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Observing crossover between quantum speed limits
Gal Ness1, Manolo R. Lam2, Wolfgang Alt2, Dieter Meschede2, Yoav Sagi1, Andrea Alberti2*

Quantum mechanics sets fundamental limits on how fast quantum states can be transformed in time. Two well-
known quantum speed limits are the Mandelstam-Tamm and the Margolus-Levitin bounds, which relate the 
maximum speed of evolution to the system’s energy uncertainty and mean energy, respectively. Here, we test 
concurrently both limits in a multilevel system by following the motion of a single atom in an optical trap using 
fast matter wave interferometry. We find two different regimes: one where the Mandelstam-Tamm limit con-
strains the evolution at all times, and a second where a crossover to the Margolus-Levitin limit occurs at longer 
times. We take a geometric approach to quantify the deviation from the speed limit, measuring how much the 
quantum evolution deviates from the geodesic path in the Hilbert space of the multilevel system. Our results are 
important to understand the ultimate performance of quantum computing devices and related advanced quan-
tum technologies.

INTRODUCTION
The celebrated energy-time uncertainty relation was given a rigor-
ous interpretation by Mandelstam and Tamm (MT) (1) as a lower 
bound on the time it takes a quantum system to evolve into a differ-
ent state. A second independent bound was formulated by Margolus 
and Levitin (ML) (2) in terms of the mean energy relative to the ground 
state. The maximum of these two times provides a unified bound for 
the quantum speed limit (3–5). This limit is relevant to understand 
the ultimate performance of quantum devices. It was studied in rela-
tion to quantum computing (6–9), parameter estimation in quantum 
metrology (10, 11), quantum information transfer (12), quantum op-
timal control (13), and thermodynamic devices such as quantum 
engines and batteries (14, 15).

In the simplest scenario of a two-level system (qubit), both MT 
and ML limits yield the same minimum time to reach an orthogonal 
state, which is the Rabi flopping time. The same holds for systems 
that can be effectively mapped onto two-level Hamiltonians, as was 
demonstrated by previous experimental investigations (16–19). How-
ever, quantum simulation and information processing devices rely 
on a far greater number of states and often include a nonvanishing 
coupling to the continuum. It is therefore essential to test quantum 
speed limits beyond the restricted Hilbert space of a qubit.

In this work, we study quantum speed limits in a clean manifes-
tation of a multilevel system—a single atom in a potential well of 
finite depth. The potential supports many bound states; yet, at the 
same time, it has a continuum of free particle states, which allow the 
atom to leave the trap. Using a fast excitation-interrogation scheme, 
we investigate the ideal case of a time-independent Hamiltonian    ̂  H   , 
where the quantum dynamics originates from an initial motional ex-
citation of the atom—a matter wave. In the limit of small excitations, 
we recover the qubit case, where the quantum evolution involves 
mainly two states. However, by increasing the excitation extent, we 
depart from this limit in a well-controlled manner to probe the mul-
tilevel contribution, to the point that the atom populates mostly 
unbound states in the continuum. Our measurements reveal that 
both speed limits provide relevant bounds on the system’s quantum 
dynamics. This result is in stark contrast to the case of a driven 

multilevel system, where the MT bound yields an excessively short 
time scale (20).

The MT bound constrains (21–23) the two-time state overlap 
∣〈(0)∣(t)〉∣ from below by means of the energy uncertainty E

   ∣〈(0)∣(t)〉∣≥ cos  (     Et ─ ħ    )     (1A)

in the domain 0 ≤ t ≤ MT ≡ ħ/(2E). Here, MT is the MT orthog-
onalization time, i.e., the minimum duration for the evolved state to 
become orthogonal to the initial one. The energy uncertainty follows 
(24) the conventional definition    E   2  = 〈   ̂  H     2 〉 −  〈  ̂  H  〉   2  .

The ML bound, on the other hand, constrains (3) the two-time 
state overlap from below by the mean energy  E = 〈  ̂  H  〉 

   ∣〈(0)∣(t)〉∣ ≥ cos  (    √ 
_

   Et ─ 2ħ     )      (1B)

in the domain 0 ≤ t ≤ ML ≡ ħ/(2E), with the ground state energy 
chosen to be zero. Similarly, ML represents the minimum orthogo-
nalization time according to the ML bound.

The left-hand side of Eqs. 1A and 1B can be understood as a mea-
sure of the change of the time-evolved quantum state with respect 
to the original one. In fact, the two-time state overlap relates directly 
to the distance covered by the quantum state as measured by the 
Fubini- Study (FS) metric in the projective Hilbert space (25), 
D[(0), (t)] ≡ arccos t ∣〈(0)∣(t)〉∣. This definition of distance 
allows interpreting the two inequalities as bounds on the quan-
tum state’s rate of change, i.e., as quantum speed limits.

Fast matter wave interferometry
The basic idea of our experiment is as follows. We start with an atom 
in the vibrational level n of an optical trap. The trap originates from 
a single site of a one-dimensional optical lattice, with a period of   
 ⁄ 2  = 433 nm  (see “Experimental sequence” section in Methods). Be-
cause of the deep lattice potential, tunneling between adjacent sites 
can be completely neglected when the atom populates the low-energy 
states. Subsequently, we suddenly displace the trap minimum by a 
distance x and let the atom slide down the potential hill. Last, after 
time t, we use fast matter wave interferometry to measure how far 
its quantum state has evolved. To speed up data acquisition, we av-
erage over an ensemble of about 20 atoms, sparsely filling the one- 
dimensional lattice.
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Our interferometry technique is illustrated in Fig. 1A. At t = 0, 
we put the atom in an equal superposition of two internal states, 
∣↑⟩ and ∣↓⟩, using a fast Raman pulse (see “Fast Raman pulse setup” 
section in Methods). Each spin state is subject to a different poten-
tial (26), U↑ and U↓ (see “Spin-dependent optical lattice setup” sec-
tion in Methods). The atom in state ∣↑⟩ experiences a x-displaced 
potential, as described above. Conversely, the atom in state ∣↓⟩ is 
maintained unchanged (up to a global phase) in the vibrational ei-
genstate n of its trapping potential, where it is originally prepared 
(27) before applying the Raman pulse. Thus, by such a splitting of the 
matter wave, we effectively create two copies of the same state, where 
one undergoes the intended downhill evolution, and the other re-
mains stationary, serving as a reference for the state at t = 0.

After a given evolution time t, we let the two copies interfere with 
each other by applying a second fast Raman pulse, akin to a Ramsey in-
terrogation scheme. Crucially, both Raman pulses must be much shorter 
than the time scale for the quantum state evolution, max{MT, ML}, 
which we anticipate to be in the microsecond range. In the experi-
ment, we achieve pulse durations as short as 45 ns, thus ensuring that 
their action is nearly instantaneous and not affected by the trapping 

potential. In addition, the two laser beams driving the Raman pulses 
are copropagating (see “Fast Raman pulse setup” section in Meth-
ods), ensuring that the momentum transferred to the atoms by the 
Raman process is negligible.

With this fast interrogation technique, we obtain all three quan-
tities needed to test Eqs. 1A and 1B: the two-time state overlap 
∣〈(0)∣(t)〉∣ as a function of time t, the mean energy E, and the 
energy uncertainty E. To this purpose, we record the probability, p↓, 
to find the atom in state ∣↓⟩ as a function of the Ramsey control phase 
φR, i.e., the relative phase between the first and second pulse. This mea-
surement yields a typical Ramsey fringe (Fig. 1B), characterized by a 
visibility V(t) and a phase φ(t) (see “Matter wave interferometry” sec-
tion in Methods). These two quantities combined yield the complex- 
valued overlap integral, 〈(0)∣(t)〉 = V(t) exp {− i[φ(t) + Ent/ħ]}, 
where En is the energy of the stationary state n, with the ground state 
energy chosen to be zero (E0 ≡ 0). Thus, the visibility directly gives 
us the two-time state overlap, i.e., the first of the three quantities to 
be measured.

We obtain E, the second quantity to be measured, from the phase 
of the Ramsey fringe, φ(t), by expanding it for short times (28)

  φ(t) = (E −  E  n  ) t / ħ + O( t   3 )   (2)

and knowing the energies En from sideband spectroscopy measure-
ments (27). Hence, tracking the phase evolution for short times, 
we extract E from the linear term of a fifth-order polynomial fit 
(Fig. 1C).

From the short-time expansion of the visibility (23), we obtain the 
third quantity to be determined, E

  V(t) = 1 −  (Et / ħ)   2  / 2 + O( t   4 )  (3)

This expansion establishes a relation between the short-time 
evolution and E, which is well recognized in the literature on the 
quantum Zeno effect (29). Thus, we obtain E by fitting to the mea-
sured visibility a polynomial curve (solid lines in Fig. 2). It is important 
to underline that the MT bound of Eq. 1A is a statement about the 
quantum evolution speed that, unlike Eq. 3, is not constrained to the 
short-time limit.

RESULTS
In Fig. 2, we present three representative datasets of the two-time 
state overlap, with n = 0 and initial displacements x set to 0.04    ⁄ 2   
(Fig. 2A),  0.08   ⁄ 2   (Fig. 2B), and 0.16    ⁄ 2   (Fig. 2C). Comparing the 
three datasets, we find that the two-state overlap drops at a faster rate 
for increasing values of x, meaning that the matter wave departs 
from its original state at a higher speed for increasingly larger exci-
tations. We compare the data points to the lower bounds as predicted 
by the MT and ML speed limits in Eq. 1A and 1B, using the values of 
E and E extracted from the fitting models in Eqs. 3 and 2, respec-
tively. The regions excluded by the two bounds are hatched in different 
colors. The remaining region is the one allowed by the unified bound, 
defined by the maximum of the two limits. From this comparison, we 
make two important observations. The first is that all data points fall 
within the allowed region, thus giving the first experimental confirma-
tion of the unified bound. Deviations from this bound are quantitative-
ly studied below. The second observation is that a crossover between 
the two limits is manifested in Fig. 2 (A and B): The two-time state 

A

CB

Fig. 1. Fast matter wave interferometry for testing quantum speed limits. 
(A) Illustration of the Raman-Ramsey measurement technique: (i) At t = 0, the atom 
is placed in a superposition of ∣↑⟩ and ∣↓⟩ states, each subject to a different period-
ic potential, U↑ and U↓. (ii) The atom with ∣↑⟩, initially displaced by x from the trap 
center, slides downhill and concurrently deforms by the anharmonicity of its po-
tential. The atom with ∣↓⟩ is in a vibrational eigenstate (n = 0 in this example), 
which remains unchanged. (iii) The probability of occupying ∣↓⟩ is measured as a 
function of the control Ramsey phase φR. The quantum states are displayed on the 
right-hand side up to a normalization factor. (B) Ramsey fringes measured as a 
function of φR for two selected evolution times, 300 ns and 2.2 s, with  x = 0.2   ⁄ 2  . 
Solid lines are cosine functions fitted to the data, with shades denoting the 1- 
confidence regions. Data points are normalized to account for atom losses (5%), 
and error bars mark the SE. (C) Fringe phase tracked as a function of time. Circled 
points correspond to the fringes displayed in (B). Solid line is a fifth-order polynomial 
fit containing only odd-power terms (52), used to extract E based on Eq. 2.
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overlap is bounded from below by the MT bound for short times 
(t < c) and by the ML for longer times (t > c).

Quantum-speed-limit crossover
To research the condition and origin of this crossover, we test a 
wide spectrum of experimental conditions, leveraging the great de-
gree of control and flexibility of our setup: The initial displacement 
can be controlled with subnanometer precision over the full range, 
 0 < x ≤ 0.5   ⁄ 2  . We excite mostly bound states for  x ≪   ⁄ 2   and, 
vice versa, mostly unbound states in the continuum for x at around 
 0.5   ⁄ 2  . Large displacements,  x > 0.25   ⁄ 2  , allow us, in particular, to 
test the speed limit for a nonharmonic potential, where the curva-
ture of the potential is inverted. Furthermore, we vary the type of 
excitation by choosing the shape of the initial atomic wave packet to 
have n = {0,1,2} nodes along the direction of the motional excitation. 
Since states with n > 0 differ starkly from Gaussian-like states, their 
quantum evolution is substantially different from that of semiclas-
sical matter waves.

We examine 34 combinations of parameters and record for each 
of them a dataset as those shown in Fig. 2. Inspecting each dataset 
individually shows that the vast majority are bounded by the MT 
limit only. However, in a few cases, a crossover to the ML bound is 
manifested at longer times, as exemplified in Fig. 2 (A and B). To ex-
plain the crossover condition, we display in Fig. 3 the extracted en-
ergy uncertainty E and mean energy E in terms of the reciprocal of 
the MT and ML orthogonalization times. The inset highlights cases 
where the crossover is clearly visible. Considering the functional 
form of Eq. 1A and 1B, we find that the crossover occurs when the 
orthogonalization times satisfy the condition MT < ML. The region 
defined by this condition is identified in the diagram by shades of 
color, with the color representing the crossover time,     c   =   MT  2   /    ML    
(0 < c < MT). This expression defines a general time scale, which 
applies to any quantum system evolving under a static Hamiltonian, 
because it derives directly from Eq. 1A and 1B. When MT < ML, we 
call it the ML regime, since the quantum state evolution is con-
strained by the ML bound for t > c. Conversely, we call MT > ML 
the MT regime, since the evolution is solely constrained by the MT 
bound for all times.

To obtain insight into the origin of the crossover, we gather the 
points in three different groups according to the quantum number 
n. The points falling in the ML region are only those with n = 0 and, 
in particular, those in the limit    MT  −1   ≲   HO  −1   , where HO ≡ 2/HO 
is the trap oscillation period in the harmonic approximation. This 
limit corresponds to small initial excitations, E ≲ ħHO, when only 
very few levels are involved, mainly the original vibrational level n 
and, with a small probability, the additional levels n ± 1 (or only 
level 1 when n = 0). To understand why this limit falls into the ML 
regime, it is sufficient to consider the limiting case of a qubit subject 
to a static Hamiltonian. Representing the qubit as a spin precessing 
around a fixed axis at frequency HO/(2) (see “The qubit case” sec-
tion in Methods), one finds that the condition for the ML regime, 
ML > MT, is fulfilled as long as the lower level is more populated 
than the upper level.

By contrast, for large excitations, the distribution of the many 
excited levels is highly localized as a function of energy (E < E), 
yielding an evolution in the MT regime (MT > ML). An example 
interpolating the two limiting cases of small and large excitations is 
obtained by considering a coherent excitation in a harmonic poten-
tial (dotted line, Fig. 3), where the population of the vibrational lev-
els follows a Poisson distribution. Notably, this curve fits well only 
the n = 0 series for sufficiently small excitations. Its failure to fit the 
rest of the data reveals that the matter waves tested here include but 
are not limited to the semiclassical case of coherent excitations.

Deviation from the speed limit
To gain insight into the mechanisms leading to deviations from the 
speed limit, we specifically consider the MT bound because it ap-
plies to both regimes. For a quantitative analysis, we take a geomet-
ric point of view, as proposed by Anandan and Aharonov (23), which 
relies on the FS metric as a measure of the distance between states in 
Hilbert space. They showed that the length of the path traced by the 
time-evolved state equals 𝓁(t) ≡ t/(2MT). On the other hand, the 
length of the shortest path (geodesic) connecting the initial state to 
that at time t amounts to the FS distance between the two states, 
𝓁geo(t) ≡ D[(0), (t)]. The MT bound in Eq. 1A can be expressed 
as 𝓁(t) ≥ 𝓁geo(t), which has a clear geometrical interpretation—the 

A B C

Fig. 2. Quantum speed limits in a multilevel quantum system. Measured two-time state overlap versus evolution time in (A), (B) and (C) for three displacements  x 
from the trap center. The initial state is chosen with n = 0. Colored regions are those excluded by the MT (pink) and ML (yellow) bounds. The crossover time between the 
two speed limits is marked by c. A sixth-order polynomial containing only even-power terms (52) is fitted to the data points (solid line), from which we extract E using 
Eq. 3. Shades around lines represent the 1 confidence region. Note that the x axis domain extends up to MT, whose value differs in each panel.
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MT bound is saturated only when the system evolves along a geo-
desic (30). Using the definition of D and the expansion in Eq. 3, we 
express the geodesic length as a series of powers of t/MT

   𝓁  geo  (t)/𝓁(t) = 1 −       2   ─ 48     (     t ─    MT     )     
2
  + O( t   4 )   (4)

where  is a dimensionless parameter empirically introduced to 
quantify the deviation of the state evolution from the geodesic. The 
foregoing geometrical condition, representing the MT bound, trans-
lates into  ≥ 0.

We obtain the deviation coefficient  from a polynomial fit of 
the measured FS distance 𝓁geo for each dataset examined above. The 
results are displayed in Fig. 4 as a function of the energy uncertainty 
E. As expected, all data points fall within the allowed region. Un-
expectedly, however, the points coalesce around  = 1 regardless of 
the wave packet shape, the potential’s anharmonicity, and for near-
ly all values of E, save for the limiting case of very small excitations, 
as discussed below. Such a coalescence hides a nontrivial relation 
with the energy uncertainty. In fact, for this result to hold, t in the 
power series in Eq. 4 must be expressed in units of MT, which, in 
turn, depends on E.

We attribute the observed strict deviations from the MT bound, 
 > 0, to the multilevel nature of our system. This result is in line with 
the well-known fact that only a qubit system can evolve along a geo-
desic (30) and thus saturate the MT bound. For a quantitative inter-
pretation of the deviation coefficient, we derive its expression in terms 
of    ̂  H    from the unitary evolution underlying the Schrödinger equa-
tion,  = (2 − 1)/2, where     2   = 〈 (  ̂  H   − E)   

4
 〉/  E   4   is the kurtosis of the 

energy spectrum. This expression reduces to  = 1 if we model the 

population of the vibrational levels by a Gaussian distribution as a 
function of energy.

It is nonetheless remarkable that the observed deviations are 
small on the scale of MT. We explain this observation by the well-
known fact in statistics that many tailed distributions relevant to 
describe energy excitations, such as coherent excitations, have a 
kurtosis around 3, thus yielding  ≈ 1 (see “Tailedness of spectral 
distribution as a measure of deviation from MT bound” section in 
Methods). Because of the small factor 2/48 in Eq. 4, we therefore 
conclude that the MT speed limit establishes a relevant bound on the 
evolution rate of a multilevel system subject to a time-independent 
Hamiltonian (see, e.g., Fig. 2C) in clear contrast to what was observed 
in time-driven multilevel systems (20).

The limit of small excitations, E ≲ ħHO, reveals qualitatively 
different physics, with values of  much larger than 1. To obtain 
further insight, we consider the limiting case of a qubit, for 
which we find     qubit   = 2(  E max  2   /  E   2  − 1) , where Emax = ħHO/2 
is the maximum energy uncertainty attainable by the qubit. This 
expression reveals a good agreement with the experimental data. It 
also shows that the bound is theoretically saturated (qubit = 0) for 
E = Emax, which occurs when the spin precesses along a great 
circle (the geodesic). In practice, however, this situation never occurs 
in our setup, since small excitations of the matter wave correspond 
to the case of the spin forming a very small angle with respect to the 
precession axis. In this limit, the evolved state is far from becoming 
orthogonal to the original one and, correspondingly, deviations from 
the MT bound are large on the scale of the orthogonalization time 
MT. This situation is well exemplified by Fig. 2A, which shows a 
cosine-like oscillation of the two-time state overlap, corresponding 
to a spin precessing with a small angle of about 40°. An interpola-
tion between the qubit case ( ≫ 1) and the foregoing multilevel 

Fig. 3. Quantum-speed-limit crossover. Measured orthogonalization times, ML and 
MT, displayed through their reciprocals, with n the quantum number characterizing 
the initial wave packet shape. Shades in color identify the ML regime, where a cross-
over manifests at time c, as opposed to the MT regime, where no crossover occurs. 
Inset highlights data points in the ML regime. The three points marked with arrows 
correspond to (A), (B), and (C) of Fig. 2. Solid lines show the expected curves computed 
with no free fitting parameters by numerical diagonalization of    ̂  H    (see “Spin-dependent 
optical lattice setup” section in Methods). The limiting case of a qubit (dashed line) 
and a coherent excitation (dotted line) are also shown. Values are expressed in 
units of the reciprocal of the trap oscillation period, which is around 16 s.

Fig. 4. Deviations from the MT speed limit. The measured coefficient  is plotted 
versus E for a wide spectrum of experimental conditions, varying the initial 
displacement x and the wave packet shape n = {0,1,2}. The pink line indicates 
the MT bound. Points corresponding to  x > 0.25   ⁄ 2   (nonharmonic regime) are 
highlighted by a surrounding circle. Note that, for better visualization purposes, 
the fourth root of  is plotted, as  is related to the fourth moment of the spec-
tral distribution.
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Gaussian case ( = 1) is obtained considering the previous example 
of a Poisson distribution, which yields HO = 1 + (ħHO)2/(2E2). 
The comparison of this curve with the experimental data shows an 
excellent agreement, which also holds for n = {1,2} (see “Deviation 
coefficient in the harmonic approximation” section in Methods).

DISCUSSION
Our study sheds light on two fundamental limits of quantum dy-
namics. We have tested them concurrently using matter wave inter-
ferometry in an infinite-dimensional system. The observation of a 
crossover between the two limits shows that the unified bound is 
what constrains the quantum dynamics of a system’s excitation. Such 
a crossover bears implications for any quantum system governed by 
a static Hamiltonian, because it is expected to occur whenever ML > 
MT, i.e., when the energy uncertainty is larger than the mean ener-
gy. This is particularly for the case of small excitations, when only a 
few levels are involved, as shown by our measurements probing the 
dynamics of a matter wave. Through our measurements, we have 
uncovered the relevance of multiple levels in determining the evo-
lution rate. Excitations of a multilevel system do not saturate the 
speed limit but, unexpectedly, reveal a universal deviation from it. 
This deviation is found to be small, despite the well-known fact that 
the MT bound can only be attained in a qubit system. Its small mag-
nitude is explained as a consequence of the small kurtosis of the 
spectrum of the matter wave excitations. We expect similar behav-
ior to apply to a large number of systems when excitations have a 
short-tailed spectrum, establishing the MT bound as a useful figure 
for the evolution time scale. Notable exceptions however exist when 
the excitation has a heavy tailed spectrum, as is the case of the Breit- 
Wigner distribution (31).

Key to our study is the ability to measure the two-time state over-
lap, which gives the FS distance covered by the evolving state. We 
emphasize the direct nature of this measurement, which, leveraging 
matter wave interferometry, does not require quantum state tomog-
raphy nor any prior knowledge of the spectrum of    ̂  H   . This tech-
nique is reminiscent of that used in Loschmidt echo experiments 
(32, 33), with the notable difference that one of the two branches 
of the Ramsey interferometer is held in our case stationary, so as 
to measure the FS distance from the initial state. In addition, we 
remark that our measurement of the FS distance is not limited to 
the manifold of states reachable by an adiabatic transformation, 
where the metric reduces to that defined by the geometric quantum 
tensor (34).

This work deals with quantum dynamics on the time scale of 
MT. However, the same matter wave interferometer technique de-
veloped here can be used to explore quantum state evolution on a 
much longer time scale. Furthermore, the same technique opens up 
the possibility to directly measure the FS distance in time-dependent 
systems, relevant for testing the quantum speed limit in the presence 
of an external drive (35, 36). We also envisage extensions of this tech-
nique to open quantum systems to measure the Bures distance—
Uhlmann’s generalization (37) of the FS distance to mixed states —for 
unitary (38) or nonunitary (39) evolutions. Understanding the quan-
tum speed limit of open quantum systems is an important ongoing 
effort (40–46). In the future, our results may find applications in 
quantum systems involving multiple levels, such as atomtronics 
(47), bosonic quantum computing (48), and quantum simulations 
in multilevel systems (49).

METHODS
Experimental sequence
An ensemble of 133Cs atoms is cooled in a three-dimensional magneto- 
optical trap and subsequently transferred into an optical trap consisting 
of a one-dimensional optical lattice formed by two counterpropagat-
ing laser beams with wavelength  ≈ 866 nm. A small ensemble of 
about 20 atoms is sparsely loaded into the one-dimensional optical 
lattice, with a vanishing probability of having more than one atom 
per lattice site because of losses induced by light-assisted collisions. 
The initial number of atoms is measured by collecting the fluores-
cence light emitted by the atoms when these are illuminated by near-
ly resonant laser beams. Subsequently, the laser beams are kept on for 
an additional 10 ms with a reduced intensity and a larger detuning 
to cool the atoms into a low-energy motional state. During loading, 
detection, and cooling of atoms, the lattice depth U0 is set sufficient-
ly large (kB × 370 K) to suppress the probability that an atom hops 
between lattice sites. Here, kB denotes the Boltzmann constant.

For the preparation of the atom state and the subsequent exper-
iments testing the quantum speed limits, the lattice depth is reduced 
to about kB × 26 K, corresponding to 270 ER, where ER = (2ħ)2/
(2m2) is the recoil energy of an atom of mass m. Because of the large 
value of U0/ER, tunneling between sites is completely negligible (see 
“Spin-dependent optical lattice setup” section) when the atoms 
occupy a low-energy motional state. For the low-energy motional 
states, the trap potential can be approximated by a harmonic oscil-
lator, with trap frequencies HO ≈ 2 × 66 kHz in the direction 
longitudinal to the lattice and ≈ 2 × 1 kHz in the transverse direc-
tions. We note that the harmonic approximation in the longitudinal 
direction only applies in the limit of small excitations, i.e., for  x ≲  
√ 
_

 ħ / (m    HO  )   , or equivalently, E ≲ ħHO. In addition, because of 
the large difference between the two trap frequencies, the excitations 
in the longitudinal direction and the transverse directions are de-
coupled. Such a decoupling between the longitudinal and trans-
verse motional degrees of freedom allows us to treat the quantum 
evolution of the matter wave as an effectively one-dimensional problem.

We use microwave sideband cooling (27) to cool the atoms along 
the longitudinal direction into the vibrational ground state and, simul-
taneously, optically pump them to the Zeeman state ∣F = 4, mF = 4⟩ 
of the electronic ground state. A bias magnetic field of 3 oriented in 
the lattice direction is used to define the quantization axis. The ground 
state population of the longitudinal motion is measured to be around 
≳ 96% using sideband spectroscopy. Subsequently, a microwave  pulse 
transfers the atoms to state ∣F = 3, mF = 3⟩. By tuning the pulse frequency 
to be resonant with one of the motional sidebands, we selectively trans-
fer the atoms into the desired vibrational level n of the U↓ potential. The 
pulse fidelities are 95, 85, and 68% for the eigenstates n = {0,1,2}, respec-
tively. The atoms that are not successfully transferred remain in ∣F = 4, 
mF = 4⟩ and removed from the trap using an optical push-out pulse.

With the atom initialized in the vibrational level n, we adiabati-
cally vary (see “Spin-dependent optical lattice setup”) in 300 s the 
relative position of the two lattices to reach the desired displace-
ment,  0 < x ≤ 0.5   ⁄ 2  , and then carry out the matter wave inter-
ferometer sequence, which consists of two fast /2 pulses separated 
by a time t and resonant with the transition between the internal 
states ∣↓⟩ = ∣F = 3, mF = 3⟩ and ∣↑⟩ = ∣F = 4, mF = 3⟩.

After the second /2 pulse, we remove the atoms in ∣↑⟩ with a 
second optical push-out pulse, increase the lattice depth, illuminate 
the atoms with nearly resonant light, and collect the emitted fluo-
rescence light. We renormalize the detected fluorescence by the 

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversitts- und L

andesbibliothek B
onn on D

ecem
ber 22, 2021



Ness et al., Sci. Adv. 7, eabj9119 (2021)     22 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 9

fidelity of the  pulse used to prepare the atom in the vibrational 
level n to compensate for the fraction of atoms removed by the first 
push-out pulse. The ratio between the renormalized fluorescence 
and the initially detected one yields an estimate of p↓. To gain suffi-
cient statistics, in addition to averaging over the ensemble of atoms 
loaded into the one-dimensional lattice, we average over 10 repeti-
tions of the sequence described above.

Fast Raman pulse setup
We use a pair of phase-locked laser beams to drive the fast pulses of 
the matter wave interferometer by means of resonant two-photon 
transitions. Before illuminating the atoms, the two beams are coupled 
into a common optical fiber and then sent through a double-pass 
acousto-optic modulator (AOM). By controlling the radiofrequency 
drive power of the AOM, we can temporally shape the intensity of 
the Raman pulses with nanosecond precision. On such a short time 
scale, the AOM intensity control exhibits a nonlinear response, which 
is taken into account and compensated using a lookup table. A sec-
ond optical fiber is used to overlap the Raman laser beams with one 
of the two laser beams forming the one-dimensional optical lattice 
(see “Experimental sequence”). Thereby, we ensure that the Raman 
beams overlap perfectly with the optical trap and that the momen-
tum transferred to the atom by the Raman transition is negligible, 
since the two Raman beams are copropagating.

The two Raman beams are red detuned by about 2 × 48 GHz 
from the cesium D2 line. Because of the large detuning, the proba-
bility of an off-resonant photon scattering event during the pulse 
duration is negligible (≈10−4). The frequency difference of the Raman 
beams is tuned to the hyperfine splitting of about 2 × 9.2 GHz, sep-
arating the two internal states ∣↑⟩ and ∣↓⟩. The two Raman laser 
beams illuminate the atoms with an individual power of 1.2 mW and 
the same circular polarization. This polarization enables -type tran-
sitions, since the quantization axis is collinear with the optical lattice 
(and thus with the Raman beams).

We achieve a high effective Rabi frequency R ≈ 2 × 6.5 MHz as 
a result of the high intensity of the Raman beams, which are tightly 
focused onto the atoms through a relatively small waist (≈17 m). Such 
a high intensity causes, in addition, a differential light shift of about 
12 MHz, which is taken into account by tuning the frequency difference 
of the two Raman beams to be resonant with the shifted transition. In 
the Ramsey interrogation scheme, this differential light field adds to 
the phase of the Ramsey fringe a linear shift in time by 81 rad s−1, 
which is subsequently subtracted from the Ramsey phase φ(t).

The Rabi frequency R is mostly homogeneous over the entire 
ensemble of atoms, thus ensuring a high fringe visibility ≳ 96%. We 
observe relative variations of less than 1% for atoms positioned at dif-
ferent lattice sites due to the collinearity of the Raman and lattice beams. 
The atoms have a small, but not vanishing, temperature of about 
1.5 K in the directions transverse to the lattice, resulting in a distribu-
tion of the atoms’ transverse positions and thus of the Rabi frequency. 
To reduce the inhomogeneous spread of the Rabi frequency, we use 
an additional blue-detuned hollow beam counterpropagating to the 
Raman beams to increase the confinement of atoms close to the opti-
cal axis, where the intensity of the Raman laser beams is maximal.

Spin-dependent optical lattice setup
The spin-dependent optical lattice setup is described in detail in (26), 
where a schematic illustration is also provided. We use two counter-
propagating laser beams, each linearly polarized with an angle  

between their linear polarizations, to create two superimposed opti-
cal standing waves of right- and left-handed circularly polarized 
light. Then, by controlling , we displace the two standing waves 
along their common axis by    x  sw  ( ) = ( /  )   ⁄ 2   with subnanometer 
precision.

The light shift exerted on the atoms by the two standing waves 
gives rise to two spin-dependent optical lattices, U↑ and U↓, which 
differ for the two spin states because of their specific polarization- 
dependent ac polarizability. At the wavelength , one can show that 
the potential U↑ comprises two contributions proportional to the 
intensity of the right circularly polarized light (relative weight 7/8) 
and the intensity of the left circularly polarized light (relative weight 
1/8); the same expression holds for U↓, with the two polarization 
circularities being exchanged.

The two potentials, U↑ and U↓, exhibit an ideal sinusoidal profile 
along the longitudinal direction, with a lattice constant equal to    ⁄ 2  . 
Because of both standing waves contributing to the lattice potential, 
the displacement x between the two lattices has a slightly nonlinear 
dependence on the polarization angle

  x() =     
 tan   −1  [    3 ⁄ 4  tan () ]  

  ─ 

      x  sw  ()  (5)

The trap depth U0 is equal for both lattices. However, it slightly 
depends on the polarization angle 

   U  0  ()/ U  0  (0) =  √ 
___________

    25 + 7cos (2)  ─ 32      (6)

again as a result of the contribution by both standing waves. The min-
imum trap depth is    U  0   (     ⁄ 2  )   =  3 ⁄ 4   U  0  (0 ) ≈ 200  E  R     occurring when 
  x (     ⁄ 2  )   = 0.5   ⁄ 2   . Because the trap depth varies with  (equivalently, 
x), the trap frequency also slightly depends on the displacement,   
  HO  ( ) =  √ 

____________
  2  U  0  ( ) / (m     2 )   .

In the deep lattice regime, U0 ≫ ER, the atom has a negligible 
probability to tunnel to adjacent sites when it populates a low-energy 
state. The low energy bands are virtually flat, and correspondingly, 
the tunneling time is much longer than the microsecond time scale 
of the experiment. For example, the band with index n = 0 has a 
tunneling time greater than 1 year. By contrast, the energy bands 
with n ≳ U0/(ħHO) ≈ 10 resemble the dispersion relation of a free 
particle. The tunneling time varies nearly exponentially as a func-
tion of the band index n, changing by more than 12 orders of mag-
nitude from n = 0 to n = 10. Hence, it is a very good approximation 
to consider states belonging to the low energy bands as effectively 
bound states, and vice versa states in the higher energy bands as un-
bound states.

Because states in the low energy bands have negligible tunnel-
ing, it suffices to consider the lattice Hamiltonian on a single site, 
assuming periodic boundary conditions, to numerically compute 
the initial wave packet for n = {0,1,2}. Thus, the Hamiltonian of the 
single lattice site is evaluated on a discrete grid of 1024 spatial points 
and used to calculate the low-lying eigenstates by numerical diago-
nalization. The eigenstates so obtained are then extended by zero 
padding, shifted by x, and then used to compute the mean energy E 
and energy uncertainty E of the optical lattice Hamiltonian   ̂  H   
over a lattice consisting of several sites. The theoretical curves in 
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Fig. 3 showing    MT  −1    as a function of    ML  −1    are directly obtained from 
the computed values of E and E.

Matter wave interferometry
The matter wave interferometer sequence shown in Fig. 1A is de-
scribed in detail below. At time t = 0, the atom occupies ∣(0)⟩ ⊗ ∣↓⟩, 
where ∣(0)⟩ ≡∣n⟩ is one of the motional eigenstates of U↓ potential. 
The first    ⁄ 2   pulse, acting nearly instantaneously (see “Fast Raman 
pulse setup” section), puts the atom in a superposition both of 
spin states

     1 ─ 
 √ 
_

 2  
   ∣(0)⟩ ⊗ (∣ ↓  ⟩ +∣ ↑  ⟩)    (7)

where the atom’s motional state remains unchanged during the short 
pulse. Afterward, the atom is let evolve for a duration t, resulting in

     1 ─ 
 √ 
_

 2  
   [    e   −i E  n  t/ħ ∣(0)⟩⊗∣ ↓  ⟩+∣(t)⟩∣⊗  ↑  ⟩ ]     (8)

expressed in the frame rotating with the hyperfine frequency of the 
transition between the two spin states. A second fast    ⁄ 2   lets the two 
branches of the superposition state interfere with each other, yielding

             e   −i E  n  t/ħ ∣(0)⟩−  e   i φ  R   ∣(t)⟩  ───────────────── 2   ⊗∣ ↓  ⟩ +      e   −i( E  n  t/ħ+ φ  R  ) ∣(0)⟩ + ∣(t)⟩  ───────────────── 2   ⊗∣ ↑  ⟩      (9)

where φR is the Ramsey control phase, which is varied by controlling 
the relative phase between the first and second pulse. Last, a push-
out pulse removes the atoms in state ∣↑⟩, and the probability p↓ of 
occupying state ∣↓⟩ is measured as a function of φR, producing a 
typical Ramsey fringe

   p   ↓    ( φ  R  ) =    1 − V(t) cos [ φ  R   − φ(t)]  ─────────────── 2     (10)

where the visibility V(t) and phase φ(t) are related to the complex- 
valued overlap integral, 〈(0)∣(t)〉 = V(t) exp { − i[φ(t) + Ent/ħ]}. 
The fringe phase is shifted by an offset, Ent/ħ, where En is the energy 
of the vibrational level n with respect to the ground state, E0 = 0, 
known by sideband spectroscopy (27).

Tailedness of spectral distribution as a measure of deviation 
from MT bound
In the section “Deviation from the speed limit”, the MT bound is shown 
to imply the inequality  ≥ 0, where  is a coefficient accounting for 
the tailedness (kurtosis) of the spectral distribution of the excitation

   =    〈 (  ̂  H   − E)   
4
 〉 −  〈 (  ̂  H   − E)   

2
 〉   

2
   ───────────────  

2  〈 (  ̂  H   − E)   
2
 〉   

2
 
     (11)

A normal distribution has a deviation coefficient  = 1. The dis-
tribution is said to be leptokurtic for  > 1 and platykurtic for  < 1. 
Leptokurtic are most of the tailed distributions describing excitations 
in a many-level system. By contrast, the most platykurtic distribu-
tion is notably the Bernoulli distribution with an equal probability 
of heads and tails, for which the deviation coefficient reaches its 
minimum possible value,  = 0. Such a distribution describes the 
excitation of a qubit with both eigenstates equally populated. Since 
the MT bound is saturated for this excitation, we thereby prove that 
 = 0 is not only a necessary but also a sufficient condition to satu-
rate the MT bound.

It is interesting to observe that the numerator in Eq. 11 is equal 
to the variance of   (  ̂  H   − E)   

2
   and must therefore be positive, thus pro-

viding an independent confirmation of the result derived from the 
MT bound.

An upper bound for the deviation coefficient  can be obtained 
when the spectral distribution of the excitation is bounded from 
above by an energy cutoff Ec. In this case, by making use of the 
Bhatia- Davis inequality (50), which constrains the variance of a 
random variate with a bounded probability distribution, we obtain 
the bound

    ≤   1 ─ 2   [  max  {    (      E  c   − E ─ 
E   )     

2
 ,   (     E ─ 
E   )     

2
  }   − 1 ]     (12)

where we used the fact observed above that the variance of   (  ̂  H   − E)   
2
   

is equal to the numerator of Eq. 11. From the properties of the Bhatia- 
Davis inequality, one finds that the upper bound expressed in Eq. 12 
is saturated when the excited states have their energy concentrated at 
either one of the endpoints of the spectrum. This occurs, in particular, 
in the limit of small excitations, referred in the section “Deviation from 
the speed limit” as the qubit case (see also “The qubit case” section), 
for which the ground state is populated with probability close to one. 
The right-hand side of Eq. 12 reproduces, in fact, the same behavior of 
qubit presented in the section “Deviation from the speed limit”, di-
verging as ħHO/(2E) for vanishingly small excitations. It should, 
however, be added that the bound in Eq. 12 is far from tight in the case 
of many relevant spectral distributions, such as the spectrum of a 
truncated coherent excitation. In this case, the spectrum resembles 
that of a Gaussian distribution when E ≪ Ec, producing  ≈ 1. In 
contrast, the right-hand side of Eq. 12 tends to be E/(2ħHO), which 
is much larger than 1 when ħHO ≪ E.

Deviation coefficient in the harmonic approximation
At t = 0, the excited motional state is equal to the vibrational eigen-
state ∣n⟩ displaced by x

  ∣(0)⟩ =  e   −i  ̂  p  x/ħ ∣n⟩  (13)

where    ̂  p    is the momentum operator. In the harmonic approxima-
tion, valid for sufficiently small excitations, the probability distribu-
tion for the case n = 0 is given by

   p  n = 0  ( n ′  ) =  ∣〈 n ′     ∣(0)〉∣   2  =    e   − ∣∣   2   ─  n ′   !    ∣∣   2 n ′      (14A)

where  ∣∣ =  √ 
_

 m    HO   / (2ħ)   x  is the amplitude of the corresponding 
coherent state (m is the atomic mass). Using pn = 0(n′) to compute  
in Eq. 11, one obtains n = 0 = 1 + (ħHO)2/(2E2). Note that, in the 
section “Deviation from the speed limit”, n = 0 is denoted as HO.

For the other cases, n = 1 and n = 2, the probability distributions 
in the harmonic approximation are

   p  n = 1  ( n ′  ) =    ( ∣∣   2  −  n ′  )   
2       

   ─ 
 ∣∣   2       

    p  n = 0  ( n ′  )  (14B)

       p  n = 2  ( n ′   ) =          ( ∣∣   4  − 2r  ∣∣   2  +   n ′     2  −  n ′  )   
2
    ──────────────────  

2  ∣∣   4 
    p  n = 0  ( n ′  )  (14C)

yielding the coefficients n = 1 = 1/3 + (ħHO)2/(2E)2 and n = 2 = 7/25 + 
(ħHO)2/(2E)2, respectively. Notably, the expression of  exhibits for 
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all three cases the same behavior in the limit of very small excitations, 
where mainly two states (n = 0) and three states (n > 0) are excited.

The qubit case
For very small excitations, ∣∣ ≪ 1, the excited state in Eq. 13 in the 
case of n = 0 reduces to two levels

  ∣(0) ⟩≈∣0⟩+ ∣∣∣1⟩  (15)

as in a qubit system. In general, a qubit precessing with frequency 
HO/(2) around a fixed axis at an angle  has E = ħHO sin ()/2,  
E = ħ    HO    sin   2 ( / 2) , and the two-time state overlap

  ∣〈(0 )∣(t ) 〉∣ =  √ 
___________________

  1 −  sin   2 ( )  sin   2 (   HO   t / 2)     (16)

In the case where the two states are equally populated,  = /2, 
the two-time state overlap in Eq. 16 saturates the MT bound in Eq. 
1A for all times, 0 ≤ t ≤ MT. In the case of no population inversion 
(0 <  < /2), as in Eq. 15, we have E > E, meaning that the qubit is 
in the ML regime. For the other case of population inversion (/2 < 
 < ), we remark that a bound equivalent to the ML bound in 
Eq. 1B can be derived considering the fact that the energy is limited 
from above

   ∣〈(0)∣(t)〉∣≥cos  [   √ 
______________

   cos   2 (/2)   HO   t/2    ]     (17)

To compute the deviation coefficient qubit, which is discussed 
in the main text, we directly apply Eq. 11 to a Bernoulli distribution 
with p0 = cos (/2)2 and p1 = 1 − p0.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj9119
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