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Summary / Zusammenfassung

In this thesis I present my results concerning the coherent control of the quan-

tized motional state of trapped neutral Cesium atoms. This is accomplished using

microwave radiation in combination with a spin dependent potential confining the

atoms. I present both cooling of atoms close to the motional ground state and the

preparation of nonclassical motional states. In total, our apparatus is thus capable

to control the spin, the position along the periodic potential and the vibrational

state of the atoms.

In chapter 1 I give an overview of the experimental apparatus. Our setup is

designed to trap and to store on the order of ten atoms in a one dimensional optical

lattice. Fluorescence imaging in conjunction with a microscope lens system is used

to determine both the number and the position of the atoms. The spin degree of

freedom is manipulated using microwave radiation and the trapping potential allows

to shift the atoms to the ’left’ or to the ’right’ along the potential axis, depending

on their spin orientation.

In chapter 2 I discuss the coupling mechanism between the spin and the motional

degree of freedom. A microwave spectrum with a slightly displaced lattice exhibits

sideband peaks corresponding to a change of the vibrational quantum number. For

the full quantitative understanding I compare the experimental results with a the-

oretical model, which is also used to quantify possible decoherence mechanisms.

Based on this investigations, in chapter 3 I present the results for our ground

state cooling scheme, whereby the focuss lies on the peculiarities of our system. A

model based on master equations is used to analyze the present cooling limits. In

chapter 4, finally, two detection schemes for arbitrary motional states of an atomic

ensemble are presented. In particular, they are employed to verify the preparation

of nonclassical states.

In meiner Arbeit befasse ich mich mit der Manipulation der quantenmechanis-

chen Ortswellenfunktion von neutralen Cäsiumatomen, die sich wohl lokalisiert in

dem Potential einer Dipolfalle befinden. Dazu verwenden wir eine wenig untersuchte

Methode, die auf der Kopplung des äußeren Freiheitsgrades an den Spin der Atome

mittels Mikrowellenstrahlung in Kombination mit einem spinabhängigen Potential

beruht. Insgesamt bietet unser experimenteller Aufbau damit die Kontrolle über den
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Spinfreiheitsgrad, über die Position der Atome entlang des periodischen Potentials

und über die atomare Ortswellenfunktion in einem einzelnen Potentialtopf.

Kapitel 1 ist der Beschreibung des experimentellen Aufbaus gewidmet. Der

Aufbau ist dafür konzipiert worden, etwa zehn Atome in einem eindimensionalen

optischen Gitter zu speichern. Die Anzahl der Atome und deren Position ent-

lang der Potentialachse wird durch Abbildung des Fluoreszenzlichts mittels eines

Mikroskoplinsensystems bestimmt. Während der atomare Spin mittels Mikrow-

ellenpulse präpariert wird, erlaubt die Dipolfalle den Transport von Atomen nach

’links’ oder nach ’rechts’, abhängig von deren Spinausrichtung.

In Kapitel 2 wird die Kopplung zwischen dem Spinfreiheitsgrad und dem vibro-

nischen Zustand genauer untersucht. Ein Mikrowellenspektrum in einer Konfigu-

ration mit leicht versetzten spinabhängigen Potentialen weist Seitenbänder auf, die

von einem Wechsel der vibronischen Quantenzahl herrühren. Um den Mechanismus

quantitativ zu verstehen, vergleiche ich die experimentellen Resultate mit einem

theoretischen Modell, was außerdem zur Charakterisierung von Dekohärenzmecha-

nismen verwendet wird.

Basierend auf diesen Untersuchungen beschreibt das Kapitel 3 unser Kühlschema,

das wir dazu verwenden Atome in den Grundzustand zu kühlen. Der Schwer-

punkt wird dabei auf die Besonderheiten unseres System gelegt. Mithilfe eines

Modells, was auf Mastergleichungen basiert, lege ich weiterhin dar, wo derzeitige

Limitierungen liegen und wie das Schema erweitert werden kann. In Kapitel 4

schließlich, präsentiere ich Resultate zur Präparation einiger nichtklassischer Bewe-

gungszustände, und deren Detektion mittels zweier verschiedener Methoden.
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Introduction

Full control over a quantum system, or “quantum engineering”, is subject of ongoing
theoretical and experimental research in quantum optics. Such systems are on the
way to serve as quantum simulators for more complex physical phenomena in a
well controlled environment [1], and envision quantum information processing in
the future [2]. A very active part of the field is based on neutral atoms trapped in
optical lattices [3, 4]. In these systems quantum control concerns the internal state
of the atoms [5], the atomic position [6, 7, 8] including their quantum mechanical
center-of-mass motion [9, 10], the atom-atom interaction [11, 12, 13, 14, 15, 16] (or
the interaction between atoms and external fields), and, the possibility to selectively
manipulate each individual particle within a large ensemble [17, 18, 19].

The experimental setup built up during my work pursues the line of a bottom-
up approach. It comprises a deep one dimensional optical lattice which serves as
a storage place for on the order of 10 neutral Cesium atoms each confined to one
lattice site. Their positions along the lattice axis can be determined with single
site resolution using fluorescence imaging [20]. Moreover, atomic patterns can be
prepared by selectively removing atoms from an initially highly but irregularly filled
lattice [21]. Similar to the work presented in [17] we coherently manipulate the spin
of each atom using resonant microwave radiation. In the sense of quantum comput-
ing, this corresponds to imprinting the information of one qubit with the basis |0〉
and |1〉 onto two dedicated spin states. The entire atom string thus corresponds to
a quantum register where the information is stored in the internal states.

The goal of our setup is the investigation of coherent atom-atom interactions
mediated via cold collisions on a few particle scale. Such collisions provide the
physical means for entangling the internal state of several atoms [11, 12, 13, 14],
which is the basis for quantum information processing. An intrinsic requirement
for their realization is the ability to controllably place two atoms into the same
lattice site and to separate them again after the contact. Therefore, we employ
the technique of a spin dependent transport presented in [7], where the optical
lattice possesses the capability to transport an atom to the ’left’ or to the ’right’
depending on its spin state. Performing the transport with an atom prepared in
a spin superposition results in an atom interferometer or in a quantum walk (the
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quantum analog of the random walk [22]), when the spin rotation and the transport
are successively iterated several times [8, 23].

For the achievement of reproducible atom-atom interaction however, one further
degree of freedom must be brought under control, and this is the quantized center-
of-mass motion within a lattice site. An approved method for cooling close to the
ground state also working with a small number of atoms is the so-called sideband
cooling technique. It originates from the field of trapped ions where it was devel-
oped to perfection [24] and it was early on successfully transferred to the neutral
atom field [9, 25, 26]. It is a variant of laser cooling exploiting a narrow linewidth
laser transition which allows to resolve the energetic spacing between the quantized
vibrational states of the trapping potential. The technique moreover provides an
experimental tool for the coherent control of the vibrational state and plays a key
role in the realization of entanglement between several trapped ions [27, 28].

Within my work I have implemented a conceptually equivalent sideband cooling
scheme based on microwave radiation, which in contrast to lasers possesses a negligi-
ble photon recoil [29]. Instead, it employs the spin dependent lattice which provides
the required mechanical impact onto the atomic center-of-mass motion. Using this
cooling scheme I prepared and verified a 1D ground state population of 97% along
the lattice axis, which is limited by residual heating mechanisms and which is fully
competitive to previously reported results. An advantage of our scheme is the re-
duced number of required lasers which simplifies the experimental setup and which
is attractive for setups with a limited optical access [30, 31].

Starting from such a well defined initial state, I have demonstrated the coherent
control of the vibrational degree of freedom. The spin dependent lattice thereby
provides a simple mean to tune this operations, as they are directly related to
the overlap between different atomic wave functions (also called Franck-Condon
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factor). In particular, I present results of motional state manipulation beyond the so-
called Lamb-Dicke regime [32, 33, 34], where the displacement between two coupled
wave functions is equal to, or even exceeds the size of the motional ground state.
My investigations include a detailed analysis of present decoherence sources. The
presented tools allow to store qubits in a purely motional state [35] which potentially
is less susceptible to technical noise sources [36].

The detection of the motional state is accomplished by methods adopted from
the ion community [37, 24] which rely on coherent mapping of the motional state
onto the internal state of the atom. I finally present the results of a modified
detection procedure where atoms are removed from the lattice depending on their
vibrational quantum number. This method is less stringent to decoherence processes
and promises a more robust operation. As it is a projective measurement of the mo-
tional energy eigenstate it moreover allows to investigate quantum thermodynamical
properties [38, 39] in a well controlled environment.

Our new approach of motional control is appealing because of its experimental
robustness, and represents an alternative technique which offers a large degree of
flexibility and which can be employed in many existing setups.



Chapter 1

Experimental setup

1.1 Overview of the experimental apparatus

At the beginning the experimental setup is outlined at which the data presented
in this work are obtained. It is built for the controlled quantum mechanical manipu-
lation of single or a hand full of neutral 133Cesium atoms. The control methods have
been developed in the last few decades and are shortly summarized in this chapter.
A schematic view of the setup is shown in figure 1.1.

Vacuum chamber and optical table As usual in this kind of experiments, the
gas of the atomic species under investigation is isolated from the environment using
a vacuum chamber at room temperature. The ultra high vacuum of 3 10−11 mBar
is maintained by an ion-getter-pump. During the construction we payed attention
to place the ion-getter-pump with its strong permanent magnets as far as possible
from the trap position. To not reduce the pumping cross-section, we use large tube
diameters. The low pressure is a prerequisite for a negligible loss caused by collisions
between trapped atoms and atoms from the background gas.

In order to ensure a good optical access for the lasers and for the detection
lens system, the experimental region is situated in a glass-cell. The outer facets of
the glass-cell are anti-reflection coated in order to suppress laser power losses and
spurious laser reflections. Unfortunately, it was not possible to coat the inner facets.
Other, metallic, components of the vacuum chamber are fabricated out of very low-
magnetic stainless steel of the SAE-grade ’316LN’. The glass to metal junction of
the glass-cell is as well manufactured out of low-magnetic steel. This is done for
the purpose of a well defined magnetic field in the vicinity of the atomic sample,
as a spurious field affects the Zeeman levels of the atoms. For the same reason,
the optical table forming the platform for the main setup is built from ’316LN’-
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steel. The whole table is supported by self leveling legs which provide vibrational
isolation in order to ensure interferometric stability of the laser setup. This turned
out to be important for the nanometer precision of the atomic position detection
and manipulation [21]. All components including vacuum chamber and magnetic
field coils are rigidly mounted with respect to the table in order to achieve a common
frame of reference.
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Fig. 1.2: Term scheme for the cesium D2-transition.

Magneto optical trap The magneto-optical trap (MOT) is nowadays the work-
ing horse in experiments with cold neutral atom clouds [40]. Since its first ex-
perimental realization [41] it is reliably used in many experiments for capturing
atoms at room temperature and providing a Doppler-cooled atomic sample in the
sub-millikelvin regime. We have built up a retro-reflecting three-arm configuration
where two horizontal axes intersect with one vertical axis in the zero-field-point
of the magnetic quadrupole field. The MOT-coils in anti-Helmholtz configuration
above and below the glass cell generate a magnetic field gradient of up to 37 G/cm
along the symmetry axis of the coils1.

Both, the molasses laser and the repumping laser (see the term scheme in fig-
ure 1.2) required for the MOT are generated by external cavity diode lasers2 [42, 43].
They are frequency stabilized using Doppler-free polarization spectroscopy [44],
resulting in a linewidth of ∼1 MHz which is smaller than the natural line width

1 Current supply: Delta Elektronika SM70-45 D
2 Self made laser heads controlled by a Toptica DC110 unit
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(ΓCs=5 MHz FWHM) of Cesium [45]. The diode laser setup is situated on a sep-
arate optical table and the lasers are guided using polarization maintaining fibres
right to the vicinity of the glass-cell. The short paths ensure a stable MOT align-
ment over months. The frequency of the molasses laser can be tuned around the
F = 4 → F ′′ = 5 resonance using an acousto-optic modulator. It is additionally
used for a fast power regulation.

The beam waist radii at the position of the atoms amount to ∼1.4 mm, but
the retro-reflected beams are slightly smaller in order to compensate for the losses
after passing the glass-cell surfaces. The power of each molasses laser amounts to
180µW which corresponds to a peak laser intensity of approximately five times the
saturation intensity (1.1 mW/cm2). The molasses detuning is set to 10 MHz≈2ΓCs

with respect to the F = 4→ F ′′=5 transition and is experimentally optimized for a
fast MOT loading. The repumper required for returning atoms back to the cooling
cycle is resonant with the free atom F = 3→ F ′′ = 4 transition, its power is 15µW
and it co-propagates with the vertical molasses beam.

Optical setup for the lattice potential After the atoms have been captured by
the MOT within a few hundreds of milliseconds (this depends on the present partial
cesium pressure and on the number of required atoms) the atoms are transferred into
the dipole trap [46]. This trap is generated by a far off-resonant Titanium:Sapphire
laser beam 3 with a wavelength of λlat=865.900 nm. The incoming and the reflected
beam form a linearly polarized standing wave. An optical isolator4 prevents the
reflected beam from entering into the laser resonator. Due to the polarizability of
Cesium, the atoms are attracted towards the antinodes of the standing wave (see
section 1.2). It thus forms a one-dimensional conservative lattice potential

U(z) ∝ I0 cos2(klatz). (1.1.1)

Here, U(z) labels the trapping potential, I0 is the peak intensity at the position of
the antinodes and klat labels the wave vector of the trapping laser.

Laterally to the beam axis the atoms are confined by the Gaussian profile of the
trapping laser. For tight confinement the laser is focused down to a e−2 waist radius
of 20µm. This is accomplished by a lens system which apart from the custom-made
meniscus lens, is built up from standard spherical lenses5. Their details are listed
in table 1.1 and have been tested and optimized in advance with a lens simulation
software6. The lens system has to fulfill the boundary conditions defined by the size

3 Coherent MBR 110 pumped by a Coherent V18
4 Linos FI 660/110-8 SI
5 Thorlabs Inc. and Lens-Optics GmbH
6 OSLO optical design software, Lambda Research Corporation
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Tab. 1.1: Specification of the lens system for the lattice beam

lens type/focal
length (mm)

srfc.
nb.

radius of
curvtr. (mm)

distnc. to next
srfc. (mm)

material

L1: plano-concave 1 -51.0 4.0 BK7
-100 2 ∞ 68.47 air

L2: plano-convex 3 ∞ 6.7 BK7
175 4 -90.1 arbitrary air

L3: doublet 5 121.22 6.6 BAFN10
250 6 -146.14 2.6 SFL6

7 1235.9 243.19 +496.97 air/vacuum

L4: doublet 8 1132.4 2.6 SFL6
500 9 259.41 4.5 LAKN22

10 -346.7 arbitrary air

L5: plano-convex 11 154.5 5.1 BK7
300 12 ∞ 270.11 air

L6: meniscus 13 -8.956 3.0 BK7
-30 14 -22.96 500 air

of the vacuum chamber and, for the retro-reflecting part, by the free aperture of the
electro-optic modulator. A proper lens alignment turned out to be important for the
achievement of long coherence times of the trapped atomic sample (see page 18). The
verification of the alignment was checked using atoms as a probe for the generated
potential by measuring their radial and axial oscillation frequencies (see page 33 and
[47]). Within experimental uncertainty the measurement reproduced the simulated
beam waist and on-axis intensity.

The power of the lattice beam laser is actively stabilized by a servo loop acting
on an acousto-optic modulator (AOM). The servo has a bandwidth of ∼30 kHz and
provides an analog input port for the definition of the set-point which controls the
lattice depth. During the atom transfer and for atom detection the lattice depth
is set to 400µK which requires a single-pass laser power of 100 mW. The pointing
of the lattice beam is passively stabilized by shortening the free beam path using a
fiber line. Additionally, air turbulences have been suppressed by covering the exper-
imental table with curtains and by closing the brake-through in the table around the
vacuum chamber. From the measurement of the radial position fluctuation of the
trapped atoms the pointing fluctuation in the focal plane is expected to be smaller
than ±1µm [23].



6 1. Experimental setup

The main feature of the lattice is its capability to transport atoms state de-
pendent to the ’left’ or to the ’right’ along the lattice axis. This is accomplished
by controlling the polarization of the trapping laser. While the polarization of the
incoming beam is fixed by a polarizing beam splitter cube (PBS) the linear polar-
ization of the reflected beam can be rotated by a combination of an electro-optic
modulator7 (EOM) and a quarter wave plate wp4r in the retro-reflected path of the
lattice beam (see below). All other wave-plates8 are installed for convenience which
will be explained in more detail in section 1.2.

Observation optics and computer control After the atoms have been trans-
ferred from the MOT into the optical lattice, they are continuously illuminated by
the optical molasses. This firstly provides continuous cooling in order to counteract
present heating mechanisms, and secondly, the presence of atoms can be verified by
imaging their fluorescence onto an electron-multiplying-CCD camera (EMCCD9).
The magnification of the objective lens system amounts to 55.6 [20, 23, 48]. An
exemplary image of atoms trapped in the optical lattice is shown in figure 1.3. Such
images form one of the pillars of our experiment as they provide the information
about the number of trapped atoms and their positions along the trap axis down to
a single site resolution. Successive images of the same atomic sample additionally
provide information about the fluctuation of the lateral trap position and thus about
the pointing stability of the lattice beams.

In order to obtain images of good quality, first of all the molasses parameters
and the lattice depth are experimentally optimized for highest fluorescence rate,
but at the same time the atoms are not allowed to hop between the lattice sites.
The power typically used for the molasses lasers amounts to 60µW per beam and
leads to ∼1.8 times the saturation intensity at the position of the atoms. The
optimal molasses detuning is found to be 25 MHz red-detuned with respect to the
F = 4 → F ′′=5 transition. For the experimental data in this work the position
information is discarded because in first place only the atom number before and
after manipulations is important (see below). Furthermore, for the atom counting
a compromise between short experimental time and detection accuracy is made by
choosing an illumination time of 200 ms and by loading ∼20 atoms per shot. With
these settings the accuracy of the number determination is ±1 atom for each image.

The camera is read out by a computer software [23] which deduces the number
of detected atoms. The same computer is also responsible for the timing of the
experimental sequence for almost all devices. The PCIe-card10 provides analog and

7 Conoptics 350-80BK driven by the high voltage amplifier Conoptics 302RM
8 Custom-made zero order wave plates (specified for 867±0.3 nm; not true zero order)
9 Andor iXon DV887DCS-FI

10 National Instruments PCIe-6259
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Fig. 1.3: Image of atoms (a) before the microwave pulse and (b) after the state-selective
detection (200 ms exposure time). Panel (c) shows the corresponding his-
tograms after the images have been vertically binned. The analysis of the his-
tograms reveals that each atom equally contributes to the total count number
and that 5 out of ∼15 atoms have survived the manipulation.

digital outputs with a maximum time resolution of 2µs/sample. In some cases the
noise performance of the analog outputs is important. Fortunately, most of the
spurious signals lay far above 300 kHz and in addition most of them are correlated
with the cycles of the sample clock. For simplicity we specify a noise level of ±5 mV.
In some cases more serious is the crosstalk between different output channels which
in addition are affected by the EMCCD control card. This disturbances have been
suppressed by optimizing the grounding connections of all devices and by using a
buffer amplifier, but they could not be completely eliminated. Eventually, the mean
voltage of a given analog output channel can vary up to ∼10 mV , depending on the
load of the other channels. The shift of the output voltages is usually not checked
but it is static within the experimental sequences and thus leads to small systematic
deviations.

Preparation and detection of the atomic spin state The relevant hyperfine
structure of the Cesium is sketched in figure 1.4. A homogeneous magnetic field
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of 3 G along the trap axis defines the quantization axis11 and lifts the degeneracy
between the Zeeman levels. Three pairs of mutually orthogonal coil pairs compensate
residual magnetic fields at the position of the atoms. For the initialization of a
pure spin state the atoms are optically pumped to |F = 4,mF = 4〉. The two lasers
required for optical pumping are guided by a single fiber and are overlapped with
the axis of the lattice beam using an uncoated glass plate. A small residual angle
between the beam axes allows to block the optical pumping beam after it passes
the vacuum chamber so that it gets not reflected by the optics of the lattice beam.
The reflection of the circularly polarized optical pumping beam would otherwise be
strongly affected by the polarization optics of the lattice beam and would prevent
the preparation of a pure spin state. Eventually, with a power of 30 nW for the
F = 4 → F ′′ = 4 laser and of 7 nW for the F = 3 → F ′′ = 4 laser, the dark
state is populated with ≈98% of atoms within 10 ms. We attribute the remaining
initialization impurity to the angle between the quantization axis and the axis of
the optical pumping beams.
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Fig. 1.4: The Zeeman-levels of the 62S1/2 hyperfine ground states of cesium with ap-
plied quantization field. The state |F = 4,mF = 4〉 ≡ |44〉 is initially prepared
by optical pumping. Then microwave radiation coherently couples this state
to the |F = 3,mF = 3〉 ≡ |33〉.

The detection of the atomic spin is accomplished by removing all atoms in the
F = 4 hyperfine state using the vertical molasses beam which performs the ’push-
out’ (see figure 1.4, repumper is switched off) [6]. The duration of the state-selective
push-out pulse is set to 150µs, its power amounts to 15µW and it is set on resonance
with the F = 4 → F ′′ = 5 transition. In the lattice with a depth of 80µK (see
below) almost 100% of the atoms in the F = 4 hyperfine state are removed within
a timescale significantly shorter than the radial oscillation period of the trapped

11 Current supply Toellner TOE-8733
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atoms. At the same time almost all atoms in the F = 3 state remain trapped.
Using the push-out technique a basic characteristic parameter can immediately be
determined: By varying the waiting period between initialization and state-selective
detection we determine a spin relaxation time of T1 ∼100 ms. This value is limited
by off-resonant photon scattering of the trapping laser.

As indicated in figure 1.4, the outermost Zeeman-states |F = 4,mF = 4〉 ≡ |44〉
and |F = 3,mF = 3〉 ≡ |33〉 form the two-level qubit subsystem where all our spin
manipulations are performed. The spin rotation is accomplished by a magnetic
dipole transition in the microwave regime with a frequency around 9.2 GHz. The
microwave radiation is generated using a self assembled setup (see also [49] for
more details) basically consisting of a local oscillator12 at 9.04 GHz which is mixed13

with the output of a vector generator14 delivering ∼160 MHz. Both are referenced
to the 10 MHz signal of an atomic clock15. The power of the resulting signal can
be controlled using a PIN-diode attenuator16 and is subsequently amplified17 to
a maximum power of 41 dBm. Thereafter, the signal passes an isolator18 and a
bidirectional coupler19. Using a low-loss cable20, it is guided to a cut waveguide21

which finally irradiates the atoms. Eventually, the turnkey setup permits arbitrary
scans of frequency and phase and allows for arbitrary pulse shapes, in particular a
Gaussian pulse envelope.

1.1.1 Experimental sequence

All sequences begin with capturing Cesium atoms from the background gas within
100-500 ms whereafter on average 1-30 atoms are transferred into the optical lattice.
The MOT and the optical lattice are operated simultaneously for 50 ms. During this
period atoms loaded into the same potential well undergo light-induced collisions
[50] so that multiply occupied wells do not occur in the final atom string. Next, the
magnetic field gradient necessary for the MOT is switched off within 50 ms.

A first image with an illumination time of 200 ms provides their exact initial num-
ber. Subsequently, the molasses parameters are changed to optimize cooling within
the lattice. Typically, the power of the molasses beams is continuously reduced to

12 MITEQ, PLDRO-10-09040-3-15P
13 MITEQ, SSM0812LC2CDC
14 Agilent, E4432B
15 Stanford Research System, PRS10
16 MITEQ, MPAT-08001200-60-10
17 MITEQ, AMF-6B-08500950-40-41P-TTl
18 DITOM, DF6859
19 MITEQ, CD-702-1242-30s
20 Spectrum Elektrotechnik GmbH, 300-1300-11-11)
21 FLANN, 15040
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30 µW within 20 ms while their red-detuning is increased to 30 MHz. In the lattice
with a depth of 400 µK the achieved temperature of the atomic ensemble amounts
to ∼ 20 µK. The temperature is determined by measuring atom loss after adiabatic
lowering of the lattice depth [51]. For coherent manipulation of the atoms, the lat-
tice depth is ramped to 80 µK (20 mW laser power) within 20 ms. The lowering of
the trap depth adiabatically cools the atomic sample so that the final temperature
amounts to ∼ 10 µK. The depth of 80 µK is chosen by reducing the lattice depth
as far as possible, but leaving a conservative safety margin in order to prevent atom
losses. A shallow lattice leads to a lower off-resonant photon scattering rate, and
moreover, technical decoherence sources are suppressed (see section 2.4).

Thereafter, the atoms are manipulated by means of magnetic fields, microwave
radiation and laser light. For spin rotations, e.g., the quantization magnetic field
is switched on within 100 ms. An optical pumping stage with a duration of 20 ms
initializes all atoms in the |44〉 state. When microwave cooling is applied (see sec-
tion 3.1) most of the atoms additionally are cooled to the axial ground state. Subse-
quently, microwave pulses with a defined frequency, duration and pulse shape induce
Rabi oscillations between the states |44〉 and |33〉. Atoms remaining in the |44〉 state
are removed from the lattice and its depth is ramped up again to the initial value
of 400µK. Finally, a second image detects the number of remaining atoms.

In order to decrease statistical fluctuations, the entire sequence is repeated typ-
ically five times with identical parameters. The five repetitions yield five values
for the ratio between the initial and final atom number. Their mean value defines
the measured survival probability and their standard deviation determines the confi-
dence interval for the survival probability. This way, the error bar takes into account
the binomial distribution due to the statistical fluctuation of the atomic number,
errors of atom counting and fluctuating experimental parameters. By scanning one
experimental parameter, e.g. the microwave frequency, the survival probability for
each sample point is measured and finally yields e.g. a complete microwave spec-
trum.

1.1.2 Microwave operations

In this work, all spin operations are restricted to the two level subspace spanned by
the hyperfine ground states |44〉 and |33〉. The Schrödinger equation for this system
including the microwave coupling reads [52, 53, 54]

(
E44 ~ΩR/2

~Ω∗R/2 E33 + ~ωmw

) (
ψ44

ψ33

)
= i~

d

dt

(
ψ44

ψ33

)
. (1.1.2)
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Here, E44 and E33 denote the eigenenergies of the hyperfine states and ψ44 and ψ33

label the corresponding quantum mechanical coefficients. The microwave field is
characterized by its frequency ωmw which can be tuned in resonance with the atomic
transition ω0 = E44 − E33, and by its Rabi frequency ΩR (the asterisk denotes the

complex conjugate). The Rabi frequency and the magnetic field amplitude ~Bmw of
the microwave radiation are related via the transition matrix element

ΩR =
1

~
〈44|µ̂ ~Bmw|33〉, (1.1.3)

where µ̂ labels the magnetic dipole moment operator. In case of a constant Rabi
frequency (rectangular pulse shape) the solution of the Schrödinger equation is the
well known Rabi oscillation between the two states (for a two level system ΩR can
be chosen to be real)

P33(t) =
Ω2

R

Ω2
R + δ2

sin

(√
Ω2

R + δ2 t

)
. (1.1.4)

Here, P33(t) = |ψ33(t)|2 is the probability to find the atom in the state |33〉 and
δ = ωmw − ω0 is the detuning of the microwave field. In particular, this solution
can be found by calculating the eigenstates of the time independent Hamiltonian
in equation 1.1.2. This is the so-called dressed state picture of the combined atom
plus field system [54]. The time evolution of the eigenstates thereby becomes trivial
and formula 1.1.4 is immediately obtained by the transformation back to the original
basis. For more complicated pulse shapes the Schrödinger equation can be solved
numerically. An example of the measured microwave spectrum and Rabi oscillation
is shown in figure 1.5.

The model of the coherent evolution can be extended by phenomenological decay
constants in order to take into account decoherence effects [52]. The longitudinal
time constant T1 ≈100 ms, modeling the lifetime of the pure spin state, was already
mentioned above. The dephasing constant T2 = (196 ± 3) µs is measured by a
Ramsey experiment [23]. The homogeneous contribution to the dephasing constant
is measured by a multiple spin-echo technique, which eliminates all inhomogeneous
dephasing sources, is found to be T2∗ = (879 ± 5) µs. In our experiment, homoge-
neous dephasing is caused by fluctuations of the lattice potential and of the magnetic
field. Inhomogeneous dephasing mostly originates from the thermal motion of the
atoms. In my thesis I will not consider this global decoherence constants. Instead,
as discussed in the next chapter, the Schrödinger equation 1.1.2 will be extended in
order to take into account the quantized axial motional. In this system, decoherence
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Fig. 1.5: A spectrum (a) of a Gaussian microwave pulse showing the resonance peak for
the |44〉 ↔ |33〉 transition. The 1/

√
e width of the pulse amounts to 15 µs.

The resulting 1/
√
e frequency width of (15.0±0.1) kHz is only slightly broader

than the Fourier limit of 14.1 kHz. (b) Rabi oscillation at full microwave power
with ΩR = 2π 59 kHz.

will be investigated for each individual microwave transition affecting both the spin
and the vibrational state.

1.2 The spin-dependent optical lattice

1.2.1 The magic wavelength

When the theory of the AC-Stark shift is applied to a simple two level atom which
is driven by an off-resonant laser field, one finds that atoms in the ground state
are attracted towards the intensity maxima of the laser for the red-detuned case
(negative potential (well)), and are repelled from them in the blue-detuned case
(positive potential (hill)) [46]. For multilevel atoms, due to their vector polarizabil-
ity [55, 56, 57], the lattice potential becomes spin dependent (proportional to the
mF quantum number), once circularly polarized components are present. For alkali
atoms this effect is particularly pronounced for a lattice laser with a wavelength
in-between the two D-transitions. In the perturbative calculation of the lattice po-
tential the AC-stark shift (also called light shift) of an unperturbed state is computed
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by taking into account the coupling to all other unperturbed states whereby selec-
tion rules are considered. As the contributions are scaled with the detuning of the
lattice frequency with respect to the considered transition, only the most ’resonant’
transitions are relevant. In our case, only the first excited states 62P1/2 and 62P3/2

are taken into account for the calculation of the light shift of the 62S1/2-ground
state. In detail, perturbation theory is used up to second order whereby only the
dipole transitions are taken into account for which the rotating wave approxima-
tion is used. Additionally, the calculation exploits experimental data on transition
strengths (more details can be found in [58]). In figure 1.6 the situation for a purely
circularly polarized lattice beam is presented. Qualitatively, in case the hyperfine
structure is disregarded, a ’magic’ wavelength can be found. For this wavelength the
two ground states | − 1/2〉 and |1/2〉 experience a light shift potential exclusively
generated by one of the circularly polarized components. This is due to the fact
that for the ’wrong’ polarization the blue detuned and the red detuned light shifts
cancel each other.

For an intuitive picture of our lattice potential, the linearly polarized counter-
propagating laser fields can be decomposed into their circular components. This
decomposition is more convenient, as the quantization axis is oriented along the
lattice beam propagation and the two components induce σ+/−-transitions, respec-
tively. For each Zeeman state and for each circular component the light shift can
thus be computed independently and the total potential is obtained by a simple sum
over both polarization components.

The same approach can be used when the hyperfine structure is taken into ac-
count. The calculation of the two potential contributions for our qubit states is
shown on the right side of figure 1.6. Unfortunately, for this states there is no
unique wavelength any more satisfying the ’exclusive potential’ condition. All data
presented in this thesis are measured using the ’magic’ wavelength for the |44〉 state
(865.900 nm) so that it is exclusively trapped by the σ+ polarized component. For
this wavelength the potential for each qubit state can be written as

U44 = c44+Iσ+ + c44−Iσ− ≈ c44(
8

8
Iσ+ +

0

8
Iσ−)

U33 = c33−Iσ− + c33+Iσ+ ≈ c33(
7

8
Iσ− +

1

8
Iσ+). (1.2.1)

The coefficients cxx,ρ denote the scaling factors between the light intensity and the
trapping potential for each Zeeman state xx and each polarization ρ. The approx-
imation holds when the hyperfine splitting of 9.2 GHz between the ground states
|F = 4〉 and |F = 3〉 is neglected with respect to optical transitions. The ratios
between the scaling factors are then determined by the Clebsch-Gordon coefficients.
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Fig. 1.6: (left) When the lattice laser is red-detuned with respect to the D2 transition
but at the same time blue-detuned with respect to the D1 transition their
light shift contributions can cancel each other. (right) Wavelength dependent
calculation of the spin dependent potential contributions (taking into account
the hyperfine structure) for the two circularly polarized components (for a
lattice beam power of 20 mW). In contrast to the fine structure approximation
on the right side, no wavelength exists for which the states |44〉 and |33〉
possess exactly complementary coupling strengths.

In the experiment, each of the circular components forms a standing wave. As
long as the linear polarizations of the incoming and the retro-reflected lattice beams
are parallel to each other both standing waves identically overlap. Thus, the dipole
trap potential is (almost) identical for any ground state |F,mF〉 because the sum
of the left handed and the right handed contribution is always the same. This is
important, as during the illumination of the atoms by the near resonant optical
molasses the hyperfine state is changed continuously. Despite this fact each atom
remains trapped in its initial potential well. Once the polarizations of the counter-
propagating beams encloses a finite angle ϑ, the spin dependent nature of the lattice
potential, immediately becomes evident.

1.2.2 Controlled shift of the potentials

By means of the setup sketched in figure 1.7 the two circularly polarized standing
waves can be shifted with respect to each other [7]. In the linearly polarized basis
this corresponds to a relative rotation of the polarization planes of the counter
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propagating laser beams. The linear basis is more convenient for the experimental
purpose as the polarization is analyzed by ’linear’ beam splitters (unfortunately,
there’s no beam splitter which works directly in the circular basis).

mirror
transport

EOMatoms
λ/4 wave

plate

ξ1ξ f

ξs

ξ2

45°

x

y

z ϑ

Fig. 1.7: The setup which performs the lattice shift by rotating the angle of the linear
polarization of the reflected beam. The principle axes of the electro-optic
modulator (EOM) are labeled by ξ1 and ξ2, those of the quarter wave plate by
ξf and ξs (fast and slow axis). The polarization angle ϑ between the counter-
propagating beams is related to the voltage controlled retardation phase of
the EOM by ϑ = φEOM.

When talking about the lattice potential the more intuitive picture is drawn using
the circular basis. In this picture the incoming laser beam is a superposition of two
circularly polarized light fields with equal field amplitudes. Moreover, the relative
phase between both fields is zero. After passing the quarter wave plate wp4r each
of the components is transformed into linearly polarized fields. They are mutually
orthogonal and exhibit a rotational angle of 45◦ with respect to the (fast and slow)
axes of the quarter wave plate. The axes of the subsequent electro-optic modulator
(EOM) are aligned to be collinear with one of the linear field components, respec-
tively. According to the applied voltage the EOM retards one of the components
with respect to the other, so that the two transmitted fields exhibit a defined phase
difference φEOM. After retro-reflection the phase difference is doubled which is one of
the advantages of this setup. Subsequently, the quarter wave plate wp4r acts again
as a converter between the linear and the circular basis. Altogether, the described
setup introduces a well controllable phase shift between the circular components of
the reflected beam and accordingly the standing wave intensity pattern Iσ+/σ− of
both components is shifted with respect to each other

Iσ+/σ− = c ε0 〈(E0 cos(klatz − ωlatt) + E0 cos(−klatz − ωlatt± φEOM))2〉t

= 2 c ε0E
2
0 cos2(klatz ∓

1

2
φEOM/2). (1.2.2)
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Here, E0 labels the electric field amplitude of the trapping laser, which is assumed
to be the same for both circularly polarized components and for the incoming and
the reflected beams; klat and ωlat = c klat label the wave vector and the frequency
of the trapping laser, respectively (c is the speed of light), and 〈〉t denotes the time
average over optical frequencies. The phase φEOM labels the single-pass retardation
introduced by the EOM whereby the sign is opposite for both components. For the
definition of the standing wave shift, let us assume that without applied voltage two
marked antinodes lay on top of each other. Their separation is then defined by the
relation

∆x/(λlat/2) = φEOM/π. (1.2.3)

When the retardation becomes equal to π/2, the nodes of one standing wave is
exactly at the position of the antinodes of the other standing wave. They overlap
again when the retardation amounts to π.

In the picture of the linear polarization we note that, in the ideal case, the
reflected circular components have still equal amplitudes. They thus add up to
a single purely linearly polarized field. The phase difference between the circular
components, however, results in a rotated polarization plane. The relative angle
between the incoming and the reflected polarization planes is defined by the relation

ϑ = φEOM. (1.2.4)

The advantage of using the presented EOM setup for the control of the lattice
shift is first of all, that the optical path for both circularly polarized components
is identical. This means that apart from the controlled retardation induced by the
EOM their relative phase is not sensitive to e.g. mirror positions. Alternative shift
setups can be realized using interferometers which would require a stability close
to λlat/1000 in order to be competitive. The Faraday effect could also be exploited
for the realization of a dynamic polarization rotation, but, at present, there are no
commercial devices which satisfy the requirements of high speed and large rotation
angles.

The one-dimensional lattice potential is defined by the equation 1.2.1 whereby
the standing wave intensity distribution from equation 1.2.2 has to be inserted. For
our wavelength the potential U44 is just proportional to the intensity profile Iσ+ and
thus directly follows its movement along the lattice axis (see figure 1.8). For the
potential U33, though, due to the mixing of Iσ+ and Iσ− the shift of the intensity
pattern is accompanied by a wobbling of its depth. Hereby the total trap depth
must be distinguished from the axial trap depth Uax (also called trap contrast). The
first value defines the depth with respect to a free atom and thus is identical to the
radial confinement. It varies between 1 (in terms of maximum depth) in case of zero
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Fig. 1.8: (left) Axial shift of the potentials U44 and U33 depending on the polarization
angle ϑ. (right) (a) The distance between neighboring potential minima of
U44 and U33. Due to the mixing of the polarization contributions for U33 the
distance evolves slightly nonlinearly. This also entails a wobbling of the U33

potential resulting in a change of its contrast (b) and its total depth (c) during
the shift.

shift and 7/8 when the polarization angle is ϑ = 90 ◦. The second value characterizes
the axial confinement which varies between 1 and 3/4 and thus is different from the
radial depth. The mixing of the intensities moreover introduces a nonlinearity for
the shift ∆x and the polarization angle ϑ. All these effects are measurable in the
atomic microwave spectrum as will be presented in section 2.

Alignment of the polarization optics By design, due to the choice of the
wavelength and the orientation of the quantization axis, our lattice potential is
dependent on the atomic spin. For this reason the potential strongly affects the
microwave transitions between the light-shifted atomic states and thus their coher-
ence. For comparison: The trap depth of 80µK corresponds to 1.6 MHz in terms of
frequency, but the microwave resonances are measured with sub-kHz precision. A
small elipticity of the trapping laser polarization immediately shifts the position of
the microwave spectrum. The common experimental figure of merit for the purity
of the linear polarization is the extinction ratio of two polarizers when a ’probe’ is
placed between them. It is defined by the ratio between the power of the incident
and the transmitted laser light, after the analyzing beam splitter is rotated to the
minimum transmission. It turns out that at the current status of the experiment a
variation of the extinction ratio of the order 10−5 shifts the microwave spectrum by
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several kHz (compare figure 1.9 to the spectrum in figure 1.5) [59].
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Fig. 1.9: A significant change of the relative depth of the potentials U44 and U33 can
easily be introduced by a slightly elliptically polarized trapping laser. As an
example, the trap depth ratio (left axis) depending on the extinction ratio of
the reflected beam is presented. A change of the trap depth ratio directly
alters the resonance frequency of a microwave transition (right axes). See
also section 2.4.

Note that in the setup, apart from the retro-reflected mirror, there are no further
mirrors installed in the path of the lattice beam after the polarizing beam splitter
cube which defines the polarization of the incoming beam. This is because mirrors
in general introduce a phase shift between the horizontal and the vertical (in the
reference frame of the mirror) polarization components when the angle of incidence
is not exactly zero. Thus a mirror would potentially convert a pure linear polariza-
tion into an elliptical one, which moreover varies with the polarization angle of the
incident beam.

In order to be able to achieve a precise alignment of the EOM, it thus must be
mounted on its own fine adjustable holder. The holder used provides the control
over the translational, as well as yaw and pitch degrees of freedom (no roll degree of
freedom). The half wave plate wp2r is used for a precise rotation of the incident linear
polarization components with respect to the principle axes of the EOM. Eventually,
the best extinction ratio measured for a beam transmitted through the EOM is on
the order of 0.5× 10−3 which agrees well with the specification of the manufacturer.
The limit for the polarization purity is thereby defined by its inhomogeneity after
passing the EOM. This can be verified by imaging the beam onto a beam profile
camera after it has passed the analyzing beam splitter cube (see figure 1.10).

The effect of the polarization inhomogeneity onto the atoms is in principle sig-
nificant and, in combination with the finite size of the cloud, contributes to inhomo-
geneous broadening (see section 2.4). The inhomogeneity in the focal plane of the
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Fig. 1.10: (a) An image of the lattice beam profile after it has passed the EOM and
a subsequent analyzing beam splitter cube. When the analyzer is slightly
rotated the double spot profile becomes asymmetric. (b) This behavior can
be interpreted in terms of polarization inhomogeneity caused by the EOM.

lattice lens system, and thus at the position of the atoms, has though a different
profile with respect to the main beam. In order to clarify this, let us assume that
the lattice beam can be modeled by a superposition of a purely polarized Gaussian
mode and a first order Hermite-Gaussian mode carrying the polarization impurity.
At the position of the EOM both modes overlap, which means that according to the
scaling of the Hermite-Gaussian profiles, the faulty mode has a smaller waist. In the
focal plane of the lens system the waist ratio is inverted so that the faulty mode lies
outside the Gaussian profile. This assumption is supported by the experimentally
observed improvement/deterioration of the microwave spectrum depending on the
exact alignment of the lens system. The quality of the spectrum was finally used as
a criterion for the lens positioning (only the last meniscus lens was moved along the
beam axis). All data presented in this thesis are obtained with this final alignment
and are in very good agreement with a beam waist of 20µm expected from the lens
design. The data could, though, also be explained assuming slightly different focal
points of the counter-propagating beams.

During the step by step alignment of the polarization optics an additional polar-
ization distortion caused by the vacuum windows was discovered: Depending on the
polarization angle of the incoming beam the extinction measurement of the trans-
mitted beam yields values in the range of 10−5 (best case) to 10−3 (worst case).
We attribute this observation to the stress-induced birefringence within the facet of
the glass cell (or, less probably, within the vacuum window on the opposite side).
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This distortion shows a similar polarization inhomogeneity as that caused by the
EOM. Experimentally, this effect is suppressed by rotating the polarization of the
incoming beam parallel to one of the principle axes of the vacuum windows. This is
done using the half wave plate wp2i right after the polarizer. For complete control
of the incoming polarization we added the quarter wave plate wp4i.

The last issue for the polarization optics concerns the retardation stability of the
EOM. Here, two time scales need to be considered. First, a fast response is desired
in order to perform the lattice shift on a time scale of few tens of microseconds. This
is mostly a demanding task for the high voltage driver which, in our case, exhibits
a -3dB-bandwidth of 370 kHz and at the same time provides an output voltage
of 750 Vp−p. However, almost all electro-optic materials used for manufacturing
EOMs also possess nonzero piezoelectric coefficients which manifest themselves in a
resonance like response of the optical signal [49]. For this reason we decided to choose
an EOM with specially modified crystals, for which the piezoelectric resonances are
suppressed. The dynamic optical response for this EOM nicely follows the electric
control signal within the bandwidth of the driver [23].
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Fig. 1.11: (a) Laser power transmitted by two crossed polarizers with an EOM between
them, depending on the linearly ramped EOM control voltage. The response
of the EOM depends on the ramp speed: Vλ/2,f = 1.489 V for a 200 µs
ramp and Vλ/2,s = 1.355 V for a quasi static 10 s ramp. (b) The time scale
for the retardation drift is determined by quickly ramping the control voltage
to the vicinity of the quarter wave voltage, and by measuring the 1/e-time
required to reach the stationary state (0.45 s).

The second unexpected and not yet understood phenomenon is a slow drift of
the EOM retardation after it has been ramped to a new set-point. It’s time scale
is on the order of the duration of one experimental sequence. The drift becomes
observable in the optical signal of an EOM placed between two crossed polarizers
when the drive is quickly ramped to, e.g., the quarter wave voltage and is hold
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constant for a few seconds (see figure 1.11(a)). The laser power measured behind the
analyzing beam splitter drifts exponentially with a time constant of 0.45 s towards its
stationary value. Phenomenologically, our explanation is based on an EOM response
which depends on the ramp speed (see figure 1.11(b)). The reason for this could not
even be provided by the manufacturer as they usually do not recommend to use a
high steady state driving voltage (because of the degradation of the electro-optic
crystals). Possibly, the electro-optic coefficients are frequency dependent although
the research focus mostly lies in the high frequency domain [60]. We bypass the
problem by avoiding long high voltage hold times [23].

Model of the lattice potential The alignment of the polarization optics must
be done very carefully in order to eliminate residual circular polarization compo-
nents which strongly affects both the position of the microwave transitions and
their coherence. For the accurate prediction of this influence I perform a simulation
of the lattice potential which models the experimental setup as precise as possible.
In this way, it is straightforward to investigate the characteristic effects of different
experimental misalignments and imperfections. The simulation takes into account
the profile of the Gaussian mode both in the radial and in the axial direction. This
allows for taking into account the position distribution of the atomic sample. The
polarization of the trapping laser is simulated using the Jones matrix formalism and
by explicitly considering every wave plate used. Here, not only their rotation de-
gree of freedom is considered but also a possible error of their retardation (a small
tilting angle with respect to the beam axis can easily cause a retardation error on
the order of 1% of the ideal value). Finally, even the calculated magic wavelength
is not assumed to be perfect. For simplicity the wavelength dependent proportion-
ality factors cxx,ρ in equation 1.2.1 are computed only once. A wrong calculation of
the magic wavelength is simply mimicked by varying the wavelength of the trap-
ping laser and using the changed scaling factors (see figure 1.6), although the lattice
wavelength is very well known experimentally.

The simulation of the full potential is used in the models presented in the next
chapters and helps to identify the most critical experimental parameters.
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Chapter 2

How microwave photons affect
atomic motion

In our and in many other experiments microwave radiation is one of the standard
tools for coherent manipulation of the spin state of trapped atoms. Concerning
their motion, radio frequency or microwave fields are also employed for dressing an
existing magnetic or optical potential. This approach is often used e.g. in evapo-
rative cooling during the creation of a Bose-Einstein condensate [61, 62]. In recent
experiments, dressed potentials are applied for the generation of more complex trap-
ping topologies or state-dependent potentials [63, 64, 65, 66]. All these techniques
work in the limit of strong radiation fields, where the Rabi frequency is much larger
than the frequency spacing between the quantized vibrational states supported by
the underlying potential. In particular, the above techniques are not aiming at the
manipulation of atomic motion in the sense of coherent control of the populations
of different vibrational states.

This kind of control is instead typically accomplished exploiting optical tran-
sitions. When the driving field is tuned in resonance with a so-called sideband
transition, the motional state of the trapped atom undergoes a change of the vibra-
tional quantum number according to the order of the sideband [67]. This technique,
employing either a narrow bandwidth laser or two phase-locked lasers in Raman
configuration, is popular for cooling trapped ions [24] and neutral atoms [9] close to
the motional ground state. Starting from the ground state, it furthermore allows to
arbitrarily manipulate and diagnose the vibrational state of trapped ions [37, 68, 69]
and of neutral atoms trapped in optical lattices [70, 71, 72]. The motional control
even lies at the heart of experimental procedures for entangling the internal states
of a string of ions [27, 28]. Alternatively, the vibrational state can be manipulated
by directly varying the trapping potential [73, 74, 75]

In the following I will show that the quantum mechanical motion of trapped
neutral atoms can be manipulated using microwave radiation in combination with
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spin dependent trapping potentials. Similarly to the laser-based technique, our
system is probed via sideband spectroscopy. In fact, microwave-induced sideband
spectra have already been observed for neutral atoms in a one-dimensional optical
lattice [76] as well as for trapped ions [77]. In [78] coherent sideband transitions
have been performed with neutral atoms in a three-dimensional lattice where, as in
our experiment, the tunability of the sideband strength has been exploited to map
the wave functions of the vibrational states. Our results are closely related to those
presented in [78] but are obtained in a deeper optical lattice revealing the multilevel
vibrational structure of the lattice potential.

2.1 Spectrum of trapped atoms

Transitions between quantized motional states Due to the Doppler effect,
the center-of-mass motion of an atom has a great impact onto its interaction with
electromagnetic radiation. Trapped atoms which periodically oscillate in a conser-
vative potential consequently experience a periodically varying Doppler shift. Effec-
tively, the atoms interact with a phase modulated electromagnetic field. Presuming
the proper conditions the absorption and emission spectra exhibit a multiply peaked
structure [67].

Quantum mechanically a more intuitive picture of the absorption/emission pro-
cess can be drawn [67]. Here, the center-of-mass motion is modeled using discrete
vibrational states of the trapping potential. The total Hilbert space relevant for the
electromagnetic transitions is spanned by the product states of spin and motional
degrees of freedom

|F,mF〉 ⊗ |n〉F,mF
=: |F,mF, nF,mF

〉. (2.1.1)

Here, F and mF label the atomic hyperfine states and n enumerates the vibrational
states of the trapping potential. Note that in general atoms in different hyperfine
states are trapped by different potentials as the trapping mechanism might itself
dependent on the electronic state. This means that the vibrational states |n〉F,mF

and |n′〉F ′,m′F are not necessarily identical even if their quantum numbers might be

equal (n = n′). The energy of a product state is defined by the sum EF,mF
+EnF,mF

.
Figure 2.1 illustrates the energy level scheme in case of Cesium trapped in our 1D
lattice potential.

In general, an electromagnetic field F which couples two internal states may also
change the vibrational state. If the linewidth of the electromagnetic transition is
much smaller than the energetic spacing between vibrational states, the field can be
tuned in resonance with any transition between the initial state |F,mF, nF,mF

〉 and
the final state |F ′,m′F, n′F ′,m′F〉 (see figure 2.1). In addition to the carrier transition,
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Fig. 2.1: Energy level scheme for the combined system consisting of internal atomic
states |F,mF〉 and vibrational states |n〉F,mF

. Each of the hyperfine states
now possesses a relatively dense energetic substructure. The frequency scales
indicate the parameters used in our experiment. For simplicity, the sinusoidal
optical lattice can be approximated by a harmonic potential with its well known
eigenstates. When the linewidth of the driving field is narrow enough, it can
be selectively tuned to a sideband transition with a desired ∆n =, e.g. +1
(red), 0 (green), -1 (blue).

for which the motional quantum number does not change (∆n = n′ − n = 0),
sideband resonances with ∆n 6= 0 can be observed on the blue and on the red
side of the carrier. Their frequency spacing is defined by the energetic ladder of
the vibrational states. This yields the explanation for a multiply peaked sideband
spectrum, in agreement with the energy conservation law.

The strength of any sideband transition is determined by matrix elements de-
scribing the interaction between light and atom similar to that in equation 1.1.3.
They now, however, take into account the external degree of freedom of the atomic
center-of-mass motion [67, 54]

~ΩRn,n′
= 〈F ′,m′F, n′F ′,m′F |ĤF exp(i∆k x̂)|F,mF, nF,mF

〉

= 〈F ′,m′F|ĤF |F,mF〉 〈n′F ′,m′F| exp(i∆k x̂)|nF,mF
〉

= ~Ωbare × Franck-Condon factor, (2.1.2)

The atom field interaction hamiltonian ĤF acts exclusively onto the internal degree
of freedom. For an optical electric (microwave-induced magnetic) dipole transition
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it reads ĤF = d̂E (ĤF = µ̂B). The atomic electric (magnetic) dipole moment
operator is labeled by d̂(µ̂) and E(B) is the electric (magnetic) component of the
driving field. The field amplitude is considered to be spatially constant across the
size of the atom. The first matrix element on the right hand side thus determines the
coupling strength between the internal states in case the atomic motion is neglected
or in case of a free atom. The coupling is quantified by the corresponding Rabi
frequency which is denoted by Ωbare.

The field-induced mechanical action on the external degree of freedom is de-
scribed by the second matrix element where x̂ is the position operator of the atomic
center-of-mass motion. This matrix element acts as a scaling factor which speci-
fies the relative strength of all possible sideband transitions. It thus also imposes
selection rules when the corresponding spatial wave function overlap vanishes. In
analogy to molecular physics the scaling factor due to the wave function overlap
is often named Franck-Condon factor [79]. For molecules, according to the Born-
Oppenheimer approximation [80], the wave function for the center-of-mass motion
of the constituent atoms and that for their internal constituents (electrons and the
atomic core), can also be factorized.

Sidebands due to photon recoil A prominent example for a radiation-induced
mechanical impact is the recoil of an absorbed laser photon followed by the reemis-
sion of a second photon. After each scattering event the expectation value for the
atomic momentum changes by ~∆k, where ∆k = kabs − kem is the difference be-
tween the wave vectors of the absorbed and the emitted photon (see equation 2.1.2).
This is the basis of laser cooling which provides cold atomic samples for a variety
of precision measurements. For atoms already trapped by a conservative potential
the recoil process provides the required mechanism for the manipulation of the vi-
brational state. Identifying the operator exp(i∆kx̂) as the momentum translation
operator T∆p with

T∆p|ψ(p)〉 = exp(i∆kx̂)|ψ(p)〉 = |ψ(p− ~∆k)〉 = |ψ(p−∆p)〉 (2.1.3)

leads to a simple interpretation of the matrix element defining the Franck-Condon
factor. Due to the recoil ∆p = ~∆k the initial center-of-mass wave function ψ(p)
is shifted in momentum space (see figure 2.2 (a)). The overlap of the shifted wave
function with the vibrational eigenstates of the target potential then acts as a scal-
ing factor for the Rabi frequency of each transition |nF,mF

〉 ↔ |n′F ′,m′F〉. Note that

recoil-induced sidebands can be generated even when |nF,mF
〉 = |nF ′,m′F〉 holds, cor-

responding to the case where the trapping potential is not state-dependent.

For the experimental observation of resolved sideband transitions employing
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lasers a significant effort must be expended for the realization of a suitable nar-
row linewidth transition. This is achieved by either choosing a dipole-forbidden
transition driven by a well stabilized laser [69], or by driving a two-photon transi-
tion between long-lived atomic hyperfine states in the ground state employing two
phase-locked lasers in Raman configuration [68, 81].

2.1.1 Microwave-induced sidebands

For neutral atoms the choice of the long-lived states is basically limited to the ground
state manifold. In this case, a direct transition between them has a frequency in
the radio frequency or microwave domain. Turnkey microwave generators providing
very narrow line widths can easily be used for the experimental manipulation of the
hyperfine state (see section 1.1.2). But, compared to optical photons, microwave
photons possess a recoil which is five orders of magnitude smaller. This is the reason
why optical transition are preferred for the generation of sidebands. Nevertheless,
microwaves may influence the center-of-mass motion of trapped atoms, in case, a
state-dependent potential is present.

Sidebands due to a state-dependent potential When the recoil of the pho-
ton is negligible the momentum translation operator is equal to unity and the Franck-
Condon factors in equation 2.1.2 read 〈n′F ′,m′F|nF,mF

〉. If the two potentials UF,mF
and

UF ′,m′F are identical this equation evaluates to zero for all transitions which change
the vibrational quantum number. If they are not identical the corresponding en-
ergy eigenstates are per definition non-orthogonal which yields finite Franck-Condon
factors.

In general, the spatial wave function overlap can be directly calculated using a
specific representation of the wave functions, e.g. in position space. In the special
case, when the potentials UF,mF

and UF ′,m′F are displaced relative to each other by
the distance ∆x but otherwise possess the same shape the wave function overlap
can be cast into a form equivalent to that of the recoil case (see figure 2.2 (a)). To
illustrate this we define the spatial translation operator

T∆x|ψ(x)〉 := exp(−i∆x p̂/~)|ψ(x)〉 = |ψ(x−∆x)〉 (2.1.4)

with T †∆x = T−∆x

where p̂ labels the atomic center-of-mass momentum operator and † denotes the
conjugate transpose operation.

In fact, the matrix for the shift operator at the same time provides the matrix
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Fig. 2.2: (a) Wigner function representation of original and displaced 1D harmonic
oscillator |n = 1〉ho-wave functions. The corresponding usual probability dis-
tributions in the spatial and in the momentum domain are illustrated by thick
silhouettes. For comparison the probability distributions of the unshifted state
is indicated by pale silhouettes. The scales are given in terms of the size of the
ground state x0 and p0, respectively. (b) The absolute value of the Franck-
Condon factor depending on the polarization angle of the lattice for the same
sideband transitions as indicated in figure 2.1.

for the basis transformation |nF ′,m′F〉 = T∆x|nF,mF
〉. Using this operator the Franck-

Condon factor for the case of displaced potentials can be written as

〈n′F ′,m′F|nF,mF
〉 = (T∆x|n′F,mF

〉)† |nF,mF
〉 = 〈n′F,mF

|T †∆x|nF,mF
〉. (2.1.5)

For the general case, a combined translation operator

T∆x,∆p := exp(i(−∆x p̂/~ + ∆k x̂)) ≡ T∆xT∆p exp(i∆x∆k/2) (2.1.6)

can be defined which describes an arbitrary translation in phase space. Here,
the operator identity eA+B = eAeBe−[A,B]/2 was used. Up to the phase factor
exp(i∆x∆k/2) the general translation operator is identical to a successive appli-
cation of T∆x and T∆p.
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In the usual Schrödinger picture the quantum mechanical states are defined either
by their spatial or their momentum representation. In these bases it is difficult to
illustrate the action of the T∆x,∆p operator. A more convenient formalism for the
description of the quantum mechanics in phase space can be given using Wigner
functions [82]. For a pure state |ψ(x)〉 in the spatial representation the corresponding
Wigner function is defined by

W (x, p) =
1

2π~

∞∫
−∞

dξ exp(−i p
~
ξ)ψ∗(x− ξ/2)ψ(x+ ξ/2). (2.1.7)

As an example, the Wigner function of the n = 1 1D harmonic oscillator state is
depicted in figure 2.2 (a). The meaning of the Wigner function is that of a pseudo
probability distribution (pseudo because it can take on negative values). The usual
probability distributions in the spatial and in the momentum domain are obtained by
integrating over the respective conjugate degree of freedom. Figure 2.2(a) illustrates
the simultaneous shift of the wave function in the spatial and in the momentum
domain. It also points towards the fact that the overlap of the shifted and the
unshifted wave functions depends on the total shift defined by the quadratic sum of
the spatial and the momentum displacement.

Generalized Lamb-Dicke-parameter In case of a harmonic oscillator poten-
tial the Franck-Condon factor between two eigenstates which are shifted with re-
spect to each other can be calculated analytically. For illustration, we consider a
1D harmonic oscillator potential which is a very good approximation for the lowest
vibrational states of individual wells in our optical lattice. The explicit formulas for
the orthonormal vibrational eigenstates |nho〉 in the spatial and in the momentum
representation read

|nho〉 = (2nn!
√
π x0)−1/2 exp(−1

2
(
x

x0

)2)Hn(
x

x0

) (2.1.8)

= (−i)n(2nn!
√
π p0)−1/2 exp(−1

2
(
p

p0

)2)Hn(
p

p0

) (2.1.9)

with x0 =
√

~/(Mω) and p0 =
√
~Mω, (2.1.10)

where ~ denotes the Planck-constant, M is the mass of the atom, ω is the oscillation
frequency of the harmonic potential and Hn(x) is the nth order Hermite-polynomial.
The abbreviations x0 and p0 denote the e−1-probability-spread of the ground state
wave function in position and in momentum space, respectively.
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The calculation of the Franck-Condon factor following the analytic procedure
presented in [67] (see also [32, 83]) yields (up to the phase factor for the combined
phase space shift operator mentioned above)

〈n′ho|T∆x,∆p|nho〉 = exp(−|η|
2

2
)

√
n<!

n>!
(i η∗)|∆n| L|∆n|n<

(|η|2) (−1)max(∆n,0)

η :=
∆k ~√

2 p0

+ i
∆x√
2x0

=
∆k x0√

2
+ i

∆x p0√
2 ~

. (2.1.11)

Here, Lan(x) denote the generalized Laguerre-polynomials, n< = min(n′, n), n> =
max(n′, n) and ∆n = n′−n. The parameter η is the generalization of the Lamb-Dicke
parameter which is typically used to quantify the strength of sideband transitions. It
relates the displacement of the wave function caused by the recoil of a photon to the
momentum size, and the potential displacement to the spatial size of the vibrational
ground state, respectively. Due to the definition of η as a complex number, the two
degrees of freedom enter the Franck-Condon factor as conjugate variables as was
suggested by the phase space representation in figure 2.2. Note that the common
definition of the η-parameter reads η = ∆k x̃0 with x̃0 = x0/

√
2. The definition

of the wave function size as in equation 2.1.10 is however more symmetric in the
variables x and p.

In our experimental setup the η-parameter due to the recoil of a molasses photon
amounts to a maximum of η = 0.13 with respect to the axial degree of freedom (using
∆k = 2π/λmolasses). This η-value has the typical order of magnitude also present
in other experiments [9, 37] where sideband transitions of up to the third order are
observable [84]. In this so-called Lamb-Dicke regime obeying the condition η � 1,
formula 2.1.11 is usually approximated by its first order Taylor-series with respect
to η [67, 77]. Typically, only the first order sidebands are used in this regime for
which the Franck-Condon factors scale as 〈n+ 1|n〉 =

√
n 〈1|0〉.

For comparison, the maximum separation possible between two adjacent poten-
tial wells in our experiment is limited by the periodicity of the optical lattice. Taking
the value ∆x = λlat/4 leads to the maximum value of η = 6. For such large values
the full formula 2.1.11 must be used for the calculation of the Franck-Condon factors.
For typical experimental parameters, Figure 2.2(b) illustrates the dependence of the
Franck-Condon factor on the polarization angle ϑ for the carrier and the first red
and blue sideband transitions starting in the initial state |n = 1〉. It shows that the
lattice displacement can be adjusted such, that the Rabi frequency for the sidebands
is as large as half of the maximum value given by Ωbare. Furthermore, the distance
between adjacent potential wells can be set significantly larger than the size of the
deeply bound vibrational states. This allows for a scan of the entire motional wave
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function (see section 2.5).

2.1.2 Measured sideband spectrum

For the experimental observation of the sideband spectrum the same experimental
sequence as described in section 1.1.1 is used. The only modification is a fixed lattice
displacement during the microwave pulse. Without displacement only one resonance
peak appears which marks the position of the carrier for overlapped potentials (see
figure 2.3 (a)). Two additional resonances on the red and on the blue side appear
(panels (b) and (c)) when the polarization angle is rotated to ϑ = 11.6◦ so that
the potential shift during the microwave pulse amounts to ∆x = 24 nm. As the
atoms are initially prepared in the upper hyperfine ground state |44〉 the blue (red)
sideband corresponds to a reduction (increase) of the motional quantum number by
one.

The starting condition for the spectrum in panel (b) is a thermal ensemble with
a temperature of about 10µK so that the mean vibrational quantum number along
the axial direction amounts to n̄ = 1.2. This implies, that due to the distribu-
tion of the atomic ensemble over the vibrational states every observed resonance
peak incorporates a contribution from several transitions each starting from a dif-
ferent vibrational state. For all transitions contributing to one peak the change of
the vibrational quantum number is the same but due to different Franck-Condon
factors the respective strengths are nonequal. The applied microwave pulse fulfills
the π-pulse condition only for the |44, n = 0〉 ↔ |33, n = 1〉 transition. All other
transitions thus exhibit other pulse areas and the observed peak heights result from
a thermally weighted sum over the individual transitions. As will be described in
section 2.2.1 sideband transitions of the same order also exhibit slightly different
resonance frequencies. This explains the slightly larger width and a small shift of
the peaks compared to the spectrum in panel (c).

After cooling the motion along the lattice axis using the technique described in
section 3.1 the blue sideband is strongly suppressed (see panel (c)). When almost
all atoms are initially in the ground state |44, 0〉 and only few of them in the first
excited state |44, 1〉 the carrier is dominated by the |44, 0〉 ↔ |33, 0〉, the red sideband
by the |44, 0〉 ↔ |33, 1〉 and the blue sideband by the |44, 1〉 ↔ |33, 0〉 transition,
respectively. The reduction of the blue sideband is thus reasonable, as there is
no transition existing which still reduces the vibrational quantum number starting
from the ground state. The height of the red sideband is maximized by choosing
the π-pulse condition for the |44, n = 0〉 ↔ |33, n = 1〉 transition. Due to residual
broadening mechanisms (see section 2.4) the spin rotation using this sideband is
limited to approximately the same efficiency as using the carrier transition in panel
(a). The relative height of the carrier and the red sideband peak reflect the ratio
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Fig. 2.3: Sideband spectrum: (a) In case of strictly overlapped potentials the sidebands
are not detectable. (b) When a displacement of ∆x = 24 nm (ϑ = 11.6◦)
is applied the first blue and red sideband appear. The red (blue) sideband
corresponds to the increase (decrease) of the vibrational quantum number
by ∆n = 1. (c) When only the vibrational ground state is populated the
vibrational quantum number cannot be further reduced. As a consequence
the blue sideband almost disappears. From the relative strength of the red
and the blue sideband we deduce a ground state population of 97 % (see
section 3.1.

between the corresponding Franck-Condon factors. From the measured peaks it
follows that the pulse area for the carrier amounts to 1.6π. This is in good agreement
with the theoretical expectation apart from a small deviation of the polarization
angle ϑ. A possible explanation might be that due to the crosstalk between computer
output channels the control voltage during the microwave pulse was transiently
reduced by 5 mV (see page 7).

The resonance positions of the red sideband (∆fr = (112.5 ± 0.5) kHz) and
the blue sideband (∆fb = 115 ± 2.5 kHz) relative to the carrier transition in panel
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(c) directly correspond to the spacing of the vibrational states. Here, ∆fr reflects
the energy spacing of the U33-potential while ∆fb that of the U44-potential. The
accuracy of the measured frequency spacings allows for a precise measurement of
the axial trap depth (the trap contrast). As will be explained later on, for full
quantitative understanding it is necessary to take into account the anharmonicity
of the lattice potential (section 2.2.1), the thermal motion along the radial degree
of freedom (section 2.4) and the peak shift due to dressing by microwave radiation
(section 2.2.2).

The following experiments described in this chapter are performed with an atomic
sample which is ground state cooled.

Axial oscillation frequency For a more complete picture we have performed
an alternative measurement of the vibrational energy spacings. It is based on mo-
tional excitation when the lattice jitters with a small amplitude around a mean
displacement ∆x. When the jitter frequency coincides with the vibrational spacing
the atoms in general get resonantly heated [85, 86]. In the harmonic approximation
the relation between the axial trap contrast and the axial oscillation frequency is
given by ωax = 2π

√
2Uax/(Mλ2

lat). The jittering method does not rely on an electro-
magnetic transition between hyperfine states and can thus be performed separately
for each |F,mF 〉 state. Furthermore, the displacement at which the measurement
is performed can be varied arbitrarily in contrast to the sideband method where
the Franck-Condon factors constrain the useful measurement range. On the other
hand it only provides information about the axial potential contrast. The radial
confinement and thus the total trap depth can be quite different from the axial one,
in particular for displaced potentials.

Experimentally, the jittering of the optical lattice was accomplished using the
EOM-setup for the potential movement. For precise control of the jitter frequency
the output of a function generator was added to the computer output using an
analog adder. The jitter amplitude (2 nm) and the number of the jitter oscillations
(100 cycles) where kept constant while the mean displacement and the jitter fre-
quency where varied. As the atomic sample was initially in the ground state the
strength of the blue sideband is a sensitive measure for the excitation. The jitter
amplitude and its duration where chosen such that the blue sideband just starts to
appear when the jitter becomes resonant. Its height is at most 0.4 (corresponding
to 40 % of all atoms) so that only the first excited state is significantly populated.

Due to the pure initial vibrational state the motional excitation in this exper-
iment can be considered very coherent. In fact, for a harmonic potential jittering
excites the atoms to a coherent motional state [73]. This state describes an os-
cillating wave packed and thus is closely related to the classical picture. It has
a poissonian distribution over the number states. Coherent excitation of motional
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states is widely exploited in current experiments with trapped atoms [87, 74, 88, 89].
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Fig. 2.4: Oscillation frequency of the trapping potentials U44 and U33. The color coded

data indicate the height of the blue sideband after exciting the atoms us-
ing resonant jittering of the lattice. As expected from the calculations in
section 1.2, the oscillation frequency of the U33-potential varies with the ap-
plied displacement whereas it remains constant for the U44-potential. The
theoretical curves result from our lattice potential model taking into account
experimental misalignments (see text).

The measured oscillation frequencies for the U44 and the U33-lattice shown in
figure 2.4 are in good quantitative agreement with the theoretical expectation. Com-
paring the oscillation frequencies of (114± 0.5) kHz at small displacement with the
positions of the first sidebands in the case of a ground state cooled sample also
shows a good agreement between both measurements. The small but statistically
significant discrepancy between the results of the two techniques can very well be
explained by the fact that due to dressing microwave resonances are systematically
shifted in figure 2.3 (see section 2.2.2). Unfortunately, the uncertainty of the daily
alignment can in general lead to greater discrepancies between different data sets so
that this conclusion cannot be completely proven.

In figure 2.4 the small but systematic deviations from the ideal theory reveal a
slight distortion of the lattice potential. The most characteristic one is that instead
of an ideally constant oscillation frequency of the U44 potential it sinusoidally varies
with the polarization angle ϑ. In order to figure out potential reasons we exploit
the model of the lattice potential outlined on page 21. Assuming a non-ideal retar-
dation of the wave plates wp4r and wp2r (see figure 1.1) reproduces the observed
distortion. An additional small rotational misalignment of the half wave plate wp2r
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(0.1◦) and/or assuming that the calculated value for the magic wavelength might be
slightly wrong (-0.1 nm), makes the fit to the data perfect. The theoretical lines in
figure 2.4 indicate variations on the order of ±0.1◦ and ±0.1 nm, respectively. The
uncertainty of the magic wavelength is hereby within the confidence intervals of
experimental oscillator strengths entering the calculation of the magic wavelength.

As well as for the microwave spectrum in figure 2.3 the trap anharmonicity and
the radial motion must be considered for an accurate interpretation of the observed
oscillation frequencies (see sections 2.2.1 and 2.4). Taking this effects into account,
the potential contrast along the trap axis in case of unshifted potentials amounts to
(80.8±0.7)µK in this measurement. This is in good agreement with the expected
trap depth calculated from the knowledge of the beam waist and of the laser power
used.

Due to the anharmonicity of the trap it might even be possible to extend this
technique by jittering the lattice at higher harmonics of the oscillation frequency (for
an ideal harmonic potential only one resonance exists). Another option might be
to initially prepare the atomic sample in an excited vibrational sate using sideband
transitions. This way, the jittering technique may be exploited as an independent
spectroscopic tool for the investigation of the vibrational level scheme. A further
application might be a state-selective heating of atoms, as for a polarization angle
of ϑ=90◦ the oscillation frequencies are quite different. This would provide an
alternative technique for the currently used state-selective push out. In particular,
this method potentially allows to discriminate between different magnetic sub-levels.

Movement of the entire spectrum Coming back to the spectra in figure 2.3,
we notice that the position of the carrier in the two sideband spectra has shifted to
the blue with respect to the carrier transition at zero displacement. According to
the ideal model, the depth of the U44 potential remains constant and that of the U33

potential is expected to become shallower. Due to the differential light shift [57] the
energy gap between the upper and the lower hyperfine states in this case becomes
shorter and a spectrum shift solely to the red side is expected .

A scan presented in figure 2.5 gives a more complete picture. It shows the position
of the sideband spectrum depending on the polarization angle ϑ. In order to allow
a quick measurement the sample was not ground state cooled at the beginning.
This procedure benefits from the fact that each resonance peak consists of several
pure transitions starting in different vibrational states. When the displacement
becomes substantial compared to the lattice constant the transitions starting in
higher vibrational states have still a considerable strength due to their larger spatial
extension. Otherwise the e.g. carrier transition |44, 0〉 ↔ |33, 0〉 would vanish for
ϑ & 35◦.

The observed sinusoidal shift of the spectrum depending on the displacement
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Fig. 2.5: The entire sideband spectrum shifts during the variation of the displacement.
This provides a sensitive measure for the variation of the differential light shift
U44 − U33 and thus provides information about the total trap depth and not
only about the axial trap contrast. The solid lines indicate the position of each
transition predicted by a simulation including experimental imperfections. For
each transition two lines are drawn, one for the atoms in the ground state and
one for the second excited vibrational state.

qualitatively agrees with the expectation of an ideal setup. But, it also reveals
pronounced and very systematic deviations: a perfectly aligned setup would result
in a twice as large shift amplitude and the carrier would never shift to the blue
side. The full model of the lattice potential (page 21) again nicely reproduces the
characteristic features. Here, the non-ideal wave plates turn out to be responsible
for the shift to the blue side. In order to explain the smaller shift amplitude the
rotation angle of the half wave plate wp2r must be assumed to be -0.5◦. Although
this rotation angle is small and hardly noticeable during the optical alignment it
has a great influence on the relative depth of the two lattice components. Note that
a measurement of the oscillation frequencies for the same situation would as well
reveal a strong deviation from the ideal setup: The oscillation frequencies for both
trap components would vary as in figure 2.4(b) but with half the amplitude.

The theoretical curves shown indicate the spread caused by the thermal distribu-
tion among the vibrational states which is now a drawback. Note that at least the
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third vibrational state is significantly populated in the beginning as the third blue
sideband is clearly visible. The measurement precision can be improved by conduct-
ing the same scan for several pure vibrational states. Nevertheless, despite thermal
broadening the presented measurement provides reliable quantitative information
about the total trap depth and not only the axial trapping contrast and helps to
understand systematic distortions.

2.2 Model for sideband transition in a

periodic potential

Until now the frequency range of the spectrum was restricted to the first few
sidebands. According to equation 2.1.11, though, by increasing the displacement ∆x
the Franck-Condon factor for any high order sideband transition can be adjusted
to approximately the same value as that for the first order sideband transition.
Motivated by this we have recorded a wide range spectrum which indeed exhibits
sideband transitions of up to the 14th order (see figure 2.10). For the quantitative
analysis of this data we have to give up the harmonic approximation for the axial
lattice confinement. First, the real potential is not infinitely high and thus supports
only a finite number of bound states. Second, due to the periodicity of the potential
the maximum possible displacement is restricted to half the lattice site separation
∆x = λlat/4. A more accurate theoretical treatment is given by the band structure
model borrowed from the condensed matter physics. Before I continue to discuss
measured data I briefly introduce how this theoretical frame is used in our case.

The second extension concerns microwave transitions between hyperfine states
taking into account the vibrational manifold. As the maximum Rabi frequency of
2π 59 kHz in our experiment is of the same order of magnitude as the frequency sepa-
ration between the vibrational states off-resonant excitation of several sideband tran-
sitions is significant. In order to consider this effect the Schrödinger equation 1.1.2
for a spin-1

2
-particle and the Schrödinger equation for the atomic motion 2.2.1 are

combined to a joined spinor equation.

2.2.1 Band structure model

In condensed matter physics [90, 91] the band structure model is the basis for the
theoretical description of electron motion in presence of the periodic potential gen-
erated by the atomic cores in a crystal. It results from a reformulation of the
Schrödinger equation when it is adapted to a hamiltonian with a periodic potential.
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I use it here for the calculation of the eigenenergies and the corresponding motional
eigenstates of our 1D-lattice [92, 56]. More precisely, we are only interested in the
vibrational states which are bound and thus have negative energy eigenvalues.

The main trick for the adaptation of the Schrödinger equation

Hlat ψ(x, t) ≡
(

p̂

2M
+ Vlat(x̂)

)
ψ(x, t) = i~

∂

∂t
ψ(x, t) (2.2.1)

to the periodic potential problem is naturally the use of the discrete Fourier trans-
form. Due to its periodicity the 1D lattice potential can thus always be represented
by the Fourier sum

Vlat(x) =
∑
mεZ

Vmg0 exp(img0x). (2.2.2)

Here, mg0 (mεZ) label the vectors of the reciprocal lattice whereby g0 = 2π/alattice

is the smallest nonzero reciprocal vector and alattice is the spatial periodicity of the
lattice. Using this notation the first Brillouin zone is defined by [−g0/2, g0/2]. The
relationship between the reciprocal vector g0 and the wavelength of the trapping
laser is g0 = 2π/(λlat/2) = 2klat. For a strictly real sinusoidal potential like that
present in the experiment only the coefficients with the indices m = {−1; 0; 1} are
nonzero. Furthermore Vmg0 = V ∗−mg0 holds (∗ denotes the complex conjugate).

Formally, the stationary Schrödinger equation is solved by the Bloch functions
which are the energy eigenstates of the hamiltonian

ψn,κ(x) = exp(i κx)
∑
mεZ

cn,κ+mg0 exp(img0x). (2.2.3)

Each state is characterized by the discrete quantum number n, which enumerates
the bands and by the wave vector (also called Bloch vector) κ which is chosen to be
in the first Brillouin zone.

When the above equations are inserted into the stationary Schrödinger equation
it can be formulated in the matrix form. This representation corresponds to the
choice of the discrete set of plane waves exp(img0x) to be the basis of the Hilbert
space. For the sinusoidal lattice potential in our experiment the explicit matrix



2.2. Model for sideband transition in a periodic potential 39

equation reads


V0 + ~(κ−2 g0)

2M
V−g0 0 0

Vg0 V0 + ~(κ−g0)
2M

V−g0 0
0 Vg0 V0 + ~κ

2M
V−g0

0 0 Vg0 V0 + ~(κ+g0)
2M



cn,κ−2 g0

cn,κ−g0
cn,κ
cn,κ+g0



= En,κ


cn,κ−2 g0

cn,κ−g0
cn,κ
cn,κ+g0

 .(2.2.4)

For illustration purposes only a restricted equation is shown. In principle, the
matrix of the Hamilton operator and the coefficients vector extend to plus and minus
infinity but for the practical calculation their size is restricted to ±mmax = 40. For
our typical experimental parameters the lattice potential supports not more than
twenty bound states whose expansion coefficients cn,κ+mg0 are negligible for larger
index values |m| > mmax. Equation 2.2.4 has the form of an eigenvalue problem and
can be easily handled using numerical solvers.

Energy level scheme By solving the eigenvalue equation for the potentials U44

and U33 using experimental parameters we obtain an energy level scheme similar to
that in figure 2.6 (a). We identify three regimes of eigenvalues whose wave functions
describe qualitatively different motional dynamics. For deeply bound states with
large and medium negative eigenvalues the eigenenergy of each state ψn,κ(x) is es-
sentially independent of the Bloch vector κ resulting in practically infinitely sharp
energy bands. The probability density |ψn,κ(x)|2 is as well almost independent of κ.
In principle, Bloch states have an infinite extent and exhibit unity spatial probability
for each lattice site. Although this is an improper description for an atom confined
to one specific potential well in the deeply bound regime the wave function of the
Bloch states is very well localized around the lattice sites. The local wave function
is a very good approximation for the real motional state which in particular is more
accurate with comparison to the harmonic oscillator approximation. Due to this
facts the Bloch vector κ is disregarded for the rest of this work and the quantum
number for vibrational states is simply identified with the band index n.

For states with eigenenergies around zero the energy dispersion relation of κ
leads to energy bands with a finite width. We need to consider this regime, which
is related to tunneling phenomena, when we investigate sideband transitions of the
highest order (see figure 2.10). For an increasingly higher band index n the bands
become broader and the gap between neighboring bands shrinks. Finally, the bands
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Fig. 2.6: (a) Energy level scheme for the Bloch states of the potentials U44 and U33.
(b) Dependence of the Franck-Condon factor on the polarization angle ϑ for
a representative subset of transitions starting in the state |44, 0〉. For our
experimental parameters the Franck-Condon factors for sidebands of all or-
ders can be tuned to ≈0.5. Furthermore, for highest order transitions the
Franck-Condon factors remain significantly large even for maximally displaced
potentials (e.g. 11th sideband). The thin dashed lines mark the three polar-
ization angles at which the sideband spectra in figure 2.10 are measured.

effectively merge. In this regime the states describe freely moving atoms for which
the influence of the lattice potential is negligible. Apart from atom loss this regime
is irrelevant for atom manipulations investigated in this work.

For the U44-potential our calculation predicts eighteen bands with negative en-
ergy (from n = 0 up to n = 17). Except for the uppermost three bands all of them
exhibit a width smaller than 100 Hz, which is below the spectral resolution of the
present experiment. For comparison, figure 2.6 shows as well eighteen bands of the
U33 lattice. As its total depth and its standing wave contrast significantly decrease
for a large displacement the bands n = 16/17 lie well above the axial potential
barriers (for maximum displacement, we expect only the states n = 0 − 15 to be
trapped).

For the correct interpretation of the first order sideband positions in figure 2.3
and of the measured oscillation frequencies in figure 2.4 it is worthwhile to take a
closer look at the energy spacing between the motional ground state and the first
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excited state. It turns out that for our experimental parameters it is smaller than the
oscillation frequency based on the harmonic approximation by 2 kHz. This difference
is easily resolved in our measurement which means that the Band model must be
considered even for the first order sideband transition. This is also true for a precise
determination of the axial trap contrast Uax based on the sideband spectra.

The Franck-Condon factor Although the Bloch states in the deeply bound
regime exhibit a well localized probability density around the lattice sites the in-
terpretation of the Franck-Condon factor between two Bloch states requires some
care. As long as the local wave function of the |44〉 potential overlaps with only one
local wave function of the |33〉 potential, e.g. the left one (see figure 2.7 (a)), the
overlap calculation based on the bare Bloch states yields a ’useful’ Franck-Condon
factor. In this case the two potential wells can be considered as an isolated pair and
the atomic motion during the microwave operation is confined to such a double well
[93].

-0.4 -0.2 0 0.2 0.4-0.4 -0.2 0 0.2 0.4
Position along the lattice axis (λ   )lat

(a) (b)

Fig. 2.7: Absolute value of the spatial wave function of the Bloch states |44, 0〉 and
|33, 10〉. (a) Despite the large displacement the local ground state wave
function overlaps only with the local wave function of the left neighboring
lattice site. (b) When the displacement is maximum, however, the |44, 0〉
state has a significant overlap with both next neighbors. Note that the Bloch
state |33, 10〉 has a negligible probability density between the wells and that
the width of the corresponding Bloch band can be neglected.

The situation becomes more interesting when the local state of one potential
has a significant overlap with the local states of both next neighbor lattice sites of
the other potential. As illustrated in figure 2.7 (b) this already happens between
states in the deeply bound regime including even the motional ground state. In
this case, the Franck-Condon factor between two Bloch states does not provide the
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correct scaling factor for the strength of a sideband. This is because of their infinite
extent and because they possess a fixed phase relation between the lattice sites
determined by the wave vector κ. Depending on κ the overlaps between the left
and the right lattice sites interfere constructively or destructively yielding a single
value. In contrast, for a real localized atom the coupling to each of the two sites is
described by one individual Franck-Condon factor for the left direction and one for
the right.

This problem can be solved using the Wannier states which provide a second
complete set of wave functions for problems with periodic potentials [91, 90]. In
contrast to Bloch states these wave functions are well localized: There is one Wannier
function for each Bloch band and each lattice site. Their drawback is that they are
not energy eigenstates. In the deeply bound regime, however, the Bloch bands are
very sharply defined which is then also true for the energies of the corresponding
Wannier states. In fact, in this case they very accurately approximate the local
Bloch states around each lattice site. In this basis the Franck-Condon factors with
respect to the left or with respect to the right next neighbor site can be calculated
independently. In the deeply bound regime, though, very much the same result can
be obtained by still using the Bloch states and by simply choosing the appropriate
integration boundaries for the overlap calculation. This is the procedure which is
used to calculate the Franck-Condon factors for the |44, 0〉 ↔ |33, n〉 transitions
shown in figure 2.6 (b). They have to be interpreted as one direction (left or right)
factors. Note that a sharply defined Franck-Condon factor can even be obtained for
the maximum displacement of ∆x = λ/4 which corresponds to a polarization angle
of ϑ = 90◦. This applies even more when a higher initial vibrational state is used
instead of the ground state. Using microwave radiation the spatial wave function of
the atom may thus be coherently split between the left and the right direction. As
the target potential well again couples to its neighboring lattice sites the atom is
coherently delocalized along the lattice and thus performs a quantum walk [22, 8].

Once the width of the Bloch bands cannot be neglected and the Bloch vector κ
significantly determines the form of the probability distribution the overlap between
wave functions naturally also becomes κ-dependent. This is indicated by the spread
of the Franck-Codon factor lines for the highest order transitions in figure 2.6 (b).
The calculation of the overlap between Wannier states instead of the procedure using
Bloch states does not provide a better insight. As the Wannier states in this regime
also have an extent much larger than one lattice site the overlap between two lattice
sites again involves several Wannier states. Moreover, the Wannier states are not
stationary and thus significantly evolve during the duration of the microwave pulse.
In any case, independent of the basis used the picture of atoms transferred between
discrete lattice sites is just not adequate in this limit. In conclusion, the calculation
of the Franck-Condon factors relevant for this work can entirely be carried out in the
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Bloch basis. This has the additional big advantage that the Schrödinger equation
can be expressed in the eigenenergy basis.

In the deeply bound regime a further trick tremendously accelerates the com-
putation using Bloch state. Instead of calculating the wave function overlap via a
direct, properly truncated integration we exploit their coefficient vector representa-
tion (see 2.2.4). As mentioned above, this coefficients are defined with respect to
the basis given by the set of plane waves exp(img0x). The coefficient vectors of
both lattices are thus defined with respect to a common basis. For the calculation
of the Franck-Condon factors it is thus sufficient to compute the scalar products
between the corresponding coefficient vectors. Furthermore, as the microwave radi-
ation leaves the atomic momentum unchanged transitions occur only between states
with the same wave vector κ. The computation of Franck-Condon factors among
Bloch states with different κ’s can thus also be omitted. A small extension of the
scalar product method allows for its usage even in the case when the atom couples
to both next neighbors. In this case, the Bloch states with κ=0 and κ = g0/2 do
have a negligible difference between their spatial probability distribution. But, their
phase factor differs by exp(i π) = −1 every second lattice site. The sum of these two
Bloch states thus yields a state which occupies only every second lattice site. The
overlap between such superposition states thus corresponds to the Franck-Condon
factor of two isolated lattice sites as long the applied lattice displacement is not
larger than its periodicity.

2.2.2 Microwave transitions in a multi-level system

For the quantitative theoretical analysis of the experimentally observed microwave-
induced dynamics, e.g. the high order sideband spectrum in fiure 2.10, the Schrödinger
equation of a two level system (1.1.2) is a good starting point. In this approximation
each pair of states |44, n〉 and |33, n′〉 is regarded as an isolated two level subsystem.
Using Bloch states defined in the foregoing section, both the strength and the reso-
nance frequency of the corresponding transition can be calculated thus providing the
required information for the time evolution of the spin. Nevertheless, this simplified
model becomes inaccurate when a strong microwave field is used. The experimental
parameter range allows for a maximum bare Rabi frequency of Ωbare = 2π 59 kHz.
This needs to be related to the frequency spacing between two neighboring side-
bands which amounts to 115 kHz in our case. As both values are of the same order
of magnitude off-resonant excitation is significant and must be considered for the
quantitative microwave dynamics as it influences the observed resonance positions
as well as the observed Rabi frequencies.
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Schrödinger equation for the spinor For the more appropriate description of
the experimental situation the theoretical frame of a two level atom can be extended
by inserting the spatial Hamiltonian of each lattice (equation 2.2.1) into the spin
evolution equation 1.1.2. The resulting Schrödinger equation thus fully accounts
for the one-dimensional motion of the atom along the lattice axis while its spin is
coupled to the microwave field

(
p̂

2m
+ U44(x̂) ~Ωbare/2

~Ωbare/2
p̂

2m
+ U33(x̂) + ωmw

)(
ψ44(x, t)
ψ33(x, t)

)
= i~

d

dt

(
ψ44(x, t)
ψ33(x, t)

)
. (2.2.5)

Here, x̂ and p̂ denote the position and the momentum operators of the atom, U44(x̂)
and U33(x̂) are the two different lattice potentials and ψ44(x, t) and ψ33(x, t) are the
wave functions of each spin component, respectively. The frequency of the microwave
radiation is labeled by ωmw. At this point the radial degree of freedom is ignored
as due to its relatively weak confinement the classical radial motion can be treated
independently (see section 2.4).

It is very instructive to write the Hamilton operator in this form as it shows
that the total equation of motion is mathematically a system of two coupled partial
differential equations. Solving this problem by using numerical methods yields the
full information about the spatial and the spin degree of freedom. In principle, this
can be done for any initial spatial distribution of the two spin components which
can be experimentally prepared regardless of whether it can be nicely expanded
in terms of the energy eigenbasis or not. Especially if the microwave radiation
starts to couple both next neighbor lattice sites or if the microwave brings the
atom in resonance with one of the broad energy bands where tunneling plays a
role the direct approach provides the full information about the microwave-induced
spread of the spatial probability distribution over the lattice. The drawback of the
direct numerical solution of the Schrödinger equation is its computational demand.
Moreover, it does not provide an intuitive picture for the appearance of sidebands.

Especially because of the second point it is equally attractive to express equa-
tion 2.2.5 with respect to the energy eigenbasis which is given by the product states
between the spin degree of freedom and the motional eigenstates

(
E44,nκ

1
2
~Ω44,nκ↔33,n′κ′

1
2
~Ω33,n′κ′↔44,nκ E33,n′κ′ + ~ωmw

)(
c44,nκ

c33,n′κ′

)
= i~

d

dt

(
c44,nκ

c33,n′κ′

)
. (2.2.6)

Here E44,nκ and E33,n′κ′ label diagonal matrices whose entries are the bare eigenener-
gies of the vibrational states resulting from the band structure model introduced in
the forgoing section. Similarly, the coefficient vectors (c44,nκ, c33,n′κ′) result from the
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projection of the full spinor onto the Bloch states basis of each lattice. Note that
the parameter ωmw shifts the energy of the entire subspace of the |33〉-hyperfine
state. It thus controls which sideband is tuned in resonance with the microwave
field. The coupling between the hyperfine states is now also described by a square
matrix labeled by Ω44,nκ↔33,n′κ′ = (Ω33,n′κ′↔44,nκ)

† which in general exhibits nonzero
entries at any position. Each entry is given by the wave function overlap between
the corresponding motional states multiplied by the bare Rabi frequency Ωbare. The
absolute value of each entry thus corresponds to the Rabi frequency of the respective
transition. In general, the entries are not real numbers. The phase relation between
the entries start to play a role when a strong microwave field leads to strong off-
resonant excitation where interference between several sideband transition must be
taken into account.

For this work, the Bloch states are used for the calculation of the Franck-Condon
factors. As the microwave radiation is not capable of changing the momentum of the
atom only the entries coupling Bloch states with the same κ are nonzero. Note that
the Bloch states can be calculated for any lattice shift, or in general, for any other
variation of the trapping potential. Thus, the Hamilton operator in equation 2.2.6
is easily constructed for any experimental situation.

According to the discussions in the foregoing section the above equation can be
significantly simplified when the motional dynamics are limited to a pair of wells so
that the Bloch vector κ can be discarded by setting it equal to zero. For most of the
microwave transitions experimentally investigated in this work the reduced set of
vibrational states is entirely sufficient. The size of the four square matrices forming
the Hamilton operator is then given by the number of the considered bands nmax.
This number is chosen suitably for the problem under investigation as it strongly
affects the required calculation time.

Mathematically, the reduced Schrödinger equation 2.2.6 is a system of 2 × nmax

coupled differential equations which again can be solved numerically. This approach
is particularly interesting when the amplitude of the microwave pulse and thus the
bare Rabi frequency Ωbare is time dependent as is the case for a Gaussian pulse. But,
especially when many bound states must be taken into account, the computational
effort of this approach is very high.

Dressed states basis The computational time can be significantly reduced in
case the bare Rabi frequency is constant during the pulse duration. In this case the
Hamilton operator in equation 2.2.6 does not explicitly depend on time so that the
Schrödinger equation can be solved by reformulating it in terms of an eigenvalue
equation and by diagonalizing the Hamilton operator. The new eigenstates form
the so-called dressed state basis very familiar from the two level atom [54]. The
solution of the initial state problem is now trivial: Once it has been expressed in
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the dressed state basis a simple multiplication with the phase factors exp(i Edr,i/~ t)
yields the entire time evolution where Edr,i labels the energy of the ith dressed state.
In contrast to the approach with a direct solution of the differential equation system
the calculation can be easily performed for arbitrary long evolution times.

The dressing picture can even be used for approximating the time evolution
induced by a Gaussian microwave pulse (or by pulses with other time dependent
shapes). For this, the pulse is divided into discrete time steps which are short
enough for the field amplitude to be considered as constant. The form of the pulse
is thus approximated by a step function. The time evolution of each time step can
be calculated within the dressed state model where the final state of the previous
step is used as the input state in the following step. In practice, this approach is
very convenient as it turns out to be fast compared to the direct solution of the
system of differential equations.

Three level example It is instructive to investigate a simple example in order to
illustrate the effects introduced by the multilevel system. The simplest one is that
of a three level system (see figure 2.8 (a)). Let the microwave be able to couple the
states |2〉 and |3〉 with the common state |1〉. The time evolution of the system then
depends on the coupling strengths of the two transitions with respect to the energy
separation ∆23 between the states |2〉 and |3〉. When one or both coupling strengths
become comparable to this energy gap, the two transitions start to influence each
other. For illustration figure 2.8 (b) shows the dependence of the dressed eigenener-
gies on the microwave frequency. In case of a negligible coupling ({Ω12, Ω13} � ∆23)
the bare energies E2 and E3 of the states |2〉 and |3〉 are constant while the sum
E1 + ~ωmw linearly increases with ωmw. In this limit the resonance positions are
located at microwave frequencies fulfilling the condition ~ωmw = E2/3 − E1 which
corresponds to the crossing points in figure 2.8 (b).

When the coupling is switched on the crossings turn into anti crossings. For
the presented example the Rabi frequency Ω12 is held constant at 0.1 × ∆23 while
four different values are used for Ω13 = {0, 0.3, 0.5, 1} × ∆23. In the dressed state
picture the resonance of a transition is located at the frequency which shows the
smallest gap between the eigenenergies. Obviously, the resonance frequency of the
|1〉 ↔ |2〉 transition is shifted according to the strength of the |1〉 ↔ |3〉 transition.
This is exactly the phenomenon called AC Stark shift [54]. From this point of view,
when the microwave radiation is resonant with the |1〉 ↔ |2〉 transition it is far
red detuned with respect to the |1〉 ↔ |3〉 transition. Due to the coupling Ω13 the
energies of the states |1〉 and |3〉 are pushed apart. The shift of the state |1〉 can
eventually be probed by the |1〉 ↔ |2〉 transition.

A closer look onto the gap between the eigenenergies E2 and E1 is shown in
figure 2.8 (c). In the dressed state picture the gap corresponds to ~ times the Rabi
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Fig. 2.8: Three level system. (a) The transition |1〉 ↔ |2〉 (|1〉 ↔ |3〉) has the res-
onance frequency ω12 (ω13) and the coupling strength Ω12 (Ω13). The fre-
quency of the microwave is labeled by ωmw. (b) The eigenenergies of the three
dressed states for four different values of Ω13 while Ω12 remains constant. (c)
The Rabi frequency of the |1〉 ↔ |2〉-transition depending on the detuning
(ω12−ωmw). Its resonance position is shifted when the coupling strength Ω13

of the other transition increases. Additionally, a larger value of Ω13 slightly
reduces the minimum value of Ω12.

frequency of the transition. Again, the shift of the gap minimum clearly indicates the
shift of the resonance position. In addition, the figure shows that the gap minimum
becomes smaller when the strength of the neighboring transition is increased. This
corresponds to a smaller Rabi frequency even in case the microwave is tuned to the
new, shifted resonance position. The change of the Rabi frequency due to microwave
dressing must in particular be considered for the measurement of the Franck-Condon
factors (see section 2.5).

The full multilevel structure By considering the full quantum mechanical mul-
tilevel structure we are able to simulate experimentally relevant deviations from the
simple two level approximation. A good experimental example for the microwave-
induced AC stark shift is the movement of the first order sideband transition accord-
ing to the variation of the microwave power. When the lattice displacement is very
small the Franck-Condon factors for all of the carrier transitions are still close to
unity and at the same time the factors for the sidebands are very small. When the
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microwave is tuned in resonance with the first red sideband as in figure 2.9 (a) the
radiation is at the same time red detuned with respect to the strong carrier transi-
tions. Due to the AC stark shift caused by the carriers the hyperfine states |44〉 and
|33〉 together with all of their motional states are pushed apart. When the dressed
energy level scheme is probed by the weak sideband transition its resonance peak
appears blue shifted with respect to the unperturbed situation. The measurement
in figure 2.9 (b) shows the peak positions of the first red sideband for three different
microwave powers. All three peaks have been generated using a Gaussian pulse with
a e−1/2-width of 15µs. This explains the different heights of the peaks as the pulse
area is not kept constant. The calculation using the full multilevel structure very
well reproduces both, shift and height of the peaks. In the same manner the first
order sideband spectrum from figure 2.3 (c) can be simulated which then reveals that
the observed sidebands are also shifted from the ideal position. This explains the
discrepancy to the measurement of the oscillation frequencies in figure 2.4.
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Fig. 2.9: Microwave-induced AC Stark shift. For a very small shift (ϑ=3.9◦) the first
red sideband is ”attracted” towards the carrier transition when the microwave
power is increased. The theoretical curves result from the dressed state cal-
culation accounting for off-resonant coupling between the vibrational states.

One further interesting question is: Which set of experimental parameters leads
to a well resolved sideband spectrum? In other words, how large is the off-resonant
transfer of population to neighboring motional states? This, e.g., depends on the
choice of the pulse shape as the simple rectangular pulse leads to a much stronger
off-resonant population mixing than a Gaussian pulse. The scheme for the state-
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selective detection explained on page 8 dose not discriminate between vibrational
states. A direct measurement of the population of a vibrational state thus requires
more elaborated techniques (see section 4). In contrast, during the simulation all
of the populations are directly available. The simulation thus helps in advance to
predict the amount of population redistribution after the application of a microwave
pulse. For the case shown in figure 2.9, where a Gaussian pulse has been used, the
calculation predicts a negligible transfer to states other than |33, 1〉. This becomes
different for a rectangular pulse with the same pulse areas for which a few percent
of the atoms are transferred to the |33, 0〉 state (see also figure 2.23).

The theoretical background summarized in this section provides a basis for the
quantitative analysis of the measurements presented next.

2.3 High order sideband transitions

According to the calculated Franck-Condon factors in figure 2.6 (b) it should be
possible to reach all available vibrational states of the trapping potential starting
from the ground state with a single microwave pulse. The measured wide range spec-
trum shown in figure 2.10 indeed exhibits up to fourteen peaks each corresponding
to a |44, 0〉 ↔ |33, n〉 transition. The entire scan is divided into four parts. The first
part shows only the carrier transition without displacement and is used to mark
the position of zero detuning. The other three sub-spectra, each with a different
polarization angle ϑ, favor a different set of sideband transitions namely those for
which the Franck-Condon factors become substantial.

In addition to the mostly well separated resonance peaks a cutoff at the detuning
of -1.4 MHz marks the position of the highest bound states. From the vibrational
eigenenergies resulting from the band structure model (section 2.2.1) the peak po-
sitions of the sideband transitions can be immediately calculated. The expected
positions of the |44, 0〉 ↔ |33, n〉 transitions are indicated by pale vertical lines in
the background of figure 2.10. Generally, experimental and theoretical peak posi-
tions quantitatively agree although there are small but significant discrepancies. A
closer look on the extracted peak separations is given in figure 2.11. Here the decreas-
ing spacing between adjacent peaks in the experimental data follows the theoretical
expectation (apart from an offset).

The model for the lattice potential taking into account experimental imperfec-
tions (see page 21) is used again. Note that a better agreement between experiment
and theory can be achieved for each individual sub-spectrum. The only free pa-
rameter is the rotation angle of the half wave plate wp2r: -0.5◦ for the low order
spectrum (◦), which coincides with the angle necessary to explain the spectrum shift
in figure 2.5. For the two higher order spectra, though, an almost perfect alignment
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Fig. 2.10: Starting with an axially ground state cooled sample a wide frequency scan
exhibits several resonances each corresponding to a nth-order sideband. The
set of visible sidebands depends on the polarization angle of ϑ={0◦ (•), 20.1◦

(◦), 50.3◦ (�), 75.5◦ (�)} (∆x={0, 43, 111, 176} nm). The experimental
resonances are fitted with an asymmetric peak function (equation 2.3.1).
The pale vertical lines indicate the positions of the sideband transitions re-
sulting from the band structure model. The two gray vertical lines indicate
the expected positions of the free space edge and of the edge of axial con-
finement of the |33〉-potential, respectively. They are calculated for the
polarization angle of ϑ = 75.5◦.

of the half wave plate provides better agreement; similar to the measurement of the
oscillation frequencies (see figure 2.4). A more accurate experimental investigation
of the observed discrepancies is thus required for a more complete picture.

Note that the large detuning used in this scan is of the same order of magnitude
as the Zeeman splitting between the magnetic sub-levels. At approximately -1 MHz
the microwave field becomes resonant with the π-transition |33〉 ↔ |43〉 so that three
different hyperfine states are coupled via the same microwave field (see figure 1.4).
By recording a microwave spectrum without displacement we experimentally verified
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Fig. 2.11: Separation of adjacent sideband peaks depending on the order of the side-
band (same symbols as in figure 2.10). The data points are placed in be-
tween the two relevant sidebands. In case of highest sidebands the theoretical
curves result from an average over the Bloch vector κ so that the width of
the bands dose not play a role for the peak separation.

that the π-transition is not detectable using the same parameters as for the spectra
in figure 2.10. This is, first, because of the smaller magnetic dipole matrix element
and second, because the microwave field seems to be very well circularly polarized
at the position of the atoms. The π-transition thus does not interfere with the
presented high order sideband spectrum.

A closer look to the peak form of the sideband transitions uncovers their asymme-
try. This is a signature of broadening as will be discussed in section 2.4. Broadening
effects, e.g., alter the heights of the measured sideband transitions so that they can-
not be directly compared to the calculated Frank-Condon factors in figure 2.6. For
further analysis the spectra are fitted using a peak function which results from a
convolution of an asymmetric detuning distribution and a Gaussian peak

p(ν) =
A0

2|γb|
exp

(
σ2
ν

2 γ2
b

− ν − νcm + γb

γb

)
× (2.3.1)

erf

(
σν√
2 γb

− sign(γb)
ν − νcm + γb√

2σν
−
)
.



52 2. How microwave photons affect atomic motion

Here ν denotes the microwave frequency, A0 is the amplitude of the Gaussian, σν
is its e−1/2-width and erf(x) denotes the error function. νcm denotes the the center-
of-mass position of the peak. For reasons explained in section 2.4 the asymmetric
detuning distribution used is given by a truncated exponential function with the
characteristic asymmetric width γb (see equation 2.4.1). The ideal resonance posi-
tion in the limit of a vanishing peak asymmetry is defined by νideal = νcm−γb. Note
that for the correct comparison to the theory which does not consider broadening
the peak separations presented in figure 2.11 are calculated using νideal.

Function 2.3.1 is only fitted to peaks for which the asymmetry is clearly visible.
Thus, only the middle (�) and high (�) order spectra are fitted using the asymmetric
peak function whereas a simple Gaussian is used for the carrier (•) and the low order
spectrum (◦). The reason for this restriction is, that the exp-factor and the erf-factor
diverge towards very large and very small values when the asymmetry parameter
γb becomes small. Although their product analytically is always well defined the
numerical treatment during the fit stops or returns extremely large error bars when
γb is smaller than ∼5 kHz. All deduced peak widths are plotted in figure 2.12.
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Fig. 2.12: The fitted peak widths of the resonances in figure 2.10 have two contributions
(same assignment of the symbols): (a) the Gaussian width σν and (b) the
asymmetric width γb (see equation 2.3.1). The horizontal line in (a) indicates
the Fourier-limited width of a π-pulse. In (b) a linear fit outlines the increase
of peak asymmetry γb with the order of the sideband.

Because of their well separated peaks reliable conclusions are only drawn from the
carrier, the low and the middle order sideband spectra. The fitted Gaussian widths
σν turn out to be slightly broader than the Fourier limit of a Gaussian π-pulse and
basically independent of the order of the sideband transition (note that the width
of a Gaussian pulse also depends on its pulse area). Although the widths in the low
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order spectrum exhibit an unambiguous increase, most probably this broadening
still stems from thermal contributions even though the peaks could not be reliably
fitted with the asymmetric function (compare to figure 3.6). This is supported by
the fact that even the widths of the middle order transitions are almost Fourier-
limited. Their broadening seems to be completely governed by the asymmetric
contribution which approximately linearly increases with the order of the sideband
(see figure 2.12(b)). In section 2.4 this broadening and its linear increase will mostly
be attributed to the thermal radial motion of the atoms.
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Fig. 2.13: (a) A high order spectrum similar to that in figure 2.10 (no ground state
cooling). (b) The survival probability for the same experimental sequence
as in (a) (no state-selective push-out applied). When microwave detuning
approaches the edge of the potential atoms get lost.

Apart from broadening, atoms can even get lost when the microwave pulse excites
them close to the edge of the potential as is demonstrated in figure 2.13. This
phenomenon is expected when thinking about the broad Bloch bands (figure 2.6 (a))
just below the energetic trapping boarder where tunneling between the potential
wells plays a considerable role. Due to the axially not ground state cooled sample
the frequency region where losses occur in figure 2.13 is very broad.

In the following I give an overview of the most important broadening and deco-
herence mechanisms in our setup. The focus is placed on their characteristic shape
and their dependence on the order of the sideband.
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2.4 Broadening and decoherence sources

At the beginning, it is instructive to collect possible effects which might be re-
sponsible for the observed distortions of the spectra and the Rabi oscillations which
will be discussed later on. It turns out, that the main distortion stems from the
fact that the atomic ensemble under investigation exhibits a thermal distribution
of its motional degrees of freedom. The axial and the radial degree of freedom are
qualitatively different in the sense, that the first must be treated quantum mechan-
ically while the second one can be considered classically. Second, as the trapping
potential is designed to be spin dependent the microwave resonances are sensitive
to fluctuations of the potential (see figure 1.9) [57]. Thus, other broadening mecha-
nisms are caused by technical imperfections, namely, by the jittering of the lattice
beam power and of the lattice displacement, by the beam pointing stability and
by the polarization inhomogeneity across the lattice beam. Note that not only the
resonance frequency of a given sideband transition is subject to fluctuations but
also the corresponding Franck-Condon factor. As usually, for transitions between
magnetically sensitive atomic states a noisy quantization field also plays a role.

In order to present a suitable overview of the different noise contributions their
strengths are graphically tabulated in figures 2.18 and 2.19. The controlled shift
of the lattices relative to each other is a key feature of our experiment. We thus
investigate each disturbance at various polarization angles ϑ and take standard
values for all other experimental parameters.

Concerning the form of the detuning distribution the noise sources can be classi-
fied into two categories. The first one comprises effects which symmetrically smear
out the resonance lines. In this case, a small deviation of an experimental parameter
from its nominal set-value leads to a linear change of the detuning with respect to
the center frequency. When the parameter fluctuation does have a Gaussian distri-
bution so does the corresponding detuning distribution. Effects from this category
can thus be characterized by the Gaussian width σb. The convolution of this dis-
tribution with the Fourier-limited peak (with the width σf) yields again a Gaussian
peak whose width is defined by the quadratic sum σ2

ν = σ2
f + σ2

b.

Members of the second category lead to an asymmetric detuning distribution
which has the form of a truncated exponential function

η(δ) = Θ(sign(γb) δ)
1

|γb|
exp(− δ

γb

). (2.4.1)

Here, δ denotes the microwave detuning from the ideal resonance position, Θ(x)
denotes the heaviside function and sign(x) returns the sign of x. The parameter
γb is a measure for the asymmetric broadening (see page 61). Note that its sign
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determines whether the ”tail” of the distribution points towards positive or negative
detunings. The convolution of this distribution with a gaussian pulse yields the peak
function defined in equation 2.3.1.

It is impossible and unnecessary to discuss each of the individual sideband transi-
tions |44, n〉 ↔ |33, n′〉. For a representative overview, the influence onto few selected
transitions is shown: the carrier transitions |44, n〉 ↔ |33, n〉 with n={0, 3, 6, 9, 12},
and the sideband transitions starting from the ground state |44, 0〉 ↔ |33, n〉 with
n={0 ,3 ,6 ,9 ,12}. These are the most extreme transitions in the sense that fluctu-
ations for all other transitions have a magnitude which is in between the presented
ones. The restriction to states below n=12 is chosen due to the experimentally
negligible width of their Bloch bands. For most of the presented settings the cal-
culations based on the Bloch states thus yields sharply defined results. In case the
microwave couples the wave function of each lattice site to both next neighbor sites
the Franck-Condon factor reflects the overlap with only one individual neighboring
site as discussed on page 41.
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Fig. 2.14: (a) The Franck-Condon factor of the transition |44, 3〉 ↔ |33, 3〉 and (b)
the corresponding confidence interval due to thermal radial motion showing
its typical dependence on the polarization angle. The fluctuation of the
Franck-Condon factor is provided in terms of a ratio. The original Franck-
Condon factor at the given polarization angle corresponding to a value of 1 in
this representation. (c) Illustration of the perfectly resonant Rabi oscillation
which suffers from a Gaussian distribution of the Rabi frequency (σΩR

=
0.02 Ωmean, see equation 2.4.2).

As the relation between the displacement and the Franck-Condon factors is com-
plicated and in general shows up several sharp kinks (see figure 2.14 (a)) at certain
experimental parameters even small fluctuations may strongly affect the wave func-
tion overlap. For simplicity, we restrict the analysis to regions where the Franck-
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Condon factor is larger than 0.1. Although the choice of this threshold is arbitrary it
is motivated by the fact that the Franck-Condon factor of 0.1 corresponds to a Rabi
oscillation with a frequency of ∼6 kHz. At the present stage of the experiment, due
to decoherence, transitions with smaller coupling strengths experimentally hardly
show more than one full oscillation before the signal is completely damped. They
are thus not useful for further applications. Within the ’good’ regions the local
dependence of the Franck-Condon factor on the displacement is always smooth.
The fluctuation of the Franck-Condon factor due to a small variation of some ex-
perimental parameter is, however, not necessarily linear. There is thus no simple
transformation available between the noise distribution of the parameter under in-
vestigation and the resulting noise distribution of the Franck-Condon factor. For
simplicity, the confidence interval for the distribution of the Franck-Condon factor
is defined by determining the minimum and the maximum Franck-Condon factor
within the confidence interval of the noise source. These boundaries are then dis-
played as a ratio with respect to the ideal Franck-Condon factor (see figure 2.14 (b)).
For comparison, presuming a Gaussian distribution of the Franck-Condon factor the
expected distortion of the resonant Rabi oscillation can be calculated analytically

∞∫
−∞

1√
2π
σΩR

exp

(
−(ΩR − Ωmean)2

2σΩR

)
1

2
(1− cos(ΩR t)) dΩR

=
1

2
(1− exp(−1

2
σ2

ΩR
t2) cos(Ωmean t)). (2.4.2)

Here, Ωmean labels the mean Rabi frequency and σΩR
denotes the width of the

Rabi frequency distribution. It follows that the contrast of the Rabi oscillation
has a Gaussian form. The reduction of the contrast is exemplarily illustrated in
figure 2.14 (c).

In the following the contribution of each broadening mechanism is discussed
separately. For these investigations a perfect experimental setup with ideal optical
elements is assumed. For small deviations from the ideal case, as e.g. observed in
the experiment, the drawn conclusions are quantitatively similar.

Axial motion

Before the investigation of broadening mechanism for pure microwave transitions
|44, n〉 ↔ |33, n′〉 we briefly address the case of a statistical mixture over the axial
vibrational states. As, in general, all pure sideband transitions possess a different
resonance frequency and a different Rabi frequency the observed spin evolution
suffers from broadening and decoherence (see e.g. the spectrum in figure 2.3). On
the other hand, due to the discretized motional spectrum the spin evolution can be



2.4. Broadening and decoherence sources 57

exploited for the measurement of the vibrational state populations (see section 4.1).

Here, we concentrate on the special case of unshifted potentials where, presuming
U44 = U33 perfectly holds, all carrier transitions are identical. After each everyday
alignment (see page 17) a simple spectrum is recorded in this configuration in order
to make a final check of the alignment quality using atoms as a probe. Moreover, the
case of microwave pulses with unshifted potentials is important for our realization
of the quantum walk [8]. Due to different light shifts for the states |44〉 and |33〉
they experience slightly different trap depths even in the case of perfectly linearly
polarized trapping lasers. This difference may easily be overwhelmed by a small
polarization ellipticity. Figure 2.15 illustrates the differences between the carrier
transitions if the depths of the sinusoidal potentials are not the same.
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Fig. 2.15: Differences between carrier transitions in case of unshifted potentials: Panels
(a) and (b) show the resonance frequencies with respect to the 0 ↔ 0′

transition and (c) the Franck-Condon factors depending on the ratio between
the depths of the potentials U33/U44. For perfectly linearly polarized lattice
beams this ratio amounts to 0.9975 but it can be strongly affected by a
residual polarization ellipticity (compare to figure 1.9). While the variation
of the Franck-Condon factors is negligible for usual experimental settings the
resonance frequencies are strongly affected.

During the experimental sequence the population of the vibrational states is not
static but rather can be changed by heating mechanisms or by deliberate lattice
shifts and depth ramps. Fortunately, the intrinsic heating caused by technical noise
is on the order of one vibrational quantum per 100 ms and can be neglected for single
pulses or even long pulse trains and long Rabi oscillations. In contrast, the atomic
ensemble suffers from significant decoherence of its quantum mechanical state if
diabatic lattice manipulations induce a change of the atomic motional state [23].



58 2. How microwave photons affect atomic motion

Lattice depth

Although the jitter of the depth of the lattice potential is not the dominating
distortion in our setup this noise source is discussed first. This is done with regard
to other noise sources as many of them are traced back to a variation of the lattice
depth.

Due to active stabilization the standard deviation for the laser power fluctuation
in our setup amounts to ±1%. In principle, the frequency distribution of the noise
must be considered for a complete discussion. In our case, the significant frequency
range is ≈0.1 Hz-150 kHz. Here, noise contributions at frequencies much larger than
the energetic spacing between motional states can be ignored because they average
out to an effective mean trapping potential. The lower bound of the relevant fre-
quency range is defined by the time which is required for several sequence repetitions
with the same initial conditions.

The influence of a fluctuating trap depth is investigated by recalculating the
eigenenergy spectrum and the corresponding eigenstates for different depths (see
equation 2.2.4). The spread of the eigenenergies directly transforms into a detuning
distribution of a microwave transition |44, n〉 ↔ |33, n′〉. Because of the linear
dependence a Gaussian noise distribution of the laser power thereby leads to a
Gaussian detuning distribution characterized by the width σb. Panels (b) and (f)
in Figure 2.18 show its expected value. As long as the depths of the two potentials
are identical the eigenenergies fluctuate perfectly in common so that at least the
carrier transitions are not affected. This, in general, does not hold for sideband
transitions. The broadening becomes more serious when the lattice displacement is
nonzero where due to wobbling of U33 the difference between U44 and U33 is very
large. The transition |44, 0〉 ↔ |33, 0〉 is the most sensitive of all carrier transitions
as it fluctuates with the full amplitude whereas the fluctuation of the higher states is
increasingly weaker. Accordingly, the relative fluctuation between the ground state
and the higher vibrational states increases with the order of the sideband.

The influence of the depth fluctuation on the Franck-Condon factor is shown in
panels (b) and (f) of figure 2.19. The variation of the Franck-Condon factor is based
on the fact that the motional eigenstates vary depending on the potential depths.
This is even true when the two potentials are perfectly identical and are changing
in common (no detuning for the carriers).

Radial motion

After cooling the axial degree of freedom to the vibrational ground state the
radial motion is expected to remain almost unaltered. As the radial oscillation
frequency ωrad = 2π 1 kHz is very different from the axial one ωax = 2π 115 kHz
the exchange of energy between the two degrees of freedom is negligible [43]. After
molasses cooling the radial temperature amounts to Trad ≈ 10 µK corresponding to
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a mean vibrational number of n̄rad ∼ 200. In this limit the quantization of the radial
motion can be neglected and the radial atomic position can be treated classically.
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Fig. 2.16: The thick red line indicates the Gaussian shape of the U44 and U33 potentials
along the radial direction. The classical probability density to find an atom
at the distance ρ is denoted by the shaded green line (assuming a radial
temperature of 10µK (see chapter 4). The vibrational states along the axial
direction, indicated by the dashed lines, change their total eigenenergy and
their spacing when the distance ρ from the trap axis increases. The width of
the energy bands is indicated by gray shading. Here, the polarization angle
amounts to ϑ = 75.5◦ so that the potential U33 is shallower than U44 and
also has a smaller axial contrast where the upper red line indicates its axial
trap depth.

Due to the radial position distribution of the atomic ensemble microwave opera-
tions are sensitive to position-dependent differences between the potentials U44 and
U33. Even for perfectly identical potentials the sideband transitions are still affected.
In order to understand how the distortion depends on the order of the sideband (see
figure 2.12 (b)) we must drop the harmonic approximation for both the axial and the
radial confinement. Unlike for a three-dimensional harmonic oscillator the hamilto-
nian for the lattice potential resulting from a multiplication of a Gaussian with a
sine-function is not separable. Hence, the previous calculation of the Bloch states
which implied that the axial eigenstates can be calculated independently from the
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radial motion is not completely correct. The modeling of this problem can be tack-
led by comparing the timescales of the axial and the radial motion: At each radial
position ρ the local axial eigenenergy states can be considered as properly defined.
In this picture, the atoms adiabatically follow the change of the axial eigenstate
during a slow radial movement.

xaxial

Upotential

ρradial

Fig. 2.17: The radial confinement depends on the axial motional state |n〉. Due to
the anharmonicity of the 3D-trapping potential an axially excited atom (e.g.
n = 5) effectively experiences less light shift and is thus more loosely bound
along the radial direction. This is the counterpart to the case of figure 2.16
where the axial state varies with the radial position.

The dashed lines in figure 2.16 indicate the variation of the eigenenergies of the
axial bands with the radial position ρ although it is slightly anomalous to draw
curved eigenenergy levels. These lines have to be interpreted as energy levels corre-
sponding to the sum of the local radial potential energy and the local axial eigenen-
ergy. They suggest that the radial confinement depends on the axial vibrational
state (e.g. an atom in the axial state n = 5 experiences a shallower radial poten-
tial compared to an atom in the axial ground state). This is indeed the case as is
illustrated in figure 2.17.

Note that the spacing between the eigenenergies also varies with the radial po-
sition. The same is true for inter-potential spacings. As microwave transitions
connect a dashed line of the |44〉-potential with a dashed line of the |33〉-potential
the resonance frequency of a sideband depends on the radial position of the atom. In
addition, according to the shallower axial potential at the distance ρ from the lattice
axis the highest axial bands switch one-by-one to positive energies. The situation is
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similar in the case of the |33〉-potential. Here, due to the reduced potential contrast
the bands of the upper most bound states become very broad and finally merge to a
quasi-continuum although they are still negative. This effect needs to be considered
for the highest order sidebands: Atoms with an energy above the axial confinement
most probably also contribute to the losses shown in figure 2.13.

For comparison, figure 2.16 shows the classical probability density to find an
atom at the distance ρ from the lattice axis

ηrad(ρ) =
ρ

σ2
ρ

exp(− ρ2

2σ2
ρ

) with σρ =

√
kB Trad

M ω2
rad

. (2.4.3)

It is derived by assuming a 2D-Boltzmann distribution with temperature Trad for the
radial motion and by approximating the radial confinement by a harmonic potential
with oscillation frequency ωrad.

An analytical expression for the thermal frequency distribution can be derived
by assuming that the atomic radial position and thus its detuning is fixed during
the duration of the microwave pulse. This assumptions is justified by comparing
the radial oscillation period of ∼1 ms with the length of a typically used Gaussian
microwave pulse (e−1/2-width of 15µs). Furthermore, each dashed line in figure 2.16
is approximated by a parabola with a different oscillation frequency ωrad,n for each
axial state |n〉. In this approximation, the spacing between two axial states depends
quadratically on the radial position

E44,n(ρ)− E33,n′(ρ) = Knn′ ρ
2. (2.4.4)

The position distribution 2.4.3 can be directly cast into a detuning distribution de-
fined by equation 2.4.1 with

γb =
Knn′

π ~
σ2
ρ. (2.4.5)

In particular, the asymmetric width γb depends on the order of the sideband and,
less strongly, on the involved vibrational states. For our parameters figures 2.18 (a/e)
indicate the magnitude of thermal broadening. Qualitatively, the conclusions are
similar to those drawn for the broadening due to laser power fluctuations but the
thermal broadening is an order of magnitude stronger.

A closer look to the theoretical curves for a fixed lattice displacement reveals
the linear increase of γb of 5 kHz per order of sideband. This can be compared
to figure 2.12 where the measured increase of γb amounts to 1.8±0.4 kHz per order
of sideband. Obviously, the measured peak asymmetries are by a factor of two
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Broadening constants for different carrier transitions

Broadening constants for sideband transitions starting in the ground state
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Fig. 2.18: Broadening of the carrier transitions |44, n〉 ↔ |33, n〉 and sideband transi-
tions |44, 0〉 ↔ |33, n〉 with n={0, 3, 6, 9, 12} due to four different noise
sources.
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Fig. 2.19: The fluctuation of the Franck-Condon factor of the carrier transitions
|44, n〉 ↔ |33, n〉 and sideband transitions |44, 0〉 ↔ |33, n〉 with n={0,
3, 6, 9, 12} due to four different noise sources (the same color code for all
sub-figures). The definition of the confidence interval for the fluctuation is
given in figure 2.14.
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smaller than the calculated expectation. Because the radial confinement cannot
deviate much from the expectation the curvature of the lines in figure 2.16 and thus
the coefficients Kn,n′ are fairly reliable. A second explanation could be a radial
temperature which is significantly smaller than Trad = 10 µK (see section 4.1.1).
This is questionable as this would mean an exceptionally low temperature for a
molasses cooled sample. On the other hand, the sideband cooling process itself
influences the radial motion and possibly leads to a non thermal energy distribution
(see figure 3.6). Also possible that the assumption of a fixed detuning during the
duration of the microwave pulse does not hold and that a quantum mechanical
treatment of the radial motion is required. This is an extraordinary computational
effort so that the discrepancy between theory and experiment must be left open
here.

As the local axial vibrational state depends on the radial position so do the cor-
responding Franck-Condon factors. A subtle detail for the analysis is the fact that
the distribution of the radial position is not Gaussian (see figure 2.16). For sim-
plicity the ”confidence interval” for the position distribution is defined by choosing
symmetrical bounds around the mean radial position at ρmean ≈ 3µm. Then, the
maximum and the minimum value of the Franck-Condon factor within this position
range determine the width of the Franck-Condon factor distribution.

Polarization inhomogeneity

For the preceding discussion a homogeneous polarization across the beam profile
is assumed. If this is not the case (see figure 1.10) the size of the atomic sample
(dominated by the radial motion) plays an even more important role. The current
simulation of the lattice potential does not take into account this important effect.
Although this is in principle possible (see figure 1.10) there is no simple conclusion
which can be drawn from this. Additionally, the gradient is not very well quantified
at this moment as this requires a sub-degree resolution of the rotation angle of the
wave plates used. Experimentally, this problem is on the way to be solved both by
cooling along the radial degree of freedom and by compensating the polarization
inhomogeneity using glass plates with controlled mechanical stress applied to them.

Displacement

Naturally, a fluctuating lattice displacement directly alters the Franck-Condon
factors. The standard deviation for the displacement fluctuation used here amounts
to ±0.001λlat/2 = 0.433 nm (ϑ ∼ 0.2◦) and is limited by the purity of the computer
control voltage and by the stability of the EOM-driver voltage. Although the sta-
bility of the displacement is already quite high the Franck-Condon factor still can
show a fluctuation on the order of 10 % especially for the carrier transitions at small
polarization angles. This underlines the importance of an equal beam path for both
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polarization components of the trapping beam and that the lattice shift is solely
caused by the EOM (see section 1.2.2).

When the displacement is varied with a a small amplitude the depth of the |44〉-
lattice ideally remains constant while that of the |33〉-lattice changes. This is similar
to a direct change of the trap depth and thus leads to a symmetric broadening con-
tribution σb. The approximation of a linear variation of the depth with a small
change of the displacement is valid to a very good degree for most settings. For
displacements for which the depth changes quadratically, e.g. for ∆x = 0, the con-
tributions are negligible compared to other fluctuations. The qualitatively different
dependencies in figure 2.18 (d) and (h) compared to other broadening mechanisms
reflect the small potential wobbling at zero and at maximum displacement and a
stronger depth change when the lattice sites are separated by λlat/8.

Pointing stability

The instability of the beam alignment at the position of the atoms alters the
resonance width by affecting the lattice contrast and thus the potential depth. This
only becomes important if the two counter propagating beams are misaligned rel-
ative to each other. The standard deviation for the misalignment deduced from
the radial position of the imaged atoms amounts to ±1 µm [23]. In contrast to
the intrinsic fluctuation of the depth (page 58) a relative beam displacement always
leads to a reduction of the potential. It thus gives rise to an asymmetric broadening.
Luckily, this contribution has the same broadening distribution as that caused by
the radial motion and can thus also be quantified by the constant γb. Since the
relative position of the counter propagating beams has a two-dimensional Gaussian
distribution (similar to the radial position of the atoms) it can be reduced to a
distribution which only gives information about the separation between the beam
axes and which is therefore described by an equation equivalent to 2.4.3 (ρ means
then the distance between the axes). To first order the detuning varies quadratically
with the axes separation which again has the form of equation 2.4.4. For our exper-
iment the distribution only minimally depends on the radial position of the atom.
Combining this two facts yields a detuning distribution which is modeled by equa-
tion 2.4.1. Unfortunately, the constant γb of the radial motion and of the pointing
fluctuation are not additive because the convolution of the distribution 2.4.1 with
itself is a more complicated function. Due to the high passive pointing stability,
however, its fluctuation can be neglected. It is important to maintain the stability
level as the influence of this source grows quadratically.

Quantization field

The fluctuation of the Zeeman splitting between the states |44〉 and |33〉 due to
the instability of the applied magnetic field is very linear and thus also contributes to
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the symmetric broadening constant. From the measured coherence times we deduce
its value to be σb ≈ ±1 kHz.

The Franck-Condon factor is not subject to quantization field fluctuations be-
cause a homogeneous magnetic field does not change the wave functions by any
means. In principle, a strong field gradient introduces a relative displacement be-
tween wave functions of different |F,mF〉-states [77]. Nevertheless, because of the
strong axial confinement the displacement along the axial direction is negligible even
for the highest gradients experimentally available in our setup. The displacement
is also negligible along the radial degree of freedom as here the quantization field
dominates the direction of the local magnetic field.

Long term drifts

The experimental practice shows that once adjusted the setup degrades on the
time scale of few hours until it must be realigned to preserve good coherence prop-
erties. The elements with the strongest effect are the wave plates and the transport
EOM (see figure 1.1). It turns out that the wavelength of the lattice laser also has
a strong influence. Here, two questions have to be answered: The influence of a
drifting wavelength and the precision of the calculated magic value.

Wave plates In the present investigation all wave plates are assumed to be zero
order plates according to their specification. The intrinsic effect of a small rota-
tional drift of the two wave plates wp2i and wp4i used to prepare the polarization
of the incoming beam is ideally negligible. This is due to the used retro-reflecting
configuration of the lattice beam setup. Here, the left-handed circular polarization
component of the incoming beam is reflected as a right-handed circularly polarized
one and vice versa. The flipping element is the quarter wave plate wp4r which acts
as an effective half wave plate after double-pass. Thus, any imbalance between the
circular components of the incoming beam is inverted so that the standing wave
intensity of both components is equal. The auto-compensating effect is degraded,
when the relative laser intensity of the incoming and the reflected beams are differ-
ent due to attenuation or unequal waists. The influence of wp2i and wp4i during
the lattice shift depends on their relative order in the beam path. For our setup,
where the intensity ratio amounts to ∼0.85 due to beam attenuation, the rotational
drift causes a shift of any transition by 4 kHz/1◦ for the quarter wave plate and
by 8 kHz/1◦ for the half wave plate. For the half wave plate this is independent of
the lattice displacement while for the quarter wave plate the shift varies between
+4 kHz/1◦ and -4 kHz/1◦.

The distortion of the Franck-Condon factor is more pronounced which explains,
why the alignment of the wave plates is so critical (especially for carrier transitions).
The rotation of wp4i by 0.1◦ introduces almost the same lattice shift as a polarization
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rotation of ϑ = 0.2◦ so that in this case the drift of the Franck-Condon factor
is qualitatively and quantitatively similar to the Franck-Condon factor variation
presented in figure 2.19 (d) and (h) (here the data has to be interpreted as a slow
drift instead of a fluctuation and the lines mark the situation for a rotation of ±0.1◦).
In contrast the rotation of wp2i leads to a negligible distortion of the Franck-Condon
factor.

A rotational drift of the two wave plates wp4r and wp2r in the retro-reflected
part has a striking impact onto the positions of the resonance peaks. This was
already mentioned during the explanation of the measurements in figure 2.4 and 2.5.
Figure 2.20 now illustrates the expected shift and stretching of a sideband spectrum
caused by a rotation of the half wave plate as small as 0.1◦. The effect of the quarter
wave plate is approximately half of that of the half wave plate. Note that ideally
there is no distortion if the displacement is zero. The distortion of the Franck-
Condon factor caused by the plate wp4r is comparable to the distortion shown in
figure 2.19 (d) and (h) when its rotation amounts to 0.1◦. wp2r however has a rather
small influence on the Franck-Condon factor which nevertheless becomes significant
at large lattice displacements.
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Fig. 2.20: Frequency shift of the sideband transitions |44, 0〉 ↔ |33, n〉 with n={0, 3,
6, 9, 12} due to the rotation of the half wave plate wp2r by 0.1 ◦ depending
on the polarization angle ϑ. The effect onto the carrier transitions |44, n〉 ↔
|33, n〉 is quantitatively almost the same except that the spread between the
transition is twice as large while the n = 0 transition is in both cases the
same.

Wavelength drift The wavelength drift primarily has an influence on the coef-
ficients in equation 1.2.1 (see figure 1.6). Additionally, the retardation of the zero
order wave plates used is changing which leads to an almost comparable contribu-
tion. For a wavelength change of 0.1 nm the distortion is quantitatively comparable
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to the depth fluctuation presented in figures 2.18 / 2.19 (b) and (f). The qualita-
tive behavior is also very similar, which is reasonable as the change of the coupling
coefficients mainly causes a change of the trap depth.

Experimentally, a wavelength change by 0.1 nm can indeed happen when the
Ti:Sapphire laser undergoes a mode jump but this is immediately displayed by
the wavemeter which monitors the wavelength. It also indicates slow drifts of the
wavelength of up to ±0.01 nm when the laser is not locked to our stabilized reference
Fabry-Perot cavity. According to the simulation this small drift should be negligible.
Nevertheless, experimentally a sensitivity of the microwave spectrum is observed as
it shows a periodic shift when the frequency of the Ti:Sapphire laser is scanned on
the GHz scale. This suggests that the atoms are affected by a spurious interference
of the trapping laser which most probably originates in the transport EOM. This
assumption is based on the fact that the observed phenomenon disappears when
the EOM is removed from the optical path. In order to reduce this contribution a
thermal stabilization of the EOM and its holder is planned in the future.

Wrong wavelength For the experiments discussed in this work the wavelength of
the trapping laser is set to 865.900 nm which results from our calculation employing
several approximations (see section 1.2.1). Additionally, some measured transition
strengths which enter the calculation are only known with finite accuracy. There
is thus an uncertainty in the calculated intensity-to-depth coefficients so that an
estimation of possible deviations of the microwave transition properties (resonance
frequencies and Franck-Condon factors) is necessary. For simplicity, the once ob-
tained intensity-to-depth coefficients are not recalculated. Instead, the emulation
of a wrong magic wavelength is accomplished by artificially using a different value
than 865.900 nm assuming that the shape in figure 1.6 (b) remains approximately the
same. Thus, the procedure is very similar to the simulation of a drifting wavelength.
The measurements presented in figure 2.4 and 2.24 suggest that the used wavelength
seems to be slightly blue shifted with respect to the correct magic wavelength of
Cesium.

In conclusion, the most important broadening and decoherence source in the
current experimental setup is the thermal distribution of the atomic ensemble along
the radial degree of freedom. This in particular limits the coherence of the sideband
transitions which cannot be improved by making the two trapping potentials as
equal as possible. Nevertheless, the technical noise sources still play a significant
role. For example, the above analysis revealed which level of stability is required for
the EOM-voltage and for the wave plate alignment in order to assure a stable Franck-
Condon factor and a stable resonance frequency. Note that in the displaced lattice
a simple increase of the microwave power leads to higher off-resonant excitation and
thus is not an option to improve the situation.
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2.5 Tuning the Franck-Condon-factor

2.5.1 Rabi oscillations on sideband transitions

The coherence of sideband transitions can most directly be tested by driving Rabi-
Oscillations. Figure 2.21 shows Rabi-Oscillations for the 1st and the 7th sideband
starting from the ground state. The measured Rabi frequencies (32.0 kHz and
21.7 kHz) well agree with the expectation based on the lattice model (31.5 kHz and
23.6 kHz) (dressing must be taken into account, see section 2.2.2). The timescale
for the decay of the coherent evolution is quite different for this two traces. We
empirically found that the fitting function

P33(t) = bg + A0

(
1 + exp(−

√
t/τdecay) sin(ΩRabit+ φoffset)

)
(2.5.1)

leads to a significantly better fitting result compared to the usually used exponen-
tially decaying sine function (see figure 2.21(b)). The fitted decay constant τdecay

for the first sideband amounts to (1.53±0.05) ms that for the seventh sideband to
(90±10) µs. This is reasonable recalling that the radial motion causes broadening
which depends on the order of the sideband as discussed on page 58. The ratio be-
tween the two decay times amounts to approximately ten and is comparable to the
corresponding ratio between the fitted widths of the high order sideband spectrum
shown in figure 2.12.

Similar to the shape of the spectral peaks in fiure 2.10 the shape of the Rabi os-
cillation envelope also contains information about present decoherence mechanisms
(see section 2.4). Figure 2.14(c), e.g., shows that a fluctuating Franck-Condon factor
leads to a Gaussian envelope. In case of a detuning distribution the envelope un-
fortunately cannot be calculated analytically. Figures 2.22(a+b) thus compare the
results of a numerical convolution of three different detuning distributions with the
Rabi formula given in equation 1.1.4. In case of a Lorentzian distribution the free
induction decay familiar from NMR experiments leads to an exponential envelope.
For a driven system on the contrary, none of the presented distributions leads to an
exponential envelope. This is the reason why different envelopes have been tried for
the data fit. Note that moreover the measured Rabi oscillation traces are of the same
length as the period of the radial movement. When the average over a static thermal
detuning distribution is replaced by the average over individual atomic trajectories
with a thermal weighting factor the Rabi envelope is again significantly altered (see
figure 2.22(c)). A full theoretical description thus requires a lot of computational
power as it is at least not straight forward to extract general conclusions [5].
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Fig. 2.21: Coherent Rabi oscillations for the sideband transitions (a) |44, 0〉 ↔ |33, 1〉
with a fitted Rabi frequency of 2π(32.0±0.1) kHz (ϑ = 11.6◦) and (b)
|44, 0〉 ↔ |33, 7〉 with a Rabi frequency of 2π(21.7±0.2) kHz (ϑ = 50.3◦) .
The sinusoidal fitting functions include the empirically found damping term
exp(

√
t/τdecay). For comparison the fit with the usual exponentially damped

sine function is shown in (b) as a green line exhibiting a faster decay.

An experimentally interesting point concerns the rich motional level structure of
the trapping potential. Using the model described in section 2.2.2 the simulation of
the state population for the data, e.g. presented in figure 2.21(a), reveals that the
motional state is not pure. Due to the strong driving field (Ωbare . ωax) off-resonant
excitation coherently redistributes the population among several motional states. As
figure 2.23 though illustrates the population does not simply spread without bounds.
For our parameters it oscillates back and forth between few nearest neighbor states.
The initial situation however is also never found again meaning that the population
of the initial state is hardly higher than 99%. In the experiment the information
about the motional state is traced out. The motional dynamics though remains
visible and manifests itself in a kind of beating signal superimposed on top of the
main spin oscillation. This also has a significant influence on the observed envelope
of the Rabi signal.
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Fig. 2.22: Characteristic envelopes of Rabi oscillations of a two level system with a fre-
quency of ΩR = 2π50 kHz. (a+b) Three different detuning distributions are
all leading to different envelopes (the static thermal distribution is defined
by equation 2.4.1). The respective broadening constants (γb for the ther-
mal, e−1/2 radius for the Gaussian, half maximum radius for the Lorentzian
distribution) are all set to 20 kHz. For comparison (a) shows the stan-
dard exponential envelope. (c) Comparison of a static thermal distribution
and an average over (classical) radial trajectories with otherwise the same
experimental parameters.

2.5.2 Rabi frequency depending on the lattice displacement

Comparing the measured Rabi frequency of a sideband transition to the Rabi fre-
quency of a free atom Ωbare directly yields the absolute value of the Franck-Condon
factor between the involved motional states (see equation 2.1.2). One remarkable
property of the spin dependent potential is that any of the Franck-Condon factors
can easily be varied by adjusting the lattice displacement ∆x. For comparison, for
recoil-induced sideband transitions this is only possible by changing the angle be-
tween the propagation axes of the two Raman laser beams. As the Franck-Condon
factor in our case is nothing else than the spatial wave function overlap a measure-
ment of the Rabi frequency depending on the displacement provides information
about the spatial shape of the motional states. Figure 2.24 shows the measurement
of three different wave function overlaps. Very similar results have been indepen-
dently obtained in a shallow 3D lattice [78, 29]. Related measurements have also
been performed with trapped ions but without the tunability option [37].

Our measurement procedure is based on the experimentalists point of view: The
resonance position of a desired transition is first determined by measuring a spectrum
with a close to π-pulse condition. The resulting resonance frequency thus already
includes all possible shifts as there are: the shift due to the wobbling of the |33〉
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Fig. 2.23: Population of individual vibrational states while the sideband transition
|44, 0〉 ↔ |33, 1〉 is driven with a coupling strength of Ωbare = 2π 59 kHz
(same conditions as for figure 2.21(a)). While the total transfer to the hy-
perfine state |33〉 is 99% the population of the target motional state is at
most 95%.

potential, deviations from this shift caused by technical imperfections (e.g. shown
in figure 2.5) and shifts due to the AC Stark shift (figure 2.9). As the AC Stark
shift depends on the field amplitude the spectrum must be recorded with the same
microwave power which is used for the measurement of the Rabi oscillations. For
the data in figure 2.24 the full microwave power with the maximum Rabi frequency
of Ωbare = 2π 59 kHz is used in order to decrease the influence of decoherence. On
the other hand, the determination of the resonance frequency becomes less precise
as the length of the π-pulse is relatively short. If not limited by decoherence ≈5
Rabi oscillations are recorded. Finally the data are fitted by a single decaying sine
function given in equation 2.5.1. The precision of the fitting result for the Rabi
frequency is below ±0.2 kHz. Alternatively the Rabi frequency is extracted from
the Fourier transform of the traces. Here the maximum of the resonance peak is
taken as the resonance position. Both approaches coincide within the confidence
interval. A more realistic confidence interval of ±0.5 kHz is however defined by
averaging over several repetitions with the same experimental conditions.

The data in figure 2.24 agree quite well with the theoretical prediction of the
Franck-Condon factors derived using the band structure model. In particular this
results account for the depth change of the potential U33 as well as the nonlinear
dependence of the displacement ∆x on the polarization angle ϑ (see figure 1.8).
Note that only the absolute value of the Franck-Condon factor is measurable. This
becomes evident by considering that the mathematical definition of the motional
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Fig. 2.24: Measurement of the Rabi frequency for the carrier (circles), the first red (di-
amonds) and the first blue sidebands (rectangles) starting from state |33, 1〉
for different polarization angles ϑ. Dashed lines indicate the Franck-Condon
factors calculated using the band structure model from section 2.2.1. Solid
lines result from a model including the microwave dressing (see section 2.2.2)
and thermal average over radial trajectories.

states is fixed only up to an individual phase factor. When the atom in contrast is
initially prepared in a well known superposition between motional states the relative
phase between the state amplitudes indeed has a strong influence on the observed
Rabi signal.

For large displacements the simple calculation of the Franck-Condon factor sys-
tematically deviates from the measured Rabi frequencies. We thus extended the
theory by firstly taking into account the off-resonant microwave coupling between
the motional states. As the investigation of the simple three level system on page 46
shows dressing changes the observed Rabi frequency.

The theory secondly includes the thermal radial motion at 10 µK as this con-
tribution is expected to be the largest among all broadening sources. In brief, this
is accomplished by computing the Rabi oscillations for individual radial trajectories
and by combining them to a thermally averaged theoretical trace. This trace is
finally analyzed with the same procedure as the experimental data. As figure 2.24
reveals all this considerations do not significantly change the initial result of the
simple model. As the measured data reproducibly deviate from the theory the dis-
crepancy must stem from systematic potential distortion probably the same which
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would explain the discrepancy in the high order sideband spectrum in figure 2.10.
In principle, the measurement of the Franck-Condon factor can be very precise as

it is based on a frequency measurement. It thus also allows for a precise measurement
of e.g. the lattice displacement: Shifts on sub-nanometer scale already introduce
a significant change of the Franck-Condon factor. For comparison, the size of the
ground state wave packet in our setup amounts to xax =

√
~/ωaxM ≈25 nm. The

tunability of the wave-function overlap can have many applications in the coherent
manipulation of the atomic motional state as e.g. proposed and demonstrated in
[94, 32, 95, 84, 96, 33] for a harmonic oscillator potential and in [97, 34] for periodic
potentials.



Chapter 3

Ground state cooling in a state de-
pendent potential

It is natural that for high precision experiments the sample under investigation must
be initialized in an as pure as possible quantum mechanical state. For our system
this applies to the internal as well as to the motional states of the trapped atoms.
During the last decades various schemes aiming for cooling an atomic sample to the
vibrational ground state have been considered and experimentally realized [40, 24,
98]. Here, we concentrate on the so-called resolved sideband cooling technique which
was first demonstrated on trapped ions [99] but is also routinely applied to neutral
atoms trapped in optical lattices [9, 25, 26] or even to micro-mechanical objects
[100]. In experiments with trapped ions a ground state occupation probability as
high as 99.9% was demonstrated [101].

In all these experiments the cooling mechanism is based on the recoil of an optical
photon. Cooling schemes based on long wave length radiation have rarely been sug-
gested [102, 103, 104] or experimentally tested [105]. Moreover, they often are based
on the Sisyphus cooling scheme which mostly applies to classically moving atoms.
In the previous chapter I demonstrated that in combination with a state-dependent
trapping potential microwave radiation is capable to induce resolved sideband tran-
sitions between quantized motional states. In this chapter I will show that by adding
a spontaneous process it is straight forward to realize a ground state cooling scheme
(1D in our case) fully competitive with the laser-based technique.
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3.1 Cooling the axial degree of freedom

3.1.1 Cooling scheme

The resolved sideband cooling scheme is a typical example of dark-state cooling
[67, 106]. It exploits the fact that atoms which reach the vibrational ground state
are ideally isolated from all perturbations and can thus accumulate in this state.
The cooling cycle which performs pumping towards the axial ground state in our
experiment is sketched in figure 3.1. It starts by a microwave transition tuned to the
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F=3
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F=4 4,4n

3,3n ∆n=-1Ω
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44Γ
(i)

(ii)

(iii)

Fig. 3.1: Scheme for the microwave-induced resolved sideband cooling technique. (i)
The microwave field tuned to the first blue sideband induces a |44, n〉 ↔
|33, n− 1〉 transition and thus decreases the motional quantum number by
one. (ii+iii) The cooling cycle is closed by an optical repumping photon
resonant with the F = 3→ F ′′ = 4 transition (’repumping’ in figure 1.4 with
the pumping rate Γ33). An additional laser resonant with the F → F ′′ = 4
transition preserves spin polarization (’optical pumping’ laser in figure 1.4 with
the pumping rate Γ43). Atoms pumped to the dark state |44, 0〉 stop to
participate in the cooling cycle unless they are off-resonantly excited (leakage
rate Γ44).

first blue sideband and thus decreases the motional quantum number by one. This
process is coherent and the population thus oscillates between the states |44, n〉 and
|33, n− 1〉 with the Rabi frequency Ω∆n=−1. It is equivalent to the Raman transi-
tion usually used for sideband cooling [81] but in our case the transition requires
a nonzero displacement of the lattice potentials. It is slightly unfamiliar to see the
blue sideband providing cooling. This is only due to the fact that the dark state
is the energetically higher hyperfine state. As the lifetime of the dark state |44〉 is
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equal to that of the ’auxiliary’ state |33〉 this is irrelevant for the cooling procedure.
The cooling cycle is completed by a laser transition which pumps the atoms

back to the |44〉 hyperfine state. The spontaneous decay involved in the scattering
event thereby interrupts the coherent microwave evolution which is important as
only irreversible processes ar able to provide net cooling. Assuming that the scat-
tered photon does not significantly heat the atom their energy is diminished by one
vibrational quantum per cycle. When the atom reaches the dark state |44, 0〉 it is
neither affected by the microwave field nor by the repumping lasers. Independent of
the initial motional state all atoms eventually accumulate in this state which shows
that the entropy of the system is reduced.

The cooling operation can alternatively be interpreted as an extension of the
usual optical pumping procedure sketched in figure 1.4. The microwave radiation
thereby depopulates the usually dark hyperfine state |44〉 except for its motional
ground state. After the cooling sequence the atomic ensemble is thus both spin
polarized and ground state cooled which are ideal starting conditions. The purity
of the prepared state is basically limited by the depletion of the dark state due to
residual off-resonant excitation processes characterized by the leakage rate Γ44.
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Fig. 3.2: Scan of the microwave frequency (Ωbare=16 kHz) during the cooling process.
A usual spectrum of an uncooled sample (•) marks the position of the side-
bands. The height of the blue sideband (◦) and the fraction of surviving atoms
(�) after the ’cooling’ period characterize its performance. (�) is the same as
(�) but with a stronger microwave coupling Ωbare=27 kHz).

The height of the first blue sideband provides a good measure for the cooling effi-
ciency. As it is not possible to reduce the vibrational quantum number starting from
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the ground state it is suppressed compared to the red sideband. In order to deter-
mine the optimum cooling parameters each parameter is scanned and a subsequent
measurement of the height of the first blue sideband reveals the cooling performance.
A typical trace showing a result of a scan of the microwave frequency during the
cooling process is presented in figure 3.2. The optimum frequency for cooling should
of course be in the vicinity of the first blue sideband which is confirmed by its sup-
pression in this measurement. A less pronounced suppression is also present at the
position of the second blue sideband. The scan moreover reveals the absence of the
blue sideband in a very broad red detuned frequency range and also a dip at the
position of the carrier. Similar features are present when the fraction of remaining
atoms is measured instead of the height of the blue sideband (no push-out). This
countercheck reveals that at wrong frequencies the atoms are strongly heated and
eventually escape from the trap. Optimum cooling parameters thus must satisfy two
criteria: the blue sideband must be suppressed as far as possible but at the same
time atom losses must be negligible.
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Fig. 3.3: Microwave spectrum after ground state cooling including the first order side-
bands. The ratio between the heights of the red and blue sidebands is used
for the calculation of the 1D atomic temperature along the lattice axis.

After optimization a spectrum showing both first order sidebands similar to that
in figure 3.3 is used for the determination of the resulting atomic temperature [107].
For best visibility a gaussian microwave pulse satisfying the π-pulse condition for
the first red sideband |44, 0〉 ↔ |33, 1〉 is used. In principle, due to the wobbling of
the potential U33, the Franck-Condon factor for the blue sideband |44, 1〉 ↔ |33, 0〉
differs by 0.3% but this is neglected here. In the limit of a low temperature the
heights of the red and blue sidebands are proportional to the population of the
ground state P44,0 and the first excited state P44,1, respectively. By assuming a
thermal distribution and the harmonic oscillator approximation for the potential
the ratio between the sideband heights is thus proportional to the Boltzmann factor
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which is related to the average motional quantum number

P44,1

P44,0

= exp(− ~ωax

kBTax

) =
〈n〉
〈n〉+ 1

with 〈n〉 = (exp(
~ωax

kBTax

)− 1)−1. (3.1.1)

The fitted heights of the sideband peaks in figure 3.3 amount to 0.885 ± 0.007
and 0.027±0.007, respectively. The measured mean vibrational quantum number
thus amounts to 〈n〉 = 0.03 ± 0.01 corresponding to a ground state population of
ngrndst ≈97% along the axial degree of freedom. Due to broadening effects the more
appropriate measure for the transition strength is the peak area. For the suffi-
ciently short pulse length used here the Fourier width however dominates and the
discrepancy between the two methods is much smaller than the confidence inter-
vals of the measurement. We thus typically use the height of the blue sideband in
order to quantify the cooling performance. Table 3.1 summarizes the experimental
parameters for optimal cooling in our setup.

Ωbare ϑ Γ33 Γ43 Γ44

2π 16 kHz 4.5◦ 35 103/s 10 103/s 15 1/s

Tab. 3.1: Experimental parameters for optimal cooling in our setup. Ωbare labels the
Rabi frequency at zero displacement and ϑ denotes the polarization angle
of the lattice. The low value of the pumping rate Γ43 results from the low
power of the optical pumping beam which otherwise significantly increases
the leakage rate Γ44. The rates are defined as the inverse of the e−1-lifetime
of the corresponding hyperfine state.

Our cooling result is comparable to previously reported values from experiments
employing the sideband cooling technique in optical lattices [9, 25, 26]. Note that,
however, our microwave based approach is not limited by the purity of the driving
field. A comparably small linewidth using laser transitions requires significantly
more experimental effort. The limit in our setup is entirely determined by technical
contributions to the leakage rate Γ44 which quantifies the ’darkness’ of the dark
state. Here, first of all, the polarization purity of the optical pumping beams plays
a crucial role. The main distortion thereby stems from the small angle between
the axis of the optical pumping beam and the quantization axis pointing along the
lattice potential (see page 8). A second fundamental contribution originates from off-
resonant photon scattering of the trapping laser. The power of both optical pumping
beams was minimized until both leakage contributions where approximately equal.

Microwave-induced sideband cooling is attractive due to the absence of heating
caused by photon scattering of Raman lasers. Moreover, very well controllable
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generators guarantee reliable performance and a simple experimental setup. The
microwave field is also more homogeneous which is advantages for large atomic
samples. On the other hand its disadvantage is the additional projection heating
caused by the optical repumping process in a displaced potential as is theoretically
elucidated in the following subsection.

3.1.2 Theory for the cooling process

Sideband cooling has been thoroughly studied in the past (e.g. [67, 108, 106, 81]).
Here, the question of interest is the cooling efficiency in displaced state-dependent
potentials which has not been explicitly considered yet. Moreover, the lattice dis-
placement is a tunable parameter in our case and the determination of its optimum
value requires some investigation.

In the experiment, the microwave and the two repumping lasers operate contin-
uously for a specified cooling period which is typically 20 ms in our case. Theoreti-
cally, the cooling process is described by master equations [54], a coherent form of
rate equations. The continuous operation simplifies the experimental sequence and
does not require fast electro or acousto-optic modulators for fast switching of the
repumping lasers. In general the master equation determining the time evolution of
a density matrix ρ of a system is given by

d

dt
ρ = − i

~
(Ĥ ρ− ρ Ĥ) + L(ρ). (3.1.2)

Here, the hamiltonian Ĥ considers the coherent evolution and the Liouvillian L
takes into account the dissipative decay processes.

An accurate consideration of the photon scattering processes is important as the
usually valid assumption of a preserved motional quantum number can be strongly
violated in our case. This is because of the displaced state-dependent potentials
for the generation of the sideband transitions. When a scattered photon involves
a change of the hyperfine state the motional state before the scattering process
is projected onto the spatially shifted set of eigenstates (additionally to the small
recoil-induced shift in the momentum space).

The hamiltonian relevant for our cooling scheme is similar to that in equa-
tion 2.2.6 but it now includes the states |F = 4,mF = 3, n〉 = |43, n〉 (note that
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as previously all entries are block matrices).

Ĥcooling =

 E44,n
1
2
~Ω44,n↔33,n 0

1
2
~Ω33,n↔44,n E33,n + ~ωmw 0

0 0 E43,n

 (3.1.3)

The hyperfine state |43〉 is not coupled to the microwave field (see page 51) but its
consideration is important because after optical excitation to the state |F ′′ = 4,m′′F = 4〉
there is a large probability for the atoms to decay to |43〉 (see figure 3.1). Other hy-
perfine states are ignored because of their low population. The description of the
pumping process by the Liouvillian is modeled by an effective decay rate. For any
state |F,mF, n〉 ≡ |a〉 involved in the cooling process which can decay to state
|F ′,m′F, n′〉 ≡ |b〉 the Liouvillian is defined by

La,b(ρ) =

 −γa→b ρa −1
2
γa→b ρa,b −1

2
γa→b ρa,c

−1
2
γa→b ρb,a γa→b ρa 0

−1
2
γa→b ρc,a 0 0

 (3.1.4)

Here, ρa labels the population of the state |a〉 and γa→b denotes the effective inco-

herent decay rate for the process |a〉 decay−−−→ |b〉. The diagonal matrix elements reflect
the population transfer between these states and the off-diagonal matrix elements
the decay of the corresponding coherences. Note that off-diagonal elements with
any other state |c〉 are also affected.

The decay rates γF,mF,n→F ′,m′F,n′ do have three contributions. In the simulation
I make the simplifying assumption that there is only one optically excited state
namely |F ′′ = 4,m′′F = 4〉. The first contribution characterizes the power of the
pumping laser for the transition |F,mF〉 → |F ′′ = 4,m′′F = 4〉 which is modeled by
the excitation rate ΓF,mF

(see figure 3.1). The second contribution takes into account
the branching ratio of |F ′′ = 4,m′′F = 4〉. The explicit consideration of the optically
excited state is omitted because due to its short lifetime (30 ns) compared to the
motional time scale (10 µs) it can be adiabatically eliminated. Thus only effective
branching ratios rF,mF→F ′,m′F between ground states are used. For the leakage process
modeled by the rate Γ44 only the two target states |33〉 and |43〉 are considered
assuming the same probability for both processes. The third contribution, which is
peculiar to our scheme, is the wave function overlap between motional states which
not only takes into account the momentum kick of the scattered photon but also the
spatial shift of the potentials (for simplicity the emission of the scattered photon
is assumed to be spherically symmetric). For the Bloch states (see equation 2.2.3)
the recoil-induced momentum shift simply adds to the Bloch vector κ. The wave
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function overlap between two Bloch states with a relative shift in momentum space
and in spatial space can thus be again efficiently computed via the scalar product
between the corresponding coefficient vectors (see page 43)

γF,mF,n→F ′,m′F,n′ = rF,mF→F ′,m′F ΓF,mF
× |〈n′F ′,m′F|nF,mF

〉|2. (3.1.5)

The last factor in this expression is responsible for the redistribution of the popu-
lation among the vibrational states during the repumping process. It reveals that
for state dependent potentials both, the momentum kicks and the spatial displace-
ment are relevant. For efficient cooling in a harmonic trap, thus, the generalized
Lamb-Dicke factor defined in equaiton 2.1.11 has to satisfy the condition η � 1.
Figure 3.4(a) shows the theoretically expected heating amount per cooling cycle in
our setup assuming that only one photon is required in order to transfer the atom
from state |33〉 to state |44〉. Heating at zero displacement with ϑ = 0 comes solely
from the photon recoil.
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Fig. 3.4: (a) Heating per cooling cycle caused by one repumping photon depending on
the spatial displacement. For ϑ = 0 only recoil heating is present. Different
lines correspond to different initial motional states. (b) Calculated steady
state ground state population ngrndst depending on the polarization angle ϑ
for three different microwave powers ({dotted, solid, dashed} lines correspond
to Ωbare={5, 15, 60} kHz). The dash-dotted lines indicate the Franck-Condon
factors for three exemplary sideband transitions.

The bounds for the lattice displacement range leading to optimal cooling in our
setup are set by the vanishing strength of the sideband transitions at small polar-
ization angles and by heating due to repumping photons at large polarization angles
(see figure 3.4(b)). As the comparison between panel (a) and (b) of figure 3.4 reveals
the ground state population for larger displacements drops off at a polarization an-
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gle at which the projection heating rises above 0.5 vibrational quanta per cooling
cycle. At the same time this drop is located at a position where the Franck-Condon
factors of some first order sidebands already possess a minimum (see panel (b)). The
reduction of the cooling efficiency thus seems to be a combination of both effects:
with larger displacements each repumping process projects the motional state onto
higher vibrational states which at the same time are less quickly cooled (or even not
at all). Our calculation, however, is less precise in this regime as first the maximum
considered vibrational quantum number is set to n=15 due to computational effort.
Moreover, the theoretical model does not take into account atom losses when they
are excited to the highest trapped Bloch bands or even above. Note, however, that
the excitation to non trapped Bloch bands with positive energy is quite small as the
main heating originates from unfavorable projections of the motional state within a
conservative potential.

The theoretical results reveal that the ground state population ngrndst robustly
reaches 99% over a quite broad range of polarization angles and is optimum at
ϑ = 5◦. At this polarization angle the projection heating only slightly exceeds the
unavoidable recoil-induced heating. The displacement range within which efficient
cooling is possible corresponds to a Lamb-Dicke parameter range of η=0.15-0.7 (see
equation 2.1.11). This includes quite large values compared to other experiments
exploiting sideband cooling [24, 9]. The theoretical expectation is confirmed by our
experimental investigations.

Figure 3.5(a) shows the achievable steady state ground state population ngrndst

depending on the microwave frequency during the cooling process at ϑ = 4.5◦. Fig-
ures 3.4(b) and 3.5(a) at the same time compare ngrndst achievable at three different
microwave powers within the experimentally accessible range. On the one hand
the Rabi frequency for the first sideband should be large in order to compete with
heating mechanisms. At the same time the Rabi frequency of the |44, 0〉 ↔ |33, 0〉
carrier transition should be small with respect to the vibrational energy spacing ωax

because off-resonant microwave excitation depopulates the dark state otherwise. For
a fixed polarization angle there exists a well-defined optimal value for the microwave
power.

For our setup (and its heating processes) the highest ground state population is
reached using a free atom Rabi frequency around Ωbare = 2π5 kHz. Experimentally,
though, we found Ωbare = 2π16 kHz to be a more comfortable value. Figure 3.5
indicates two reasons for the choice of a slightly higher microwave power. Panel (a)
points out that cooling at higher microwave powers is less sensitive to drifts of the
sideband spectrum caused by slow misalignments of the experimental setup. At the
same time the steady state results are almost the same. Panel (b) shows the time
scale of the cooling process. It reveals that if Ωbare is too small the low steady state
limit is not yet reached within a fixed cooling duration. In principle, an optimized
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Fig. 3.5: (a) Calculated steady state ground state population ngrndst depending on the
frequency of the cooling microwave pulse for three different microwave powers
({dotted, solid, dashed} lines correspond to Ωbare={5, 15, 60} kHz). (b)
The time evolution of the average quantum number 〈n〉 and of the ground
state population ngrndst during the cooling process. The mean vibrational
population for the initial thermal state is set to 〈n〉 = 1.2 which corresponds
to an axial temperature of Tax = 10 µK.

experimental sequence with a ramped microwave power can enhance the cooling
performance.

The selectivity between the carrier and the sideband transition is also influ-
enced by the power of the repumping lasers. As the pumping rate determines the
lifetime of the states |33, n〉 it effectively broadens the linewidth of the microwave
transition [26]. At pumping rates exceeding the angular oscillation frequency of
the trap Γ33 & ωax off-resonant dark state depopulation induced by microwaves is
significantly increased thus degrading the cooling performance. Theoretically, the
dependence of the ground state population on the powers of the |F = 3〉 → |F ′′ = 4〉-
laser is qualitatively similar to the plateau like shape in figure 3.4(b). The optimum
repumping rate in our case is Γ33 ≈ 60 103/s so that the effective linewidth of the
microwave transition amounts to ≈10 kHz. The favorable pumping rate of the laser
|F = 4〉 → |F ′′ = 4〉 theoretically is infinite. Experimentally, the optimization of
the power of the two repumping lasers is limited by their polarization purity (see
table 3.1).

The determination of the proper cooling parameters is not only important for the
optimal cooling performance for axial motion but also minimizes heating of the radial
degree of freedom: the less cooling cycles are required the less scattered repumping
photons affect the radial motion. Experimentally, radial heating can be estimated
by measuring the linewidth of a microwave peak. As the fit of the spectral peaks
before and after sideband cooling in figure 3.6 reveals broadening caused by radial
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motion (see page 58) indeed increases after cooling, but not very much. Detailed
analysis is required to deduce the heating amount in particular it is important to
independently measure the distribution among the axial states in the uncooled case
(see section 4). Note, however, that the initially present peak asymmetry has almost
disappeared in the cooled case. This could be a hint that the radial motion does
not obey the Boltzmann distribution after sideband cooling. This could also provide
an explanation for the unexpectedly small line widths in the high order spectra in
figure 2.10 (see page 61).
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Fig. 3.6: The shape of the carrier transition peak before (•) and after (�) sideband
cooling. The Fourier-limited (full) e−1/2 half-width of the used microwave
pulse is 0.8 kHz. The lines indicate the fit using the peak function from
equation 2.3.1. Before cooling the gaussian and the asymmetric width amount
to σν = 1.5 ± 0.1 kHz and γb = 2.2 ± 0.2 kHz, and after cooling they read
σν = 2.8± 0.2 kHz and γb = 0.9± 0.7 kH.

Possible extensions of the cooling scheme

Cooling with a bichromatic microwave field As figure 3.5(a) and figure 3.2
indicate an appreciable cooling takes also place when the microwave frequency is
tuned to the second sideband transition. A variation of the model parameters in-
cluding the lattice displacement unfortunately yield that the cooling performance
in terms of ground state population is always inferior compared to cooling using
the first sideband [108]. Second-sideband cooling nevertheless can be appealing for
the generation of a nonclassical state where only the ground and the first excited
vibrational states are populated [109].

A possible extension might be the simultaneous application of two frequencies
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tuned to the first and e.g. to the second sideband, respectively [110] (see fig-
ure 3.7(a)). Experimentally this is rather simple to implement for microwave fields.
The approach is motivated by expecting a higher cooling speed and by a reduced
number of required photon scattering events and thus less heating of the lateral
degrees of freedom. This becomes particularly important when the atomic sample
needs to be cooled in all three dimensions, either via direct sideband cooling [107, 26]
or via collisional coupling between orthogonal degrees of freedom [111]. Reabsorp-
tion of scattered photons by atoms already cooled to the dark ground state also
imposes a limit on the minimum temperature achievable in a dense atomic cloud
[26]. Possible improvements are thus conceivable when less photons are required.
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Fig. 3.7: The basic cooling scheme presented in figure 3.1 can in principle be extended
by irradiating the atoms with a bichromatic microwave field characterized by
the Rabi frequencies Ωa and Ωb.

A second extended cooling scheme shown in figure 3.7(b) has the same motiva-
tion but provides an additional advantage of a reduced projection heating. This
originates from the fact that the light shift coefficients for the hyperfine state |43〉
in equation 1.2.1 have the same 1/7-relation as those for the state |33〉 but that the
assignment of the circularity is opposite. The trapping potential U43 is thus not
displaced with respect to U44, they only differ in their depths as U43 wobbles equally
to U33. It thus might be possible to use even larger displacements which is favorable
considering that the sideband transitions become stronger and at the same time the
carrier transitions causing off-resonant excitations are attenuated.

The Hamiltonian 3.1.3 describing the atom-microwave coupling needs to be mod-
ified in order to take into account two driving fields. For this, it is instructive to
follow the derivation of the time independent hamiltonian of a driven two level
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system [53] (the rotating wave approximation is used in the second step)

1

~
Hatom+field =

(
ω44 Ω cos(ωf t)

Ω cos(ωf t) ω33

)
⇔
(

0 Ω
2

exp(−i∆ t)
Ω
2

exp(i∆ t) 0

)
⇔
(
ω44

Ω
2

Ω
2

ω33 + ωf

)
. (3.1.6)

Here, ~ω44/33 = E44/33 denotes the energies of the hyperfine states, Ω quantifies the
coupling strength of the field oscillating at frequency ωf and the detuning is defined
by ∆ = ωf − (ω44 − ω33). In the case of two fields the steps are the same until the
intermediate result where the Hamiltonians for the two schemes in figure 3.7 read

scheme (a) scheme (b) 0 Fa + Fb 0

F †a + F †b 0 0
0 0 0

  0 Fa 0
F †a 0 Fb
0 F †b 0

 ,

and where the definition Fa/b = 1
2
Ωa/b exp(−i∆a/b t) is used. The Hamiltonian for

scheme (b) can in principle be casted into a time independent form [53], which is
also often used to describe the two photon Raman transition

Hscheme(b) = ~
1

2

 0 Ωa 0
Ωb 2∆ Ωb

0 Ωb 2δ

 . (3.1.7)

Such a reformulation is not possible for scheme (a) (see also [112]). The Hamiltonian
thus remains explicitly time dependent and our investigation here is restricted to
the direct numerical solution of the master equation.

The comparison between the usual cooling scheme and the two possible exten-
sions is shown in figure 3.8. The parameters (Rabi frequencies, repumping rates,
...) used for the simulation are all compatible with the experimental setup and are
near around optimum values for each scheme. The interesting figures of merit are
the achievable cooling speed, the cooling limit and the average number of required
photons which have to be scattered during the cooling process. This number is
computed by

scattered photons =

tmax∫
t=0

dt

(
Γ33

nmax∑
n=1

ρ33,n(t) + Γ44

nmax∑
n=1

ρ43,n(t)

)
. (3.1.8)
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Fig. 3.8: Cooling performance for the schemes from figure figure 3.1 (solid) and fig-
ure 3.8(a/b) (small/big dashing) assuming the pure initial state |44, 4〉. Panel
(a) compares the cooling speed, panel (b) shows the average number of scat-
tered photons required during the cooling process.

It turns out, that scheme (a) is difficult to handle but that scheme (b) provides
an easily achievable improvement with respect to the simple cooling scheme. The
difficulty of scheme (a) arises from interference effects between the two driving fields
when they become resonant with a two photon transition. Note that two of the
three coupled states are not affected by repumping lasers. The population of the
motional states can thus ’climb’ upwards in the same way as it can ’climb’ downwards
(several two photon transitions, see figure 3.7(a)). In order to avoid the interferences
either the repumping power must be increased or the microwave power has to be
reduced or the microwave frequencies must be detuned away from the two photon
resonance. All these actions, however, lead to a higher final temperature. With
a good parameter choice it is though possible to decrease the required number of
required repumping photons.

In contrast, the cyclic cooling scheme is preserved in scheme (b) and the con-
catenation of several two photon transitions is not possible. The simulation shows
both, an increased cooling speed and a significantly reduced number of scattering
events. Unfortunately, the scheme does not benefit from an increase of the lattice
displacement. The reason for this is, that during the final cooling stage basically
only the first excited motional state plays a role. This also explains the basically
unchanged cooling limit.

Pulsed cooling An option to improve the cooling performance consists in pulsed
operation with an interleaving succession of discreet microwave pulses and discreet
repumping pulses. Experimentally, this requires the possibility to switch the re-
pumping laser on a sub milliseconds time scale. The performance of a preliminary
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experimental attempt of pulsed cooling is shown in figure 3.9. It reveals that af-
ter approximately 10 repetitions the cooling result is comparable to the continuous
cooling method.
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Fig. 3.9: Performance of pulsed cooling depending on the microwave frequency during
the cooling process ((•) indicates the position of the blue sideband). The blue
sideband is attenuated step by step with the number of cooling pulses {(�, 1
pulse), (N, 5 pulses), (�, 10 pulses)}. For simplicity all pulses are equal and
fulfill the π-pulse condition for the |44, 1〉 ↔ |33, 0〉 transition.

The benefit of the pulsed operation is that the lattice displacement can be indi-
vidually adjusted for each microwave pulse and each repumping pulse. First of all,
this procedure eliminates the projection heating because the repumping can take
place in an unshifted lattice. Furthermore, the displacement can be optimized for a
desired sideband transition. This at the same time reduces off-resonant excitation
out of the dark state because the Franck-Condon factors of the carrier transitions
become small for larger displacements (see figure 2.24). The method easily allows
for a sequence of pulses starting from the highest ones and ending with the first
sideband. Ideally, only one repumping photon will be required in order to bring the
atom to the motional ground state independent of its initial state. The required
lattice shifts between the cooling pulses of course imply a precise and preferably fast
control of the shift. Comparison of different shift speeds during the measurement
presented in figure 3.9 revealed however that even a shift within 10µs does not in-
troduce detectable heating (the speed is limited by our EOM driver). The reason
for this is that the shift length is only a fraction of the wave function size and not
several multiples of it [7].
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Future applications
As discussed in section 2.4 the main limitation for precise manipulations in our

experiment stems from the thermal radial motion. Our preliminary attempt to
perform microwave-induced sisyphus cooling as proposed/demonstrated in [102, 103,
105] did not decrease the present atomic temperature although clear heating was
observed at wrong microwave frequencies. A more fruitful approach, probably based
on the proposals in [113, 114], can be tried out by implementing a state selective
potential shift along the radial direction.

In general, the microwave based cooling scheme can be implemented in many
existing experiments. In particular, the magic wavelength for the generation of the
optical lattice is not at all a stringent prerequisite. As the required potential dis-
placement is rather small the less pronounced vector light shift at other wavelengths
is still enough to introduce spin dependency [76]. The possibility to reduce the
amount of scattered photons during the cooling procedure might be exploited for
cooling of large dense clouds where multiple scattering imposes a limit onto the finite
temperature [26]. This in particular becomes interesting after the cloud has been
distorted during fluorescence imaging where modern setups provide single site reso-
lution [19]. The reduced number of required lasers is also appealing for experiments
where optical access might be restricted [30, 31]. An interesting question is finally
whether our method, exploiting a transition between state dependent potentials,
can be successfully transferred to the field of micro-mechanical oscillators [100].



Chapter 4

Preparation and detection of vibra-
tional states

Experimental control over the quantized motional state of a trapped particle allows
to utilize the system for more complex applications [32, 94, 84]. The previous section
was dedicated to the initialization of the atomic sample into the ground state. In
this chapter I present two detection methods for the motional state which are finally
employed for the verification of deliberately prepared states.

4.1 Beating of Rabi-oscillations

Let us assume that the motional state to be measured is stored in the lower
hyperfine state so that its density matrix representation reads

ρ =
nmax∑
n=0

P33,n|33, n〉〈33, n|+ coherence terms. (4.1.1)

In the more general case for which the motional state and the spin state of an
atomic ensemble have both to be determined the population of one of the spin
states can be shelved in a third auxiliary state (e.g. |33〉 → |43〉) prior to the
detection. In experiments with small numbers of atoms, which are mostly trapped
ion experiments, a standard technique to measure the population of the quantized
motional states of the ion is based on recording Rabi flopping traces between internal
states (in our case the hyperfine states |44〉 and |33〉) [37, 95, 89]. It exploits the fact
that all first order sideband transitions (in our case |33, n〉 ↔ |44, n+ 1〉) possess
a different Rabi frequency Ωn,n+1. For a harmonic trapping potential in the Lamb-
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Dicke regime η � 1 e.g., the Rabi frequencies scale as Ωn,n+1 =
√
nΩ0,1 (see page 30).

When off-resonant excitation can be neglected the subspaces {|33, n〉, |44, n+ 1〉 are
decoupled during the spin-flip operation. The recorded Rabi flopping trace is thus a
simple superposition of several sinusoidal signals. The population of the state |33, n〉
leads to a contribution at frequency Ωn,n+1 and has an amplitude which is equal to
its occupation probability P33,n. The time dependent population of the auxiliary
hyperfine state |44〉 is thus given by

P44(t) =
1

2

(
1−

nmax∑
n=0

P33,n cos(Ωn,n+1 t) exp(−t/τn,n+1)

)
. (4.1.2)

Here, we consider an individual decay constant τn,n+1 for each transition [37, 68, 115].

The method of beating Rabi oscillations is directly applicable using our mi-
crowave sideband technique. In our case, at a fixed displacement the sideband
transitions of any order possess well defined relative strengths and thus Rabi fre-
quencies. The measurement of Rabi frequencies for initially pure motional states
(Fock state) is exemplarily shown in figures 2.21 and 2.24. For a thermal distribu-
tion over the vibrational states which results from simple molasses cooling the Rabi
flopping measurement in displaced potentials shown in figure 4.1(a) shows a clear
signature of beating. The occurrence of few discrete frequencies is confirmed by
the discrete Fourier transform of the trace shown in panel (b). A so-called Kaiser
window was applied to the Rabi trace before the Fourier Transform in order to avoid
that the side lobs of large peaks obscure the smaller neighboring peaks.

For this measurement the full microwave power (Ωbare = 2π 59 kHz) was used in
order to record many oscillation cycles within the decoherence time. On the other
hand, the polarization angle of ϑ = 6◦ already corresponds to an η-parameter of
0.33 and dressing of the observed carrier transitions due to the relatively strong
first order sidebands must be considered. This firstly causes a shift of the expected
Fourier peaks by approximately 1.5 kHz with respect to their positions expected
from the bare Franck-Condon factors. A simulation of the experiment using the
model described in section 2.2.2 confirms this shift (see dashed line in figure 4.1(b)).
What is more important here, is that according to the simulation, off-resonant ex-
citations also reduce the heights of the relevant peaks by approximately 10%. This
implies that the expected sum of all peak heights is only 0.9. The sum of the three
experimentally visible peak heights yields 0.48. The large discrepancy is mainly due
to the decay of the observed oscillations which is not considered in the theory.

The decay can be considered by fitting the Rabi trace using the function equiv-
alent to that in equation 4.1.2. Only the lowest three motional states are taken into
account (nmax=3) as according to the Fourier transform all other contributions are
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Fig. 4.1: (a) Rabi flopping measurement on the carrier transition of a thermal ensemble
when the polarization angle amounts to ϑ = 6.0◦ (η=0.33) and (b) the
corresponding discrete fourier transform (solid line). A Fourier amplitude
of 1 corresponds to an ideal Rabi oscillation with full population transfer and
without decay. The line underneath the data in (a) is a fit of the Rabi flopping
trace and the dashed line in (b) indicates the Fourier peaks of a theoretically
calculated Rabi trace assuming a temperature of 10µK.

buried in the background. Alternatively, the damping term in the fitting function
is replaced by exp(−

√
t/τdecay). It was found to give better fitting results for the

Rabi oscillations measured in our experiment as outlined in figure 2.21. Table 4.1
summarizes the determined parameters of the Rabi trace. According to the analy-
sis of decoherence sources in section 2.4 carrier transitions between higher motional
states are less susceptible to broadening. They are instead strongly affected by the
fluctuation of the Franck-Condon factor either caused by the radial motion or by
the fluctuation of the lattice displacement. This, most likely, causes the observed
increase of the damping with the quantum number n.

When the decay of the Rabi signal is taken into account the sum of the amplitudes
of the three visible peaks amounts to 0.6 and 0.68 for the two alternative damping
terms, respectively. These values reasonably agree with the sum of the three largest
theoretically expected amplitudes which amounts to 0.75.

Assuming a thermal distribution a temperature Tax for the axial degree of free-
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Fourier exp(−t/τn,n) exp(−
√
t/τn,n)

n↔ n′ H44,n P44,n τn,n P44,n τn,n

0↔ 0′ 0.30 0.34±0.02 4.5±0.6 0.37±0.02 10±3
1↔ 1′ 0.13 0.17±0.03 3.0±1 0.18±0.03 5±3
2↔ 2′ 0.05 0.09±0.03 1.8±1 0.13±0.03 1.0±0.7

Tax 7µK (8±1)µK (9pm1)µK

Tab. 4.1: Comparison between the heights of the Fourier peaks in figure 4.1 and the
fitting parameters of the Rabi trace using two different damping terms. The
damping constant for the transition |44, 0〉 ↔ |33, 0〉 was determined in-
dependently using a ground state cooled sample. The temperature of the
atomic ensemble is deduced from the relative amplitudes.

dom can be determined by comparing the ratios between the measured amplitudes
with the theoretical expectation (see table 4.1). As the Fourier transform method
does not consider the damping it underestimates the actual temperature. The tem-
perature estimated by the fitting method provides a more reliable value and the
results of the two fitting functions agree with each other within the error-bars.
They also are consistent with the value of 10µK obtained by atom loss detecting at
variable trap depths [51].

The presented measurement is a proof of principle, which reveals the feasibility
of the Rabi-beating technique. High accuracy in particular requires an indepen-
dent measurement of damping envelopes of each individual transition. In principle,
the tunability of the Franck-Condon factors inspires to extend the method. High
order sidebands can, e.g., be used to ’hide’ the population of several highly pop-
ulated ground states in order to be able to detect small signals originating from
weakly populated states. Or, a clever choice of the displacement which maximizes
the Franck-Condon factor for a desired transition makes this transition less sensitive
to decoherence sources (see figure 2.19). Combining several such partly optimized
measurements could provide a more accurate picture of the motional state popula-
tion.

4.1.1 Height of sideband peaks

Instead of measuring Rabi flopping traces at a fixed sideband transition the popu-
lation of the vibrational states can be mapped by recording a spectrum with many
sidebands using a fixed pulse duration. An exemplary spectrum for a thermal en-
semble is shown in figure 4.2.
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Fig. 4.2: A measurement of many sideband peaks provides information about the pop-
ulation of the vibrational states (ϑ = 10.5◦ and η = 0.58). The data are
consistent with an axial temperature of Tax = 10 ± 2 µK as is confirmed by
three calculated spectra with Tax = {8, 10, 12} µK, respectively (the radial
motion is not considered here).

For comparison, the same figure shows calculated spectra which result from an
average over a thermal population distribution. Note that the peak asymmetry stems
from the anharmonicity of the sinusoidal trap and not from the radial motion. A
measurement of the same spectrum but with a ground state cooled sample confirmed
that broadening due to radial motion is small (see page 61), so it is ignored here.

The measured spectrum is again consistent with an axial temperature of Tax =
10 µK. The theoretical results, however, show a relatively small sensitivity of the
spectrum with respect to a temperature change. This can be slightly improved
by choosing an optimal displacement and optimal parameters for the microwave
pulse. Despite that, in general, the spectrum method is inferior to the Rabi flopping
method as it contains a lot of redundant information. Basically, one point on top
of each peak would be enough to provide the same discrimination between different
temperatures. The better strategy is thus to record the peak heights of several peaks
at different pulse times, which is equivalent to the Rabi method.

4.2 Push-out technique for the vibronic state

A detection procedure which requires less demanding coherence properties com-
pared to the previous ones can be implemented by extending our state selective
push-out detection for the hyperfine state (see page 8). The scheme is based on the
alternating application of microwave pulses and push-out pulses as illustrated in
figure 4.3.
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2 F’’=5 push out

Fig. 4.3: The push-out technique selective to the vibrational state. Microwave pulses
transfer the population of selected motional states to the upper hyperfine
state |44〉. A subsequent laser pulse resonant with the F = 4 → F ′′ = 5
transition removes all atoms in this state. After several repetitions all states
|33, n〉 resonant with the microwave pulses are depleted.

The starting condition is again the motional state defined by equeation 4.1.1.
The procedure begins with a microwave pulse tuned to the red sideband transition
|33, n〉 ↔ |44, n−∆n〉 transferring a fraction of atoms to the upper hyperfine state.
But, it for sure does not change the population of the vibrational states with n < ∆n.
Subsequently, the push-out laser removes all atoms which have been transferred.
After one iteration the vibrational states with n ≥ ∆n are depleted by an amount
determined by the Rabi frequencies Ωn,n−∆n and by the pulse duration. In general
however, none of these states is now completely empty. This can be accomplished by
iterating the sequence until the population of the affected states is below a predefined
threshold.

For a reliable performance the application of multiple push-out pulses must pre-
serve both the total population of the hyperfine state |33〉 and its distribution among
the vibrational states P33,n. The adherence of these conditions is tested using mo-
tional Fock states as presented in figure 4.4. The Fock state |33, n〉 is prepared using
a single gaussian pulse tuned to the nth order blue sideband. Subsequently, the
prepared state is probed by scanning the microwave frequency during the push-out
process with 10 repetitions. The microwave pulses again possess a gaussian shape in
order to ensure selectivity between different sideband transitions. The time required
for the entire detection sequence amounts to 3.4 ms (10×(100 µs for the microwave
pulse + 150 µs for the push-out pulse + 90 µs delay)).

The demonstration of our detection technique using Fock states reveals 100%
loss of atoms when the microwave pulses are resonant with a sideband transition
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Fig. 4.4: (a-d) Push-out technique discriminating between motional states applied to
an ensemble prepared in a vibrational Fock state with n={0, 1, 3, 4}, and (e)
to a thermal distribution. The height of the peak shown in each panel (thick
green line) determines the preparation efficiency of the Fock states. The thin
red line indicates atomic loss depending on the microwave frequency during
the push-out process.
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satisfying ∆n ≤ n. On the other hand only little additive loss with respect to the
preparation efficiency is observed when non of the sidebands is resonant, or, when
the order of the sideband is larger than the motional quantum number ∆n > n. In
detail, a loss of (2±2)% is caused by the simple application of a 10 fold push-out.
This is compatible to the relaxation time scale of the hyperfine state (100 ms). In
order to quantify the push-out-induced heating and residual off-resonant excitation
caused by the microwave pulses, we prepare a |33, n = 0〉 Fock state. An application
of a 10 fold detection sequence including the first order sideband transition reveals
a loss of (5±2)%. Taking into account a small impurity of the initial Fock state (3%
of atoms in the state |33, n = 1〉) the observed loss is consistent with that caused
by the push-out alone. Heating-induced by the detection procedure can thus be
neglected at the level of the presented measurement statistics.

In principle, for any choice of ∆n and for each microwave/push-out combination
both the displacement and the duration of the microwave pulse can be adjusted
separately. These parameters can be optimized by e.g. maximizing the depletion
of the affected states after each iteration. In particular, displacements leading to a
vanishing Franck-Condon factor must be avoided (see figure 2.24). For simplicity,
in the presented measurement the same parameters have been used for all 10 pulses
of the detection sequence. They have only been varied for different sideband orders
∆n (note that the uncomplete removal of atoms for ∆n = −3 in case of the Fock
state n=4). This is the reason for the piecewise acquisition of the data presented in
figure 4.4.

The result of the described method is an atomic sample for which all vibrational
states with n ≥ k are empty. The method can however be easily extended to a
projective filter for a single motional Fock state. One such approach is based on
the application of microwave pulses which satisfy the 2π-pulse condition for the
dedicated state [116, 39]. Our setup in principle allows two further approaches. The
first one is based on the population transfer of the dedicated state to the motional
ground state with a single microwave pulse. The procedure described above can
then be used to deplete all states except for the ground state. The second option is
based on the choice of a lattice displacement with a vanishing Franck-Condon factor
for the dedicated state which is effectively equivalent to the 2π-pulse procedure
(see also the preparation of a superposition state below). One future application
of this method, which requires a projective filter for motional states, might be the
verification of the quantum-thermodynacal Jarzynski equality using [38, 39].

4.2.1 Preparation of vibrational states

There exist several special vibrational states, such as the thermal, the coherent,
the Fock and the squeezed states, which have been extensively studied due to their
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special properties [37]. Using a step by step construction it is even possible to
engineer a desired motional state [84, 96]. Here, we exemplarily investigate the
population distribution of a thermal, a coherent and a Fock-state superposition
state.

Figure 4.4(e) shows the ’depletion’ spectrum for a not ground state cooled ensem-
ble. It reveals the cumulative atom loss depending on the order of the sideband. The
plateau like bottom level of each peak is used to define the fraction of the residual
atoms. According to the statistics of the data the confidence interval for the plateau
level is estimated to be ±2%. The difference between two consecutive plateaus de-
termines the corresponding population of the individual Fock states. The histogram
for the deduced probability distribution is shown in figure 4.5. For comparison, it
shows the theoretical distributions of a thermal state and of a coherent state. The
measurement reasonably agrees with an axial temperature of Tax = 12 µK.

0
0

0.2

0.4

21 3

P
op

ul
at

io
n 

P 3
3,

n

Axial quantum number n

Fig. 4.5: The occupation probability of the vibrational Fock states deduced from the
measurement in figure 4.4(e) (central bars). The bars on the left indicate the
theoretical distribution of a thermal state with Tax = 10± 2 µK) and that on
the right the distribution for a coherent state with 〈n〉 = 1± 0.1.

The measurement with a thermal state also demonstrates the limitations of the
push-out detection scheme. Due to the trap anharmonicity of the sinusoidal po-
tential and due to the different trap depths of the potentials U44 and U33 in case
of a displaced lattice sideband transitions of the same order do not have the same
resonance frequency (see page 56). This broadening degrades the selectivity between
adjacent sideband transitions. The radial motion is an additional broadening source
in our setup (see page 58).

Finally, figure 4.6 presents the population measurement of a coherent motional
state and a superposition between two Fock states. The coherent state is gener-
ated by projecting the initial state |33, 0〉 onto the states |44, n〉 by applying an
optical pumping pulse while the lattice is displaced by a variable amount. Using
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Fig. 4.6: (left) the population distribution of a coherent state with a variable oscillation
amplitude (dark red) compared with the theoretical expectation (red, see text).
(right) the verification of a superposition between the motional Fock states
|33, 0〉 and |33, 2〉 with an adjustable ratio between the populations.

the ’repumper’ laser resonant with the F = 3 → F ′′ = 4 transition (see figure 1.2)
indeed corresponds to a projection among motional states because the duration of
the optical transition is negligible with respect to the axial oscillation period. Ac-
cording to the branching ratio of the optically excited state only 80% of the atoms
are expected to be transferred to the |44〉 hyperfine state. The observed fraction of
70% agrees with this expectation taking into account the imperfect preparation of
the initial state and atom losses during the detection procedure. The measurement,
in particular, quantifies the projection heating present in our cooling scheme (see
figure 3.4) and agrees with the theoretical expectation.

The superposition state between two Fock states shown in figure 4.6 is prepared
using two subsequent microwave pulses. The first pulse is resonant to the second
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red sideband |44, 0, 〉 ↔ |33, 2〉 and generates the state

ψ = c44,0|44, 0〉+ c33,2|33, 2〉

with variable coefficients c44,0 and c33,2. The second pulse is tuned to the carrier
transition and maps the population |c44,0|2 onto the state |33, 0〉. For the second
pulse the proper choice of the lattice displacement ensures that the Franc-Condon
factor for the carrier transition |33, 2〉 ↔ |44, 2〉 vanishes (compare to figure 2.24).
In principle the entire procedure only includes coherent operations. This is thus the
first step towards the employment of the vibrational state as the physical carrier for
a qubit (see section 5.1) or the preparation of arbitrary motional states [96]. Due to
the long duration of the pulse sequence (400 µs) used compared to the coherence time
(150 µs [23]), though, the phase information is lost in the presented measurement.
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Chapter 5

Outlook

The control over the motional state, in particular the preparation of the ground
state, is a large step towards the investigation of atom-atom interactions [14]. For
this, the experimental setup is currently upgraded in order to perform 3D ground
state cooling. As outlined on page 74 the manipulation of the motional state itself
also provides a rich variety of further applications. Here, I briefly outline a scheme
for atom-atom entanglement which employs the techniques presented in this work.

5.1 Motional qubit state

The possibility to prepare the atomic wave function in a superposition of two
vibrational Fock states (see figure 4.6) opens the way towards the exploitation of the
motional degree of freedom as the physical carrier of a qubit [35]. This system is
appealing because the qubit is not sensitive to fluctuations of external fields as it
is encoded in the same atomic hyperfine state [36]. It, though, is still sensitive to
fluctuations of the trapping potential and, in our case, to the thermal motion of the
radial degree of freedom. 3D ground state cooling thus remains essential for high
fidelity operations but this is also true for other systems (e.g. [27, 28]).

As outlined in figure 5.1 our experimental setup provides the tools for the re-
alization of entanglement between two qubits encoded in the vibrational states of
two or more atoms. For demonstration, let us assume that initially two atoms are
located in neighboring wells of the optical lattice (the scheme presented in [117]
can be readily used to rearrange the atoms until they fulfill this condition). Both
atoms are prepared in the motional ground state but possess opposite spin orien-
tation |44, 0〉 / |33, 0〉, respectively (see e.g. [17]). A tri-chromatic microwave field
is used to flip the spin of both atoms and at the same time to prepare a vibra-
tional superposition state. Thereby, the relative population of the motional states
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Fig. 5.1: (a) Two atoms A and B each prepared in a superposition between two mo-
tional Fock states. (b) The two atoms are merged using the spin dependent
transport. Entanglement of the motional states of two atoms is generated via
collisional interaction because the collisional phase depends on the motional
state.

is defined by the Rabi frequencies of each field component (as field b is common
for both qubits the relative population of both qubits will be identical when both
spins are completely flipped). A arbitrary superposition state can alternatively be
prepared using a pulse sequence (see figure 4.6). Employing the state dependent
transport both atoms are subsequently shifted towards each other by merging the
corresponding potential wells. Due to collisional interaction [12] which depends on
the wave function overlap between the two atoms the phase accumulation for the
two vibrational states is different. After the atoms are separated again their qubit
states encoded in their motional are entangled.

The detection of the collisional phase can again be performed by the tri-chromatic
microwave pulse. Here, the spin rotation of atom A (B) depends on its phase with
respect to the phase of the beating signal between the fields a and b (b and c). The
probability to find atom A and B in their initial states |33〉 and |44〉 after the second
microwave pulse, respectively, will thus exhibit a variable correlation depending on
the acquired collisional phase.
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