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We present a scheme that uses Ramsey interferometry to directly probe the Wigner function of
a neutral atom confined in an optical trap. The proposed scheme relies on the well-established fact
that the Wigner function at a given point (x, p) in phase space is proportional to the expectation
value of the parity operator relative to that point. In this work, we show that parity-even and
parity-odd motional states can be mapped to two distinct internal states of the atom by using state-
dependent trapping potentials. The Wigner function can thus be measured point-by-point in phase
space with a single, direct measurement of the internal state population. Numerical simulations
show that the scheme is robust in that it applies not only to deep, harmonic potentials but also to
shallower, anharmonic traps.

Introduction. A basic principle of quantum mechan-
ics is that the motional state of a quantum particle is
completely described by a density matrix with complex
entries. It was shown by Wigner [1] that the same in-
formation contained in the density matrix can be encap-
sulated in a real-valued function in phase space. The
Wigner function thus establishes a complete representa-
tion of the motion of a quantum particle in phase space
[2, 3].

A unique property of this phase-space representation
is that the marginal distributions of the Wigner function
reduce to the probability densities in real and momentum
space [4, 5]. In contrast to classical probability distribu-
tions, however, the Wigner function of quantum states
can take negative values. This is the case for all pure,
non-Gaussian states [6]. One can indeed interpret neg-
ative values of the Wigner function as an indicator of
the state’s non-classicality [7]. Furthermore, unlike the
density matrix, the Wigner representation conveys visual
and insightful information about the motion of a quan-
tum particle. This visual character of the Wigner func-
tion, combined with the fact that it applies to both the
classical and quantum worlds, lends it ideally to the study
of decoherence phenomena [8]. Due to these properties,
the Wigner function is a useful tool in many research
areas ranging from fundamental studies in quantum op-
tics to applications in quantum information science and
quantum sensing [9].

There are two main approaches to obtain the Wigner
function experimentally. These are denoted as direct or
indirect, depending respectively on whether or not the
Wigner function W(x, p) can directly be obtained at a
specific point (x, p) in phase space [10].

In an indirect approach, one first reconstructs the en-
tire quantum state, e.g., by determining the density ma-
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trix, and subsequently derives W(x, p) through a math-
ematical transformation. A plethora of techniques have
been developed to first determine the quantum state by
measuring the Husimi Q function [11], probing other
phase-space representations [8], tomographically record-
ing rotated quadratures [12, 13], or determining the char-
acteristic function [14].

When using a direct approach, in contrast, one probes
the Wigner function point-by-point in phase space. For
this purpose, it is important that the Wigner function
W(x, p) can be defined operatively in terms of an ob-
servable [15, 16], which is given by the parity operator Π̂
displaced to the phase-space point (x, p) [17, 18]:

W(x, p) =
1

π~

〈
ψ
∣∣∣D̂(x, p) Π̂ D̂(x, p)†

∣∣∣ψ〉 . (1)

Here, |ψ〉 is the quantum state, and D̂(x, p) =
exp[i(p x̂− x p̂)/~] is the Glauber displacement opera-
tor, shifting the position and momentum by x and p,
respectively. The operators x̂ and p̂ are the canonical
position and the momentum operators. The value of
W(x, p) is directly obtained if one can measure the ex-
pectation value of the displaced parity operator, Π̂x,p =

D̂(x, p) Π̂ D̂(x, p)†.
For a trap potential that is invariant under Π̂, the dis-

placed parity operator Π̂x,p takes a simple, diagonal form
in the basis of the displaced Fock states |n〉:

Π̂x,p =

∞∑
n=0

eiπnD̂(x, p)|n〉〈n|D̂(x, p)†. (2)

The effect of this operator on the displaced vibrational
states can thus be understood as a phase shift of π for
the odd states and zero for the even states. A review of
the operator Π̂ as a quantum mechanical observable is
provided in Ref. [19].

Based on Eqs. (1) and (2), a direct measurement of
the Wigner function can thus be accomplished by first
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FIG. 1. Schematic illustration of the Ramsey interferometric scheme. At time τ0, a motional quantum state |ψ(τ0)〉 is prepared
in a known spin state |↓〉. Subsequently a π/2 pulse splits the state into an equal superposition at time τ1, with each component
of the superposition represented by blue and red lines, respectively, with the transparency reflecting their relative population.
At the time when the Wigner function is to be measured, τW , the potential is shifted abruptly (thick, black, dashed line)
by a distance x and subsequently kept moving (grey shaded region) with constant speed p/m, with m being the mass of the
atom, until a second π/2 pulse interferes the two states at time τ2. Between the two π/2 pulses, the spin-dependent potential
is changed for some for some probing time (shaded green-yellow regions) such that the atom experiences a different trap
frequency, ω↑ and ω↓, depending on its internal state. The differential trap frequency and probing time are chosen such that
the relative phase accrued by a given Fock state |n〉 is nπ, thus projecting states of opposite parity onto opposite poles of the
Bloch sphere when the internal state is finally measured at time τd. In the example illustrated here, a negative Wigner function
W(x, p) = −0.5/(π~) is measured.

measuring the state occupation probabilities Qn(x, p) =

|〈ψ|D̂(x, p) |n〉|2 of a set of displaced vibrational states,
and post-processing the measured data to evaluate the
sum W(x, p) =

∑∞
n=0(−1)nQn(x, p)/(π~). This method

was experimentally demonstrated, e.g., with trapped ions
[20] and coherent states of light [21]. Alternatively, one
can obtain the expectation value of Π̂x,p in Eq. (2) in
one single measurement by using Ramsey interferome-
try. This requires no post-processing of the measured
data, as originally proposed by Lutterbach and Davi-
dovich [22] for reconstructing the Wigner function of
trapped ions and the electromagnetic field of a microwave
resonator. The second of these two schemes was demon-
strated experimentally, reconstructing the Wigner func-
tion of the first two Fock states of microwave photons
[23, 24]. Nonlinear interactions between the electromag-
netic field and the Rydberg atoms that are used to mea-
sure the field parity, however, limit the measurement fi-
delity when the same scheme is applied to higher-order
Fock states [8]. Subsequent experiments with microwave
photons coupled to a superconducting transmon qubit
showed that nonlinear distortions can be greatly sup-
pressed in a strongly dispersive regime [25]. For neutral

atoms, indirect schemes based on the tomographic recon-
struction of the Wigner function have been demonstrated
with atoms in free space [26] and, very recently, in optical
tweezers [27]. However, to date, no counterpart scheme
has been put forward for the direct reconstruction of the
Wigner function.

In this paper, we propose a scheme to directly measure
the Wigner function of single neutral atoms trapped in an
optical potential. Our scheme employs a Ramsey inter-
ferometer to measure the expectation value of the parity
operator, closely resembling the seminal method devel-
oped by Lutterbach and Davidovich [22]. The basic idea
of the proposed scheme is illustrated in Fig. 1. We denote
the atom’s motional state with |ψ〉 and its internal state
as either |↑〉 and |↓〉; that is, the atom’s internal state is
a two-level system. We start with the atom at time τ0 in
a given motional and internal state, |ψ(τ0)〉 |↓〉, and then
create at time τ1 a quantum superposition of two copies of
the atom’s motional state, each associated with a differ-
ent internal state. At a later time τW , a sudden displace-
ment of the trap position jointly with an abrupt change of
its velocity realizes the displacement operator, producing
the state D†(x, p) |ψ(τW )〉 (|↓〉+ |↑〉)/

√
2 in the reference
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frame comoving with the trap. The atom is then subject
to a state-dependent trap potential in which the two orig-
inal copies follow different evolutions. By carefully mod-
ulating the state-dependent potential, one copy becomes
the mirror image (i.e., the parity symmetry partner) of
the other, thus creating effectively an equal superposi-
tion of D†(x, p) |ψ(τW )〉 |↓〉 and Π̂D†(x, p) |ψ(τW )〉 |↑〉.
Finally, by letting these two states interfere at time
τ2, we obtain the expectation value of the parity oper-
ator from the (signed) contrast of the Ramsey fringe,
C(x, p) = 〈ψ(τW )|Π̂x,p|ψ(τW )〉, which can be measured
without scanning the whole fringe, as will be shown
later. Hence, the Wigner function measured at the phase-
space point (x, p) can be simply expressed as W(x, p) =
C(x, p)/(π~).

In what follows, we elucidate the scheme in more
detail by first considering the ideal case of a harmonic
oscillator. We then proceed by discussing the more
realistic scenario of an anharmonic potential, focusing
on neutral atoms trapped in a deep optical lattice
potential. We show that the effect of the trap anhar-
monicity is greatly suppressed because the nonlinearity
of the optical potential affects, to first-order, both spin
states equally, and thus yields no contribution to the
Ramsey interferometric signal. We will discuss how
these results, including the common-mode suppression
of the anharmonicity, can be adapted to neutral atoms
trapped in optical tweezers.

Parity measurement in an ideal harmonic potential.
We consider the ideal situation of a harmonic potential,
where the eigenenergies E(HO)(n) depend linearly on the
harmonic trap frequency ω:

E(HO)(n) = ~ω
(
n+

1

2

)
− U0, (3)

Here, the term U0 accounts for the trap depth, i.e., the
energy shift caused by the trapping potential at its cen-
ter. This shift occurs in the typical situation of an optical
dipole trap that is red detuned with respect to the atomic
resonance.

Figure 2(a) provides a schematic illustration of the
operations for reconstructing the Wigner functions. To
begin with, we describe the interferometric Ramsey se-
quence, which allows us to measure the expectation value
of the parity operator Π̂. As shown in Fig. 1 and de-
scribed above, with a first π/2 pulse, the atom is prepared
in an equal superposition of the two internal states, |↑〉
and |↓〉. We then use state-dependent potentials [28, 29]
to independently vary the trap depths, U↑ and U↓, that
the atom experiences depending on its internal state. In
the case of an adiabatic modulation of the trap depth, for
any given Fock state |n〉, the accumulated phase differ-
ence between the two internal states during the Ramsey
sequence is given by the time integral

Φ(n) =

∫ τ2

τ1

dt ∆E(HO)(n, t)/~. (4)
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FIG. 2. (a) Schematic illustration of the Ramsey interfero-
metric sequence for measuring the Wigner function, showing
the two π/2 Ramsey pulses, the trap depths (left axis) for
the two internal states, U↑ and U↓, and the trap displace-
ment (right axis), which begins at τW . For reference, the
trap period is 2π/ω ≈ 18 µs at time t = 0. (b) The wavefunc-
tions of the motional Fock states, vertically shifted by their
motional eigenenergies, are shown for the two internal states,
together with the corresponding lattice potentials, on the left-
and right-hand side, respectively. Owing to parity symmetry,
the illustration would extend symmetrically for each internal
state into the other half-plane. Note that only states with
negligible tunneling probability are shown, and that the in-
ternal state energy is not considered in the illustration. (c) A
plot of the eigenenergies for the two internal states, E↑(n, t)
(red points) and E↓(n, t) (blue points), with lattice depths
U0,↑ ≈ kB × 27 µK and U0,↓ ≈ kB × 22 µK, respectively (kB
is the Boltzmann constant). The spacing between adjacent
levels is not constant due to the potential anharmonicity. For
reference, the spectra of a harmonic oscillator are shown with
dashed lines. (d) The differential light shift ∆En is plotted
vs. the Fock state n, with the dashed line showing the case
of an ideal harmonic oscillator. Deviations, expressed in rel-
ative units of ~ω, are below 0.1 for the lowest six vibrational
levels, owing to the first-order common-mode suppression of
the anharmonic contribution.

Here, ∆E(HO)(n, t) represents the differential energy, de-
fined as the difference between the instantaneous eigenen-
ergies, E(HO)

↑ (n, t) and E
(HO)
↓ (n, t), for the two internal

states. The differential energy consists of two terms,

∆E(HO)(n, t) = ~∆ω(t)n+ ∆E0(t), (5)
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where one term is proportional to n and the other not.
Moreover, ∆ω(t) = ω↑(t)− ω↓(t) denotes the differential
trap frequency, and ∆E0(t) = −U↑(t)+U↓(t)+~∆ω(t)/2
represents a differential energy offset, which only depends
on the trap depth and not the motional state. The sec-
ond term in Eq. (5) contributes to the Ramsey phase
Φ(n) with a fixed phase shift Φ0 =

∫ τ2
τ1

dt ∆E0(t)/~, in-
dependent of n. This spurious contribution can be con-
veniently cancelled by choosing the phase difference be-
tween the first and the second Ramsey pulses to be equal
to −Φ0. When this is the case, the accumulated Ram-
sey phase only depends on the contribution from the first
term, which is proportional to n. The aim is to modulate
the differential trap frequency ∆ω in time so as to satisfy
the condition

Φ(n) =

∫ τ2

τ1

dt ∆ω(t) = nπ. (6)

When this is the case, the second Ramsey π/2 pulse
transfers Fock states of opposite parity to opposing poles
of the Bloch sphere. Hence, a single measurement of
the difference w of the internal-state relative popula-
tions yields the signed contrast C = w of the Ramsey
fringe, from which one readily obtains the Wigner func-
tion probed at the origin, W (0, 0) = w/(π~).

The procedure described so far allows us to measure
the parity of the wavefunction and, thus, to probe the
Wigner function at the origin. To probe a generic point
(x, p) in phase space, we propose to abruptly change
the position and velocity of the optical trap at the in-
stant τW at which we want to record a snapshot of the
Wigner function W(x, p). At this point, the trap posi-
tion is shifted by x, and subsequently kept moving at
constant speed p/m, where m is the mass of the atoms.
By the equivalence principle, in the reference frame co-
moving with the optical trap, the change of position and
velocity corresponds to a displacement of the quantum
state as is implemented by the operator D(x, p)† appear-
ing in Eq. (1). Because the displacement operation is
spin-independent, one is free to apply the sudden shift of
position and velocity before the first π/2 pulse, thus in-
verting the order of τ1 and τW in Fig. 1 without affecting
the validity of the scheme.

Three remarks are in order. The first one regards the
temporal resolution of the Wigner function measurement.
This is determined by how sharply in time one can shift
the position and velocity of the trap. In fact, to avoid
blurring the reconstructed Wigner function, the displace-
ment operation must be faster than the typical timescale
of motion in the trap, which is set by the trap oscilla-
tion period. In contrast, the temporal resolution does
not depend on how fast the trap frequency is varied dur-
ing the Ramsey sequence. Rather, the trap frequencies
ω↑ and ω↓ must be changed sufficiently slowly, i.e., over
a timescale comparable or longer than the harmonic os-
cillation period, in order to avoid coupling between Fock
states.

The second remark pertains to the direct character

of the measurement. The experimental sequence need
be calibrated only once, e.g., when probing the origin
(x, p) = (0, 0) and need not be recalibrated for other
points in phase space. In fact, neither the condition on
the relative phase of the two Ramsey pulses, cancelling
the contribution Φ0, nor the condition in Eq. (6), realiz-
ing the parity operator, depend on the displacement op-
erator. As a consequence, the physical information about
the Wigner function is encoded entirely in the (signed)
contrast and not in the phase of the Ramsey fringe, mean-
ing that one can measure the relative population w di-
rectly, without scanning the whole fringe. Moreover, if
the measurement is performed on an ensemble of atoms
trapped in equal traps, in principle, even a single repeti-
tion of the experimental sequence is sufficient to directly
determine for any given point (x, p) the relative popula-
tion w and, thus, W(x, p).

The third remark deals with the adiabaticity require-
ment of the parity operation, which differentially mod-
ulates the trap frequencies ω↑(t) and ω↓(t). In gen-
eral, for a symmetric trap potential, the parity of the
state is preserved regardless of how fast the trap fre-
quencies are varied. However, parity preservation is not
sufficient to exclude parity measurement errors. One
must prevent that for the two internal states, differen-
tial motional excitations are created at the end of the
Ramsey sequence. Otherwise, the parity operation ap-
plied to a parity-symmetric state (i.e., an eigenstate of
the parity operator) produces Ramsey fringes with con-
trast less than unity. This arises because the two in-
terfering wavefunctions associated with the two internal
states consist of different Fock state populations due to
these motional excitations, with resulting parity values
no longer restricted to the discrete values of −1 and 1.
Such a detrimental effect can be avoided if the trap fre-
quencies are adiabatically varied so to entirely prevent
the instantaneous motional eigenstates from coupling to
each other; this is the approach followed in this work.
Alternatively, one could use optimal control methods to
determine faster modulation ramps [30], which, without
relying on the adiabatic criterion, can ensure a Ramsey
fringe with unit contrast for parity-symmetric states.

Parity measurement in an anharmonic potential. In
any real trap, the energy spectrum exhibits nonlinearity,
i.e., the spacing between the levels is not constant. The
reason for this is simply that the depth of any real trap
must be finite and therefore its potential becomes anhar-
monic as the energy increases. In contrast, an ideal har-
monic potential extends indefinitely in space and energy.
In this section, we analyze the effect of such nonlinearity
on the measured Wigner function, focusing specifically
on the case of atoms trapped in a single site of a deep
optical lattice. We note, however, that this technique
can be generalized to, e.g., atoms in tight optical tweezer
traps, as we discuss later.

We consider a one-dimensional optical lattice produced
by two counter-propagating laser beams of wavelength λ.
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Its periodic potential can be modeled as

U(x) = −U0 cos2
(

2π

λ
x

)
, (7)

where the trap depth U0 is proportional to the intensity
of the trapping light and is a positive quantity in the
case of a red-detuned dipole light-atom interaction. From
the extended eigenstates (i.e., Bloch states) of the lattice
Hamiltonian, one can derive states that are localized to
a given lattice site; see Fig. 2(b). These are well-known
as Wannier states [31].

In general, the Wannier states are not eigenstates of
the Hamiltonian. However, they can be considered as
such when site-to-site tunneling can be neglected on the
timescale of the experiment. This is the case for low-
lying Wannier states in a deep optical lattice, U0 � Erec,
where Erec = (~kλ)

2
/(2m) is the recoil energy for an

atom with mass m and a lattice with wavenumber kλ =
2π/λ.

For the symmetric potential in Eq. (7), the Wannier
states have the same parity as Fock states in a harmonic
oscillator. Based on this analogy, we refer henceforth to
them as Fock states and use the same notation |n〉 to
denote them. Figure 2(c) compares the instantaneous
eigenenergies E↑(n, t) and E↓(n, t) for the two internal
states, relative to the harmonic case, at the point where
the differential trap frequency ∆ω(t) has reached its max-
imum. The plotted eigenenergies are obtained by nu-
merical diagonalization of the lattice Hamiltonian where
the momentum and position operators are discretized on
a sufficiently fine grid, and the lattice is modelled as a
single site with periodic boundary conditions. The com-
parison shows deviations from a linear spectrum that in-
crease for larger n. These deviations can be estimated
by computing the energy spectrum using first-order per-
turbation theory [32],

En = E(HO)
n − 2n(n+ 1) + 1

4
Erec + ~ωO

(
E2

rec/(~ω)2
)
,

(8)
where ω = kλ

√
2U0/m represents the trap frequency.

While the term that is quadratic in n in Eq. (8) be-
comes rapidly significant as n increases, this term has
a much smaller effect on the differential energy ∆E(n).
The reason is that the quadratic term, being proportional
to Erec, does not depend on the trap depth and, thus
produces the same contribution for both internal states.
As a result, we expect that, to first order in perturba-
tion theory, ∆E(n, t) = E↑(n, t) − E↓(n, t) ≈ ∆EHO.
This common-mode suppression of nonlinear distortions
is confirmed by a numerical calculation of the differential
energy, as plotted as a function of n in Fig. 2(d). The
figure shows that deviations from the harmonic case are
much smaller than one might expect.

Experimental setup. In what follows, for concrete-
ness, we consider the experimental system described
in Ref. [33], where 133Cs atoms are trapped in a one-
dimensional lattice potential generated by two counter-
propagating laser beams with wavelength λ = 866 nm.

1

0

0 2 4 6 8

−1P
ar

it
y

Π̂

Fock state n

FIG. 3. Simulated measurement results of the parity in a
lattice potential vs. Fock state n. The experimental sequence
corresponds to measuring the Wigner function at the origin
in the phase space.

The two internal states are two hyperfine states, |↑〉 =
|F = 4,mF = 4〉 and |↓〉 = |F = 3,mF = 3〉, of the elec-
tronic ground state. Each lattice site can be occupied
by at most one atom, due to light-induced collisions in
a tight dipole trap potential [34]. The atoms are cooled
to the motional ground state using microwave sideband
cooling and transferred to a given Fock state |n〉 with
microwave sideband transitions [35].

For this study, we assume a lattice depth U0 = 18 µK
(equivalent to≈ 190Erec) at the beginning of the Ramsey
sequence, resulting in a trap period 2π/ω ≈ 18 µs. At
this trap depth, the probability of an atom tunneling to a
neighboring site during the Ramsey sequence is negligible
only for the lowest Fock states, n ≤ 5; for comparison,
the tunneling probability is of unit order for n ≥ 8. It
should be said that deeper traps hosting a larger number
of Fock states with negligible tunneling probability are
in general possible and, following Eq. (8), could be used
to reduce the effect of the anharmonicity.

With reference to Figs. 1 and 2(a), the two Ramsey
pulses can be realized using copropagating Raman beams
[36] or microwave radiation. These methods avoid trans-
ferring momentum to the atom that would otherwise alter
the motional state and, thus, the reconstructed Wigner
function.

For the displacement operation D̂(x, p), one can use
an optical conveyor belt [37], allowing for precise con-
trol of the position of the optical lattice. In fact, by
acting on one of the two laser beams forming the opti-
cal lattice, one can suddenly shift the position by x and
velocity by p/m of the trap at time τW by simply chang-
ing the phase and frequency of the laser beam by 4π x/λ
and 2p/(mλ), respectively. This can be done with an
acousto-optic modulator. In a real experiment, however,
one should consider the finite modulation bandwidth of
acousto-optic modulators, which causes a smoother vari-
ation of position and velocity, instead of a discontinuous
change as in the ideal case. To be realistic, we hence-
forth assume that the displacement operations vary the
trap position smoothly over a time of about 300 ns, cor-
responding to about 1/60-th of the trap period.

For the parity operation Π̂, the trap depth must be
differentially modulated for the two internal states so as
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FIG. 4. Reconstructed (top row) and expected (bottom row) Wigner functions for the Fock states n = 0, 1 and 5. The
displacements in x and p are normalized to the rms widths, ∆x0 and ∆p0, of the position and momentum operators evaluated on
the ground state, respectively. The color scale represents the Wigner function expressed in units of 1/(2π~). The reconstructed
Wigner function is obtained from a simulation of the proposed Ramsey scheme, based on a numerical integration of the time-
dependent Schrödinger equation. The dashed lines denote the phase-space points where the Hamiltonian equals zero; outside the
of these lines, a corresponding classical particle cannot be trapped. Despite the anharmonicity and finite depth of the potential,
where only six Fock states experience negligible tunneling and are thus bound to a given lattice site, the reconstructed Wigner
function shows remarkable agreement with the expected one. Discrepancies are most noticeable for larger n because these states
are spatially broader and experience a larger trap anharmonicity. The slight rotational distortion for n = 5 can be ascribed to
the finite duration (300 ns) of the displacement operator.

to fulfill the condition in Eq. (6). Such a change can be
performed by varying the polarization ellipticity of one
of the lattice beams, as demonstrated in Ref. [38], by
either using an electro-optic modulator or a polarization
synthesizer [29]. In this study, we consider a smooth vari-
ation of the trap depth over a duration of about 15 µs,
as shown in Fig. 2(a). This variation is sufficiently slow
that for the relevant, non-tunneling Fock states, n ≤ 5,
the probability of excitation is in the range of a few per-
cent. Appendix A describes a calibration procedure for
differential modulation of the trap depth so as to ful-
fill Eq. (6). To reduce the effect of anharmonicity, it
is advantageous that the trap depth of the two lattice
potentials, U0,↑ and U0,↓, is not only differentially mod-
ulated, but also increased at the same time, as shown
in Fig. 2(a). Thereby, the wave packet is adiabatically
compressed to the trap center, and the effect of anhar-
monicity is decreased, cf. the nonlinear correction terms

in Eq. (8), which scale with the powers of Erec/(~ω). It
should be remarked that a state-dependent variation of
the trap depth does not require a specific value of the
wavelength λ but only that at the chosen wavelength,
the differential polarizability of the atom does not vanish
[38].

For the state detection, a standard push-out scheme
can be used, which relies on a resonant laser beam to
remove atoms state dependently. Alternatively (and non-
destructively), state-dependent optical potentials can be
used to map atoms depending on their internal state to
different positions [39, 40] that are subsequently detected
by high resolution fluorescence imaging [41].

Simulation results. We numerically simulate the pro-
posed scheme for measuring W(x, p) based on the exper-
imental setup described in the previous section. To this
end, we solve the one-dimensional Schrödinger equation
for a time-dependent potential using the Strang split-step
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method [42], as done in Ref. [33]. The numerical simu-
lation allows us to model both the displacement and the
parity operations under realistic experimental conditions,
which includes considering the full lattice potential and
taking into account the finite modulation bandwidth.

For the ideal case of a harmonic oscillator, our simu-
lations show that the parity measurement performed at
the origin in phase space yields values in excellent agree-
ment with the theoretical expectation, with relative er-
rors smaller than 10−3 for the first ten Fock states. These
small residual deviations are ascribed to the creation of
differential motional excitations resulting from a small
violation of the adiabatic condition.

For a real lattice potential, deviations of the parity
measurement are more significant compared to the har-
monic oscillator case. This is because of the nonlinear
correction to the energy spectrum that prevents us from
fulfilling the parity operator condition in Eq. (6) for all
Fock states simultaneously. Figure 3 shows the simulated
parity measurement as a function of Fock state n relative
to the origin in phase space. The results show a near per-
fect measurement of parity until n = 6, where we expect
the fidelity to begin to degrade due to non-negligible tun-
neling, thus demonstrating the robustness of the scheme
against the anharmonicity of the trapping potential.

Figure 4 shows the main results of this work: The re-
constructed Wigner function is plotted for a few represen-
tative low-lying Fock states, n = 0, 1, and 5, in units of
the rms width of the motional ground state for the posi-
tion and momentum coordinates, ∆x0 =

√
~/(2mω) and

∆p0 = ~/(2∆x0). For comparison, we show in the same
figure the expected Wigner function, which is derived
numerically by applying the original definition [1] to the
quantum state at time τW . The striking similarity be-
tween the reconstructed and expected Wigner functions
attests to the high fidelity of the proposed measurement
technique, even for higher Fock states.

Discussion. The results presented in Fig. 4 are re-
markable, as we are able to probe states as high as n = 5
that extend in phase space nearly up to the zero-energy
isolines (dashed lines in the figure). When the displace-
ment operation reaches outside of these isolines, the atom
is no longer bound to the original lattice site but is free to
move away during the time of the Ramsey interferometer,
resulting in a drop of fidelity.

In a lattice potential, the measurement fidelity of the
proposed scheme is fundamentally limited by the finite
trap depth U0 and finite size of the lattice cell λ/2.
These two factors are responsible for the anharmonic-
ity of the trap potential. One possibility for reconstruc-
tion error occurs when the atom’s kinetic energy in-
creases by more than the trap depth U0, which occurs
when the radius p/∆p0 (and consequently r/∆r0, owing
to the dynamics in the trap) is comparable or exceeds
±
√

2(U0/Erec)
1/4 ≈ ±5. The other possibility for re-

construction error arises when the shifted atom is sub-
ject to a highly anharmonic trap with inverted poten-
tial curvature. This is the case when the shift is larger

than ±λ/8, corresponding to a radius x/∆x0 (and conse-
quently p/∆p0 owing to the dynamics in the trap) compa-
rable to or exceeding ±(U0/Erec)

1/4π/(2
√

2) ≈ ±4. An
even larger shift exceeding ±λ/2 results in the atom be-
ing trapped in the potential of the adjacent lattice site.
Hence, this analysis shows that for an optical lattice po-
tential, the two limits set by the finite trap depth and
finite lattice constant produce similar bounds in phase
space. Another limiting factor is the spatial homogene-
ity of the trap potential. We recall from Eq. (5) that
the differential phase acquired between the two internal
states for a given Fock state, Φ(n), depends both on the
differential trap frequency ∆ω and the differential energy
offset ∆E0. The energy offset, being dependent on the
trap depth, makes our proposed method sensitive to spa-
tial variations of the lattice depth. Moreover, it should
be noted that ∆E0 is a much larger quantity than ~∆ω,
since it scales with the trap depth, rather than the trap
frequency. Thus, when an ensemble of atoms sparsely
fills the lattice, a spatial variation of the trap depth pro-
duces an inhomogeneous broadening of the phase Φ0 of
the Ramsey fringe, which cannot be fully compensated
by suitably choosing the relative phase between the two
π/2 pulses. As a result, the Ramsey fringe contrast de-
creases and so does the visibility of the reconstructed
Wigner function. This detrimental effect can be avoided
by probing only few atoms at a time in a small homoge-
neous region of the lattice.

For similar reasons, it is important that the atoms are
prepared in the motional ground state (or any other well
defined state) in the two other spatial dimensions that
are not probed. Otherwise, an inhomogeneous spread of
motional energies (e.g., due to thermal motion in these
dimensions) would smear out Φ0 and consequently reduce
the visibility of the measured Wigner function.

Our proposed technique is not limited to optical lat-
tices but can also be applied to optical tweezers, provided
that sufficiently fast, coherent transport can be realized,
e.g. via electro-optic or acousto-optic deflectors [43–45].
It is challenging to realize high trapping frequencies in
optical tweezers, but a similar degree of common-mode
suppression of the anharmonicity can be expected be-
cause the energy spacing is also insensitive to the trap
frequency up to first order in perturbation theory, as
we show in Appendix B. Moreover, in this case, opti-
cal tweezers have only one potential minimum and the
potential goes to zero at infinity. Thus these potentials
do not have to deal with the effects of adjacent site tun-
neling. In this case, however, the atoms experience a
much weaker confinement and eventually will no longer
be trapped due to, e.g., gravity.

Finally, the proposed reconstruction technique is not
limited to any specific atomic species or trapping wave-
length. It is sufficient that the qubit state experiences
a vectorial differential light shift when the polarization
ellipticity is varied, as discussed in Ref. [38].

Conclusion. We have presented and numerically in-
vestigated a novel scheme to directly measure the Wigner
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function of neutral atoms trapped in an anharmonic po-
tential. We have discussed the measurement technique
using an optical lattice potential as an example, and we
are confident that the proposed scheme can also be ap-
plied to neutral atoms trapped in optical tweezers. Our
simulations suggest that the proposed implementation of
the parity operation is sufficiently robust to measure the
Wigner function of the lowest six Fock states in a trap
where only these six states have a negligible probabil-
ity of tunneling to an adjacent lattice site. The tem-
poral resolution is technically limited by how fast the
displacement operation can be implemented. Technical
challenges notwithstanding, the measurement fidelity is
ultimately limited by nonlinearities that arise from the
anharmonicity of the potential and, in the case of a lat-
tice potential, atom tunneling into adjacent sites.

The proposed scheme also appears to be experimen-
tally feasible. In previous work, we have demonstrated
fast displacement of lattice potentials for fast coherent
transport [33], the application of Ramsey interferome-
try to track the dynamics of a matter wave excitation
[36], and used a differential modulation of the trap depth
to interferometrically measure the optical potential land-
scape with high spatial resolution [38]. In the same pub-
lications [33, 36, 38], we have shown that the coherence
time of the atoms remains unaffected despite a state-
dependent modulation of the lattice position and depth,
which is implicitly assumed in the simulations presented
here. Thus, we hope that the proposed method, when
experimentally realized, can extend the toolbox available
for precise quantum state reconstruction and can inspire
other applications in the field of quantum metrology.
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of the German Research Foundation.

FIG. 5. Plot of the Ramsey fringe contrast as a function of the
hold time at the maximum differential trap frequency, with
P0 denoting the ground state fraction of a thermal state. The
same sequence as in Fig. 2(a) is applied with the displacement
set to zero. The optimal hold time is chosen as the time
when the contrast is minimized; this occurs when the phase
difference between states of opposite parity is π. We note that
the anharmonicity of the trap hinders a complete revival in the
case of small P0 because the number of Fock states occupied is
higher and thus the effect of the trap anharmonicity is greater.

Appendix A: Calibration procedure

The differential modulation of the trap depth must be
calibrated in order to satisfy Eq. (6). To that end, one
can apply to a thermal state the same sequence described
in Fig. 2(a). The displacement can simply be assumed
to be zero, although other values can be chosen since
this calibration is largely independent of the phase space
point chosen. To perform this calibration, one scans the
probing time in the unbalanced trap (though, the scan
parameter could also be the degree of trap imbalance at
a fixed probing time) and records the Ramsey fringe con-
trast. Figure 5 shows the simulated Ramsey contrast as
a function of the hold time, with clearly visible collapses
and revivals; the dashed vertical line in the figure indi-
cates the time of the first collapse. The amplitude of
the collapses increases as the probability P0 of occupy-
ing the motional ground state decreases, i.e., when more
Fock states are occupied by a given thermal state. Im-
portantly, a collapse occurs when the different occupied
Fock states have maximally dephased in the Ramsey se-
quence. This is the case when the condition in Eq. (6) is
fulfilled.

It might be beneficial to repeat this calibration pro-
cedure before probing points in phase space with signif-
icantly different p-values. This is due to the facft that,
when the atoms are dragged by the trap at the velocity
p/m for the duration of the Ramsey interferometer, they
experience the spatial inhomogeneity of the laser beams
forming the lattice. Without recalibration, the result-
ing variation of the trap depth can negatively affect the
condition in Eq. (6), as well as the condition for the can-
cellation of the phase shift Φ0.

Appendix B: Optical tweezers

The proposed scheme can be readily adapted to mea-
sure the Wigner function of atoms trapped in an opti-
cal tweezer produced by a tightly focused laser beam of
waist w. The optical tweezer potential in the transverse
direction reads U(x) = U0 exp

(
−2x2/w2

)
, where U0 is

the trap depth. In first order perturbation theory, the
energy spectrum resulting from the tweezer potential is

En = E(HO)
n − 3[2n(n+ 1) + 1]~2

8mw2
+ ~ωO

(
~2

mw2U0

)
.

(B1)
As with the spectrum of an optical lattice [cf. Eq. (8)],
the spectrum of an optical tweezer shows that the an-
harmonic contribution to the energy spacing is, up to
first order, independent of the trap frequency ω. We can
therefore expect a similar common-mode suppression of
the nonlinear contribution for tweezers as we discussed
for the case of an optical lattice. In addition, single tweez-
ers, in contrast to lattice potentials, have the advantage
that atoms cannot tunnel to a neighboring trap.
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