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We propose a realistic scheme to construct anomalous Floquet Chern topological insulators using spin- 1
2

particles carrying out a discrete-time quantum walk in a two-dimensional lattice. By Floquet engineering the
quantum-walk protocol, an Aharonov-Bohm geometric phase is imprinted onto closed-loop paths in the lattice,
thus realizing an Abelian gauge field, the analog of a magnetic flux threading a two-dimensional electron
gas. We show that in the strong-field regime, when the flux per plaquette is a sizable fraction of the flux
quantum, magnetic quantum walks give rise to nearly flat energy bands featuring nonvanishing Chern numbers.
Furthermore, we find that because of the nonperturbative nature of the periodic driving, a second topological
number, the so-called RLBL invariant, is necessary to fully characterize the anomalous Floquet topological
phases of magnetic quantum walks and to compute the number of topologically protected edge modes expected
at the boundaries between different phases. In the second part of this paper, we discuss an implementation of this
scheme using neutral atoms in two-dimensional spin-dependent optical lattices, which enables the generation of
arbitrary magnetic-field landscapes, including those with sharp boundaries. The robust atom transport, which is
observed along boundaries separating regions of different field strength, reveals the topological character of the
Floquet Chern bands.
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I. INTRODUCTION

Chern insulators behave as an ordinary band insulator in
the bulk, yet exhibit exotic chiral transport in the proximity
of boundaries, along which particles can propagate unidi-
rectionally without experiencing backscattering or dissipation
into the bulk. Such robust transport behavior has its origin in
topologically protected edge modes, which extend all along
the length of the insulator. The existence of topologically pro-
tected edge states is guaranteed by the nontrivial topological
structure of the bulk states forming topological bands. This
connection between topologically protected edge modes and
the topological structure of the bulk states is the essence of
the bulk-boundary correspondence [1]. In a two-dimensional
(2D) band insulator, an energy band with a topologically
nontrivial structure is characterized by a nonvanishing Chern
number, an invariant that counts the number of topological
obstructions to defining a global gauge for the Bloch states of
the band [2].

The first Chern insulators to be discovered [3] are quantum
Hall systems, 2D electron gases threaded by a strong magnetic
field, which display an extraordinarily robust quantization of
their transverse conductance, a hallmark of topologically pro-
tected edge modes. Soon thereafter, however, it was realized
by Haldane [4] that robust chiral transport is not specific
to homogeneous magnetic fields, provided that time-reversal
symmetry is broken. This insight has triggered the quest
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for topological materials that forego the strong magnetic
fields of quantum Hall systems, and yet can conduct charges
without dissipation. Recently, this concept has been realized
in condensed-matter systems [5] and with ultracold atoms
trapped in optical lattices [6–8] in the regime of noninteracting
or only weakly interacting particles.

An attractive route to realizing Chern insulators is offered
by particles moving in a tight-binding lattice that are subject to
a strong, artificial magnetic field [9,10]. In fact, in the regime
of strong fields, when the flux � threaded through a single
plaquette of the lattice is a sizable fraction of the flux quan-
tum �0 = h/Q (Q is the elementary charge, h is the Planck
constant), the lattice constant a becomes comparable with the
magnetic length scale �B = a

√
�0/(2π�). The competition

between the two length scales transforms the regular structure
of highly degenerate Landau levels, which in the weak-field
limit characterize the single-particle states, into a fractal-like
spectrum of energy bands, the so-called Hofstadter butterfly
[11–14]. Isolated bands of the Hofstadter spectrum possess
nonvanishing Chern numbers C, which can generally take
large integer values, in stark contrast to the case of Landau
levels, which are restricted to |C| = 1. In addition, for specific
ratios φ = �/�0, the Hofstadter bands are rather flat and well
separated from each other by large energy gaps.

In conventional solid-state materials, attaining the strong-
field regime requires exorbitantly strong magnetic fields
of several thousand teslas. More favorable conditions are
achieved using artificially engineered superlattices [15] and
moiré superlattices made of graphene on a semiconductor
substrate [16], where the required field strength is reduced by
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several orders of magnitude. Yet, very high magnetic fields
remain needed. To avoid dealing with such high fields alto-
gether, a number of proposals have been put forward [17–19]
aiming at recreating artificially the effect of magnetic fields
through engineered Aharonov-Bohm geometric phases.

For neutral atoms in optical lattices, the standard approach
to create such an artificial gauge field relies on photon-assisted
tunneling. This can be realized either using an additional
optical dressing field [20–24] or by shaking the lattice itself
[25–27]. Through this process, the hopping terms of the
tight-binding Hamiltonian acquire a complex phase factor,
the so-called Peierls phase [28,29]; integrating these phases
along a closed contour yields (in units of �0/2π ) the flux
of the artificial gauge field enclosed therein. Following this
approach, significant experimental progress has been made
over the past 10 years, first demonstrating complex hopping
amplitudes in one-dimensional (1D) optical lattices [30–32]
and, subsequently, strong artificial magnetic fields in 2D
optical lattices [6,7,33,34]. However, because the kinetic en-
ergy in a shallow lattice is of order of the recoil energy
ER = h̄2/(ma2) (a is the lattice constant and m is the atomic
mass), ultracold-atom experiments in optical lattices must be
conducted at very low-energy scales, corresponding to few
nK, which are generally difficult to reach. In addition, low
kinetic energies imply small hopping terms (<h × 1kHz) and,
correspondingly, long evolution times, during which heat-
ing [33–36] and other decoherence mechanisms can have a
detrimental effect on the coherent evolution of the system.
Increasing the kinetic energy by using light atomic species
(e.g., lithium) and, possibly, opting for subwavelength lattice
constants [37–39] have been identified as effective measures
to increase the kinetic energy scale, thus curbing the technical
challenges faced by experimental implementations.

In this paper, we map out a different route to flat-band
Chern insulators, which uses discrete-time quantum walks of
ultracold atoms on a square lattice to create artificial gauge
fields. The general idea of this work draws inspiration from
an early proposal by Sørensen et al. [40] and a subsequent
development by Creffield et al. [41], where the desired time
evolution is constructed from a periodic sequence of unitary
operations that are applied at discrete-time intervals. In a
discrete-time quantum walk, in fact, the various degrees of
freedom (e.g., motion in the x and y directions) evolve at
different times. Following this idea, we show that Peierls
phases can be imprinted onto the walker’s wave function at
a time subsequent to its motional dynamics. This provides
a great amount of flexibility, which can be used to create
arbitrary magnetic-field landscapes, including boundaries be-
tween different magnetic domains. By computing the Chern
numbers of the energy bands, and studying the excitation
of topologically protected edge modes at the boundaries of
magnetic domains, we show that magnetic quantum walks,
realized by Floquet engineering of the Peierls phases, behave
like a Floquet Chern insulator.

In a magnetic quantum walk, however, the Chern numbers
alone do not fully capture the bulk topology. Quantum walks
are in fact periodically driven systems characterized by large
driving amplitudes and small modulation frequencies, where
the periodic driving cannot be treated using perturbative ap-
proaches [42,43]. As a result, magnetic quantum walks are

anomalous Floquet topological insulators, hosting topolog-
ically protected edge states that cannot be predicted only
using Chern numbers. The number of such anomalous edge
modes is determined by a winding number of the periodic
protocol, which can be associated with each quasienergy gap;
we call this topological number Rudner-Lindner-Berg-Levin
(RLBL) invariant after Rudner et al. [42]. Such anomalous
edge states have been studied in an experimental proposal
for ultracold atoms [44], and recently observed in photonic
systems [45–47]. In a magnetic quantum walk, both the Chern
numbers and the RLBL invariant play a role in determin-
ing the bulk topology and edge states. For the experimental
realization of magnetic quantum walks, we propose to use
fast shift operations in deep optical lattices, which displace
atoms by an integer number of lattice sites, depending on their
internal spin state. Thereby, one can entirely forego the slow
dynamics of approaches based on photon-assisted tunneling,
and yet achieve delocalization of matter waves. Peierls phases
are controlled by applying onto the atoms a spin-dependent
potential for a short duration of time τ , which can be realized
by illuminating the atoms with a suitably designed intensity
pattern. By tuning τ to certain magic values and by taking
advantage of Floquet engineering, we show that motional
excitations of atoms and off-resonant photon scattering can
be strongly suppressed. Moreover, shifting atoms by several
lattice sites [48] allows magnetic quantum walks to be realized
on a superlattice with an augmented lattice constant, without
significantly affecting the time required for a single step of the
walk. The larger lattice constant results in an effective increase
of the optical resolution of the imaging system imprinting
the Peierls phases, which in turn can be used to lessen the
demands on the numerical aperture of objective lens and the
pointing stability of laser beams.

II. DISCRETE-TIME QUANTUM WALK IN AN
ARTIFICIAL MAGNETIC FIELD

We consider a single particle, also called a walker, that
moves in discrete steps on a square lattice. Its position states
|r〉 are labeled by the lattice coordinates r = (x, y) ∈ Z2. Sim-
ilarly to a spin- 1

2 particle, the walker possesses two internal
states, |↑〉 and |↓〉, which condition the motion of the particle
by deciding the shift direction. Moreover, for convenience,
we consider in this section dimensionless units, assuming
the lattice constant a, the artificial charge Q, the single-step
duration T , and the reduced Planck constant h̄ to be all equal
to 1.

The protocol of a magnetic quantum walk is defined by the
repeated application of the time-step operator

Ŵ = F̂ Ŝy Ĉ Ŝx Ĉ, (1)

consisting of a series of unitary operators, which comprise
the coin Ĉ, the shifts along the x and y axes, Ŝx, Ŝy, and
the magnetic-field operator F̂ . The effect of each operator is
illustrated in Fig. 1, and described in more detail below.

The coin is simply a rotation of the walker’s spin state.
It is independent of the position and is represented by the
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FIG. 1. Magnetic quantum walks on a 2D lattice. (a) Left: block representation of the unitary operators constituting a single time step of the
evolution Ŵ , as defined in Eq. (1). (b) A single time step of a walker prepared initially in a spin-up state, represented on a square lattice, with
the arrows denoting the two spin states. To simulate a homogeneous magnetic field B, with artificial vector potential A = (0, Bx, 0), a spin-
dependent linear potential gradient is stroboscopically applied along the x axis, imprinting onto the walker’s wave function a spin-dependent
linear phase gradient (block 5).

Hadamard-type operator [49]

Ĉ = exp(−iσ̂yπ/4) = 1√
2

(
1 −1
1 1

)
, (2)

with σ̂i denoting the ith Pauli matrix.
The shift operators are spin-dependent spatial translations

of the walker by one lattice site:

Ŝd =
∑

r

|r + ed〉 〈r| ⊗ |↑〉 〈↑| + |r − ed〉 〈r| ⊗ |↓〉 〈↓| , (3)

with ed representing the unit lattice vector in the d direction
(d ∈ {x, y}). With this definition, spin-up particles are shifted
rightward by Ŝx and upward by Ŝy, while spin-down particles
are shifted in the opposite directions. Owing to their invari-
ance under lattice translations, the two shift operators can be
expressed more conveniently as

Ŝd = exp(−iσ̂zk̂d ) =
(

e−ik̂d 0
0 eik̂d

)
, (4)

where k̂ represents the quasimomentum operator associated
with the d direction of the square lattice, taking values in the
interval [−π, π ], with the end points identified.

To simulate the effect of a magnetic field coupled to the
walker, spin-dependent phases are stroboscopically imprinted
onto the walker’s wave function by the so-called magnetic-
field operator F̂ . These phases act like the Peierls phases in
the Hofstadter Hamiltonian [28,29], and are determined by the
vector potential associated with the artificial magnetic field.
Magnetic-field operators simulating an arbitrary vector poten-
tial are discussed in Appendix A. For a vector potential in
the Landau gauge A = (0, Bx, 0), resulting in a homogeneous
magnetic field B, the magnetic-field operator reads as

F̂ = exp(iσ̂zBx̂) =
(

eiBx̂ 0
0 e−iBx̂

)
, (5)

with x̂ being the lattice position operator along the x axis. As
a result of this operator, the walker’s wave function acquires
on a closed-loop path an Aharonov-Bohm phase equal to
B = 2πφ, times the number of plaquettes enclosed by the
path itself, with φ being the flux per plaquette. Shifting the
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FIG. 2. Time evolution of a walker in a weak magnetic field φ = 1
1200 . The walker is initially prepared in a Gaussian wave packet with

a root-mean-square width of 15 sites and a well-defined momentum state chosen at a distance δk = π/4 from one of the four inequivalent
Dirac points [see Fig. 3(a)]. Its initial spin state is oriented such that only energy states in the upper Dirac cone are occupied. The color
scale represents the spatial probability distribution after n steps of the walk, with dark red indicating a high, white an intermediate, and blue
a vanishing probability. According to semiclassical equations (see main text), we expect a cyclotron circular orbit of 150 sites radius (white
circle) and a revolution period of 942 steps. An animation of the time evolution is provided in the Supplemental Material [50].

magnetic flux by an integer number of flux quanta leaves the
magnetic-field operator in Eq. (5) unchanged.

The physical mechanism creating an artificial gauge field
can be understood by rewriting the product of the last two
operators in Eq. (1) as

F̂ Ŝy = exp[−iσ̂z(k̂y − Ây)], (6)

where Ây is the y component of the engineered vector potential
A. In this form, one can clearly recognize [51] that the quasi-
momentum operator is shifted by an amount proportional to
the vector potential, in a similar fashion as minimal coupling
in classical electromagnetism. Equivalently, the magnetic-
field operator can be thought of as a way to ensure discrete
local gauge invariance [52–56] of the discrete-time quantum-
walk protocol.

A further insight into the effect of the magnetic field
operator is obtained by considering the dynamics of a mag-
netic quantum walk in the weak-field regime φ 	 1 when
the magnetic length scale is much larger than the lattice
constant �B 
 a. In these conditions, semiclassical equations
based on the long-wavelength approximation can be used
to describe the dynamics of a wave packet with a narrow
quasimomentum spread [29]. Figure 2 shows the simulated
evolution of a walker in a weak magnetic flux φ = 1

1200 , with
the quasimomentum of the initial wave packet prepared at a
small distance δk from one of the Dirac points of the walker’s
spectrum, which is discussed in detail in Sec. II A. In the
vicinity of a Dirac point, the walker mimics the behavior
of a massless Dirac fermion [57], moving with a constant
velocity modulus and subject to a uniform magnetic field.
The resulting Lorentz force [29] deflects the wave packet’s
quasimomentum on a circular trajectory enclosing the Dirac
point. Knowing that the walker’s velocity in the vicinity of a
Dirac point is a/T = 1 (see Appendix D), one can directly
show that the wave packet follows in real space a circular
trajectory with radius δk/(2πφ) and period δk/φ, as shown
in Fig. 2.

The weak-field regime also allows us to obtain a first
intuition into the topological properties of magnetic quantum
walks, focusing on low energies where the dispersion relation
resembles Dirac cones. In this regime, the walker behaves like
a massless Dirac fermion coupled to a magnetic field, whose

topological transport properties have been extensively studied
in recent years in relation to graphene physics [58–60]. The
Dirac spectrum splits into a series of highly degenerate Lan-
dau levels (see also Fig. 4), with each level characterized by a
Chern number C = 2 [61]. This value originates from the fact
that Dirac cones appear in pairs in a lattice system (fermion
doubling, see Appendix B).

While the weak-field limit is well understood within a
semiclassical approach, as discussed above, the strong-field
regime, in which the magnetic length scale �B is comparable
with the lattice constant a, requires a different approach, to
which the rest of this work is devoted.

A. Quasienergy spectrum: Floquet Hofstadter butterfly

The protocol driving the walker is invariant under discrete-
time translations by an integer number of steps. Based on
this invariance, we can use an effective static Hamiltonian
Ĥeff (also known as Floquet Hamiltonian) to describe the
time-evolved state of the walker |ψn〉 after n discrete steps:

|
n〉 = Ŵ n |
0〉 = exp(−inĤeff ) |
0〉 . (7)

The effective Hamiltonian is simply defined as the complex
logarithm of the time-step operator Ĥeff = i log(Ŵ ). Its eigen-
values are called quasienergies, and are only defined up to an
integer multiple of 2π , reflecting the freedom in choosing the
branch cut of the logarithm. In this work, we fix the branch
cut (unless otherwise specified) along the negative real axis,
so that quasienergies are represented in the interval [−π, π ],
with the end points identified. We call this interval the Floquet
zone, by analogy with the Brillouin zone used to represent
quasimomentum in a translationally invariant lattice system.

The spatial period of a magnetic quantum walk is bigger
than the lattice constant since the magnetic-field operator F̂
breaks the translational symmetry of the underlying lattice.
For our choice of the Landau gauge, and for a magnetic field
B with flux per plaquette φ = p/q, where p and q are coprime
integers, the smallest unit repeating itself is constituted by
q × 1 plaquettes of the square lattice, which we call the
magnetic unit cell. In reciprocal space, the magnetic unit cell
corresponds to a Brillouin zone that is shrunken in the kx
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FIG. 3. Quasienergy spectrum of magnetic quantum walks as a
function of quasimomentum (kx, ky ). (a) In a zero magnetic field, the
spectrum presents two bands, touching each other at four inequiva-
lent Dirac points. The number of bands reflects the spin multiplicity.
(b) For a high magnetic field, φ = 1

3 , the original gapless spectrum
splits into nearly flat quasienergy bands, separated in some cases by
a large gap. The Chern numbers of isolated bands are denoted by Ci

with i denoting the respective band index, or set of indices in the case
of two bands touching. The Floquet invariants Ri associated with the
ith quasienergy gap are also shown.

direction by a factor q, i.e., with kx defined in the interval
[−π/q, π/q], ky in [−π, π ], and the end points of these
intervals identified.

The quasienergy spectrum of the walker is shown in Fig. 3,
comparing the situation of no flux with that of a high magnetic
flux φ = 1

3 . For a vanishing magnetic field [see Fig. 3(a)],
the spectrum presents two quasienergy bands, touching each
other at four inequivalent Dirac points, occurring in pairs at
quasienergy E = 0 and π . These band-touching points are
topologically protected since in their vicinity the effective
Hamiltonian has a Rashba type of spin-orbit coupling Ĥeff ≈
∓δkxσ̂y + δkyσ̂z carrying a nonzero topological charge; for
more detail, see Appendices D and E. For a high magnetic
field [see Fig. 3(b)], the two original bands split, we find 2 × q
quasienergy bands, which are rather flat and, in some cases,
well separated by a large quasienergy gap. For odd q, Dirac
points are present at quasienergies 0 and π , q times as many
as in the zero-field case owing to the larger magnetic unit
cell [62].

In both cases, with and without magnetic field, the spec-
trum is mirror symmetric with respect to the plane E = 0
and π as a result of chiral symmetry, which is discussed in
detail in Appendix C. Chiral symmetry plays a crucial role
for ensuring the stability of the Dirac points, as discussed
in Appendix E. In addition to chiral symmetry, the quantum
walk has sublattice symmetries that impose additional con-
straints on the quasienergy dispersion relation, as shown in
Appendix B.

The quasienergy spectrum as a function of the magnetic
flux is an intricate fractal-like structure shown in Fig. 4.
The spectrum bears a close resemblance to the celebrated
Hofstadter butterfly [13,14], describing the energy levels of
a spinless charged particle in a tight-binding lattice under
the influence of a uniform magnetic field. There is, however,
one important difference that the butterfly here exhibits a
periodicity not only in φ, but also in quasienergy E .

FIG. 4. Floquet Hofstadter butterfly showing the quasienergy
spectrum of magnetic quantum walks as a function of the magnetic
flux φ. For each rational value of the flux φ = p/q, there are 2q
bands reflecting the spin multiplicity and the size of the magnetic
unit cell. The six colored vertical lines at φ = 1

3 correspond to
the quasienergy bands shown in Fig. 3(b). On the left-hand side,
the overlaid parabolic red lines, E = √

4π n φ, indicate the Landau
levels for a massless Dirac particle in the weak-field limit, with n � 0
denoting the index of the Landau level [62]. Inset: a detail of the
butterfly, illustrating its self-similarity.

B. Topological invariants

The Chern number is a topological invariant that can be
assigned in a 2D lattice system to any set of bands separated
from all others by energy gaps. For a nondegenerate band,
it is defined as the integral over the Brillouin zone of the
Berry curvature associated with the states in that band [63].
A nonvanishing Chern number represents an obstruction to
defining a smooth global gauge over the whole magnetic
Brillouin zone for the Bloch wave functions of that particular
set of bands.

For a magnetic quantum walk, a Chern number C can be
assigned to each set of quasienergy bands of the effective
Hamiltonian, in the same way as for static 2D band insulators.
Following this idea, we calculate the Chern number of each set
of isolated bands using an efficient numerical algorithm [64],
which counts in the Brillouin zone the number of vortices
of the determinant of the Wilczek-Zee connection for that
particular set of bands. The Chern numbers obtained for φ =
1
3 are shown in Fig. 3(b) next to the quasienergy bands. As
expected, based on chiral symmetry (see Appendix C), the
set of Chern numbers is mirror symmetric with respect to the
energy planes E = 0 and π . Moreover, because of sublattice
symmetry (see Appendix B), the Chern number of a set of
bands around quasienergy E is the same as that of the bands
around E ± π .

Chern numbers alone, however, do not provide a full char-
acterization of the topological phases of magnetic quantum
walks. In such an anomalous Floquet topological insulator,
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this can be done using the so-called RLBL invariant [42],
which can be computed for each quasienergy gap, and is
defined as a three-dimensional winding number of the “pe-
riodized” time-step operator (winding along quasimomenta
kx, ky, and time t). It represents a topological property of the
periodic quantum-walk protocol [43], which is not captured
by the effective Hamiltonian Ĥeff.

The RLBL invariant as defined in Ref. [42] is an integer
assigned to the quasienergy gap comprising the end point
of the Floquet zone. For our choice of the branch cut of
the logarithm defining Ĥeff, this corresponds to quasienergy
E = π . However, changing the choice of the branch cut, it
is possible to calculate the RLBL invariant for all gaps of
the quasienergy spectrum. These gap invariants Ri provide a
complete classification of the topological phases of a magnetic
quantum walk. From these gap invariants it is possible to ob-
tain the Chern numbers while the converse is not true [42]: In
fact, the difference between two gap invariants corresponding
to different quasienergy gaps is equal to the sum of the Chern
numbers of all bands lying in-between the two quasienergy
gaps.

We calculate the RLBL gap invariants Ri for all gaps of the
quasienergy spectrum with magnetic flux φ = 1

3 . To that end,
instead of evaluating the rather involved three-dimensional
winding number of the “periodized” time-step operator, as
done in previous literature [42,43], we here employ a sim-
pler method [65], measuring the spectral flow induced by
a fictitious magnetic field, which is added on top of the
artificial magnetic field B. We show in Fig. 3(b) the obtained
values of R, and provide the details of their calculation in
Appendix G. As expected, the difference between two gap
invariants associated with adjacent quasienergy gaps is equal
to the Chern number of the band (or set of bands) between
the selected quasienergy gaps. In addition, we observe that
because of chiral symmetry, the RLBL invariants are mirror
antisymmetric with respect to the energy planes E = 0 and
π , meaning that mirror pairs of RLBL invariants have the
same value but opposite sign. Sublattice symmetry ensures
in addition that the RLBL invariant of a gap containing
quasienergy E is the same as that of a gap at quasienergy
E ± π .

C. Topologically protected edge states

For a topological insulator with boundaries, a bulk-
boundary correspondence applies, relating the gap invari-
ants, which characterize the topology of bulk bands, to the
existence of edge states localized at the boundaries [1,66].
According to this correspondence, for a boundary between
two bulks (say, bulk A and bulk B), at any energy that is
in a gap of both bulk spectra, the minimal number of edge
states corresponds to the difference of the gap invariants
associated with the two gaps (i.e., RA − RB). These edge states
are topologically protected and are a hallmark of topological
insulators.

In a topological insulator, the boundary can just be the
physical edge of the sample. Although boundaries of this
type can be created in a magnetic quantum walk, simulating
the effect of an edge potential or of a vacuum state [43],
we here focus on a different scenario, where the boundary

π
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FIG. 5. Quasienergy spectrum as a function of quasimomentum
ky, computed for a quantum walk with the magnetic field inverted
in a central stripe. Inset: schematic representation (not to scale) of
the magnetic-field landscape, with φ = 1

3 outside the stripe and φ =
− 1

3 inside. Main figure: the filled bands correspond to bulk states,
whereas the mid-gap energy branches to topologically protected
edge modes, with the solid (dotted) lines denoting the left (right)
edge of the stripe. The net number of topologically protected edge
modes (per edge) matches the difference between the gap topological
invariants [cf. Fig. 3(b)] of the two different topological domains.
The spectrum is computed under realistic conditions, based on the
Floquet phase-imprinting scheme detailed in Sec. III C, assuming
periodic boundary conditions along the x direction, and considering
60 sites in total, with the left edge at x = 15 and the right one at
x = 45.

separates regions with different magnetic fluxes. We are in
particular interested in the situation of a high magnetic flux,
say, φ = 1

3 , that across the boundary, on the length scale of
a single lattice site, inverts its sign to φ = − 1

3 . In terms of
conventional solid-state materials, this situation corresponds
to a bulk region with a homogeneous field of the order of
105T, inverting its sign abruptly over just a few angstroms at
the interface with a second region of opposite magnetic flux.
These are exorbitantly large fields and field gradients, which
can only be experimentally realized in artificial materials
such as magnetic quantum walks. Related experiments in
solid-state systems have investigated electronic transport at
an interface between regions with opposite magnetic flux,
however, not in the regime of strong magnetic fields. In these
experiments, so-called snake states have been realized, either
by inverting the magnetic field direction in a 2D electron gas
[67] or by changing the type of charge carriers using graphene
p-n junctions [68,69].

The salient feature of topologically protected edge states
is that their energies form continuous branches of the dis-
persion relation, connecting adjacent energy bands through
the bulk gaps. These branches of the dispersion relation,
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FIG. 6. Time evolution of a walker that is initially prepared in a single site close to the boundary separating two distinct, topologically
nontrivial regions. The boundary (overlaid white curve) has the shape of a quarter of a circle with a radius of 40 sites. The magnetic flux φ is
− 1

3 in the inner region, and 1
3 in the outer one. The color scale, similarly as in Fig. 2, represents the spatial probability distribution after n steps

of the walk. The simulations are carried out numerically assuming realistic conditions, based on the Floquet phase-imprinting scheme detailed
in Sec. III C, using a simple lattice with a relative shift of 0.5 (cf. Fig. 10) with respect to the sawtooth intensity profile employed to imprint
the Peierls phases. An animation showing the time evolution of the walker is provided in the Supplemental Material [50].

called hereafter the topologically protected edge modes, are
responsible for the robust, quantized, directional transport of
charges characterizing topological insulators. In a magnetic
quantum walk, topologically protected edge modes can be
clearly identified by considering the quasienergy spectrum
for an inhomogeneous magnetic field in a stripe geometry.
More specifically, we assume a magnetic flux φ = − 1

3 inside
a central stripe oriented along the y axis, and φ = 1

3 outside
it, with periodic boundary conditions along the horizontal di-
rection, as schematically illustrated in the inset of Fig. 5. The
stripe geometry allows us to preserve translational invariance
along the y direction, and to study the dispersion relation as a
function of quasimomentum ky.

The inhomogeneous magnetic field is realized by general-
izing the definition of the magnetic-field operator in Eq. (5),
so as to allow position-dependent values of the magnetic
field B(x, y). In particular, to realize the stripe geometry, it
is sufficient for the operator F̂ to imprint a spin-dependent
linear phase gradient of opposite slope for the inner and outer
regions, so that in these two regions a homogeneous flux
of opposite sign is created. The details of how B(x, y) is
defined at the boundary are unimportant since the topological
properties we are interested in are robust, and do not depend
on the detailed shape of the boundaries. The only requirement
is that the stripes are chosen sufficiently wide in order to
have two well-defined bulk regions, the central stripe and the
surrounding one, separated by two straight edges extending
along the y direction.

Relying on translational invariance along the y axis, we
show in Fig. 5 the quasienergy spectrum plotted as a function
of quasimomentum ky. The continuum of states, indicated
by filled regions, coincides with the bulk quasienergy bands
shown in Fig. 3(b). In addition, in the quasienergy gaps,
continuous branches of the dispersion relation can be clearly
identified, which represent the topologically protected edge
modes of the magnetic quantum walk for the stripe geome-
try considered here. This example allows us to demonstrate
how the bulk-boundary correspondence applies to magnetic
quantum walks, based on the RLBL gap invariants R, which
are defined in Sec. II B. The inside and outside regions of the
stripe have related RLBL invariants since these two regions
only differ in the sign of the magnetic flux: In fact, under

flux inversion, the position of the quasienergy band gaps
remains the same, but the gap invariants change sign. A
proof of that is provided in Appendix F. Hence, considering
the values of R provided in Fig. 3(b) for φ = 1

3 , the bulk-
boundary correspondence is easily verified: for each gap, the
net number of edge modes associated with a given edge, with
the upward- and downward-propagating modes counted with
opposite sign, matches exactly the difference between the
RLBL invariants of the two bulk regions. We also note that
all quasienergy gaps in the example shown in the figure host
at least one topologically protected edge mode, demonstrating
the presence of anomalous edge modes with their quasienergy
winding in the Floquet zone [42,70].

To illustrate the remarkable robustness of edge modes,
we investigate magnetic quantum walks for a magnetic-field
landscape, which includes irregular boundaries between dif-
ferent magnetic domains. We consider a magnetic field with a
constant flux φ = 1

3 everywhere, except for inside an “island”
shaped as a quarter of a circle, where the flux is inverted,
φ = − 1

3 . We consider in particular the evolution of a walker
starting from a single site close to the boundary of the island
since this allows us to excite the edge modes and study their
transport properties [44]. In view of future experiments, we
simulate the walker’s evolution assuming realistic experimen-
tal conditions, taking into account the finite optical resolution
of the imaging system used to create the artificial vector po-
tential, as explained later in Sec. III C. Moreover, we focus our
attention on the spatial probability distribution of the walker,
an observable that is readily accessible experimentally.

The simulated probability distribution is shown in Fig. 6
for an increasing number of steps. During the time evolu-
tion, the walker’s wave function stays mostly in the vicinity
of the boundary, with only a small fraction of it expanding into
the bulk regions. Focusing on the edges, the wave function
splits into two wave packets moving clockwise and counter-
clockwise along the boundary. The reason is that the initial
state of the walker has a nonvanishing overlap with the edge
modes of all quasienergy gaps, and these modes have different
propagation direction depending on the sign of the respective
gap invariant. Once the wave packets are clearly separated,
we observe that they travel across the sharp corners without
backscattering nor propagating into the bulk (see also the
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animation in the Supplemental Material [50]), thus showing
the remarkable robustness of unidirectional transport through
topologically protected edge modes.

III. EXPERIMENTAL REALIZATION

We suggest using ultracold Cs atoms in a state-dependent
optical lattice for the experimental realization of discrete-time
quantum walks on a square lattice. Currently, there is an
ongoing work in the Bonn quantum-walk laboratory to extend
the one-dimensional quantum-walk scheme [48,71] from one
to two dimensions. Recently, arbitrary state-dependent shift
operation, Ŝx and Ŝy have been demonstrated, thus realiz-
ing the two main operations required for 2D discrete-time
quantum walks. These experimental results will be reported
elsewhere.

In Sec. III A, we shall give a brief account of the ex-
perimental setup realizing 2D discrete-time quantum walks,
referring the reader to Ref. [44] for more details on the
2D state-dependent transport scheme. The remaining two
Secs. III B and III C, are devoted to the implementation of the
magnetic-field operator F̂ , as defined in Eq. (5).

A. Two-dimensional quantum-walk setup

We use two hyperfine ground states of cesium atoms
to represent the two spin states of the walker, |↑〉 =
|F = 4, mF = 3〉 and |↓〉 = |F = 3, mF = 3〉. The atoms are
trapped, depending on the spin state, in two independent
square optical lattices, with lattice constant a = λL/

√
2 [44],

originating from right- and left-handed circularly polarized
light. In fact, at the wavelength of λL ∼ 870 nm, atoms in
|↑〉 and |↓〉 state experience only the attractive optical dipole
potential produced by right- and left-handed circularly po-
larized light, respectively. These two lattices are spatially
overlapped on the same plane and individually controlled by
a high-precision polarization synthesizer [72]. The optical
lattice depth V0 is chosen sufficiently deep, typically at around
a thousand recoil energies ER, so as to suppress site-to-site
tunneling and, concurrently, to allow fast shift operations.
Initially, a number of atoms can be individually arranged [73]
in well-defined lattice sites, where they are cooled into the
lowest motional state (i.e., lowest-energy band) by means of
sideband cooling techniques.

The shift operators Ŝx and Ŝy are implemented by rotating
by 180◦ the linear polarization of either one of the two
polarization-synthesized lattice beams forming the 2D spin-
dependent optical lattice [44]. As a result of that, the two
optical lattices, which selectively trap atoms in either |↑〉 or
|↓〉 state, are shifted by half-lattice site in opposite directions
along the x or y axis, respectively. Importantly, the shift
operators must be performed fast, so as to outrun decoherence
produced by fluctuating magnetic field (limiting coherence
time to �10 ms [74]) and by spontaneous scattering of lattice
photons (limiting coherence time to �100 ms) [75]. Using
quantum optimal control [76], or shortcuts to adiabaticity [77]
or, in general, a nonadiabatic control scheme, the shift op-
erators can be realized without creating motional excitations
[78] on a short time scale, comparable with the harmonic trap
period τHO =

√
mλ2

L/V0 , which for sufficiently deep lattices

can be of the order of 10 μs. This transport time is about
two orders of magnitude shorter than the time required for
site-to-site tunneling (�h̄/ER) in a shallow optical lattice.

To implement the global coin operator Ĉ, we use mi-
crowave π/2 pulses that are resonant with the hyperfine
energy splitting between the two spin states (�HF = 9.2 GHz),
as done in previous experiments [48,71]. The 2D quantum-
walk apparatus achieves a Rabi frequency of about 200 kHz,
allowing the Hadamard-type coin operator Ĉ to be realized in
∼1 μs.

B. Implementing artificial gauge fields

A natural way to implement the magnetic-field operator F̂ ,
as defined in Eq. (5), consists of applying onto the atoms a
spin-dependent linear potential gradient for a fixed duration,
in such a way that a spin-dependent phase gradient σzBx is
imprinted onto the wave function of the walker (with x ∈ Z
denoting the lattice site coordinate in the x direction).

To realize the spin-dependent potential, one could simply
use a (real) magnetic-field gradient to induce a linear Zeeman
energy shift. In practice, however, this possibility must be
excluded since exorbitantly large magnetic-field gradients
>103 G/cm are needed in order to realize F̂ in a time inter-
val of ∼10 μs, not to mention the difficulties involved with
switching on and off the magnetic-field gradient in such a
short time.

We instead suggest to flash a light field for a fixed duration
in order to realize the operator F̂ . The potential induced by
the light field must be able to discriminate between the two
electronic spin states |↑〉 and |↓〉. For this purpose, there are
two physical mechanisms in neutral atoms that can mediate
an interaction between the electronic spin and a light field:
(M1) the atomic spin-orbit coupling and (M2) the hyperfine
interaction between the nuclear and the electronic spin. In the
following, we shall see that both of them can be used to realize
the operator F̂ .

In the approach based on the interaction mediated by the
spin-orbit coupling (M1), the atoms are illuminated with a
circularly polarized light field tuned at the magic wavelength
λM = 880 nm, corresponding to a laser frequency lying in-
between the D1 and D2 lines of Cs atoms. At this special
wavelength, the light field yields a purely differential light
shift of the two internal states, meaning that |↑〉 and |↓〉 states
are shifted in energy by the exact same amount, but in opposite
directions. However, for this to work, the quantization axis
must be slightly tilted (e.g., by 15◦) off the optical lattice
plane, in such a way that the polarization of the light field has
a nonzero circular component with respect to the direction of
the quantization axis.

In the alternative approach based on the hyperfine inter-
action between the nuclear and the electronic spin (M2), one
illuminates the atoms with a linearly polarized light field with
its wavelength λM corresponding to a laser frequency tuned
in the proximity of either the D1 or D2 line of Cs atoms.
By tuning λM precisely in-between the hyperfine structure,
this second approach, too, allows one to realize a purely
differential light shift of the two spin states, as shown in Fig. 7.
The advantage of this second approach is that it also applies
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FIG. 7. Schematic representation of Cs energy levels corre-
sponding to the D1 transition, including the related hyperfine struc-
ture. A laser beam is detuned by ±�HF/2 from resonance with the
|↑〉 and |↓〉 states, respectively, so that the induced optical potential
shifts the two states by an equal amount �U , but in opposite direc-
tions. Short light pulses, thus, imprint a purely differential phase shift
onto the two states. A similar scheme exists for the D2 transition.

to the case in which the quantization axis is in the same plane
of the optical lattice [44].

In both approaches, the magnitude of the energy shift at
site (x, y) is determined by the local intensity of the light
field. Flashing such a light field for a fixed duration imprints
onto the two spin states a differential phase shift, which is
proportional to the product of the light-field intensity and its
pulse duration. Therefore, to realize a homogeneous artificial
magnetic field, it is in principle sufficient to project onto the
atoms a light field with the intensity increasing linearly in the
x direction.

However, the same light field used to implement the
magnetic-field operator can have undesired side effects, lead-
ing to decoherence of the quantum walker. In what follows,
we discuss the two main sources of decoherence involved in
this process, motional excitations and photon scattering, and
present solutions how to avoid them.

a. Decoherence by motional excitations. Switching the
linear potential gradient stroboscopically on and off can in
principle excite the atoms to higher vibrational states (i.e.,
higher lattice bands), thus resulting in fast decoherence of
the quantum walk. In fact, assuming for simplicity that the
spin-dependent linear potential gradient is suddenly switched
on for a finite time τ , during this time the atomic wave packet
is subject to a perturbative potential Ĥφ , which in the limit of
deep lattices (V0 
 ER) reads as

Ĥφ ≈ 21/4 φ

(ER/V0)1/4

h̄

τ
(b̂† + b̂) σ̂z, (8)

where b̂† and b̂ are the operators creating and annihilating
motional excitations (see Appendix H). Using first-order time-

FIG. 8. Probability to create a motional excitation to a higher-
energy band of the optical lattice, after stroboscopically applying
for a time τ the spin-dependent linear potential gradient that realizes
the magnetic-field operator F̂ . We assume here a lattice depth V0 ∼
850 ER, a field flux φ = 1

3 , and that the atom is initially prepared
in the motional ground state. The two curves show the probabil-
ity obtained through numerical integration of the time-dependent
Schrödinger equation (thick red curve), and the probability to excite
an atom to the first motional state obtained using Eq. (9) (thin black
curve). The small discrepancies between the two curves are ascribed
to the anharmonicity of the optical lattice potential.

dependent perturbation theory, the probability to excite an
atom from motional ground state to the first excited state can
be estimated as

pex ≈
√

2 φ2sinc2(πτ/τHO)√
V0/ER

. (9)

Figure 8 shows that for deep lattices, this probability is very
small, <10−2.

Moreover, motional excitations can be further suppressed
by a significant amount by tuning the duration τ at a multiple
of the harmonic trap period τHO. In this case, however, to
estimate the number of residual motional excitations, one
must go beyond the harmonic approximation assumed to
derive Eq. (9). For this purpose, we have computed the
number of motional excitations by integrating numerically
the time-dependent Schrödinger equation using the split-step
finite-difference propagation method [79]. Our results show
that the probability of motional excitations can be reduced to
<10−7. It is worth remarking that quantum control theory [76]
and shortcuts to adiabaticity [77] can be employed to speed up
the phase imprint process while avoiding motional excitations,
and to make the dynamics less sensitive to small drifts of the
experimental parameters.

b. Decoherence by photon scattering. Projecting onto the
atoms a linear intensity gradient, as previously suggested for
realizing F̂ , has the negative effect of exposing the atoms,
depending on their position in the lattice, to a high-intensity
light field. Since the probability of scattering a photon by an
atom is proportional to the intensity, a high-intensity light
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FIG. 9. Floquet phase imprint realizing the magnetic-field op-
erator F̂ . Only the phase for one spin component is shown in the
figure, the other one being equal in magnitude, but opposite in
sign. The graph shows the representative situation of a magnetic
flux φ = 1

3 , which is realized in the Landau gauge A = (0, Bx, 0).
Instead of imprinting a linear phase gradient (dashed orange line),
a sawtooth-shaped phase pattern (dashed green line) lying within
the first Floquet zone, [0, 2π ], is imprinted onto the atoms (note the
different definition here of the Floquet zone with respect to Sec. II A).
The modulated phase pattern is produced by a sawtooth intensity
profile, which is imaged onto the atoms through a high-numerical-
aperture objective lens NA = 0.92 [81]. Due to the 2π periodicity of
the imprinted phases, the two phase patterns are effectively identical
in the proximity of the atoms (blue dots). The folded phase pattern
is also shown in the idealized case of no optical diffraction (solid
orange line).

field would lead to a high-photon scattering rate and, thus,
to severe spatial decoherence of the quantum walk [75]. In the
following section, we show how high-photon scattering rates
can be entirely avoided by taking advantage of the Floquet
dynamics.

C. Floquet phase imprinting to avoid photon scattering

To avoid exposing the atoms to a high-intensity light field,
we propose to use a sawtooth-shaped intensity pattern to
illuminate the atoms, instead of the linear intensity gradient
discussed previously. The scheme proposed here allows one
to realize the same magnetic-field operator F̂ while, at the
same time, it avoids the problem of decoherence [75] by
photon scattering. The basic intuition underlying the sug-
gested scheme is the fact that the artificial-magnetic-field
landscape realized by the operator F̂ is determined by the
phases imprinted onto the quantum walker’s wave function.
Therefore, by folding the light field in such a way as to avoid
phases exceeding 2π , we can realize the same operator F̂ ,
while avoiding high-intensity light fields. Figure 9 provides
an illustration of the proposed scheme for the case of φ = 1

3 .
Experimentally, a sawtooth modulation of the intensity can

be realized using a spatial light modulator [80] combined
with a high-resolution imaging system [81]. The intensity of
the light field depends, in particular, on which of the two
approaches, M1 or M2 (see Sec. III B), is used to produce
artificial magnetic fields. For example, to imprint in 10 μs a
spin-dependent phase shift of the order of 2π (larger phase

shifts are not needed) over an area of A = 100 × 100 lattice
sites, we estimate [82] that the atoms must be illuminated
with a light field of approximately 40 mW/A and 20 μW/A
for the M1 and M2 driving schemes, respectively. Using the
Kramers-Heisenberg formula, we also estimate the probability
of an atom to scatter a photon of the light field. We find
that during each step of the magnetic quantum walk this
probability is approximately 10−5 in the approach M1, and
10−3 in the approach M2. This means that, on average, many
steps of the quantum walk can be carried out before a photon
is scattered: several tens of thousands in case of M1 and a
few hundreds in case of M2. Note that the disparity between
these two values is due to the different strength of the two
mechanisms (M1) and (M2), which mediates the interaction
between the electron spin and the light field. It is also worth
remarking that the scattering probability does not depend on
the laser intensity [83] nor on any other tunable parame-
ters, but is simply determined by the atomic properties of
Cs atoms.

For an experimental realization of the Floquet phase-
folding scheme, one should take into account the finite optical
resolution of the imaging system, whose effect is to smoothen
the intensity pattern imaged onto the atoms. With reference
to Fig. 9, the imaged sawtooth intensity profile exhibits soft
falling edges, which extend over a length scale comparable
to that of the point spread function of the imaging system.
For a diffraction-limited imaging system, the size of the edges
corresponds to the Abbe radius λM/(2NA), which for a high
numerical aperture NA � 1 can be slightly smaller than the
separation between two adjacent sites λL/

√
2. Figure 9 shows

that using a high-numerical-aperture imaging system, indeed
it is possible to accurately simulate a magnetic flux φ = 1

3
in spite of the limited optical resolution. Also, it is worth
emphasizing that the numerical studies presented in Figs. 5
and 6 are computed using the Floquet phase-folding scheme
introduced in this section, assuming a numerical aperture
NA = 0.92 [81].

The soft falling edges of the sawtooth intensity pattern
represent a possible source of error for the magnetic-field op-
erator. If a lattice site happens to be centered on such an edge,
and the walker’s wave function extends on that site, the phase
imprinted on that part of the wave function will differ from the
one of a homogeneous magnetic field. This inhomogeneity in
the magnetic field can have severe consequences on the band
structure of the magnetic quantum walk, possibly leading to a
closing of the bulk quasienergy gaps, as shown in Fig. 10. To
avoid such defects in the imprinted phases, it is required that
the sawtooth intensity profile is carefully aligned with respect
to the optical lattice, as shown in the illustration in Fig. 9.

A way to make the proposed scheme more robust against
alignment errors is to carry out the magnetic quantum walks
on a superlattice. This can be realized by replacing in the
quantum-walk protocol the shift operator Ŝx by the “super-
shift” operator (Ŝx )m, consisting of a spin-dependent shift
of atoms in the x direction by a multiple m of lattice sites.
Spin-dependent shift operations by a multiple of lattice sites
can be readily implemented with polarization-synthesized
optical lattices [73] by exploiting the reset-free control of
linear polarization [72], which enables a continuous rotation
of the polarization by m times 180◦ (compare with Sec. III A).
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FIG. 10. Quasienergy gap width of the bulk spectrum as a func-
tion of the relative shift between the sawtooth intensity profile and
the optical lattice. All quasienergy gaps turn out to be identical. The
graph is shown for the representative case of a magnetic flux φ = 1

3 .
The three curves refer to the case of a simple lattice (•), a superlattice
with a twofold longer lattice constant (�), and a superlattice with a
fourfold longer lattice constant (�). The relative shift is expressed
in units of the rescaled lattice constant. The quasienergy gap width
is maximum at a relative shift of 0.5, when the sawtooth intensity
profile is aligned with respect to the lattice sites as shown in the
illustration in Fig. 9.

These supershift operators, applied to quantum-walk protocol
defined in Eq. (1), allow simulating magnetic quantum walks
on a superlattice, whose lattice constant is effectively aug-
mented by a factor m compared to the original lattice constant
a. A longer lattice constant has the advantage to yield an ef-
fective m-fold increase of the spatial resolution with which ar-
bitrary magnetic-field landscapes are engineered. Importantly,
the longer lattice constant only requires a slight increase in the
duration of the shift operators, which is proportional to

√
m

[78]. In contrast, in conventional optical lattice systems rely-
ing on site-to-site tunneling, a similar m-fold increase of the
lattice constant would result in a significant reduction of the
tunneling rate, which scales exponentially with m. We expect
for an effectively larger lattice constant a higher robustness of
the experimental scheme against experimental misalignments.
To quantify such a robustness enhancement, we analyze the
size of the quasienergy gaps as a function of the relative shift
of the sawtooth intensity profile with respect to the optical
lattice. The numerical results, which are displayed in Fig. 10,
reveal that a superlattice with m = 4 makes the topological
structure largely insensitive to alignment errors. This confirms
our intuition, showing that an m-fold increase of the lattice
constant in the x direction is equivalent to an enhancement
of the optical resolution of the imaging system by the same
factor.

Finally, it is worth emphasizing that the Floquet phase-
folding scheme of Fig. 9 is not limited to the case of a
homogeneous artificial magnetic field, as primarily discussed
in this section. It is straightforward to extend this scheme to

situations where the sawtooth intensity profile has a different
slope, or even a different orientation, in different regions of the
lattice. This allows one to create boundaries between different
topological phases as those studied in Fig. 6.

IV. CONCLUSIONS

We have studied the magnetic quantum walk of a particle
with two internal states, moving in discrete steps on a square
lattice. By calculating the Chern numbers of the bands, and
complementing these with the RLBL invariants of the Floquet
gaps, which are specific to periodically driven systems, we
could show that a magnetic quantum walk behaves like an
anomalous Floquet Chern insulator. Alongside the analysis
of the bulk topological invariants, we have considered the
scenario of inhomogeneous magnetic fields, where magnetic
domains with different magnetic fluxes are connected through
sharp edges, and studied the topologically protected edge
modes formed along them. This study has shown that the
bulk-boundary correspondence applies to magnetic quantum
walks, where the number of topologically protected edge
modes in a given gap corresponds to the difference of RLBL
gap invariants associated with the two magnetic domains in-
terfacing at the boundary. Moreover, by considering irregular
boundaries between magnetic domains, we have shown that
the excitation of topologically protected edge modes enables
the robust transport of the walker along the entire length of a
magnetic domain, even in the presence of sharp corners in its
shape.

For the experimental realization of magnetic quantum
walks, we have proposed a realistic scheme based on ultracold
cesium atoms trapped in state-dependent optical lattices. A
remarkable aspect of the proposed scheme is that it allows
us to generate artificial vector potentials with arbitrary land-
scapes. This gives the flexibility to change the direction of the
simulated magnetic fields and to create different topological
domains with sharp spatial boundaries. The Floquet nature of
the system makes it possible to engineer any arbitrary gauge
field with low intensities of the laser fields, thus significantly
suppressing the probability of off-resonant photon scattering
by the atoms. This includes the possibility of creating uniform
magnetic fields in the strong-field regime of the Hofstadter
butterfly spectrum, with no need for field rectification pro-
tocols, nor for any readjustment of the configuration of the
laser beams in order to tune the field strength [19]. We remark
that state-dependent transport allows us to transport both spin
states over several lattice sites, making it possible to work with
superlattice potentials, shortening significantly the evolution
time with respect to schemes based on laser-assisted tunnel-
ing, which are limited by damping of tunneling rates. In addi-
tion, the full control of micromotion in a magnetic quantum
walk, where each operator constituting Ŵ can be precisely
realized in experiments, provides a new route to overcome the
problem of heating in periodically driven systems [84].

An interesting avenue for future research consists in gen-
eralizing magnetic quantum walks to many-particle systems,
where the atoms are allowed to interact with each other
through contact potentials [85]. The quasienergy bands of
the magnetic quantum walks are relatively flat, well sep-
arated by gaps, and characterized by nonvanishing Chern
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numbers. These constitute favorable conditions to realize
strongly correlated states, which could lead to fractional Flo-
quet Chern insulators [86–88]. Understanding the properties
of such strongly correlated systems is one of the main goals
in the field of quantum simulation [89]. It remains, however,
an outstanding theoretical and experimental challenge to find
a way to ensure full population of a given Floquet band of the
magnetic quantum walk.

Finally, it is interesting to remark that the proposed scheme
can be readily extended to simulate concurrently magnetic
and electric fields. Electromagnetic quantum walks can, in
fact, be realized by slightly detuning the wavelength of the
light field used to implement the operator F̂ off its magic
value λM . Thereby, the light field produces a combination of
differential and common-mode phase shifts, which control the
artificial magnetic and electric fields, respectively. In recent
years, electric quantum walks have been the subject of much
research [90–94], which could be extended to achieve a new
form of control of topological states of matter, especially
through time-varying artificial electromagnetic fields [95].
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APPENDIX A: GENERAL TWO-DIMENSIONAL VECTOR
POTENTIALS

We briefly summarize how a general 2D magnetic vector
potential can be realized with a quantum walk [51,54,56]. To
create an artificial vector potential A with both its x and y
components nonvanishing, two magnetic-field operators are
employed in the time-step operator:

Ŵ = F̂y Ŝy Ĉ F̂x Ŝx Ĉ, (A1)

where F̂d is the magnetic-field operator, which is applied after
a shift along the d direction. The two magnetic-field operators,
which are defined as the line integral of the artificial vector
potential,

F̂d =
∑

r

[
exp

(
i
∫ r

r−ed

dr′ · A(r′)
)

|r〉 〈r| ⊗ |↑〉 〈↑|

+ exp

(
i
∫ r

r+ed

dr′ · A(r′)
)

|r〉 〈r| ⊗ |↓〉 〈↓|
]
, (A2)

imprint onto the walker’s wave function the so-called Peierls
phases [29]. In Eq. (A2), ed is the lattice unit vector along the

d direction, r̂ = (x̂, ŷ, 0) is the lattice position operator taking
discrete values, and r′ = (x, y, 0) is the integration variable
taking continuous values in the lattice plane.

For the vector potential used in the main text, A(r) =
(0, Bx, 0), one finds that F̂x is equal to the identity operator,
whereas F̂y is equal to F̂ , as defined in Eq. (5). Hence, for this
vector potential, the time-step operator in Eq. (A1) coincides
with the operator defined in Eq. (1).

APPENDIX B: SUBLATTICE SYMMETRIES

At each time step, the magnetic quantum walk changes the
parity of both x and y coordinates. This results in two types of
sublattice symmetries, which are discussed below. We caution
that, unlike in a system described by a constant Hamiltonian,
both of these sublattice symmetries are different from the
chiral symmetry, which is discussed below in Appendix C.

1. Conserved sublattice

The lattice can be partitioned into two sublattices:

I : (x + y) mod 2 = 0;
(B1)

II : (x + y) mod 2 = 1.

As a result of the symmetric form of the shift operator Ŝd ,
the time-step operator Ŵ only couples states belonging to
the same sublattice. Thus, we have two independent magnetic
quantum walks, one taking place on sublattice I, the other on
sublattice II, meaning that the sublattice index in Eq. (B1) is
conserved.

For a magnetic quantum walk with uniform magnetic flux,
φ = p/q, the two quantum walks on sublattices I and II are
identical. This results in a twofold degeneracy of the energy
spectrum, which is also known as fermion doubling [96].

In more detail, the Brillouin zone associated with each
individual sublattice is two times smaller and skewed with
respect to the Brillouin zone of the whole lattice. The re-
ciprocal primitive vectors of the sublattice Brillouin zone
are g1 = (1, 0) 2π/q and g2 = (0, 1) π for even q, and g1 =
(1, 0) 2π/q and g2 = (−1/q, 1) π for odd q. While g1 co-
incides with one of the reciprocal primitive vectors of the
whole lattice, g2 is different and shorter. It thus follows that
the spectrum of the time-step operator can be folded in the
reduced Brillouin zone defined by g1 and g2, where for any
given quasimomentum, all quasienergy states are twofold de-
generate. Hence, we conclude that for each eigenstate |ψ (k)〉
of Ŵ with quasimomentum k and quasienergy E , there exists
another eigenstate of the time-step operator with the same
quasienergy E and quasimomentum k + g2; compare with
Figs. 3 and 5.

Note that the case of zero flux, φ = 0, is equivalent to
assuming q = 1, meaning that the zero-field spectrum remains
unchanged under a shift of quasimomentum by g2 = (−π, π ).

2. Alternating sublattice

Both sublattices I and II introduced above can be further
partitioned into two sub-sublattices each, defined as follows:

Ia : x even, y even;

Ib : x odd, y odd;
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IIa : x odd, y even;

IIb : x even, y odd. (B2)

To represent the sublattice structure defined in Eq. (B2), we
introduce the operator χ̂ :

χ̂ =
∑
x,y

(−1)y |x, y〉 〈x, y| ⊗ 1̂, (B3)

which takes the value 1 on sublattices Ia and IIa, and the value
−1 on sublattices Ib and IIb.

The time-step operator Ŵ only couples states belonging to
different sublattices, namely, (Ia) ↔ (Ib), and (IIa) ↔ (IIb).
From this, it immediately follows that

χ̂Ŵ χ̂† = −Ŵ . (B4)

This, in turn, means that the effective Hamiltonian is trans-
formed as χ̂†Ĥeffχ̂ = Ĥeff + π , modulo the Floquet zone.

The operator χ̂ in Eq. (B3) does nothing but imprint a
phase π on the lattice sites with odd y coordinate. This
corresponds to a shift of the quasimomentum operator k̂y

by π , modulo the Brillouin zone. Hence, for a magnetic
quantum walk with translational invariance along the y direc-
tion, each of its eigenstates |ψ (ky)〉 with quasienergy E and
quasimomentum ky must have a sublattice-symmetric-partner
eigenstate, χ̂ |ψ (ky)〉, which again is an eigenstate of the
time-step operator with quasienergy E + π , and displaced
quasimomentum ky + π ; compare with Figs. 3 and 5.

APPENDIX C: CHIRAL SYMMETRY

We show that magnetic quantum walk possesses chiral
symmetry. This symmetry is important since it stabilizes the
Dirac points appearing in the spectrum of magnetic quantum
walks (see Appendices D and E). In fact, unlike Weyl points
in three-dimensional systems, Dirac points in two dimensions
can exist only in the presence of some stabilizing symmetry
[97].

A Floquet system has chiral symmetry if there exists a local
unitary operator �̂ transforming the time-step operator Ŵ as
follows:

�̂Ŵ �̂† = Ŵ †. (C1)

Correspondingly, the effective Hamiltonian [cf. Eq. (7)] trans-
forms as

�̂Ĥeff�̂
† = −Ĥeff, (C2)

meaning that if |ψ〉 is an eigenstate of the effective Hamilto-
nian with quasienergy E , then �̂ |ψ〉 is also an eigenstate of
the same Hamiltonian with quasienergy −E .

The time-step operator Ŵ , as defined in Eq. (1), does
not have chiral symmetry. However, by suitable cyclic per-
mutation of the operators constituting Ŵ , one can obtain a
time-translated time-step operator that has chiral symmetry.
Importantly, such a cyclic permutation represents a shift of
the time frame defining the single step of the walker, and has
no effect on the physical properties of the walker, such as the
energy spectrum.

For magnetic quantum walks, there are actually two time-
translated time-step operators having chiral symmetry:

Ŵ ′ = Ŵ↑Ŵ↓, Ŵ ′′ = Ŵ↓Ŵ↑. (C3)

These are the product of the two half-step operators defined as
follows:

Ŵ↑ = F̂↑Ŝy,↑ĈŜx,↑, (C4)

Ŵ↓ = Ŝx,↓ĈŜy,↓F̂↓, (C5)

where Ŝd,s is the shift operator displacing in the d direction
the walker with spin state |s〉,

Ŝd,↑ =
(

e−ik̂d 0
0 1

)
, Ŝd,↓ =

(
1 0
0 eik̂d

)
, (C6)

and F̂s is the magnetic-field operator acting on |s〉,

F̂↑ =
(

eiBx̂ 0
0 1

)
, F̂↓ =

(
1 0
0 e−iBx̂

)
. (C7)

Using these operators, the shift operator defined in Eq. (4)
can be expressed as Ŝd = Ŝd,↑Ŝd,↓, whereas the magnetic-field
operator defined in Eq. (5) as F̂ = F̂↑F̂↓. Using the following
relations,

Ŝd,↓ = σ̂xŜ†
d,↑σ̂x, F̂↓ = σ̂xF̂ †

↑ σ̂x, Ĉ = σ̂xĈ
†σ̂x, (C8)

it is straightforward to show that Ŵ↓ = σ̂xŴ
†
↑ σ̂x. Thus, we

can express the time-translated time-step operators in a form
that is visibly chiral symmetric, Ŵ ′ = σ̂xŴ

†
↓ σ̂xŴ↓ and Ŵ ′′ =

σ̂xŴ
†
↑ σ̂xŴ↑, with the chiral-symmetry operator defined by

�̂ = σ̂x. (C9)

One can easily verify, in fact, that Eq. (C1) applies for both
Ŵ ′ and Ŵ ′′.

APPENDIX D: DIRAC POINTS

The quasienergy spectrum of the effective Hamiltonian Ĥeff

has Dirac points, i.e., conical band-touching points carrying a
topological charge. These are visible in Fig. 3.

In the case of no magnetic flux, φ = 0, there are four such
band-touching points, at quasimomenta K and quasienergy E :

K±,∓ =
(

±π

2
,∓π

2

)
, E = 0; (D1)

K±,± =
(

±π

2
,±π

2

)
, E = π. (D2)

Expanding the effective Hamiltonian around these points
to the first order in the displaced quasimomentum operator
δk̂ = k̂ − K, we obtain

K±,∓ : Ĥ ′
eff ≈ ∓δk̂xσ̂y + δk̂yσ̂z, (D3)

K±,± : Ĥ ′
eff ≈ ±δk̂xσ̂y + δk̂yσ̂z − π, (D4)

which exhibits a Rashba-type spin-orbit coupling. Because
of chiral symmetry, the eigenspinor (0,∓δkx, δky) of the
effective Hamiltonian for K±,∓ is confined to a vertical
plane of the Bloch sphere, in which it winds once in a
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clockwise or anticlockwise direction, depending on which
of the two Dirac points, as the quasimomentum (δkx, δky )
is varied along a closed contour containing the Dirac point.
Similar considerations apply to the other two Dirac points
K±,±. The quasienergy dispersion in the vicinity of one of
these Dirac points has a conical shape, E (δkx, δky) = E (kx =
0, ky = 0) ± (δk2

x + δk2
y )1/2, indicating that the walker moves

with a constant velocity modulus, which is equal to a/T = 1
(in the dimensionless units used in this work).

For completeness, we also report the effective Hamilto-
nian corresponding to the other chiral-symmetric time frame,
specified in the basis where the chiral-symmetry operator �̂ is
diagonal:

K±,∓ : Ĥ ′′
eff ≈ ±δk̂yσ̂y + δk̂xσ̂z, (D5)

K±,± : Ĥ ′′
eff ≈ ±δk̂yσ̂y + δk̂xσ̂z − π. (D6)

In the case of a nonzero magnetic flux, we also find Dirac
points. For graphenelike lattices, Rhim and Park [62] proved
that Dirac points exist for any arbitrary magnetic flux. We
speculate that a similar result also applies to our situation.
This intuition is supported by the empirical observation that
Dirac points carrying a nonvanishing topological charge exist
for various choices of the magnetic flux φ = p/q, varying p
and q up to about 20, provided that q is an odd number. For
a magnetic flux with even q, Dirac points merge, and their
topological charges annihilate [97]. However, the two bands
remain touching in spite of the merge. Using the effective
Hamiltonians (restricted to the two touching bands), we have
empirically observed that Dirac points at E = 0 are associated
with a topological charge (as defined in Appendix E) ν0 = 1
when Kx > 0, and with ν0 = −1 when Kx < 0; similarly,
Dirac points at E = π are associated with νπ = −1 when
Kx > 0, and with νπ = 1 when Kx < 0.

APPENDIX E: TOPOLOGICAL CHARGES
OF DIRAC POINTS

We show that each Dirac point is associated with a winding
number. In fact, for any chiral-symmetric Hamiltonian, such
as the effective Hamiltonian of magnetic quantum walks (see
Appendix C), a winding number ν can be assigned to any
closed loop C in the Brillouin zone, as long as the Hamiltonian
is gapped along the entire loop. This in particular holds for
infinitesimally small loops surrounding a Dirac point. The
winding number can be defined considering the off-diagonal
part ĥ(k) of Ĥeff(k), with the latter denoting the effective
Hamiltonian reduced to quasimomentum k and represented in
the basis where the chiral-symmetry operator �̂ is diagonal:

Ĥeff(k) =
(

0 ĥ(k)
ĥ(k)† 0

)
; �̂ =

(
1̂ 0
0 −1̂

)
. (E1)

The winding number then reads as

ν[ĥ] = 1

2π i

∮
C

dk
d

dk
log det ĥ(k), (E2)

with the line integral evaluated along the loop C in the
Brillouin zone. This winding number is an integer, and is
invariant under continuous deformations of the Hamiltonian

Ĥeff or of the curve C since its value cannot change as long as
chiral symmetry holds and the gap along C remains open. This
in particular applies to contours enclosing a Dirac point and
excluding any other band-touching point, meaning that Dirac
points are stable under small symmetry-preserving continuous
deformations. Such deformations may shift the position of the
Dirac points in the Brillouin zone, however, without lifting
the degeneracy at the band-touching point nor changing its
quasienergy. The degeneracy can only be lifted if two Dirac
points with opposite topological charges meet and annihilate.

To obtain the topological charges of Dirac points in a
magnetic quantum walk, one needs to calculate the winding
number ν in both chiral-symmetric time frames. This yields
for each Dirac point two winding numbers, ν ′ from Ŵ ′, and
ν ′′ from Ŵ ′′. The topological charge ν0 of a Dirac point at
quasienergy E = 0 and νπ of a Dirac point at quasienergy
E = π is then obtained by taking linear combinations of these
winding numbers [98]:

ν0 = ν ′ + ν ′′

2
, νπ = ν ′ − ν ′′

2
. (E3)

For a Dirac point at E = 0, we have ν0 = ±1 and νπ = 0,
while for a Dirac point at E = π , we have νπ = ±1 and
ν0 = 0.

Alternatively, one can use the half-step operator to compute
the topological charges ν0 and νπ . This second approach has
the advantage that it does not require evaluating the effec-
tive Hamiltonian and, thus, is better suited for an analytical
calculation of the winding number in Eq. (E2), especially in
weak-field regime q 
 1, when the size of the magnetic unit
cell is very large. By representing the half-step operator in a
block form in the basis where �̂ is diagonal [see Eq. (E1)],

Ŵ↑ =
(

â b̂
ĉ d̂

)
, (E4)

one can show [99] that the topological charges defined in
Eq. (E2) correspond to ν0 = ν[b] and νπ = ν[d].

Moreover, it is worth noting that the winding number in
Eq. (E2) vanishes when evaluated on a contour enclosing
the whole Brillouin zone. This has an intuitive explanation
considering that each edge of the square magnetic Brillouin
zone contributes twice to the line integral, but with opposite
sign, so that the overall integral vanishes. The vanishing of
the winding number for the whole Brillouin zone allows us
to conclude that the sum of the topological charges associated
with the Dirac points at E = 0 and π , respectively, vanishes.
This also reflects the fact that the Dirac points occur in pairs
(fermion doubling, see Appendix B).

APPENDIX F: TOPOLOGICAL INVARIANTS UNDER
FLUX INVERSION

We prove that under inversion of the magnetic flux φ →
−φ, the Floquet topological invariants (as well as the Chern
numbers) change sign. The proof hinges on the behavior of the
quantum walk under time reversal, and simultaneous inversion
of the magnetic field over the whole lattice. For the proof,
we can generally assume an arbitrary, position-dependent
magnetic field, i.e., a generic function φ(x, y), denoted below
simply by φ.
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First, we note that the time-step operator transforms as

Ŵ (φ)∗ = Ŵ (−φ), (F1)

where the star symbol denotes the elementwise complex-
conjugation operation in the basis where the position operator
r̂ and σ̂z are diagonal. The transformation in Eq. (F1) holds in
the original time frame of the magnetic quantum walk [see
Eq. (1)], as well as in both chiral-symmetric time frames
[see Eq. (C3)]. We note that Eq. (F1) specified for φ = 0
indicates that the quantum walk in a zero field has particle-
hole symmetry, with the particle-hole operator represented by
the complex conjugation.

Second, by combining the complex conjugation (i.e., the
particle-hole operator) and chiral operator, we obtain an antiu-
nitary operator, which defines [100] the time-reversal operator
of the quantum walk. In any of the two chiral-symmetric
time frames (to be specific, we choose the one corresponding
to Ŵ ′), the time-reversal operator transforms the time-step
operator as

�̂Ŵ ′(φ)∗�̂† = Ŵ ′(−φ)†, (F2)

showing that for φ = 0 the quantum walk has time-reversal
symmetry, whereas for a nonvanishing magnetic field, the ef-
fective Hamiltonian is preserved under time-reversal operator,
provided that the magnetic field is simultaneously reversed.

Third, it is straightforward to show based on Eq. (F2)
that for each eigenstate of the time-step operator Ŵ with
flux φ, there is a corresponding eigenstate of Ŵ (−φ) at the
same quasienergy, and the two are related by the time-reversal
operator.

Fourth, the last result implies that the quasienergy bands
and band gaps are invariant under inversion of the magnetic
flux over the whole lattice. In addition, by inverting the
magnetic flux, the net number of edge modes crossing a given
quasienergy contained in a band gap is unchanged. However,
the propagation direction of these edge modes is reversed by
the time-reversal operator since this operator inverts the sign
of quasimomentum.

Hence, since the RLBL gap invariant is nothing less than
the net number of edge modes associated with a given edge,
its sign is reversed if the magnetic flux is reversed over the
whole lattice. Since the Chern number C of any set of bands
is equal to the difference of RLBL invariants above and below
that set of bands, it directly follows that C(−φ) = −C(φ).

APPENDIX G: FLOQUET TOPOLOGICAL INVARIANTS
FROM THE SPECTRAL FLOW

We present a method to calculate the Floquet topological
invariant R, which we have named RLBL after Ref. [42].
Instead of evaluating the rather involved three-dimensional
winding number of the “periodized” time-step operator (wind-
ing along quasimomenta kx, ky, and time t), we here apply
the method proposed in Ref. [65]. This method relates the
Floquet topological invariant of a certain quasienergy gap to
the spectral flow induced through the same gap by a fictitious
magnetic field β, which in the case of magnetic quantum
walks is added on top of the magnetic field B. Importantly,
the vector potential corresponding to the fictitious magnetic
field does not vary inside a magnetic unit cell.

FIG. 11. Spectral flow R calculated [65] as a function of
quasienergy E for a magnetic quantum walk with magnetic flux φ =
1
3 . Using Eq. (G3), we obtain the spectral flow induced by a small
change of an additional, fictitious magnetic field β : 0 → 2π/15,
assuming a fixed quasimomentum kx = ky = 1

10 , since the result does
not depend on the chosen quasimomenutm. The density of states,
normalized to the total number of states, is overlaid (colored areas) to
indicate the regions of bulk gaps and quasienergy bands. The spectral
flow is only defined in the band gaps (thick black lines), where it
yields the (integer) RLBL topological invariant R.

The magnetic-field operator F̂ is therefore modified to
account for the additional, fictitious magnetic field β:

F̂1(β, B) = exp[iσ̂z(β�x̂/q� + Bx̂)], (G1)

where �x/q� is the greatest integer less than or equal to x/q,
indexing the magnetic unit cells. The additional field takes
rational values β = 2π r/s, with r and s coprime integers. The
magnetic unit cell is therefore enlarged in the x direction, so as
to contain s q × 1 lattice plaquettes. In reality, for the purpose
of calculating R, as shown below in Eq. (G3), it is sufficient to
consider only β = 0 and 2π/s.

Since the direct application of the method in Ref. [65]
yields the RLBL invariant R for the quasienergy gap at E = π ,
in order to apply the same method for any arbitrary gap con-
taining the quasienergy Ẽ , we add to the time-step operator an
extra term exp(iẼ ), which shifts the quasienergy spectrum by
−Ẽ , modulo the Floquet zone. This is equivalent to redefine
the branch cut of the complex logarithm; see Sec. II A.

Thus, the time-step operator of the modified magnetic
quantum walk reads as

Ŵ1(β, B, Ẽ ) = eiẼ F̂1(β, B) Ŝy Ĉ Ŝx Ĉ. (G2)

Denoting the eigenvalues of Ŵ1 by exp[−iE j (β, B, Ẽ )], with
j = 1, . . . , 2sq, the Floquet topological invariant associated
with the gap comprising the quasienergy Ẽ can be simply
calculated as

R = 1

2π

⎛
⎝ 2sq∑

j=1

Ej (1/s, B, Ẽ ) −
2sq∑
j=1

Ej (0, B, Ẽ )

⎞
⎠. (G3)

Figure 11 shows the values of R obtained with the formula
in Eq. (G3), plotted as a function of quasienergy E . The figure
also reports the density of states, indicating the regions of the
bulk gaps and quasienergy bands. Our results showed that for
a quasienergy in a bulk gap, the corresponding invariant is
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independent of kx and ky, and agrees with the number of edge
states seen in the paper.

APPENDIX H: MOTIONAL EXCITATIONS

We derive the perturbative potential Ĥφ , which is shown in
Eq. (8), acting onto the walker when a spin-dependent linear
potential gradient is switched on and off stroboscopically.
According to Sec. III B, an artificial flux φ can be produced
by flashing for a time τ the spin-dependent potential gradient:

Ĥφ = h̄

τ
Bx̂ σ̂z , (H1)

where B = 2πφ is the magnetic field, and x ∈ Z is the lattice
site coordinate in the x direction.

In the limit of a deep optical lattice V0 
 ER, the potential
around a given lattice site can be approximated by a harmonic
potential with harmonic trap period τHO =

√
mλ2

L/V0 ; see
Sec. III A. Hence, by expressing the position operator in
Eq. (H1) in terms of the operators creating and annihilating
motional excitations,

x̂ = 1

π (8V0/ER)1/4
(b̂ + b̂†), (H2)

one can directly obtain Eq. (8).
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