, we immediately obtain:

ρ(ε)dε ≈
(
r0

Λ

)2η ( ε

kT

)η−1 dε

kT
(49)

with η = d/2+d/n. From Eqs. 49 and 47 the scaling
law for the critical temperatureTc can be found by
takingN0 = 0 andµ = 0:

kTc ∝ h2

mr2
0

[
N

I

]1/η

(50)

Equation 50 also gives us the ground-state popula-
tion fraction forT < Tc:

N0

N
= 1 − (T/Tc)

η (51)

reproducing the 3D special case of Eq. 7. Thus
the deeper the potential well (i.e., the higher the
value ofh2/mr2

0), the higher the value ofTc. The
“confinement power” of the potential, defined as
−N−1Tc(dN0/dT )T=Tc = η [18], can be seen to
depend on the shape of the potential but not on its
strength. The integral in Eq. 50:

I =
∫ ∞

0

xη−1dx

ex − 1
(52)
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is equal toΓ (η)ζ(η) for η > 1 and diverges oth-
erwise. Thus the condition for BEC (Tc > 0) in
thermodynamic limit (see below) is given by:

d >
2n
n + 2

(53)

We see that an ideal Bose gas confined in a box
(n → ∞) displays BEC only in 3D [14–16]. In a
harmonic potential, (n = 2) the BEC condition can
be fullfilled only in 3D or 2D [19].
It can be also shown [18] that the heat capacity
C(T ) [The heat capacity is defined byC(T ) =
∂E(T )/∂T with the total energy of the system given
by E(T ) =

∫∞
0 εNερ(ε)dε.] is discontinuous atTc

for d/n + d/2 > 2. If d/n + d/2 ≤ 2, C(T ) is
continuous atTc, but ∂C(T )/∂T is discontinuous.
In general,C(T ) is larger for a power-law potential
than for a rigid wall container. This is because in-
creasing the energy of the gas requires work against
the confining potential.

BEC in a Finite System

The reason of the “BEC failure” forη ≤ 1 must
be found in the usual thermodynamic limit, which
assumesN → ∞ and r0 → ∞ with N/r2η

0 finite.
For a real system of finite size the lower limit di-
vergence in Eq. 52 is unphysical. Let us consider
a particular caseη = 1 corresponding to a 1D har-
monic potential and also to a 2D box. Introducing
E1/kT as the lower limit of the integral Eq. 52 with
E1 of the order of the first excited state, we obtain
for the transition temperature [the exact results [7]
are: E1 = ~ω/2 for a 1D-harmonic potential and
E1 = h2/(8Mr2

0) for a 2D box]:

N ∝ kTc
E1

ln

(
kTc
E1

)
(54)

and for the condensate fraction:

N0

N
= 1 − T ln(kT/E1)

Tc ln(kTc/E1)
(55)

with the logarithmic terms becoming negligible for
large particle number in accordance with Eq. 51 for
η = 1. Thus the predicted impossibility of BEC in
low-dimensional systems is an artifact of the thermo-
dynamic limit, which does not apply to the situation
realized in atoms traps.
The N -finite effects are less dramatic for systems
showing BEC in the thermodynamic limit (η > 1).
As an illustration let us consider a 3D harmonic po-
tential (η = 3 andr2

0 = ~/mω) whose BEC condition
(Eq. 50) takes the form:

N ∼
(
kTc
~ω

)3

(56)

Obviously, this is the first term of the expansion in
large parameterkT/~ω (see above). The next term
should scale as(kT/~ω)2, giving us the first correc-
tion to the critical temperature:

T 0
c − Tc
T 0
c

∼ N−1/3 (57)

An exact calculation [7] shows that forN = 103 the
transition temperatureTc is less than 7% the usual
resultT 0

c extrapolated fromN = ∞.
It is interesting to rewrite Eq. 50 as:

N ∼
(
kTc
U0

)d/n
rd0

(
MkTc
h2

)d/2

. (58)

Introducing an effective volumeV ∗ ∼ rd of the
system which is determined bykT ∼ U0(r/r0)n,
that is, V ∗ ∼ rd0(kT/U0)d/n and using for the de
Broglie wavelengthΛ2 ∼ h2/MkT , we obtain the
general condition for quantum degeneracy:

Λd
N

V ∗ ∼ 1 (59)
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