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Abstract

This thesis focuses on the simulation of the physics of a charged particle under an external magnetic
field by using discrete-time quantum walks of a spin-1/2 particle in a two-dimensional lattice. By
Floquet-engineering the quantum-walk protocol, an Aharonov–Bohm geometric phase is imprinted onto
closed-loop paths in the lattice, thus realizing an abelian gauge field —the analog of a magnetic flux
threading a two-dimensional electron gas. I show that in the strong-field regime, i.e. when the flux per
plaquette of the lattice is a sizable fraction of the flux quantum, magnetic quantum walks give rise to
nearly flat energy bands. I demonstrate that the system behaves like a Chern insulator by computing the
Chern numbers of the energy bands and studying the excitation of the midgap topologically protected
edge modes. These modes are extended all along the boundaries of the magnetic domains and remain
robust against perturbations that respect the gap closing conditions.

Furthermore, I discuss a possible experimental implementation of this scheme using neutral atoms
trapped in two dimensional spin-dependent optical lattices. The proposed scheme has a number of unique
features, e.g. it allows one to generate arbitrary magnetic-field landscapes, including those with sharp
boundaries along which topologically protected edge states can be localized and probed.

Additionally, I introduce the scattering matrix approach in discrete-time quantum walks to probe the
Hofstadter spectrum and compute its topological invariants. By opening up a discrete-time quantum walk
system and connecting it to metallic leads, I demonstrate that the reflection/transmission probabilities of
a particle from the scattering region give information on the energy spectrum and topological invariants
of the system. Although the work presented here focuses on the physics of a single particle in a clean
system, it sets the stage for studies of many-body topological states in the presence of interactions and
disorder.

Parts of this thesis will be published in the following article:

[1] M. Sajid, J. K. Asbóth, P. Arnault, D. Meschede, R. Werner, A. Alberti,
Realizing Floquet Chern insulators with discrete-time quantum walks, (2018), in preparation
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CHAPTER 1

Introduction

A
two-dimensional (2D) system of electrons subjected to a strong perpendicular magnetic
field manifests the integer quantum Hall effect (IQHE) [2, 3]: a universal phenomenon
where the quantization of the Hall conductance is independent of geometric effects, the
host material, and the concentration of impurities. Due its universality, the quantization

has a very high precision, typically ∼ 10−9, which is, nowadays, used as the resistance standard [4].
Quantum Hall systems are the first physical systems where a topological phenomenon was observed.
A quantum Hall state, for example, is characterized by a non-local integer physical invariant (giving
the quantized value of the Hall conductance) and the number of extended current-carrying edge states,
known as topologically-protected (TP) edge states [5]. These properties remain robust against gentle
perturbations and can change only when the system undergoes a quantum phase transition [6, 7].

A lattice version of the quantum Hall system features much richer physics even at a single-particle
level. This is sometimes known as a Chern insulator, which behaves as an ordinary band insulator in the
bulk, yet exhibits exotic chiral transport in the proximity of its boundaries. Along these edges, particles
can propagate unidirectionally without suffering from backscattering nor dissipation into the bulk. Such a
robust transport behavior has its origin in TP edge modes, which extend along the length of the insulator.
The existence of such states is guaranteed by the non-trivial topological structure of the bulk states
forming topological bands. This connection between TP edge modes and the topological structure of the
bulk states is the essence of the bulk–boundary correspondence [8]. In a 2D band insulator, an energy
band with a topologically non-trivial structure is characterized by a non-vanishing Chern number —an
invariant that counts the number of topological obstructions to defining a global gauge for the Bloch
states constituting the band [9]. Quantum Hall systems, in this class, are thus the first Chern insulators,
where the Chern numbers of the bulk bands determine the quantization integer of the Hall conductance.
However, as shown by Haldane in his seminal work [10], the robust chiral transport is neither specific
to homogeneous magnetic fields nor to the properties of the underlying Landau levels, provided that
the time-reversal symmetry is broken. This insight has triggered the quest for topological materials
that forego the strong magnetic field of quantum Hall systems, and yet can conduct charges without
dissipation. The first demonstrations of this concept have been shown in condensed matter systems [11]
and with ultracold atoms trapped in optical lattices [12–14] in the regime of weakly or non-interacting
particles.

Tight binding lattices offer an attractive setting to realize Chern insulators, as the strong confinement
provided by the lattice can be exploited to enhance particle-particle interactions. This allows for the
realization of interaction-induced topological phases such as fractional quantum Hall states for partially
filled Chern bands [15–17]. Protected by a large energy gap, these states are expected to survive at high
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Chapter 1 Introduction

temperatures and even at room temperature in electronic solid-state systems [18]. Nearly flat bands with
non-vanishing Chern numbers and large gap separations have been identified as favorable conditions
to realize these strongly correlated states, since in these circumstances interactions among particles are
the dominating physical mechanism [19–21]. One promising route to realize topological flat bands
while preserving the underlying structure of the lattice is through tight-binding lattices pierced by a
strong magnetic field, i.e. when the flux Φ of the magnetic field threaded through a single plaquette
of the 2D lattice is a sizable fraction of the flux quantum Φ0 = h/Q (Q is the electric charge, h is the
Planck constant) [22, 23]. In this regime of strong field, the lattice constant (a) and the magnetic length
scale (`B = a

√
Φ0/(2πΦ)) become comparable with each other, and the regular structure of the highly

degenerate Landau levels (which describe the single-particle states in the limit of weak fields) transforms
into a fractal-like spectrum of energy bands —the so-called Hofstadter butterfly [24]. For commensurate
values of the flux ratio φ = Φ/Φ0, these energy bands are nearly flat and characterized by non-vanishing
Chern numbers C, which, in general, are not restricted to |C| = 1 as is the case with Landau levels.
Such topological flat bands are expected to give rise to a topological gapped many-body state [22, 23],
much the same as an incompressible quantum liquid appears in the weak field (long wavelength) limit of
the Hofstadter Hamiltonian for partially filled Landau levels [25]. The leading candidates to realize a
fractional Chern insulator are ultracold-atom systems, for they provide the required level of controllability
to implement flat-band models [26, 27]; however, no experimental realization has been reported yet.

The study of such interesting physics with conventional solids requires extraordinarily strong magnetic
field, typically of the order 105 T. This condition is out of reach for existing experimental setups, where
fields are of the order of 10 T. More favorable conditions are achieved by tailoring synthetic superlattices
with considerably larger lattice constants [28] and moiré superlattices made of graphene on top of a
semiconductor substrate [29]. To avoid dealing with such high fields, a number of proposals have been put
forward [30–32] aiming at recreating the effect of magnetic fields synthetically through the engineering
Aharonov–Bohm geometric phases. In the case of neutral atoms trapped in optical lattices, the standard
approach to create such a synthetic gauge fields relies on photon-assisted tunneling, which can be realized
either using an additional dressing field [33–35] or by shaking the lattice itself [36–38]. Based on
these approaches, strong synthetic magnetic fields in 2D optical lattices have been demonstrated [12,
13, 39, 40]. However, because the kinetic energy in a shallow lattice is of the order of ~2/(ma2) (m is
the atomic mass), ultracold-atom experiments in optical lattices must be conducted at very low energy
scales, corresponding to few nK, which are generally difficult to reach. In addition, low energies signify
small hopping terms (< h × 1 kHz) and, correspondingly, long evolution times, during which heating and
other decoherence mechanisms can be very detrimental to the coherent evolution of the system [39–42].
Increasing the kinetic energy by using light atomic species (e.g., lithium) and, possibly, subwavelength
lattice constants [43, 44] has been identified as one way to curb the challenge of experimental realizations.

The work in this thesis maps out a different route to explore the physics in the strong-field regime. I
make use of the quantum-walk protocol to simulate the effects of a strong abelian gauge field, and then
implement scattering matrix formalism to probe its spectrum. I will start with an introduction to my work
in Chapter 2 and Chapter 3. In Chapter 2, I will shortly report on the 2D tight binding model for a single
spin-polarized electron in the presence of an external magnetic field. This model is an effective tool for
describing the dynamics of tightly bound electrons in solids. The dynamics of the system is described
by the famous single-particle Haper’s Hamiltonian [45]. I will present the topological properties of the
magnetic Bloch bands of the Harper’s Hamiltonian by computing the bulk topological invariants, i.e. the
Chern numbers, edge spectrum in the presence of a boundary, and the bulk–boundary correspondence
principle.

In Chapter 3, I will introduce discrete-time quantum walks (QWs) for a spin-1/2 particle in 1D and
2D, and their topological properties. The evolution of a QW at integer time steps can be described by a
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time-independent effective Hamiltonian (associated with the walk protocol). This effective Hamiltonian,
like a real static lattice Hamiltonian, can have interesting non-trivial topological properties. In 1D, the
existence of a non-trivial topological phase is conditioned with the existence of certain symmetries.
Three important discrete symmetries will be introduced, and topological properties, i.e. bulk topological
invariants and edges states in the presence of a boundary, will be demonstrated both for 1D and 2D
QWs. Being periodically driven quantum systems, QWs manifest even rich topological features (with
a new set of topological invariants) than those given by their effective Hamiltonians. To capture the
complete topological structure of a walk, information beyond that contained in the effective Hamiltonian
is required. This will be demonstrated along with the topological features specific to periodically driven
quantum systems (QWs).

The main results of my work will be presented in Chapter 4 and Chapter 5. In Chapter 4, I will present
the extension of a simple 2D Hadamard-like QW of a spin-1/2 particle to simulate the effect of artificial
magnetic fields. This is accomplished by Floquet-engineering the walk protocol, which imprints an
Aharonov–Bohm geometric phase on the closed-loop paths in the lattice, thus realizing an abelian gauge
field. This is an analog of a magnetic flux threading a 2D electron gas. In the regime of a strong magnetic
field, i.e. Φ ∼ Φ0, the energy bands of magnetic QWs are nearly flat and have large Chern numbers. A
possible experimental implementation of this scheme will be presented, which is based on neutral atoms
trapped in 2D spin-dependent optical lattices. The proposed scheme has a number of unique advantages,
e.g. it allows one to generate arbitrary magnetic-field landscapes (including those with sharp boundaries).
I will demonstrate (with my numerical results) the robust atom transport along boundaries separating
regions of different field strength revealing the topological character of the Chern bands.

In Chapter 5, I will report on the scattering matrix approach in QWs to probe the Hofstadter spectrum
and to compute its topological invariants. The scattering matrix formalism is one of the central tools for
describing transport phenomena in mesoscopic devices. I will introduce a similar approach in QWs and
will demonstrate that the reflection/transmission probabilities of a particle from the scattering region give
information on the energy spectrum and topological invariants of the walk.

The schemes presented in this thesis provide a platform to investigate many-body topological states in
the presence of interactions and disorder [19–21].

3





CHAPTER 2

Magnetic Fields on the Square Lattice

I
n the continuum, a 2D system of electrons subjected to a strong perpendicular magnetic field
manifests the universal phenomenon of IQHE [2, 3]. A striking feature of such system is the
manifestation of topological phenomena; this system exhibits localized states in the bulk, forming
a band insulator that exhibits extended states carrying quantized current at the sample boundary.

The lattice version of this problem exhibits rich physics even at a single-particle level. In the regime of
strong magnetic fields, the competition between the two length scales in the system (lattice constant and
magnetic length scale) leads to a fractal-like spectrum of energy bands, known as Hofstadter spectrum [24,
46]. This is in contrast to the regular structure of the highly degenerate Landau levels, which describe
the single-particle states in the limit of weak fields. For commensurate values of the flux ratio φ, the
energy bands are nearly flat with non-trivial topology, i.e. they are characterized by non-vanishing
Chern numbers C, which, in general, are not restricted to |C| = 1. The exploration of this physics with
conventional materials requires an extraordinarily strong magnetic field, which is beyond the reach of
current experimental setups. To explore this physics, synthetic superlattices with considerably larger
lattice constants [28] and moiré superlattices [29] can be used to relax the magnetic field requirements
by several orders of magnitudes. As an alternative route, the effects of a strong magnetic field can be
recreated synthetically in systems of neutral atoms trapped in tight-binding optical lattices, thus allowing
for the exploration of the strong field regime [12, 13, 39, 40].

In this chapter, I introduce the physics of a spin-polarized charged particle in the presence of a strong
magnetic field using a 2D tight-binding model. The main goal is to present the energy spectrum and
the corresponding topological properties of the time-independent Hamiltonian underlying this problem.
I start with a simple 2D tight-binding model and introduce the effects of an external magnetic field.
A 2D tight-binding system has discrete translation symmetry given by lattice translation operators.
The corresponding energy spectrum consists of discrete Bloch bands, which are topologically trivial
(section 2.1). The presence of an external magnetic field breaks the original translation symmetry of
the problem and can be restored by defining the so called magnetic translation operators. The new
symmetry of the problem has an enlarged unit cell (known as a magnetic unit cell), the area of which
depends on the strength of the flux ratio φ. The magnetic translation operators translate a particle in the
lattice and imprints the so called Peierls phases, which, when integrated around a unit cell of the lattice,
are analogous to the Aharonov–Bohm phases (section 2.1.1) [47]. I demonstrate with examples that
for rational values of φ, the lowest Bloch band splits into a number of subbands, which are sometimes
known as "magnetic Bloch bands" (section 2.2) [24]. These are relatively flat, separated by large gaps,
and have non-trivial topology. I show the non-trivial topological character of these bands by computing
their Chern numbers, which are usually |C| ≥ 1. The Chern numbers determine the quantization integer
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Chapter 2 Magnetic Fields on the Square Lattice

of the Hall conductance (section 2.3.2). I then demonstrate that the system exhibits TP edge states in
presence of a boundary. These are extended along the whole length of the boundary and carry quantized
current. The number of TP edge states is related to the Chern numbers of the bands via the bulk–boundary
correspondence principle, which I demonstrate with examples (section 2.3.3) [8].

2.1 Tight Binding Model on a 2D Squared Lattice

Tight binding models are effective tools for describing the properties of electrons that are tightly bounded
to their parent atoms in solids and has limited interactions with other atoms in its surrounding. The
wavefunction of an electron is assumed to be similar to that of the standard orbitals of its parent atom
and its overlap with the wavefunctions of other atoms is small. For a single tightly-bound electron with
negligible on-site interactions, the single-particle Hamiltonian consists only of nearest-neighbor hopping
terms. From the 2D lattice perspective, a particle remains localized on a single site of the lattice and hops
in the lattice via tunneling from one site to another.

Let us consider a single-band tight-binding model on an infinitely extended 2D square lattice for
a spin-polarized particle. Throughout the chapter, coordinates on the discrete lattice are labelled by
x = ( j, l) ∈ Z2 with basis states | j, l〉 and the lattice constant in both x and y direction is equal to 1. For
simplicity, we assume that the particle can tunnel only to its nearest neighbor lattice sites with tunneling
amplitudeJ in both directions. The tight binding Hamiltonian in terms of the lattice translation operators
(or simply "shift operators") Ŝ0

x and Ŝ0
y can be written as

ĤTB = −J
(
Ŝ0

x + Ŝ0
y + h.c.

)
. (2.1)

The shift operator Ŝ0
x shifts a particle by one lattice site along the positive x direction and Ŝ0

y by one
lattice site in the positive y direction. The term denoted by h.c. is the Hermitian conjugate of the first
two terms. The shift operators can also be written in terms of creation (annihilation) operator ĉ†j,l (ĉ j,l),
creating (annihilating) a particle on a lattice site with coordinates ( j, l), in the following way:

Ŝ0
x =

∑
j,l

ĉ†j+1,lĉ j,l , Ŝ0
y =

∑
j,l

ĉ†j,l+1ĉ j,l. (2.2)

The second quantized representation of the Hamiltonian eq. (2.1) is,

ĤTB = −J
∑

j,l

(
ĉ†j+1,lĉ j,l + ĉ†j,l+1ĉ j,l + h.c.

)
. (2.3)

In the absence of a magnetic field, the system has translational symmetry, i.e. translation by an arbitrary
lattice vector is an allowed symmetry operation, and it is favorable for the theoretical understanding of
the problem to make use of this symmetry. The generator of the lattice translation is known as lattice
momentum or quasi momentum1 k = (kx, ky) and due to the discreteness of the lattice translations, only
values inside the first Brillouin zone (BZ), i.e. k ∈ [−π, π[2, are physical. Both lattice translation operators
commute with the Hamiltonian (eq. (2.3)), i.e. [Ŝ0

x, ĤTB] = [Ŝ0
y, ĤTB] = 0, and also with each other,

i.e. [Ŝ0
x, Ŝ

0
y] = 0. These three operators form a set of good quantum numbers for the considered system,

i.e. we can find common eigenstates for all these operators which in this case are Bloch functions. In

1 Since the system has discrete spatial translational invariance, we speak of "quasimomentum" instead of "momentum".
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2.1 Tight Binding Model on a 2D Squared Lattice

quasimomentum representation, the Hamiltonian (eq. (2.3)) takes the form,

ĤTB(kx, ky) = −2J
∫

BZ
dk

(
cos(kx) + cos(ky)

)
ĉ†k ĉk. (2.4)

Here the following transformation is used,

ĉ j,l =
1

(2π)2

∫
BZ

dkxdkyĉkeikx jeikyl, (2.5)

with the inverse transformation
ĉk =

∑
j,l

ĉ j,le−ikx je−ikyl. (2.6)

In the last three equations, kx and ky are quasimomentum operators that act on quasimomentum basis
states |kx〉 and |ky〉, respectively. The Hamiltonian is diagonal in quasimomentum representation and the
eigenstates are of the Bloch form. The corresponding energy is given by,

E(kx, ky) = −2J
(
cos(kx) + cos(ky)

)
, (2.7)

which is a single Bloch band of width 8J .

2.1.1 Peierls Substitution and Magnetic Translation Operators

In continuum, the Schrödinger equation for a charged particle (say an electron) in a magnetic field
is derived from a canonical formalism, which is expressed in terms of vector potentials [47]. The
corresponding Hamiltonian can also be simply obtained through minimal substitution, i.e. by replacing
the momentum ~p of the free particle by its gauge-invariant form ~Π, i.e.

~p→ ~Π = ~p + e~A(~r), (2.8)

with the electronic charge Q = −e . The Hamiltonian, for a particle of mass mo, takes the following form:

Ĥ =
(~p(~r) + e~A(~r))2

2mo
, (2.9)

here ~Π is known as the kinetic momentum and ~p as canonical momentum. The kinetic momentum,
proportional to the particle velocity, is gauge-invariant and hence is a physical quantity [4]. The vector
potential ~A(~r), generating the static magnetic field (~B(~r) = ∇ × ~A(~r)) and the canonical momentum ~p are
gauge-dependent quantities. There are infinite number of ways of writing the vector potential ~A(~r) for a
single magnetic field ~B(~r) without changing the physics of the problem. For example adding the gradient
of an arbitrary differentiable function f (~r) to the vector potential ~A(~r), i.e. ~A′(~r) = ~A(~r) + ∇ f (~r) gives
the same magnetic field ~B(~r) = ∇ × ~A′(~r) since the curl of a gradient is zero, i.e. ∇ × ∇ f (~r) = 0. The
canonical momentum ~p, being a gauge dependent quantity, transfroms to ~p − e∇ f (~r) in order to leave
the kinetic momentum (~Π) unchanged. Another important fact is that a wavefunction ψ(r, t), which is a
solution of the Schrödinger equation for the gauge choice ~A(~r), will generally not be its solution for the
other gauge choice ~A′(~r) [46, 48]. The wavefunction transforms with the gauge transformation in the
following way:

ψ(r, t)→ ψ′(r, t) = e−ie f (~r)/~ψ(r, t). (2.10)
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Chapter 2 Magnetic Fields on the Square Lattice

x axis

y 
ax

is

Figure 2.1: Schematic of Peierls phases around a unit cell of a 2D lattice. In the presence of a vector potential ~A(~r),
the tunnel amplitudes are accompanied by phase factors and hence are complex quantities. A particle accumulates
a phase Θx

j,l or Θ
y
j,l while shifting from one lattice site to its neighboring site along the sides of a unit cell in the

positive x or y direction respectively. The integrated phase around a unit cell of the lattice is equal to the flux (Φ,
equivalent to Aharonov–Bohm phase) of the magnetic field passing through the cell.

For a particle on a tight-binding lattice, the presence of a magnetic field is taken into account through the
so called Peierls substitution2 [50]. This is accomplished by assigning complex values to the tunneling
amplitudes of eq. (2.3). In the presence of a magnetic field ~B(~r) = ∇ × ~A(~r), the Peierls substitution is
equivalent to approximate the Hamiltonian (eq. (2.3)) in the following way:

ĤTB,Peierls = −J
∑

j,l

(
eiΘx

j,l ĉ†j+1,lĉ j,l + eiΘy
j,l ĉ†j,l+1ĉ j,l + h.c.

)
, (2.11)

with phases Θx
j,l and Θ

y
j,l are known as Peierls phases and can be computed as the integral of the vector

potential ~A(~r) over the path joining the nearest neighboring lattice sites, i.e.

Θx
j,l =

e
~

∫ j+1,l

j,l

~A(~r) · d~r,

Θ
y
j,l =

e
~

∫ j,l+1

j,l

~A(~r) · d~r, (2.12)

2 In case of electrons on a lattice, the justification of Peierls substitution is not straightforward as there are a number of energy
bands involved. However, for the lattice constant much smaller than the magnetic length scale

(
`B =

√
~/

(
eB(~r)

) )
, this

substitution is valid. In other words, this substitution is valid as long as the energy scale set by magnetic field is much smaller
than the energy gap between the two lowest Bloch bands, so that contributions from the higher bands can be neglected. In the
case of simulating this physics in experiments with cold neutral atoms, the effect of magnetic fields is recreated synthetically
by direct engineering of Aharonov–Bohm geometric phases and justifications for the validity of the Peierls substitution are
not relevant. These experiments are performed in the tight-binding regime where neutral atoms are confined to the lowest
Bloch band that is separated form other bands by a larger gap [4, 30, 46, 49].
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2.1 Tight Binding Model on a 2D Squared Lattice

where the sign of the charge is included in "e". Due to the gauge freedom of the vector potential ~A(~r), for
a given physical problem the choice of the Peierls phases (Θx

j,l,Θ
y
j,l) is not unique. However, the sum of

the Peierls phases around a closed path in the lattice is a gauge invariant quantity. For a particle hopping
counterclockwise around a unit cell of the lattice (fig. 2.1), the sum of the Peierls phases is equal to the
Aharonov–Bohm phase accumulated by the particle,

Θx
j,l + Θ

y
j+1,l − Θx

j,l+1 − Θ
y
j,l =

e
~

∮
unitcell

~A(~r) · d~r

= 2π
Φ

Φ0
, (2.13)

where ( j, l) are the coordinates of the lower left corner of the unit cell. The flux ratio φ = Φ/Φ0 is an
important parameter of the problem. Equation (2.13) can be written in terms of discrete lattice derivatives,
i.e. (

Θ
y
j+1,l − Θ

y
j,l
)
−

(
Θx

j,l+1 − Θx
j,l
)

= ∆xΘ
y
j,l − ∆yΘ

x
j,l

= 2πφ j,l. (2.14)

For convenience, we introduce shift operators Ŝx and Ŝy for translating a particle in the x and the y
direction by one lattice site in the presence of a magnetic field ~B(~r). These operators can be expressed in
terms of kinetic momentum ~Π in the following way:

Ŝx = e−i~Π ĵ/~ = e(−i(~p+e~A(~r)) ĵ/~) →
∑

j,l

eiΘx
j,l ĉ†j+1,lĉ j,l

Ŝy = e−i~Πl̂/~ = e(−i(~p+e~A(~r))l̂/~) →
∑

j,l

eiΘy
j,l ĉ†j,l+1ĉ j,l (2.15)

These operators acts on the single-particle states (|ψ j,l〉 = ĉ†j,l |0〉 = | j, l〉 ) resulting in the translation of
the particle in the lattice and implement the Peierls phases,

Ŝx | j, l〉 = eiΘx
j,l | j + 1, l〉 ,

Ŝy | j, l〉 = eiΘy
j,l | j, l + 1〉 . (2.16)

The Hamiltonian (eq. (2.11)) can be written in terms of these translation operators,

ĤTB,Peierls = −J
(
Ŝx + Ŝy + Ŝ†x + Ŝ†y

)
. (2.17)

The tight-binding Hamiltonian in this form has the merit to make clear the action of the Peierls substitu-
tion.

In the presence of a magnetic field, the translation symmetry of the problem is broken and quasimo-
mentum is not a conserved quantity. The Hamiltonian (eq. (2.17)) is not translational invariant with
translation operators Ŝx and Ŝy. These operators neither commute with each other nor with the Hamilto-
nian, as it can be shown that

ŜyŜx = e(i2πφ)ŜxŜy, (2.18)

which differs by a multiplicative factor. The reason is that the vector potential ~A(~r) is not translation
invariant even for a constant magnetic field B. The symmetry of the Hamiltonian can be restored by
defining the so called magnetic translation operators (MTOs) {T̂x, T̂y} [51–53]. These operators differ by a
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Chapter 2 Magnetic Fields on the Square Lattice

phase factor from the shift operators {Ŝx, Ŝy} and can be obtained by making a gauge transformation [54],

T̂x ≡
∑

j,l

ĉ†j+1,lĉ j,le
iXx

j,l ,

T̂y ≡
∑

j,l

ĉ†j,l+1ĉ j,le
iXyj,l . (2.19)

The phases Xx
j,l and Xyj,l are different from the Peierls phases given in eq. (2.12) and can be determined

from the requirement that the MTOs should commute with the Hamiltonian. The required conditions can
be obtained by applying the commutator of MTOs with the shift operators eq. (2.15) on a single-particle
state, i.e.

[
Ŝi, T̂i′

]
| j, l〉 for i, i′ ∈ {x, y}, and setting them equal to zero. Details on deriving the constraints

on Θ and X can be found in [54, 55]; however, for completeness of this chapter, these are presented in
Appendix A. The values of Xx,y, for which the MTOs commute with the Hamiltonian eq. (2.17), are
given by

Xx
j,l = Θx

j,l + 2πlφ j,l,

X
y
j,l = Θ

y
j,l − 2π jφ j,l. (2.20)

The MTOs with these phases commute with the Hamiltonian but they still do not commute with each other,
i.e.

[
T̂x, T̂y

]
, 0. Their commutators can be obtained by applying these operators on a single-particle

states on a lattice site ( j, l),

T̂xT̂y ĉ†j,l |0〉 = T̂x eiXyj,l ĉ†j,l+1 |0〉 = ei
(
Xx

j,l+1 + X
y
j,l

)
ĉ†j+1,l+1 |0〉 ,

T̂yT̂x ĉ†j,l |0〉 = T̂y eiXx
j,l ĉ†j+1,l |0〉 = ei

(
X
y
j+1,l + Xx

j,l

)
ĉ†j+1,l+1 |0〉 , (2.21)

which show that the two operators do not commute. It is, however, possible to find a combination of
these operators which do commute with each other [54]. Before finding this combination, it is important
to fix a gauge for the vector potential ~A(~r) as it is required to write the specific form of the MTOs.

Let us consider the case of uniform magnetic field ~B with the Landau gauge ~A(~r) = (0, Bx, 0). In this
case the flux ratio through each cell of the lattice is uniform, i.e. φ. By using the values of the phases
given in eq. (2.20), eq. (2.21) can be written as

T̂x T̂y = ei2πφT̂y T̂x, (2.22)

or equivalently,
T̂ †x T̂ †y T̂x T̂y = ei2πφ. (2.23)

This shows that a particle hopping clockwise around a unit cell of the lattice accumulates a phase 2πφ. If
this phase is an integer multiple of 2π, i.e. φ is equal to an integer number, then the MTOs commute with
each other. However, this is gauge-equivalent to zero magnetic flux through a unit cell of the lattice and
hence do not result in the desired interesting physics [55]. The interesting physics emerges when the
values of φ are not integer numbers. In this case combinations of MTOs do not generally commute. As
an example we can take the following combination of MTOs,

T̂ q
x T̂y = ei2qπφT̂y T̂ q

x , (2.24)

which shows that for any integer value of q, the MTOs do not commute. However, for this combination

10



2.1 Tight Binding Model on a 2D Squared Lattice
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ky
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q
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Figure 2.2: Schematic illustration of a magnetic unit cell and the corresponding MBZ. In each (a, b, c) case, real
space unit cell is accompanied by the corresponding BZ directly below it in the same column. (a) For a normal unit
cell of the 2D square lattice with lattice constant 1 in both directions, the BZ is a square with −π ≤ kx < π and
−π ≤ ky < π. (b) In the presence of a magnetic field with flux ratio φ = p/q, the magnetic unit cell of the problem
is q-times larger in the x direction than the normal unit cell of the lattice. The corresponding MBZ is q-times
smaller along kx with −π/q ≤ kx < π/q and −π ≤ ky < π. (c) For the same problem, one can equally choose the
magnetic unit cell to be oriented along the y axis of the lattice. In this case, the MBZ is q-times smaller along ky
with −π ≤ kx < π and −π/q ≤ ky < π/q. In both (b,c) cases, the area of the magnetic unit cell is important, which
is constant (q × 1 = 1 × q) irrespective of its orientation.

of MTOs, if one considers only rational values of the flux ratio, i.e. φ = p/q ∈ Q with p and q relatively
prime integers, then they commute with each other,

T̂ q
x T̂y = T̂y T̂ q

x . (2.25)

For this specific case of flux ratio, the new MTOs {T̂ q
x , T̂y} along with the Hamiltonian (eq. (2.17)) define

a set of good quantum numbers, as the new MTOs also commute with the Hamiltonian. The simultaneous
eigenstates of {ĤTB,Peierls, T̂

q
x , T̂y} are known as magnetic Bloch states, i.e. ψ j,l,k = e−i jkxe−ilky | j, l, k〉,

satisfying the generalized form of Bloch theorem,

ĤTB,Peierlsψ j,l,k = Ekx,kyψ j,l,k,

T̂ q
xψ j,l,k = e−iqkxψ j,l,k,

T̂yψ j,l,k = e−ikyψ j,l,k, (2.26)

with lattice constant of unit length in both directions. An important fact is that for an eigenstate ψ j,l,k of
the Hamiltonian ĤTB,Peierls, the spatially translated states {T̂ j′

x ψ j,l,k; j′ = 1, 2, . . . , q − 1} have different

11



Chapter 2 Magnetic Fields on the Square Lattice

eigenvalues under T̂y, i.e. T̂y
(
T̂ j′

x ψ j,l,k
)

= ei(ky−2π j′φ) (
T̂ j′

x ψ j,l,k
)
. All these spatially translated states are

different, but have the same energy as that of ψ j,l,k. The reason is that the operator T̂ j′
x commutes with the

Hamiltonian ĤTB,Peierls for all integer values of j′. This results in q-fold degeneracy of the energy along
ky.

The MTO T̂ q
x shifts a particle by q lattice sites along the x and T̂y by one lattice site along the y axis of

the lattice. In the new symmetry of the problem, the dimension of the unit cell is q × 1, which is q-times
larger in the x direction3 than that of the normal unit cell of the 2D lattice. The magnetic unit cell is the
only one, which is composed of q plaquettes of the lattice. The corresponding magnetic Brillouin zone
(MBZ) is q-times smaller than the normal BZ in the kx direction, i.e. −π/q ≤ kx < π/q and −π ≤ ky < π,
as schematically illustrated in fig. 2.2.

2.2 Harper’s Equation and the Hofstadter Spectrum

Let us compute the spectrum of the single-particle system in the presence of a uniform external magnetic
field. As for a given magnetic field, the physical observable of the system is independent of the gauge
choice, I continue with the choice of Landau gauge ~A(~r) = (0, Bx, 0) for computational simplicity. In
this gauge, the tunneling amplitude along the x axis of the lattice is real and is complex along the y axis,
i.e. Θ j,l =

(
0, 2π jφ

)
. The tight binding Hamiltonian has the following form,

Ĥ = −J
∑

j,l

(
ĉ†j+1,lĉ j,l + ei2π jφĉ†j,l+1ĉ j,l + h.c.

)
, (2.27)

where the phases (eq. (2.20)) of the MTOs reduce to

Xx
j,l = 2πlφ j,l,

X
y
j,l = 0. (2.28)

We consider only rational values of the flux ratio φ = p/q. In this case, the system has translational
invariance with a magnetic unit cell of dimensions q × 1. This is q-times larger than the normal unit cell
of the lattice and is oriented along the x-axis of the lattice. For convenience, I regroup the 2D lattice
into magnetic unit cells. There are q different sites in each unit cell. The position basis on this spatially
regrouped lattice can be written as

| j, l〉 → | jq + j′, l〉 = | jq〉 ⊗ | j′, l〉 , (2.29)

here j ∈ Z is the index of the jth magnetic unit cell and j′ = 1, 2, . . . , q represents different sites within
each magnetic unit cell. By modifying the creation and annihilation operators (ĉ†j,l, ĉ j,l) according to this
spatial regrouping, the Hamiltonian eq. (2.27) can be written as

Ĥ = −J
∑
j, j′,l

(
ĉ†jq+ j′+1,lĉ jq+ j′,l + ei2π( jq+ j′)φ ĉ†jq+ j′,l+1ĉ jq+ j′,l + h.c.

)
. (2.30)

Due to the new translational symmetry in the x direction and the normal translational symmetry in
the y direction, the Hamiltonian eq. (2.30) can be transformed into quasimomentum space. Using the

3 The area of the magnetic unit cell is fixed by the strength of the magnetic flux. For a flux ratio p/q, the area of the magnetic
unit cell is q-times larger than the normal unit cell of the lattice. However, its dimension can be arbitrarily chosen, where,
depending on the gauge choice, the MTOs take different form [55]. see fig. 2.2 for schematic illustration.
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2.2 Harper’s Equation and the Hofstadter Spectrum

transformation given in Appendix B, the Hamiltonian takes the following form,

Ĥ =
q

(2π)2

∫ +π/q,+π

−π/q,−π
dkx dky ⊗

[
− J

∑
j′

(
e−ikx ĉ†kx,ky, j′+1 ĉkx,ky, j′

+ eikx ĉ†kx,ky, j′−1 ĉkx,ky, j′ + 2cos(2πφ j′ − ky) ĉ†kx,ky, j′
ĉkx,ky, j′

)]
=

q
(2π)2

∫ +π/q,+π

−π/q,−π
dkx dky ⊗ Ĥ(kx, ky). (2.31)

This Hamiltonian is diagonal inside the MBZ. The kernel Ĥ(kx, ky), that contains all the information of
the Hamilton, is a q × q Hermitian matrix (there are q states per magnetic unit cell). It is important to
mention that Ĥ(kx, ky) is normally known as the Hamiltonian, however, it is only part of the Hamiltonian
(Ĥ) and is a gauge-dependent quantity. For different gauge choices, Ĥ(kx, ky) takes different forms, but
the Hamiltonian Ĥ remains invariant. The energy eigenvalues are obtained by solving the Schrödinger
equation,

Ĥ(kx, ky) ψk = Ekx,ky ψk. (2.32)

This is similar to the eigenvalue problem of a particle hopping on a 1D cyclic chain of q sites with
tunneling amplitude −Jeikx in one direction, −Je−ikx in the other direction, and with the onsite energy
term −2J cos(2πφ j′ − ky). In the tight-binding single-band approximation, the eigenstates of the matrix
Ĥ(kx, ky) can be expressed in terms of single-particle states, which are localized on the single sites of the
magnetic unit cell,

ψk =

q∑
i=1

ai ĉ†kx,ky,i
|0〉 . (2.33)

Inserting this ansatz for the wavefunction in eq. (2.32) results in the following equation,

− J
(
2 cos(2πφ j′ − ky) a′j + e−ikx a j′−1 + eikx a j′+1

)
= Ekx,ky a j′ , (2.34)

with the boundary condition j′ + q = j′. This equation is the well-known Harper equation, whose energy
eigenvalues form the well-known Hofstadter spectrum and has been extensively studied [24, 45]. In
matrix form, this equation can be written as

− J



h1 eikx 0 · · · 0 e−ikx

e−ikx h2 eikx · · · 0 0
0 e−ikx h3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · hq−1 eikx

eikx 0 0 · · · e−ikx hq





a1
a2
a3
...

aq−1
aq


= Ekx,ky



a1
a2
a3
...

aq−1
aq


, (2.35)

with onsite energy term

− J h j′ = −2J cos(2πφ j′ − ky); for j′ = 1, 2, . . . , q. (2.36)

By diagonalizing the matrix, one obtains q energy eigenvalues, i.e. E(1)
kx,ky

, E(2)
kx,ky

, . . . , E(q)
kx,ky

along with q

eigenstates ψ(1)
k , ψ(2)

k , . . . , ψ(q)
k . The energy eigenvalues as a function of the quasimomentum kx and ky

inside the first MBZ form q subbands that are known as magnetic-Bloch bands. For the chosen Landau
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Figure 2.3: Hofstadter butterfly: Energy spectrum of the Harper’s equation plotted against rational values of flux
ratio φ. For φ = p/q, the lowest Bloch band splits into q number of magnetic Bloch bands. The energy spectrum
has fractal structure and was first computed by D. Hofstadter [24]. Here, it is computed for q up to 80 and (kx, ky)
within the first MBZ. The color line-segments represent the magnetic Bloch bands for φ = 1/4 and φ = 1/3, for
which the energy dispersion is shown in fig. 2.5.

gauge, a given energy value is q-fold degenerate along the ky direction, i.e. Ekx,ky = Ekx,ky+2π j′p/q for
j′ = 1, 2, . . . , q. Another important fact is that for odd values of q, the magnetic Bloch bands are gapless,
however for even values of q, the energy dispersion consist of q number of isolated zeros around which
the particle behaves like a Dirac fermion [56].

In the weak field regime, the role of magnetic field is perturbative and the structure of the Bloch state
is marginally affected. However, in the limit of strong magnetic fields, a single Bloch band splits into q
number of magnetic-Bloch bands. When the energy spectrum is plotted as a function of rational values
of the flux ratio φ = p/q; p/q : 0 → 1, one obtains the famous Hofstadter spectrum, also known as
Hofstadter butterfly [24]. Figure 2.3 shows this spectrum, which is computed for q up to 80 and (kx, ky)
in the first MBZ.

2.3 Topological Properties of the Hofstadter Spectrum

2.3.1 A Brief Introduction to Topology

Topology is a discipline of mathematics that studies the geometrical properties of objects that are invariant
under continuous deformations. A simple mathematical example for explaining this concept is that of a
cylinder and a Möbius strip. On local inspection the two surfaces look exactly equivalent to one another.
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2.3 Topological Properties of the Hofstadter Spectrum

However, when inspected in their entirety, one realises that a Möbius strip is different from a cylinder
due to the presence of a twist. By smooth changes to the surface of the Möbius strip, one can deform its
surface locally but the twist can cannot be removed unless the ribbon itself is dissected. In other words,
a Möbius strip cannot be continuously transformed to a cylinder and hence the two are topologically
distinct objects with distinct topological invariants. The topological invariant in this case is the number
of twists in the surface.

Another simple example is that of a sphere and a doughnut. Both are 2D closed surfaces in 3D, but are
topologically distinct as one cannot be continuously transformed to the other. The topological invariant
in this case is the genus g of the surface, which counts the number of holes in it. A sphere has a genus
g = 0 and a doughnut has a genus g = 1. As the topological invariants take only discrete values, they
cannot be changed by making smooth changes to the surface. For geometrical surfaces, the associated
topological invariants can be obtained using the famous Gauss-Bonnet theorem [7, 57]. According to
this theorem, an integer topological invariant, i.e. Euler characteristic χ (a global quantity describing the
shape of the topological space) of an orientable4 closed surface, is defined as

χ =
1

2π

∫
surface

KdA, (2.37)

with K being the Gaussian curvature of the surface (local quantity). For a sphere of radius R, the
Gaussian curvature is K = 1/R2 which gives χ = 2. The Euler characteristic of the surface is related to
its genus via the relation χ = 2 − 2g. This relation shows that Euler characteristic is quantized. In this
example, the curvature of the surface is a local (geometrical) quantity and can be changed by smooth
deformations. However, the integral of the curvature is a global (topological) quantity, which remains
robust against smooth deformations.

In physics, the concepts of topology were first introduced for describing IQHE [5] and since then have
been used for understanding and classifying new phases of quantum matter, i.e. topological insulators.
The universality of IQHE and the extreme precision of the quantization were natural indications of its
topological origin. It was shown that the fundamental origin of this phenomenon is due to the topological
nature of the bulk states, which can be characterized by a topological invariant. The invariant (which is
the Chern number here) encodes the global structure of the wavefunctions and represent discret physical
quantities, e.g. quantized Hall conductance. In contrast to the twist and hole taking place in Euclidian
space (fig. 2.4), in condensed matter physics a topological invariant, e.g. a winding number or a Chern
number, characterizes the global structure in a more abstract space (Hilbert space). This space is formed
by the eigenstates belonging to certain energy bands (see for example fig. 3.6 in Chapter 3, where
topological invariant of the system is equal to the winding of the eigenvector in the equatorial plane of a
Bloch sphere). Topological invariants remain robust against smooth changes in the system’s parameters,
as long as the gap closing conditions and relevant symmetries, if exist, are respected.

Topological order in a topological insulating material is hidden in its bulk, but its physical consequence
is apparent in the form of highly non-trivial edge phenomena. These phenomena, in general, depends
on the dimensionality of a system and are protected by certain symmetries. For example, in a quantum
Hall system underlying a lattice, the non-trivial topological structure of the bulk bands is characterized
by Chern numbers, and unidirectionally propagating edge states exist along its boundary, carrying a
quantized current. These states are hallmark of the non-trivial topology in the bulk and are known as TP

4 A sphere, a plane and a torus are examples of orientable surfaces having well-defined sides. The Möbius strip, being a single
side surface due to the fact that one side of the strip is joined to the other side, is an example of a non-orientable surface. The
orientation of a surface is specified by a normal at each point of the surface. For an orientable surface there are two possible
orientation and hence two normals which are opposite to one another.
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(a)

(b)

Figure 2.4: Examples of topologically non-equivalent surfaces in an Euclidian space. (a) A Möbius strip has distinct
topology than a cylinder due to the presence of a twist in its surface. The twist cannot be removed by smooth
deformations to the surface unless the ribbon is dissected. The number of twists constitute the topological invariant
of the surface which is 1 for the Möbius strip and 0 for the cylinder. (b) Similarly, a doughnut has distinct topology
than a sphere and cannot be transformed to one another by smooth deformations. The topological invariant is the
genus (g) of the surface which is g = 1 for a doughnut and g = 0 for a sphere.

edge states. These states are protected by gaps in the bulk spectrum and remain robust against impurities
and smooth changes.

2.3.2 Topological Order in the Bulk: Chern Numbers of the Magnetic Bloch Bands

The topological character of the bulk states, associated with a quantum Hall system underlying a 2D
periodic potential, was first established by D. J. Thouless et al. [5]. The system, they considered, was a
Landau quantized system subjected to a weak periodic potential. Due to the weak potential, each Landau
level broadens to a Landau band and splits into a number of subbands. For this system, they showed that
the Hall conductance is not only quantized for the Fermi level in a gap between two Landau levels, but is
also quantized for the Fermi level in the mini gaps within subbands of a Landau level. The conductance
of each isolated Landau subband is an integer multiple of the conductance of the entire Landau level. For
a flux ratio φ = p/q, the integer of the conductance can be determined from the Diophantine equation,

r = qsr + ptr, (2.38)

with r is the gap index which can take values 0 ≤ r ≤ q, sr and tr ( where |tr | ≤ q/2) are integer numbers
with subscript r showing the fact that the two take different values for different gaps. It was shown that tr
is the quantization integer of the Hall conductance in the rth gap [58]. For the Fermi level lying in a gap,
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Figure 2.5: Energy dispersion of magnetic-Bloch bands inside the first magnetic BZ. (a) For φ = 1/3, a single Bloch
band splits into three magnetic-Bloch bands. The resultant bands have non-trivial topological structure which is
shown by their non-zero values of Chern numbers. The sum of the Chern numbers of all magnetic-Bloch bands is
zero. (b) Energy spectrum for the case of φ = 1/4 consists of four magnetic-Bloch bands with the inner most two
bands touching each other. The dispersion closed to the touching points is similar to dispersion of Dirac fermions.
These two bands are separated by a gap from the uppermost and lowermost bands and hence are characterized by
single Chern number. This spectrum is numerically computed for isotropic tunneling amplitude J = 1.

the same integer can be determined by evaluating the first Chern number of the bulk states over the MBZ.
The Hall conductance of a band is directly related to its Chern number. For the Fermi level in the rth gap
of the energy spectrum, the Hall conductance (σH) of the system, in terms of the Chern numbers of the
bulk bands, is

σH =
( Q2

h
) r∑

i=1

Ci, (2.39)

here Q is the electronic charge and Ci is the Chern number of the ith band. The summation is carried over
all filled bands. The non-zero values of the Chern numbers reflect the non-trivial topological nature of
the bulk states of the quantum Hall system.

The configuration introduced in sec. 2.2, is complementary but mathematically equivalent to the
problem of Landau levels. Here the magnetic field is treated as a perturbation on a tightly bonded system,
which results in the splitting of a Bloch band into the so called magnetic Bloch bands. These bands have
translational symmetry and topological properties different than the normal Bloch bands5. In contrast
to normal Bloch bands, magnetic Bloch bands are topologically non-trivial, i.e. they are characterized

5 For normal Bloch states, phases at different points in the BZ are generally not related to each other and can be defined
independently. The requirements on these phases are that they should be continous and differentiable so that the wavefunctions
are well behaved. However, in the presence of a magnetic field, it is not possible to define a unique and smooth global phase
for the wavefunction over the whole MBZ unless the magnetic Bloch band carries no current. For a zero in the wavefunction
in the MBZ, the phase is ill-defined, which introduces a singularity in the Berry’s connection. The zero in the wavefunction is
regarded as a vortex with vorticity +1 or −1. The Chern number is equal to the total vorticity of the wavefunction in the MBZ.
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by non-vanishing Chern numbers. As an example, the dispersion of the bulk spectrum6 of the Harper’s
Hamiltonian (eq. (2.34)), for the case of q = 3 and q = 4, is shown in fig. 2.5. The Chern number of each
magnetic Bloch band is indicated, which reflects the non-trivial topological structure of the bulk states
constituting these bands.

I compute the Chern number of a band using the method proposed by Fukui et al. [59]. The procedure
of the numerical computation of the Chern number is summarized in Appendix C. The Chern number is
computed for a band or a set of bands (in case of touching bands) separated by energy gaps from other
bands. In fig. 2.5 (a), there are three bands which are separated by gaps and hence Chern number is
computed for each isolated band. In fig. 2.5 (b), there are four bands, however, the middle two bands
are touching each other. They are separated by gaps from the lowermost and uppermost bands, and are
characterized by a single Chern number. Due to the presence of particle-hole symmetry in the Harper
Hamiltonian (see Appendix D for details) the distribution of Chern numbers around zero energy is
symmetric.

2.3.3 Edge Spectrum and the Bulk–Boundary Correspondence Principle

Quantum Hall system is an insulating system in its bulk, however, at the same time there are states
localized at the edges of the 2D sample that are carrying quantized current. The importance of the edge
states in quantum Hall system was first pointed out by B. I. Halperin [60] and a topological meaning to
these states was given by Y. Hatsugai [8, 61, 62]. Edge states appear in a geometry where the bulk is
confined to a finite spatial area and therefore has a boundary. These are eigenstates of the system that
have energy in a bulk gap and their wavefunction is extended along the entire spatial boundary. They are
immune to backscattering and remain propagating even in the presence of arbitrary amount of disorder at
the edge. This robustness is due to the topological nature of the insulating bulk: edge states persist as
long as the bulk remain insulating. Their number is related to the Chern numbers of the bulk bands via
the so called bulk–boundary correspondence principle.

To demonstrate the existence of edge states in the Harper problem, I consider a 2D lattice with periodic
boundary conditions along the y axis and absorbing boundary condition along the x axis. The lattice in
the x direction consists of N ∈ Z+ magnetic unit cells with total Nq lattice sites (so that the lattice size is
commensurate with the flux ratio φ = p/q). The sites of the lattice are labelled by j, i.e j = 1, 2, · · · ,Nq.
At the two boundaries along the x direction, the tunneling amplitude is set to zero i.e −J ĉ†j−1,ky

ĉ j,ky
→ 0

for j = 1 and −J ĉ†j+1,ky
ĉ j,ky

→ 0 for j = Nq. In this configuration, the tight-binding Hamiltonian

(Ĥedge) can be written as

Ĥedge =
1

(2π)

∫ +π

−π
dky ⊗ −J

[ Nq−1∑
j=1

ĉ†j+1,ky ĉ j,ky +

Nq∑
j=2

ĉ†j−1,ky ĉ j,ky

+ 2
Nq∑
j=1

cos(2πφ j − ky) ĉ†j,ky ĉ j,ky

]

=
1

(2π)

∫ +π

−π
dky ⊗ Ĥedge(ky). (2.40)

To compute the eigenspectrum of the matrix Ĥedge(ky), the procedure given in equations (2.32), (2.33)

6 The bulk spectrum can be obtained either by considering an infinitely extended 2D lattice or a finite lattice with periodic
boundary conditions in both x and y direction.
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Figure 2.6: Energy spectrum of the 2D tight-binding model in the presence of a magnetic field on a 2D lattice
with edges. (a) Schematic of the lattice geometry for the problem with periodic boundary condition along the
y direction and two edges in the x direction (one at x = 1 and other at x = Nq). The configuration maintains
translation invariance in the y direction and hence ky is still a good quantum number. The energy spectrum for
three different values of the flux ratio, i.e. (b) φ = 1/3, (c) φ = 1/4, and (d) φ = 1/5 is shown. In each case, the
regions filled with colors represent the bulk bands of the energy spectrum and the states propagating in the bulk
gaps represent the edge spectrum. In each gap, there are two types of edge states, one is colored red (solid lines)
and the other is blue (dashed lines). The states represented by red color (solid lines), are spatially localized on
the right edge (x = Nq) and the blue (dashed lines) are on the left (x = 1) edge of the lattice. The net number of
edge states (localized at a given edge and with counter propagating edge states counted with opposite sign) in a
bulk gap is equal to the sum of the Chern numbers of all the bands below that gap which here is in agreement with
the bulk–boundary correspondence principle. For each configuration (a), (b) and (c), the spectrum is numerically
computed using N = 30 magnetic unit cells and J = 1.
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can be used. The eigenvalue problem reduces to a 1D problem similar to eq. (2.34) on an open chain,

− J
(
2 cos(2πφ j − ky) a j + a j−1 + a j+1

)
= Eedge(ky) a j. (2.41)

In the presence of an edge along the x axis, the translation invariance in this direction is lost. However,
the configuration maintains the translational invariance along the y axis and, hence, ky is still a good
quantum number. The eigenspectrum of this problem is numerically computed for three different values
of the flux ratio, i.e. φ = 1/3, 1/4 and 1/5. The energy dispersion in these three configurations is shown
in fig. 2.6. On top of the bulk bands (regions filled with colors), there are states with energies in the bulk
gaps (solid and dashed colored lines). These are TP edge states, which are protected by the bulk gaps.
These are branches of the dispersion relation consisting of eigenstates whose wavefunction is spatially
concentrated near the boundary. The states, which are indicated by red color (solid lines), are those
localized on the right boundary and the blue ones (dashed lines) are on left boundary of the lattice.

The Chern numbers of the bands are indicated at the right side of each configuration. According to
the bulk–boundary correspondence principle, the net number of edge states in a bulk gap (localized at a
given edge and with counter-propagating states counted with opposite sign) is equal to the sum of the
Chern numbers of all the bands below that gap. The Chern number of a band is equal to the difference
of the number of edge states (at a given edge) entering the band from below and leaving it above. The
results (shown in fig. 2.6) are in accordance with the bulk–boundary correspondence principle.
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CHAPTER 3

Quantum Walks in 1D and 2D, and their
Topological Properties

T
he notion of quantum walks was first introduced by Y. Aharonov et al. [63] as the quantum

mechanical counterpart of a classical random walk (CRW). In a 1D CRW, a particle moves in
discrete steps to either left or right depending on the outcome of a coin-toss with two mutually
exclusive results. Mathematically, it is described in terms of transition probabilities. When

the sequence of a coin-toss and subsequent position shifts are iterated for a large number of times, the
probability distribution of a particle having equal probability of moving left or right results in a binomial
distribution. The quantum mechanical analogue, i.e. QW, describes the motion of a quantum particle in
space and time, where the quantum interference plays a major role. A QW is described by probability
amplitudes and is a unitary process, i.e. the sum of amplitudes squared must be equal to 1. In general, this
is accomplished by extending the Hilbert space by internal states which act as a coin degree of freedom.
In contrast to tossing a real coin in a CRW, in a QW, a quantum particle is put in a coherent superposition
of internal states at each step of the walk, which corresponds to a coin operation. Subsequently, the
particle is shifted depending on its internal state, forming a state-dependent shift operator. Iterations of
the coin and the state-dependent shift operation delocalize a quantum particle over multiple paths, where
quantum interference between different paths leads to a radically different behavior than their classical
analogue.

Since their first introduction, QWs have seen immense growth in interests due to their applications
in quantum information science and in physics. In the field of quantum information, the interest in
understanding QWs is to exploit their quantum mechanical behavior and develop efficient quantum
algorithms on quantum computers [64, 65]. By exploiting the interference effects, the algorithms
based on QWs can outperform their classical counterparts at some computational tasks [66, 67]. In
physics, QWs are used as a dynamical tool for controlling the motion of quantum particles. Besides
their applications in simulating and modeling a number of other physical phenomena, e.g. localization
effects [68–70] and molecular states formation due to interactions between particles [71], they have been
identified as a versatile platform for simulating topological phenomena. It was first shown by Kitagawa et
al. that QWs can simulate all symmetry classes of the non-trivial topological phases in 1D and 2D for the
case of non-interacting particles [72]. Being periodically driven quantum systems, however, QWs exhibit
Floquet topological phases with much richer structure than those known for the static Hamiltonians. For
instance, QWs allow the formation of new TP edge states, which cannot be explained with the invariants
developed for the time-independent systems. A set of new topological invariants, both in 1D and 2D, are
developed for their characterization [73–76].
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In this chapter, I briefly introduce QWs and their topological properties, both in 1D and 2D. The
objective is to highlight the TP edge states specific to periodically driven systems (QWs here) and the
new topological invariants controlling their appearance and number. To introduce the notations and
basic definitions in the next section, I start with the simple 1D QW in real space. Based on its temporal
evolution in space, its difference from a CRW is demonstrated. I then introduce the momentum space
representation and associated energy spectrum of QWs to study their topological properties.

3.1 Quantum Walks

3.1.1 Quantum Walks in Position Space

Let us consider a quantum particle (will be equally called a "walker") with two internal states (or spin
states). These states are labelled by s with basis vectors {|s〉 : s ∈ {↑, ↓}} spanning a 2D Hilbert spaceH s

("coin space"). A particle in spin-up state is represented by |↑〉 and in spin-down state by |↓〉. In order to
perform matrix operations, these basis states can be written as column vectors,

|↑〉 =

(
1
0

)
, |↓〉 =

(
0
1

)
, (3.1)

having orthonormality property 〈s′|s〉 = δs′,s. The particle’s spatial position is given by a 1D lattice
with lattice constant of unit length. The coordinates of the lattice are labelled by integer numbers,
i.e. x = x ∈ Z, with corresponding basis vectors |x〉 spanning a 1D Hilbert spaceH x. The position basis
vectors are also orthonormal, i.e. 〈x′|x〉 = δx′,x, where |x〉 represents a particle that is localized at position
x. I start with a particle that is initially localized around x = 0 having internal state |s〉 which, in general,
can be spin-up, spin-down or any superposition of these two states. The initial state (ψinit.) of the walker
can be written as

|ψinit.〉 = |0〉 ⊗ |s〉 = |0, s〉 1, (3.2)

which resides in the combined Hilbert space H = H x ⊗ H s. The tensor product (⊗) combines the
internal degrees of freedom and the spatial ones. Mathematically, a single step of the walk is given by the
application of a unitary "walk operator" to the initial state. The simplest 1D walk operator can be written
as the product of two unitary operators. One of them acts on the spin states only (I will henceforth call it a
"coin operator") and the other acts on both (spin and position) states, which is known as a state-dependent
shift operator (or simply a "shift operator").

Coin Operator: The coin operator Ĉ introduces a rotation of the spin state in the coin spaceH s. A
spin state can be geometrically represented by a point on a Bloch sphere with a corresponding Bloch
vector locates the position of this point. The coin operator results in a rotation of this vector. In general, a
coin operator can depend on several parameters resulting in different QWs protocols [77, 78]. However,
here and throughout this thesis, I will use a coin operator depending only on a single parameter [79], i.e.

Ĉ(θ) =
∑

x

|x〉 〈x| ⊗ e−i
θ σy

2 =
∑

x

|x〉 〈x| ⊗
(
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (3.3)

with σy being the 2nd Pauli matrix. The rotation angle θ ∈ [−2π, 2π[ determines the amount of rotation
of the spin state and couples the spatial degrees of freedom with the internal degrees of freedom2 (this

1 The second equation is used in favor of notational simplicity
2 Due to our definition, Ĉ(θ) has 4π periodicity in the rotation angle θ.
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Figure 3.1: Schematic illustration of the simplest 1D QW with a particle initially prepared in a spin-up state. A
coin operator with θ = π/2 (Hadamard-like coin) transforms spin-up state into an equal superposition of the two
spin states. The shift operator then shifts the spin-up state to the right and spin-down to the left by one lattice site.
After two steps of the walk, the spin-up part of the wave function is shifted by two lattice sites to the right and the
spin-down to the left. The information regarding the probability of a given spin state at a given lattice site is not
schematized in this illustration.

coupling will become clear in the next section when the walk operator is transformed to Fourier space).
In this definition of Ĉ(θ), the rotation axis is chosen along the y axis of the Bloch sphere. However, any
other choice of the rotation axis, that is lying in the equatorial plane of the Bloch sphere, is equivalent to
this choice up to a unitary transformation of the spin basis. The coin angle is generally (as defined here)
independent of the spatial coordinates, which makes the QW homogenous. However, for inhomogeneous
QWs, the rotation angle can be position-dependent (this case will be shown later in this chapter). Here
we consider a balanced coin by setting θ = π/2, also called the Hadamard coin [80, 81],

Ĉ(π/2) =
∑

x

|x〉 〈x| ⊗ e−i
π σy

2 =
∑

x

|x〉 〈x| ⊗
1
√

2

(
1 −1
1 1

)
. (3.4)

This coin operator transforms each of the spin state into an equal superposition of the two spin states and
therefore maximally mixes the two states, i.e.

Ĉ(π/2) |0, ↑〉 =
1
√

2
(|0, ↑〉 + |0, ↓〉),

Ĉ(π/2) |0, ↓〉 =
1
√

2
(|0, ↓〉 − |0, ↑〉). (3.5)

This operator has close similarity with the classical balanced coin, which has equal probability of getting
"heads" and "tails".

Shift Operator: The coin operator is followed by a shift operator Ŝ x. The shift operator acts on the
combined Hilbert space H and coherently shifts a particle in |↑〉 by one lattice site to the right and a

23



Chapter 3 Quantum Walks in 1D and 2D, and their Topological Properties

particle in |↓〉 to the left. For the 1D QW, this shift operator is defined as

Ŝ x =
∑

x

(
|x + 1〉 〈x| ⊗ |↑〉 〈↑| + |x − 1〉 〈x| ⊗ |↓〉 〈↓|

)
. (3.6)

Walk Operator: A sequence of unitary operators constituting the walk operator is referred to the walk
protocol. Here the coin operator and the shift operator combine to give the walk operator for a 1D
Hadamard like-QW,

Ŵ1D = Ŝ xĈ(π/2). (3.7)

In QWs’ literature, this walk operator is sometimes referred to as the 1D-standard protocol. The evolution
of the walk results from the periodic application of the walk operator to the initial state of the walker. A
schematic of the first two steps of this walk, for a particle initially prepared in a spin-up state, is shown in
fig. 3.1. In the absence of decoherence, the final state |ψn〉 of a particle (after applying the walk operator
n-times to the initial state eq. (3.2)) is a pure state, which can be written as a superposition of the spin
and position basis states,

|ψn〉 =
(
Ŵ1D

)n
|ψinit.〉 =

(
Ŝ xĈ(π/2)

)n
|ψinit.〉

=
∑
x,s

cx,s |x, s〉 . (3.8)

The coefficients cx,s ∈ C represent the complex amplitudes of the wavefunction for the particle at position
x with spin state s. At each step of the walk, the wave function is evolved with the identical walk operator
resulting in an identical evolution at each step. This makes the evolution of the wavefunction under a
QW deterministic.

The probability (pr) of finding the particle at position x, after n steps of the walk, is obtained by
projecting the state |ψn〉 to a state at position x and summing over both spin states, i.e.

prn(x) =
∑

s

| 〈x, s|ψn〉 |
2 =

∑
s

|cx,s|
2. (3.9)

Projecting the final state to a state at a given position physically corresponds to performing measurement
on the final state at that position. As a result the wave function collapses and the particle is found at
position x with probability prn(x).

The evolution of this walk for a large number of steps, i.e. n = 100, is shown in fig. 3.2. The walker
starts at the origin (x = 0) of the 1D lattice, which we restrict to 2N + 1 (with N ∈ N) number of sites. I
have plotted only non-zero probabilities, as after an even number of steps of the walk, the probability
of the particle at lattice sites represented by odd integers is zero. For comparison, the evolution of a
CRW (with a balanced coin) for the same number of walk steps is also shown. A striking difference is
the nearly uniform spreading of the QW in the position interval

[
−n/
√

2, n/
√

2
]
. Quantum interference

suppress the arrival probabilities at the initial position and enhances the probabilities of moving away
from it. In CRW, the probability distribution is binomial around the initial position, i.e. the probability of
a particle around its initial position is maximal and decreases away from it [64, 80]. The shape of the
probability distribution for a QW depends on the choice of the coin angle and on the initial state of the
particle. Figure 3.2(a) shows that, for the Hadamard-like coin the probability distribution of a particle
starting in an initial symmetric superposition of the two spin states is symmetric with respect to the initial
position. On the other hand, fig. 3.2(b) shows that a particle initially prepared in a spin-up or spin-down
state leads to asymmetric probability distribution.

The variance of the QW is proportional to the square of the number of steps, i.e. n2, while the variance
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Figure 3.2: Probability distribution of a 1D Hadamard-like QW for n = 100. For comparison, the probability
distribution of a CRW (with a balanced coin) is also shown. In both cases, a walker is initialized at the origin
of a 1D lattice with N = 90. (a) The solid line represents the probability distribution of a Hadamard-like QW.
Only non-zero probabilities of the particle are plotted, i.e. at the points represented by even integer numbers. The
initial internal state of the particle is a symmetric superposition of the two spin states. The distribution given by
the dashed line represents the probabilities of a classical particle after 100 steps of the CRW (only the non-zero
probabilities are plotted). The limiting distribution of the CRW approaches a Gaussian distribution. A striking
difference of the QW from the classical one is its nearly uniform spreading in the position interval

[
−n/
√

2, n/
√

2
]
.

(b) The same comparison for a quantum particle starting in a spin-up (with the resulting probability distribution
shown by dotted line) or spin-down configuration (solid line). The particle, which starts in spin-up state, drifts
rightward and the one in spin-down state drifts leftward.

of the CRW just scales with
√

n. This means that in QWs, a particle reaches a given distant point
quadratically faster (which is known as ballistic spreading) than their classical counter part (which
spreads diffusively). This fast spreading of the QWs is useful for developing quantum search algorithms
yielding speedups over the classical ones [82].

3.1.2 Quantum Walks in Momentum Space

For an infinitely extended lattice or a finite lattice with periodic boundary conditions, the walk operator,
for a homogenous QWs, has discrete translational symmetry, i.e. it remains invariant under discrete
translations of the lattice. In this case, a much simpler description of the walk can be given by representing
the walk operator in quasimomentum space. As a result, the walk operator simply reduces to a 2 × 2
matrix which can be diagonalized easily to extract different information about the dynamics of the
walk, e.g. energy dispersion, eigenstates and velocities of the walker. To represent the walk operator
in quasimomentum space, it is required to carry out Fourier transformation for each individual unitary
operator of the walk. The coin operator is diagonal in the quasimomentum basis (as it is in position
basis) due to the fact that it does not depend on the spatial coordinates. The Fourier transformation to the
quasimomentum space is given by

|kx〉 =
∑

x

eikx x |x〉 , kx ∈ [−π, π[ , (3.10)
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with the inverse Fourier transformation,

|x〉 =
1

2π

∫ +π

−π
dkxe−ikx x |kx〉 . (3.11)

Implementing these transformation to the shift operator (eq. (3.6)) we can write it in the quasimomentum
space as ∑

x

|x + 1〉 〈x| ⊗ |↑〉 〈↑| =
1

2π

∫ +π

−π
dkxe−ikx |kx〉 〈kx| ⊗ |↑〉 〈↑| ,

∑
x

|x − 1〉 〈x| ⊗ |↓〉 〈↓| =
1

2π

∫ +π

−π
dkxeikx |kx〉 〈kx| ⊗ |↓〉 〈↓| ,

=⇒ Ŝ x =
1

2π

∫ +π

−π
dkx |kx〉 〈kx| ⊗

(
e−ikx |↑〉 〈↑| + eikx |↓〉 〈↓|

)
. (3.12)

The shift operator is diagonal in the kx-basis and can be reduced to a 2 × 2 matrix in the spin basis for
each value of kx, i.e.

Ŝ x(kx) = 〈kx|Ŝ x|kx〉

= e−ikx |↑〉 〈↑| + eikx |↓〉 〈↓|

=

(
e−ikx 0

0 eikx

)
. (3.13)

The coupling of the quasimomentum kx to the spin states of the particle is evident. The shift operator
therefore imprints a phase e−ikx on right-moving and a phase eikx on left-moving particle. The walk
operator (eq. (3.7)) with coin angle θ can therefore also be diagonalized in quasimomentum space as

Ŵ1D =
1

2π

∫ +π

−π
dkx |kx〉 〈kx| ⊗ Ŵ1D(kx),

with Ŵ1D(kx) given by:

Ŵ1D(kx) =Ŝ x(kx)Ĉ(θ)

=

(
e−ikxcos(θ/2) −e−ikxsin(θ/2)
eikxsin(θ/2) eikxcos(θ/2)

)
, (3.14)

which acts on the spin states of the particle only. The off-diagonal elements of this operator measure the
strength of the spin-orbit coupling (i.e. coupling of the internal degrees of freedom to the external ones),
which is proportional to sin(θ/2) [83]. This spin-orbit coupling is important for realizing topological
phases with QWs [84].

3.1.3 Quasienergy Spectrum

In QWs, a walker is evolved by periodically applying the walk operator at discrete-time steps, i.e. the
dynamics of the walker is periodic in time. Hence, a QW is an example of a periodically driven Floquet
system. The evolution of a particle generated by the walk operator, at integer time steps, is equivalent to
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Figure 3.3: Quasienergy dispersion of the 1D QW for different values of the coin angle θ. Due to the periodicity of
quasimomentum and quasienergy, π and −π values of kx and ε are identified. The dispersion consists of two bands
due to the two spin states of the walker. For θ = 0 (black dashed lines), the two bands are gapless having maximum
slope for all values of kx. In this case, the coin operator is an identity operator that does not change the spin state of
the walker. In real space this implies that after each step of the walk the spin-up state of the walker shifts by one
lattice site to the left and the spin-down to the right. For θ = π/2 (red solid lines), the bands are gapped having zero
slope at the centre and at the edges of the quasimomentum BZ. The coin angle θ = π corresponds to a spin flip
process resulting in almost flat bands (blue dashed lines). The velocity of the walker is zero for all values of kx

and hence is localized in the lattice. For both θ = π/2 and θ = π, there are two gaps due to the periodicity of the
quasienergy. One is at ε = 0 and the other is at ε = π.

the evolution under a time-independent effective Hamiltonian [84], i.e.

Ŵ1D(kx) ≡ e−iĤeff.T/~. (3.15)

Here T is the time taken by a single step of the walk and ~ is the reduced Planck’s constant. For simplicity,
we set T = 1 and work with natural units where ~ = 1. The walk operator (eq. (3.15)) is a unitary
operator and its eigenvalues are complex numbers of the form e−iε with unit modulus. The dimensionless
parameter ε is known as the quasienergy. Similar to quasimomentum, which is defined in the presence of
a discrete spatial translational symmetry, ε is a periodic variable defined in the presence of a discrete
time translational symmetry[85]. It is uniquely defined in the interval [−π, π[, representing a quasienergy
BZ similar to the quasimomentum case. This parameter can be written in physical units of energy by
multiplying it with ~/T . It is important to mention at this point that like real energies in the case of static
lattice Hamiltonians (for example, the one introduced in chap. 2), quasienergies can be organized into
quasienergy bands [75]. These quasienergy bands can have interesting topological properties like the real
energy bands, which we will show in this chapter.

The quasienergy ε and corresponding eigenvectors of the walk can be obtained by diagonalizing
Ŵ1D(kx) (eq. (3.14)) for each value of kx. From the quasienergy dispersion ε(kx), the dynamics of
the walk can be directly explained, e.g. how fast a walker for a given value of the coin angle θ and
quasimomentum kx will spread in the lattice. Figure 3.3 shows the quasienergy dispersion of the 1D
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standard protocol for three different values of the coin angle, i.e. θ = 0, π/2 and π. Since the walker
has two spin states, the quasienergy dispersion consists of two bands. For θ = 0, the coin is an identity
operator, which does not change the initial spin state of the walker. As a result, the walker travels like a
classical particle with the maximum velocity of one lattice site per step of the walk (in QWs, this is the
maximum velocity, similar to the velocity of light, a walker can travel with). This can be seen from the
dispersion, where the two bands have slope equal to ±1. For θ = π/2, the quasienergy bands are gapped
with zero slope at the centre and at the edges of the quasimomentum BZ. The quasienergy bands become
flat for θ = π for which the coin operator acts as a spin-flip operator. As a result, the walker is localized
in the lattice and the two bands are gapped maximally. In the case of gapped bands, due to the periodicity
of the quasienergy, there exist two gaps: one is at ε = 0 and the other is at ε = π (ε = π and ε = −π

are identified). The band gap at ε = π (also known as Floquet gap) is a unique property of the Floquet
topological systems.

3.2 Topological Properties of Quantum Walks

3.2.1 Discrete Symmetries

The quasienergy bands, besides giving deeper insight into the walk evolution and its characteristics, can
also provide insight to the topological properties similar to the gapped lattice Hamiltonians in static
systems (chap. 2). For a static system described by a single-particle gapped Hamiltonian, the class
of a topological phase, besides the dimensionality, depends on three main symmetries: time-reversal
symmetry (TRS), particle–hole symmetry (PHS), and chiral symmetry (CS) [86]. These symmetries
are used for the classification of topological insulators and superconductors, which gives ten possible
symmetry classes represented by Cartan labels [87]. Different topological phases within a symmetry
class are characterized by topological invariants, which are discrete numbers (either an integer Z or a
binary quantity Z2). In the case of a QW, the class of a topological phase depends on the dimensionality
and symmetries of the effective Hamiltonian Ĥeff. (associated with the walk operator) . In the following,
I briefly introduce the constraints imposed by the presence of TRS, PHS, or CS symmetry on a walk
operator (Ŵ) and on the corresponding effective Hamiltonian (Ĥeff.).

Time-reversal Symmetry: A walk operator Ŵ is invariant under TRS if there exists an anti-unitary
operator T = KUT , which satisfies the property,

T ŴT −1 = Ŵ−1 ⇔ T Ĥeff.T
−1 = Ĥeff., (3.16)

with a complex conjugation K acting on the complete Hilbert space of the protocol and a unitary operator
UT acting only on the internal states. The term “time reversal” comes from the fact that the time evolution
operator Ŵ transfroms to its inverse under T .

Particle–Hole Symmetry: A walk operator Ŵ is invariant under PHS if there exist an anti-unitary
operator P = KUP, which satisfies the property,

PŴP−1 = Ŵ ⇔ PĤeff.P
−1 = −Ĥeff.. (3.17)

This kind of symmetry exists in superconductors, that is why this symmetry is referred to PHS. As a
result, the quasienergies come in pairs, i.e. for each eigenstate |ψ〉 of Ĥeff. with quasienergy ε there exists
another state P |ψ〉 with quasienergy −ε. Those states which are their own particle–hole symmetric
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Figure 3.4: Symmetry classes of the non-trivial topological phases in 1D QWs with gapped quasienergy spectrum.
The presence of TRS and PHS is indicated by (+1) or (−1) depending on whether T 2 (P2) is +1 or −1. The
absence of these symmetries is marked by (×). The existence of the extra symmetry (CS) is indicated by (Γ : X)
and its absence is indicated by (Γ : ×) in five out of nine symmetry classes. These five topological phases are fully
characterized by topological invariants Z × Z or Z2 × Z2, giving the invariants at ε = 0 and ε = π. In the absence
of TRS and PHS, the presence of CS results in an extra class of non-trivial topological phases, making total ten
symmetry classes.

partners, i.e. P |ψ〉 = |ψ〉 and hence with ε = −ε, are of interest. If these states are separated from the
bulk states by a gap, their energies cannot be changed by smooth deformations in the system parameters,
unless the PHS is broken.

Chiral Symmetry: If there exists a unitary operator Γ which satisfies the property

ΓŴΓ−1 = Ŵ−1 ⇔ ΓĤeff.Γ
−1 = −Ĥeff., (3.18)

this is then referred to CS. In this case time reversal is achieved through a unitary operator which is
CS. Due to this fact, CS is also known as a unitary TRS. As a result of CS, quasienergies come in pairs,
i.e. for each eigenstate |ψ〉 of Ĥeff. with quasienergy ε, there exist another state Γ |ψ〉 with quasienergy −ε.
Similar to the case of PHS, those states which are their own chiral symmetric partners, i.e. Γ |ψ〉 = |ψ〉

with ε = −ε, can have topological protection.

These symmetries give ten possible symmetry classification of topological insulators. There are three
possibilities for TRS, i.e. it can be absent (T 2 : ×) or present with T 2 = ±1. Similarly for PHS, it is
either absent (P2 : ×) or present with (P2 = ±1). This gives total 9 symmetry classes. The product
of TRS and PHS is related to CS, i.e. Γ = T · P, which means that CS is present (Γ : X) when both
symmetries are present. In the absence of both TRS and PHS, CS can be either absent (Γ : ×) or present
(Γ : X). The presence of CS in the absence of TRS and PHS gives the tenth symmetry class. Based on
these definitions, five out of ten symmetry classes of 1D QWs and their respective topological invariants
are shown in fig. 3.4. The topological invariants come in pairs, i.e. Z × Z or Z2 × Z2, which control the
number of edge states at ε = 0 and at ε = π.
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Chapter 3 Quantum Walks in 1D and 2D, and their Topological Properties

3.2.2 Topological Phases of 1D Quantum Walks

In order to introduce topological properties of 1D QW, I consider the simple example of the so called
split-step walk protocol whose topological properties have been extensively studied [72, 74, 88–91]. This
protocol is defined as

Ŵ1DSS = Ŝ ↓xĈ(θ2)Ŝ ↑xĈ(θ1), (3.19)

where Ŝ ↑x (Ŝ ↓x) shifts only spin-up (spin-down) part of the wave function to the right (left) leaving the
other part unchanged. These shift operators can be written as

Ŝ ↑x =
∑

x

(
|x + 1〉 〈x| ⊗ |↑〉 〈↑| + |x〉 〈x| ⊗ |↓〉 〈↓|

)
,

Ŝ ↓x =
∑

x

(
|x〉 〈x| ⊗ |↑〉 〈↑| + |x − 1〉 〈x| ⊗ |↓〉 〈↓|

)
. (3.20)

The coin operator Ĉ(θi) (for i ∈ {1, 2}) is given by eq. (3.3). For the walk operator (eq. (3.19)), non-trivial
topological phases are conditioned to the existence of a discrete symmetry, e.g. CS. At first glance the
effective Hamiltonian associated to this walk has no CS. The symmetry however becomes apparent when
the walk operator is written in the chiral-symmetric time frames: a notion introduced by J. k. Asbóth and
H. Obuse [74]. A walk operator has CS, if a time frame can be found where its effective Hamiltonian has
CS. By choosing the origin of the time frame in such a way that the sequence of the unitary operations,
constituting the walk operator, has an inversion point. The walk operator eq. (3.19), in a shifted time
frame has indeed such an inversion point (as shown in fig. 3.5), where the effective Hamiltonian has
CS with Γ = σx (here σx is the 1st Pauli matrix). In the shifted time frame of a single step of the walk,
the sequence of unitary operators coming just before (earlier in time) and just after (later in time) the
inversion point gives two operators

Û1 = Ĉ(θ2/2)Ŝ ↑xĈ(θ1/2), (3.21)

Û2 = Ĉ(θ1/2)Ŝ ↓xĈ(θ2/2). (3.22)

The combination of these provides us with two independent chiral-symmetric time frames; time frames
where the walk operators and the associated effective Hamiltonians have CS,

Ŵ′1DSS = Û2Û1 = Ĉ(θ1/2)Ŝ ↓xĈ(θ2)Ŝ ↑xĈ(θ1/2), (3.23)

Ŵ′′1DSS = Û1Û2 = Ĉ(θ2/2)Ŝ ↑xĈ(θ1)Ŝ ↓xĈ(θ2/2). (3.24)

Using Û2 = σxÛ−1
1 σx and σxÛ1σxÛ2 = 1 for σxŜ ↑xσx = (Ŝ ↓x)−1 and σxĈ(θ)σx = Ĉ−1(θ) = Ĉ(−θ), it is

easy to show that CS is present, i.e. σxŴ′1DSSσx = (Ŵ′1DSS)−1 and σxŴ′′1DSSσx = (Ŵ′′1DSS)−1. It is worth
mentioning that changing the time frame of a walk corresponds to a unitary transformation on the walk
operator, which does not change the quasienergy spectrum; although it is crucial for investigating the
symmetries and topological properties.

A chiral symmetric effective Hamiltonian has a symmetric quasienergy spectrum with respect to
the zero quasienergy, i.e. each stationary state of the effective Hamiltonian with quasienergy ε has a
chiral-symmetric partner eigenstate with quasienergy −ε. There can exist states with ε = −ε, which are
their own symmetry partners. If these states are separated from the bulk states by a gap, they cannot be
removed from ε = −ε by continuos perturbations, unless CS is broken. We will demonstrate later in
this section that in the split-step QWs (in the presence of a boundary, separating two distinct topological
domains), edge states can appear with both ε = 0 and ε = π. Both of these states satisfy the condition
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Figure 3.5: Schematic illustration of the notion of the time frames in the 1D split-step QWs. The sequence of
unitary operators shown constitutes two time steps of the walk. A single step consists of four operators (two coins
and two shifts), each have time duration of n = 1/4 (for the time period of a single step T = 1). The original time
frame of the walk operator (eq. (3.19)) is from n = 0 to n = T = 1 and the shifted time frame is from n = 1/8
to n = 9/8. The inversion point of the walk operator (in the shifted time frame) is shown by a red line. In the
time interval from n = 1/8 to n = 9/8, the sequence of operators coming just before (earlier in time) and just after
(later in time) the inversion point, gives two operators Û1 and Û2. The combination of these provides us with two
independent chiral-symmetric time frames.

ε = −ε and are protected by CS. The corresponding bulk phases are characterized by a pair of topological
invariants, controlling the number of edge states at ε = 0 and ε = π. The edge states at ε = 0 are well
known from topological insulators described by time-independent lattice Hamiltonians, however, the
edge (surface) states at ε = π are unique to periodically driven systems. The existence of these states
enrich the physics of Floquet topological insulators compared to the time-independent ones.

The bulk topological invariants of the 1D split-step walk (eq. (3.19)) are obtained from the wind-
ing numbers (ν′, ν′′) associated with the chiral symmetric bulk effective Hamiltonians (Ĥ′eff.(kx) =

i ln Ŵ′1DSS, Ĥ′′eff.(kx) = i ln Ŵ′′1DSS). To obtain the winding number ν′ (ν′′), the effective Hamiltonian
Ĥ′eff.(kx) (Ĥ′′eff.(kx)) is transformed to chiral basis: the basis where Γ̂ is diagonal (see Appendix E for such
transformation) and Ĥ′eff.(kx) (Ĥ′′eff.(kx)) is off-diagonal with upper block element h

′

(kx) (h
′′

(kx)),

Ĥ′eff.(kx) =

(
0 h

′

(kx)
h
′

(kx)† 0

)
; Ĥ′′eff.(kx) =

(
0 h

′′

(kx)
h
′′

(kx)† 0

)
. (3.25)

The winding number associated with Ĥ′eff.(kx) is determined from the upper off-diagonal element h′(kx)
in the following way,

ν′ =
1

2πi

∫ π

−π
dkx

d
dkx

ln det h′(kx). (3.26)

The winding number ν′′ for Ĥ′′eff.(kx) can be obtained analogously. Geometrically, ν′ and ν′′ can
be represented as the winding of the eigenspinors n̂′(kx) and n̂′′(kx) on the Bloch sphere. These
(n̂′(kx), n̂′′(kx)) can be determined from the translational invariant bulk effective Hamiltonians (Ĥ′eff.(kx) =

31



Chapter 3 Quantum Walks in 1D and 2D, and their Topological Properties

(a)
qu

as
ie

ne
rg

y 
 ε

0

0

π

–π
π–π

quasimomentum kx

)c()b(

x y

z

  W’’W’
1DSS 1DSS

Figure 3.6: Quasienergy spectrum and topological winding of the 1D split-step protocol with (θ1 = π/2, θ2 = 0)
(Hadamard walk). (a) Quasienergy spectrum consists of two bands, which are separated by finite quasienergy gaps
at ε = 0 and ε = π. (b) Winding of the eigenspinor corresponding to the upper band represented on the Bloch
sphere (for Ŵ ′1DSS). The presence of CS, restricts the eigenspinors to a plane (x = 0) passing through the origin
of the Bloch sphere. By sweeping the quasimomentum kx through the BZ (indicated by the color gradient from
yellow to blue), the eigenspinor traces a closed loop on the surface of the Bloch sphere (same color gradient is
used to match the corresponding quasimomentum). The (signed) winding number is ν′ = 1. (c) Winding of the
eigenspinor in the second chiral-symmetric time frame (Ŵ ′′1DSS). The (signed) winding number (ν′′) is 0 in this
case. This figure is adapted from [91].

ε′(kx)n̂′(kx) · ~σ, Ĥ′′eff.(kx) = ε′′(kx)n̂′′(kx) · ~σ)3. The presence of CS restricts the eigenspinor (with
ε , 0, π)4 to a single plane passing through the origin of the Bloch sphere (in this case, the plane
is x = 0). By sweeping the quasimomentum kx through the BZ, the eigenspinor rotates around the
origin of the Bloch sphere in the single plane, tracing a closed trajectory. The (signed) number of
times an eigenspinor rotates around the origin is the winding numbers associated with the bulk effective
Hamiltonian. The quasienergy spectrum of the 1D QW with the split-step protocol and the rotation of the
eigenspinors in the two chiral-symmetric time frames are shown in fig. 3.6.

The winding number ν′ or ν′′ alone do not directly give the number of edge states (see sec. 3.2.3 for
edge spectrum). These numbers (ν′ and ν′′) are obtained from the bulk effective Hamiltonians which, in
general, do not provide full information on the walker’s state at intermediate times of a single step of the
walk. The bulk topological invariants (ν0, νπ), which determine the number of edge states at (ε = 0, π),
are obtained by combining the information in the two chiral-symmetric time frames (for details, we refer
the readers to [74]), i.e.

(ν0, νπ) =
(ν′ + ν′′

2
,
ν′ − ν′′

2

)
+ 1/2. (3.28)

The invariant ν0 (νπ) counts the minimal number of times the band gap closes at ε = 0 (ε = π) during
a continous transformation from one topological phase to another. Their values depend on the coin
angles (θ1 and θ2). A range of values of θ1 and θ2, for which the bulk gaps remain open, defines a single

3 Since Ĥ′eff.(kx) is a 2 × 2 matrix and can be expressed in terms of Pauli matrices σ = {σx, σy, σz}, i.e.

Ĥ′eff.(kx) = ~n′(kx) · ~σ (3.27)

= |~n′(kx)| n̂′(kx) · ~σ

= ε′(kx) n̂′(kx) · ~σ.

Here |n̂′(kx)| = 1 and |~n′(kx)| = ε′. Same is the relation between Ĥ′′eff.(kx) and n̂′′(kx).
4 ε = 0, π are gap-closing points at which eigenspinors n̂′(kx) and n̂′′(kx) become ill-defined
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Figure 3.7: Topological phase diagram of the 1D split-step QW. Different gapped topological phases are indexed
by the bulk topological invariants (ν0, νπ) and are separated by phase boundaries. The quasienergy gap closes at
ε = 0 (solid) and ε = π (dashed) at the phase boundaries. Due to our definition of the coin operator (eq. (3.3)),
the walk has 4π periodicity in both coin angles. The circles, marked with 1, 2, 3 and 4, are the four pairs of coin
angles used for implementing inhomogeneous QWs (see sec. 3.2.3) in order to demonstrate the existence of TP
edge states. This figure is adapted from [91].

topological phase. Other phases, characterized by different bulk invariants, are separated by gap-closing
points. By changing θ1 and θ2 through its complete period, different topological phases can be realized
as shown in fig. 3.7. At a phase boundary, the bulk gap closes at ε = 0 or ε = π.

3.2.3 Topologically-protected Edge States: Physical Manifestation of the Non-trivial
Topology of the Bulk

The physical manifestation of the non-trivial topology of the bulk phases is the existence of TP edge states
at a boundary separating two different topological domains. In 1D, the energy of these states is pinned
to the middle of the gaps and remain spatially localized at the phase boundaries. To demonstrate the
existence of TP edge states, I consider spatially inhomogeneous 1D QWs with the coin angle depending
on the spatial coordinates, i.e. θ = θ(x). This breaks the translation invariance of the problem, however,
this does not break the CS due to the fact that this symmetry acts only locally. In this situation, topological
invariants can change only by closing a bulk gap. It is clear from the phase digram (fig. 3.7) that an
inhomogeneous QW defined inside a single phase does not manifest edge states, as the bulk gaps remain
open. Edge states can occur when the coin angles are varied from one topological phase to another, both
having different topological invariants. At the phase boundary (where the bulk gap closes) the topological
invariants become ill-defined and change values when transition to another phase takes place. According
to the bulk–boundary correspondence principle, the minimum number of edge states at a phase boundary
is equal to the absolute value of the algebraic difference of the topological invariants of the two phases.

Let us consider a 1D lattice which consist of 2N + 1 lattice sites with periodic boundary conditions.
The lattice is split into two regions (as illustrated in fig. 3.8(a)): a left region (x << 0) with pair of coin
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Figure 3.8: Inhomogeneous 1D QW demonstrating the existence of TP edge states at the interface of two different
topological phases. (a) Schematic of the 1D lattice that consist of two regions: left (x << 0) with coin angles θL,
and right (x >> 0) with coin angles θR with smooth transition between the two takes place in the centre of the
lattice. (b) The probability distribution of a walker in position-time plane, which is initialized at the centre of the
1D lattice. The coin angles in the left (θ(1)

L : (θ1L, θ2L)) and in the right (θ(1)
R : (θ1R, θ2R)) regions belong to the same

phase as indicated by the arrow going from point 1 to 2 in the phase diagram (fig. 3.7). The bands remain open
while going from point 1 to 2 and hence no edge state exist, as expected. (c) While going from point 2 to 3 (shown
in the phase diagram fig. 3.7), the band gap closes at ε = 0 and hence a TP edge state with ε = 0 exists, which is
localized around the centre of the lattice (transition region between two phases). (d) The band gap closes at ε = π
while going from point 3 to 4 and a TP edge state with ε = π exist at the phase boundary. The insets show the
normalized DOS which also indicate no edge state in (b), edge states at ε = 0 in (c), and edge states at ε = π in
(d). The pair of integers (ν0, νπ), in the left and right of (b)-(d) indicate the topological invariants of the respective
phases. The difference of the topological invariants of the two bulks, for a given quasienergy, gives the number of
edge states at that energy.
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angles θL : (θ1L, θ2L) and a right region (x >> 0) with θR : (θ1R, θ2R). The transition between the two
regions takes place closed to the origin of the lattice (x ≈ 0)5. I consider four different pairs of coin
angles (as shown in fig. 3.7) for realizing three different configurations of inhomogeneous QWs with
different edge spectra. The first two pairs of the coin angles (denoted by θ(1)

L,R) correspond to going from
point 1 to 2 in the phase diagram,

1 → 2 : θ(1)
L,R =

(−3π/2, π/4) if x << 0

(−π/2, π/4) if x >> 0,
(3.29)

with left and right region have same topological invariants, i.e. (0, 0). The quasienergy spectrum remains
gapped during transition from left to right region of the lattice and hence no TP edge states are expected
to exist. The second two pairs of coin angles (θ(2)

L,R), for making the transition from point 2 to 3, consist of

2 → 3 : θ(2)
L,R =

(−π/2, π/4) if x << 0

(−π/2, 3π/4) if x >> 0,
(3.30)

where the first pair of the coin angles realizes a topological phase with topological invariants (0, 0) and
the second one realizes a phase with invariants (1, 0). Thus the quasienergy gap closes at the phase
boundary at ε = 0 and hence a TP edge state with ε = 0 is expected to exist. The third two pairs of the
coin angles (θ(3)

L,R), for making the transition from point 3 to 4, consists of

3 → 4 : θ(3)
L,R =

(−π/2, 3π/4) if x << 0

(π/2, π/4) if x >> 0,
(3.31)

which corresponds to joining two different topological phases with topological invariants (1, 0) and (1, 1).
The quasienergy gap closes at ε = π while going from point 3 to 4 and hence a TP edge state is expected
to exist with ε = π. In all three cases, the crossover between the two regions is smooth, approximately
over two lattice sites, instead of a sharp transition. This corresponds to the realistic conditions of the
experiments with cold neutral atoms where the optical resolution of the imaging system puts limit on the
sharpness of the crossover (for details, see [91]).

In all three configurations, the time evolution of a walker is investigated. The walker is initialized at
the centre of the lattice with initial state |ψinit.〉 = (|0, ↑〉 + i |0, ↓〉)/

√
2. One of the important property

of the TP edge states is that they remain exponentially localized to the boundary between two distinct
topological domains. Owing to this fact, the initial state of walker will have a non-zero overlap with the
edge state (≈ 0.1 for the cases considered here). In this case, the probability for the walker to remain
trapped at the boundary, after a large number of steps of the walk, is significant (≈ 0.15, after n = 60). In
fig. 3.8, the time evolution (Ŵn

1DSS |ψinit.〉) of the walker is shown by plotting the probability prn(x) of the
walker in position-time plane. The numerical computations are carried out with N = 50 and n = 60. For
the first configuration (1→ 2), fig. 3.8(b) shows that the probability of the walker to remain close to the
transition region is negligibly small and hence their is no TP edge state. On the other hand, in the second
and third configurations (2→ 3 and 3→ 4), fig. 3.8(c) and 3.8(d) show that the walker has significant
probability of remaining trapped in the vicinity of the boundary, which show the existence of TP edge
states. In the insets the numerically computed density of states (DOS), normalized to the total number of
states, of the walk are shown, confirming the theoretically expected results for each configuration.

5 Due to periodic boundary conditions, there are two, instead of one, boundaries. The second boundary is at x = −N where the
TP edge state has exponential localization as well. The TP edge states of the same quasienergy, localized on the two different
boundaries overlap due to their exponential tails in the bulk [88].
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3.3 Quantum Walks in 2D and their Topological Properties

To simulate transport phenomena and topological phases, QWs have been extended to 2D. In the
beginning it was demonstrated that 2D QWs realize topological phases with topological invariants similar
to the ones characterizing integer quantum Hall phases, i.e. the Chern numbers [84]. However, these
invariants do not give a full characterization of periodically driven systems. Later in this section, we will
demonstrate that due to the Floquet character of the QWs, edge modes exist even the Chern numbers
assigned to the bulk bands of the effective Hamiltonian predict none. Various topologically phases in
2D can be realized using different walk protocols on lattices with different geometries. I will introduce
topological properties of QWs on the square lattices, which our group is aiming to investigate with the
newly constructed 2D machine [92].

Let us consider a 2D extension of the 1D-standard protocol. A particle having two spin degrees
of freedom, is now positioned on a 2D square lattice. The coordinates on the lattice are labelled by
x = (x, y) ∈ Z2 with basis vectors denoted by |x, y〉 spanning a 2D Hilbert space. In a simple case, the
walk operator consists of two coin operators and two shift operators (one for shifting particle along the
x axis and other for shifting along the y axis of the 2D lattice). For a homogenous 2D QWs, the coin
operator can be written by modifying the definition eq. (3.3) in the following way,

Ĉ(θ) =
∑
x,y

|x, y〉 〈x, y| ⊗ e−i
θ σy

2 =
∑
x,y

|x, y〉 〈x, y| ⊗
(
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

)
. (3.32)

Similarly, the shift operators along the x axis and the y axis can be written as

Ŝ x =
∑
x,y

(
|x + 1, y〉 〈x, y| ⊗ |↑〉 〈↑| + |x − 1, y〉 〈x, y| ⊗ |↓〉 〈↓|

)
, (3.33)

Ŝ y =
∑
x,y

(
|x, y + 1〉 〈x, y| ⊗ |↑〉 〈↑| + |x, y − 1〉 〈x, y| ⊗ |↓〉 〈↓|

)
. (3.34)

The shift operator (Ŝ x) shifts a walker in spin-up (spin-down) state by one lattice site in the positive
(negative) x direction leaving the y coordinate of the walker unchanged. Similarly, The Ŝ y shifts a
walker in spin-up (spin-down) state by one lattice site in the positive (negative) y direction leaving the x
coordinate of the walker unchanged. These operator constitute the walk protocol for 2D QWs, which
takes the following form,

Ŵ2D = Ŝ yĈ(θ2)Ŝ xĈ(θ1). (3.35)

A schematic of the walk protocol (for the 2D Hadamard-like walk) and the evolution of a walker for a
single step of the walk is shown in fig. 3.9 (the walker is initially prepared in spin-up state localized at a
single site of the 2D lattice).

For homogenous QWs on an infinitely extended lattice, or a lattice with periodic boundary conditions
along the x and the y axes, these operators can be transformed into quasimomentum space by using the
Fourier transformation introduced in sec. 3.1.2. In the quasimomentum representation, the coin operator
is again diagonal and the shift operators take the following form:

Ŝ x(kx) = e−ikx |↑〉 〈↑| + eikx |↓〉 〈↓| , (3.36)

Ŝ y(ky) = e−iky |↑〉 〈↑| + eiky |↓〉 〈↓| , (3.37)

here ky is the quasimomentum along the y direction and takes values, similar to kx, inside the first
quasimomentum BZ (which is now a 2D BZ), i.e. ky ∈ [−π, π[. The walk operator in quasimomentum
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Figure 3.9: Schematic illustration of a simple 2D Hadamard-like QW (both coin angles, i.e. θ1 and θ2 are considered
to be π/2, hence each coin operator prepares each spin state into an equal superposition of the two spin states). Top
row left, a connected-blocks representation of the walk protocol and at the right is the schematic of a particle’s
initial state, which is positioned on the square lattice with spin-up internal state. Middle and last rows show the
evolution generated by one step of the walk. After a single step, spin-up (spin-down) state is shifted by one lattice
site along the positive (negative) x axis and by one lattice site along the positive (negative) y axis. The probability
of the particle to be in a given spin state and at a given lattice site is not schematized in this illustration.
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space can be written as,
Ŵ2D(kx, ky) = Ŝ y(ky)Ĉ(θ2)Ŝ x(kx)Ĉ(θ1). (3.38)

The quasienergy spectrum of the corresponding effective Hamiltonian consists of two bands, which,
depending on the values of the coin angles, can be gapped or gapless. The gapped phases are topologically
non-trivial. In contrast to the 1D case, the existence of a non-trivial topological phase in 2D does not
rely on any symmetry, e.g. quantum Hall phase (discussed in chap. 2). For 2D time-independent lattice
Hamiltonians, in the presence of translational invariance with no additional symmetries, Chern numbers
are used to fully characterize the topological properties of the system. The Chern number is evaluated for
each single band or group of touching bands separated by a gap from other bands6. For the 2D QW, the
Chern number of both bands is zero, which reflects the fact that the effective Hamiltonian is topologically
trivial. However, there exist TP edge states whose topological invariants are not covered by the standard
theory of topological phases [86]. This is in stark contrast to 2D static systems, where chiral edge states
exist in the bulk gaps if the bulk bands have non-vanishing Chern numbers (as shown in chap. 2). In 2D
QWs, TP edge modes have been numerically studied although the underlying topological invariants were
not known at that time [84]. The corresponding topological invariants were found by J. K. Asbóth and J.
M. Edge [93], where by mapping the QW to a periodically driven lattice Hamiltonian, they identified the
invariants of the gaps (ν ∈ Z). These are the QWs analogue of the winding number found by Rudner et
al. [75]. The Rudner invariant (or simply RLBL invariant) is assigned to the bulk Floquet gap, which
determines the number of chiral edge modes crossing this gap. The invariant for any other bulk gap can
be computed by shifting that particular gap to the quasienergy BZ boundary.

I compute the Chern number of the bands using the method similar to the one discussed in Appendix C.
The gap invariants are computed with techniques outlined in Chapter 5. The phase diagram for the simple
2D QWs, characterized by the RLBL invariant as a function of the two coin angles, is shown in fig. 3.10
(a). The RLBL number of each phase is indicated by a bold letter and the Chern number is indicated by a
normal letter (which is always zero for this walk). Inside each phase, the quasienergy spectrum has two
gaps, i.e. one around (ε = 0) and another around (ε = π). Both gaps close at phase boundaries of the
phase diagram.

Similar to the 1D case, TP edge states exist in 2D in the presence of a boundary, separating two distinct
topological phases. These states are propagating uni-directionally (chiral edge states) in the bulk gaps and
connect the bulk bands. A particle, that is prepared in the superposition of the TP edge states, propagates
coherently along the spatial boundary. The chirality of the edge states is topologically protected, i.e. their
direction of propagation cannot be changed by continuously changing the parameters of the system as
long as the bulk gaps remain open. For details on changing the chirality of an edge mode by closing a
bulk gap, see the paper by J. K. Asboth and J. M. Edge [93].

I demonstrate TP propagating edge modes by considering an inhomogeneous 2D QW with two coin
angles (θ1 and θ2) depending on the x coordinate of the lattice. I consider a flat boundary in form of a
strip geometry in the 2D lattice (see fig. 3.10 (b) for schematic illustration of the strip), where the pair of
coin angles inside and outside the strip belongs to different topological phases. The considered pairs of
coin angles are

1 → 2 : θin,out =

(θin
1 , θ

in
2 ) = (−3π/4, π/4) if |x| << xo

(θout
1 , θout

2 ) = (−π/4, 3π/4) if |x| >> xo,
(3.39)

with the width of the strip equal to 2xo. The pair of coin angles inside the strip (|x| << xo) realizes

6 In this case, Chern numbers can be defined as the winding number of the mapping from the 2D quasimomentum BZ, which
is a torus, to a unit Bloch sphere [84].
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Figure 3.10: Phase diagram and edges spectrum of the simple 2D QW. (a) Topological invariants of the walk as a
function of the two coin angles (θ1 and θ2) characterizing different topological phases (as defined in [93]). The
numbers in bold represent the RLBL invariant of the corresponding topological phases. The Chern number of
each phase is also shown (normal letter), which is always zero. At the phase boundaries, the band gaps close both
at ε = 0 and ε = π. (b) Schematic of a strip boundary implemented in the 2D lattice for demonstrating the edge
spectrum of the walk. (c) Quasienergy spectrum of the inhomogeneous QW where the pair of coin angles makes a
transition from one topological phase to another. The two gapped bands (light green) represent the bulk spectrum
and the unidirectionally propagating modes in the bulk gaps represent the edge spectrum (solid lines with red and
blue colors). The chirality of each mode is topologically protected. (d) Edge modes of opposite chiralities are
spatially localized on different boundaries of the strip. Each mode is represented by the same color (red, blue) as in
(c). In order to indicate the position of the boundaries in the lattice, the spatial variation of the coin angles along the
x axis is overlaid on top of the edge states probabilities (black dashed). The coin angles are independent of the y
coordinate and hence the y axis of the plot is not shown. The topological invariants corresponding to each domain
are indicated. Here θin (θout) is the pair of coin angles chosen for the lattice sites that are lying inside (outside) the
strip. In the phase diagram (a), θin and θout lie in different topological phases and are represented by circles with
numbers 1 and 2 respectively.
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a topological phase with the winding number −1 and the one outside the strip (|x| >> xo) realizes
a topological phase with the winding number +1. According to the bulk–boundary correspondence
principle, two TP edge modes are expected to exist at the two boundaries of the strip.

The considered configuration has translational invariance along the y axis and hence ky is still a
good quantum number. I numerically compute the quasienergy spectrum of the corresponding effective
Hamiltonian and plot it as a function of ky in fig. 3.10(c). The quasienergy spectrum consists of two
main parts: bulk spectrum and edge spectrum. The bulk spectrum consists of two gapped bands. The
edge spectrum consists of unidirectionally propagating modes in the bulk gaps (there are two gaps, one
around ε = 0 and other ε = π). For a given quasienergy ε, there are two edge modes per boundary (or of
a given chirality) in each gap (edge modes of opposite chiralities are shown by different colors, i.e. red
and blue). This can be understood from the bulk–boundary correspondence, as the absolute value of the
algebraic difference of the topological invariants of the two phases is equal to two. The slope of the edge
mode’s dispersion gives the group velocity of the wavepacket which is +1 (in units of a number of sites
per step of the walk) for the edge mode represented by a blue line and is −1 for the one represented by
a red line. It is worth mentioning that the dispersionless transport (the group velocity is independent
of ky) of the edge modes is property of the walk protocol eq. (3.35) and not related to the topological
features [91]. Edges modes are spatially localized at the boundary and have exponential tails extending
into the bulk (fig. 3.10(d)). The edge modes with opposite chiralities (group velocities) are spatially
localized at different boundaries of the strip. Quantum transport on a chiral edge mode along a given
boundary is immune to backscattering, as there are no counterpropagating modes on that particular edge
to which it can scatter. The only counterpropagating modes are the ones localized on the other edge of
the strip, but coupling to those is exponentially suppressed.

The robustness of TP edge modes against spatial deformation of the boundary can be tested by defining
a closed boundary of irregular shape in the lattice, with the winding number inside the closed boundary
different than its outside region. By initializing a walker closed to the boundary (so that the initial state
of the walker has significant overlap with an edge mode) and evolving it for a large number of steps of
the walk, numerical studies indeed show that the walker remain propagating along the boundary even
after a large number of revolution around the boundary [91]. I will demonstrate the robustness of TP
edges modes in the next chapter while studying the topological properties 2D QWs in the presence of a
synthetic magnetic field.
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CHAPTER 4

Quantum Walks on the Square Lattice in the
Presence of a Synthetic Magnetic Field

I
n Chapter 2 I introduced the physics of a tightly bounded charged particle in 2D in the presence of

an external magnetic field. The energy spectrum consists of discrete magnetic Bloch bands which
have non-trivial topological structure indicated by the non-vanishing values of their Chern numbers.
These bands, besides being topologically non-trivial, are nearly flat and separated by large gaps.

Such flat bands with non-vanishing Chern numbers are of interest for realizing interaction-induced
topological phases such as fractional quantum Hall states for partially filled Chern bands, known as
fractional Chern insulators [15–17]. These topological phases, protected by a large energy gap, are
expected to survive at high temperatures, possibly even at room temperature in electronic solid-state
systems [18]. Nearly flat bands with non-vanishing Chern numbers and large gap separation have been
identified as favorable conditions to realize these states, since in these circumstances interactions among
particles are the dominating physical mechanism [19–21]. Efforts have been made, both in solid-state
materials and neutral atoms setups, to access these novel topological phases. In this journey, the first
demonstration of an integer Chern insulator has been reported in a solid-state magnetic topological
insulator [11] and with ultracold atoms trapped in optical lattices [12, 13] in the regime of weakly or
non-interacting particles. However, no experimental realization of fractional Chern insulators has been
reported yet. In solid-state materials, the requirements of strong magnetic fields and ultra-clean samples
pose major challenges for their realization. In systems of cold neutral atoms in optical lattices, one of
the main challenge to access these phases is to carry such experiments at extremely low energy scales,
corresponding to few nK. However, this in turn reduces the tunneling rates and increases the evolution
times, during which heating [39, 42] and other decoherence mechanism can be harmful to the coherent
evolution of the system.

In this chapter, I map out a different way to realize Chern insulators by making use of Floquet-
engineering, where the 2D QW protocol (introduced in Chapter 3) is modified to include artificial
magnetic fields. I start with an extension of a simple 2D Hadamard-like walk to introduce the magnetic
QW protocol. For rational values of the flux ratio (φ), the quasienergy spectrum of the walk has a fractal
structure, which we call "the Floquet Hofstadter butterfly". I demonstrate, by computing the Chern
numbers of the bulk bands (sec. 4.1.2) and studying the excitation of midgap TP edge modes extended all
along the boundary between different magnetic domains, that the system behaves like a Chern insulator
(sec. 4.2). For experimental implementation with neutral atoms, we propose a realistic scheme based
on QWs to artificially engineer arbitrary magnetic field landscapes, including those with sharp spatial
boundaries (sec. 4.3). The proposed scheme does not rely on laser-assisted tunneling of neutral atoms
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in a lattice rather atoms are delocalized through state-dependent transport. This avoids the problem of
photon scattering by the dressing laser and the problem of damping of tunneling rates that arise when
working with super lattice potentials.

4.1 Quantum Walk in a Synthetic Magnetic Field

We use the magnetic QW protocol (an extension of the simple 2D QW protocol given by eq. (3.35) of
Chapter 3) to simulate the effects of a synthetic magnetic field in the 2D squared lattices. Let us consider
a single particle with two internal states (same as I have considered in Chapter 3) labeled by s ∈ {↑, ↓}.
The walker is positioned on the 2D square lattice, with coordinates x = (x, y) ∈ Z2. The magnetic
QW protocol consists of a sequence of unitary operators: the coin, the shift, and the magnetic field
operator. The coin operator Ĉ is a Hadamard-like coin [80, 81] that is given by eq. (3.4) of Chapter 3.
The shift operators (Ŝ x and Ŝ y) are given by equations (3.33), (3.34) of Chapter 3. The magnetic field
operator is introduced to simulate the effects of a magnetic field with QWs. This imprints spin-dependent
phases, analogous to the Peierls’ phases, to the walker’s wave function in a stroboscopic manner. These
phases depend on the coordinates of the walker and on the choice of the gauge. I choose a Landau
gauge ~A(x) = (0, Bx, 0), which corresponds to a synthetic magnetic field of strength B pointing along the
positive normal of the xy plane of the 2D lattice. The magnetic field operator (F̂) is defined as

F̂ =
∑
x,y

(
eiBx |x, y〉 〈x, y| ⊗ |↑〉 〈↑| + e−iBx |x, y〉 〈x, y| ⊗ |↓〉 〈↓|

)
=

∑
x,y

|x, y〉 〈x, y| ⊗
(
eiBx 0

0 e−iBx

)
, (4.1)

where B can be written in terms of the flux ratio as B = 2πφ. Combining the magnetic field operator with
the coin and shift operators, the protocol for magnetic QW can be written in the following way:

Ŵ2DM = F̂ Ŝ y Ĉ Ŝ x Ĉ. (4.2)

We evolve the quantum state of the walker by applying this protocol periodically at discrete time steps
n ∈ N. The effect of each unitary operator on the walker is schematically illustrated in fig. 4.1. The final
state of the walker, when the walk protocol is applied n-times to its initial state |ψinit.〉, is denoted by

|ψn〉 = Ŵn
2DM |ψinit.〉 . (4.3)

4.1.1 Quasienergy Spectrum of the Bulk: the Floquet Hofstadter Butterfly

The dynamics of the walker has discrete translational invariance in time due to the periodic driving
through the walk protocol. I have set, for simplicity, the time period T equal to 1. As already discussed
in Section 3.1.2, the evolution of the quantum state of the walker after an integer number of steps can be
reproduced by a static effective Hamiltonian, linked to the walk protocol through Ŵ2DM = exp(−iĤeff.).
The eigenvalues of this effective Hamiltonian form the quasienergy spectrum of the walk. Just like the
quasimomentum, which arises due to discrete translational invariance in space, the quasienergy arises
due to discrete translational invariance in time and can be uniquely defined only up to an integer multiple
of 2π.

To study the bulk quasienergy spectrum of the walker, I consider the 2D square lattice of size M × N
(here M,N ∈ N) with periodic boundary conditions, i.e. M + 1 = 1 and N + 1 = 1, ensuring the discrete
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Figure 4.1: Schematic illustration of the implementation of 2D magnetic QW and the resulting Peierls phases. (a)
At the left side is the connecting-block representation of the walk protocol and at the right side is shown one of
the possible closed trajectory the walker can follow under the walk protocol. Two separate lattices are used to
show that the direction of the vector potential gradient is opposite for the two spin states. (b) The evolution of a
walker, initially prepared in a spin-up state, under a single step of the walk protocol. An atom is first delocalized in
the lattice through spin-dependent shift operators (labelled with 1 to 4) and then a spin-dependent force (called a
magnetic field operator) is applied (labelled with 5) to implement the so called Peierls phases mimicking the effect
of a magnetic field on a charged particle.
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spatial translational invariance. In the absence of a magnetic field, the walk protocol is diagonal in
momentum space and quasimomentum is a constant of motion. The presence of a magnetic field breaks
the translational invariance of the problem and quasimomentum is no longer a good quantum number.
However, for rational values of the flux ratio φ = p/q, translational invariance can be restored by defining
the so called magnetic unit cell, which is q-times larger than the original unit cell of the lattice. The
corresponding quasimomentum BZ is q times smaller and the values of quasimomentum quantum number
are restricted to the reduced BZ,

[
−π/q, π/q

[
. For the chosen Landau gauge, the walk protocol does not

depend on the y coordinate and hence ky is still a good quantum number having values that are restricted
to the first BZ [−π, π[.

Figure 4.2 shows the quasienergy spectrum for a vanishing magnetic field (Hadamard-like walk) and
a non-vanishing magnetic field with φ = 1/3. The quasienergy spectrum for the vanishing strength
of magnetic field exhibits Dirac-like points1 and is behaving like a non-insulator. There are two gaps
that are closing: one at ε = 0 and the other at ε = ±π. The presence of a magnetic field splits each
band into magnetic subbands, which are gapped (for a magnetic field that results in φ = p/q, each band
splits into q subbands as there are q states per magnetic unit cell). The system becomes topologically
non trivial as the the magnetic subbands are characterized by non-vanishing Chern numbers. Due to
the fact that here we have quasienergies instead of real energies, we call this system a Floquet Chern
insulator. The quasienergy spectrum as a function of φ = p/q has periodic structure as was the case
for the time-independent tight-binding model with magnet fields (chap. 2). We show this behavior in
fig. 4.3 while scanning the values of p/q from 0 to 1. The walker has twice as many states per unit cell as
compared to a spin-less particle. As a result, for each φ = p/q, the quasienergy bands get doubled with
respect to the original Hofstadter spectrum [24]. We call this figure Floquet Hofstadter butterfly (see
fig. 2.3 for comparison). The specific case of flux ratio with p = 1 and q = 3 is highlighted in fig. 4.3
with colors.

4.1.2 Topological Invariants of the Magnetic Quantum Walk

As shown in sec. 2.3.2, the topological invariants of a 2D time-independent lattice Hamiltonian are Chern
numbers of the energy bands. Each band, or, more generally, each set of bands that is separated by
energy gaps from the other bands has an integer Chern number. For a system with a boundary, the Chern
numbers can be used to predict the net number of edge modes crossing any of the bulk energy gaps (as
demonstrated in sec. 2.3.3). The magnetic subbands of the magnetic QW have also non-vanishing Chern
numbers. The example in fig. 4.2 shows that some of the magnetic subbands touch: the 3rd and the 4th
band touch at ε = 0 and the 1st and 6th band touch at ε = π. I compute the Chern numbers for all sets of
subbands using the numerical method [59] outlined in Appendix C and include the values of these Chern
numbers in fig. 4.2. The method involves the numerical integration of the non-abelian Berry curvature of
the set of subbands over the quasimomentum BZ. Due to the presence of CS in the magnetic QW, the
Chern number of a band at quasienergy ε is the same as that of ε + π.

The Chern numbers of the effective Hamiltonian do not completely characterize the bulk topology of
2D QWs. One can expect that the simple form of bulk–boundary correspondence mentioned above does
not hold [84], since quasienergy is a periodic quantity, and so the “sum of Chern numbers below a band
gap” is, strictly speaking, not meaningful for QWs. Indeed, to a QW with N bulk quasienergy gaps, one
can assign N gap invariants (based on RLBL invariant) νi, with i = 1, . . . ,N, e.g. through a mapping to a
periodically driven Hamiltonian [93] and using a construction introduced by Rudner et al. [75]. The

1 These are the points inside the quasimomentum BZ where the two quasienergybands touch each other. The quasienergy
dispersion in the proximity of these points is linear in kx and ky. This is similar to the dispersion of low-energy electrons in
graphene around the band touching points (known as Dirac points), where electrons behave like massless Dirac fermions [4].
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Figure 4.2: The quasienergy spectrum of the walk protocol Ŵ2DM, for a vanishing magnetic field (left), exhibits
Dirac like points and has non-insulating behavior. Applying a magnetic field with φ = 1/3 (right), splits each of
these 2 bands into 3 magnetic subbands, which preserves the inner-most-bands and outer-most-bands touching
as well as the linearity of the spectrum where the bands touch. The spectrum shows insulating behavior and is
topologically non-trivial. The numerically computed Chern numbers (denoted by C, with indices representing the
respective bands), in the non-vanishing magnetic field case, are shown at the right side. The gaps invariants of
the gaps, denoted by νi, i ∈ [1, 4], are indicated in their respective gaps and are computed numerically using the
procedure explained in Appendix F. The difference of gaps invariants of any two gaps is equal to the sum of the
Chern numbers of the bands lying between these two gaps.

bulk–boundary correspondence for QW states that the gap invariant νn of each gap gives the net number
of edge states crossing that gap at an edge with (the appropriately defined) vacuum.

I compute the topological invariants of the band gaps by tracking the spectral flow induced by an
additional magnetic field [94]. The details of this computation are given in Appendix F. The computed
value of the topological invariant for each gap is shown in fig. 4.2. As expected [75], the gap invariants
are related to the Chern numbers: The difference of the gap invariants at two different quasienergies is
equal to the sum of the Chern numbers of all the bands lying in between these quasienergies. This can be
easily verified from the values given in fig. 4.2.

4.1.3 Evolution of the Walker in a Weak Magnetic Field

From solid-state systems, it is a well known fact that the expectation value of the position of a wave packet
(describing a nearly free charged particle) in an external quantizing magnetic field follows a circular orbit
resembling the dynamics of a classical particle. However, the presence of a 2D periodic potential (lattice)
drastically modifies the evolution trajectory when the length scale of the lattice (e.g. with lattice constant
of unit length) is comparable with the magnetic length scale, i.e. `B ≈ 1. This is the regime of strong
magnetic fields. In this regime, the energy bands are nearly flat and the particle is strongly localized.
This can be demonstrated in simulations by initializing a walker in a given spin state localized around a
lattice site and evolving through the walk protocol given by eq. (4.2). However, in the weak magnetic
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Figure 4.3: Floquet Hofstadter butterfly, showing that the number of bands is two times q for a given φ = p/q. The
colored vertical lines show the quasienergy band-widths corresponding to the quasienergy spectrum of fig. 4.2, right,
i.e. for p = 1 and q = 3. From the spectrum it is apparent that the widths of the bands are smaller (characterized by
non-vanishing Chern numbers) than the gaps and hence the system is a type of flat-band Floquet Chern insulator.
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field regime, i.e. `B >> 1, the role of the lattice is minute (long wavelength limit) and the particle is
expected to move on a circular trajectory in the lattice.

I demonstrate the evolution of the walker on a circular orbit by considering a weak magnetic field. A
walker is initially prepared in a momentum state having a 2D gaussian envelope with initial spread over
several lattice sites, i.e.

|ψinit.(qx, qy)〉 =
∑
x,y

√
Gw(x, y) eiqx xeiqyy |x, y, s〉 , (4.4)

with Gw(x, y) =
1

2πw2 e−
[ (x−xo)2+(y−yo)2

2w2

]
.

here Gw(x, y) is the normalized gaussian probability density of the initial state centered at x = xo,
y = yo and w is its initial spread. The components of the the initial momentum, i.e. qx = kx − Kx

and qy = (ky + Bxo) − Ky (where K = {Kx,Ky} is the location of a Dirac point in the BZ as given in
Appendix E ), are defined with respect to a Dirac point of the dispersion shown in fig. 4.2 (left). Since
quasimomentum k =

(
kx, ky

)
is a gauge-dependent quantity, we have considered its gauge invariant

form, i.e. k = (kx, ky + Bxo), which is proportional to the initial velocity of the wavepacket. Spin state
should be chosen to represent a single band (upper or lower band, when there is no magnetic field). The
quasienergy spectrum of the walk (fig. 4.2), close to Dirac points has dispersion similar to that of low
energy Dirac fermions in graphene. The effective Hamiltonian, after series expansion around a Dirac
point to first power in qx and qy, shows Rashba type spin-orbit coupling, i.e. Heff ≈ −qyσx ± qxσy (see
Appendix E for the expansion of effective Hamiltonian around a Dirac point). In this case, the velocity of
the walker is equal to 1 in units of lattice sites per step of the walk evolution. As a consequence of this
linear dispersion, the walker moves at constant (maximum) speed of 1 lattice site per step of the walk.
I consider that the initial state of the walker is displaced by qx,y from one of the four Dirac points in
the BZ. By applying a weak magnetic field, the walker evolve on a circular orbit. From semiclassical
theory, I estimate the radius of the circular trajectory, in units of lattice sites, equal to qx,y/(2πφ) and
the evolution period, in units of QW steps, equal to qx,y/φ. The time evolution is shown in fig. 4.4 for a
magnetic field strength with φ = 1/1200. The numerical result matches the semiclassical estimations,
i.e. the radius of the cyclotron orbit and evolution period, quite well.

4.2 Edge Spectrum of the Magnetic Quantum Walk

The bulk quasienergy spectrum shown in fig. 4.2 manifests non-trivial topological behavior, i.e. the gap
invariant of each bulk gap is a non-zero integer number, and hence TP edge states are expected to exist in
the presence of a spatial boundary. There are several techniques of implementing such boundaries in
a system, like using split-step QW protocol with inhomogeneous coin angles [84, 91], using reflective
coins or setting tunneling amplitudes of the walker equal to zero at spatial boundaries [73]. However, I
define a boundary by making a sharp transition between two magnetic domains, where magnetic field
in one domain points in opposite direction with respect to the field in the other one. This demonstrates
the power of the QW protocols, i.e. it allows for the local control of the walk parameters, and one of the
advantage of our proposed scheme, i.e. it allows for simulating arbitrary landscapes of magnetic fields. A
similar configuration has been realized in condensed matter systems where the so called snake states2

have been observed either by inverting the magnetic field direction or by changing the type of charge
carriers at the interface [95–97]. However, these observations are limited to weak magnetic fields only

2 Snake states are open orbits (with opposite chiralities) of charged particles that arise in a 2D system of charged particles in
the presence of a spatially inhomogeneous magnetic field [95].
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Figure 4.4: The time evolution of a walker, initially prepared in a momentum state with average momentum close
to one of the four Dirac points. The initial state has a 2D Gaussian probability density profile and is spread over
15 lattice sites (w = 15) in both directions of the lattice. The animation is generated for a flux ratio φ = 1/1200
and the average value of momentum is qx,y = 0.25π with respect to the Dirac point at {π/2,−π/2}. The color scale
is rescaled in order to maintain a constant visibility of the wave packet, since the matter wave spreads out with
time over several lattice sites. The dark red color represents the maximum, white the intermediate and blue the
minimum of the probabilities. The radius of the orbit and the evolution period fits very well with the semiclassical
estimations.

as the strong magnetic field regime was not accessible in these systems. In our case, we juxtapose two
regions with φ = 1/3 and φ = −1/3 (this would correspond to ∼ 105 T and ∼ −105 T) that allows for the
demonstration of these states in the fully quantum limit where they are interpreted as TP edge states3.

Here I consider two types of boundaries, i.e. a 1D boundary of strip geometry and a 2D closed
boundary in the form of a topological island. In both cases, a boundary separates two different non-trivial
topological domains, one with magnetic field +B and the other with −B. Mathematically, these boundaries
can be realized by replacing the vector potential A = (0, Bx, 0) by A = (0, Bx, 0) b(x, y), where b(x, y)
is the boundary function. Experimentally, this can be accomplished by using a spatially-dependent ac
Stark shift induced by a pattern of a laser field intensity with positive slope in one region and negative in
the other region of the lattice (for details, see sec. 4.3). To experimentally probe the TP edge states, it
is necessary to make the transition from one topological domain to the other as sharp as possible [91],
in order to localize TP edge states in a small region of space. This makes it relatively easier to realize
coherence lengths of the size of TP edge states in experiments. However, the diffraction limit of imaging
systems sets an upper limit on the sharpness of this transition.

4.2.1 A Boundary of Strip Geometry

To demonstrate the existence of TP edge states that propagate with quasienergies in the bulk gaps, I
consider a 1D boundary of a strip geometry which is shown (schematically) in fig. 4.5 (a). A strip along
the y axis can be parametrized by b(x, y) ≡ b(x) = +1 if x ≤ x0 or x > 3x0, and b(x) = −1 if x0 < x ≤ 3x0
(here x0 and 3x0 are the positions of the two edges of the strip). In this case, the magnetic field is no
more uniform along the x axis of the lattice. Hence the magnetic translational invariance, discussed in
sec. 4.1.1, is broken and kx is not a good quantum number anymore. However, such a strip preserves the
translational invariance of the walk along the y axis and ky is still a good quantum number. This makes it
possible to show the quasienergy dispersion of the walker in the presence of the strip shaped boundary as
a function of quasimomentum ky.

Figure 4.5 (b) shows the quasienergy dispersion of the walker on a lattice with M = 60 and x0 = 15.
The spectrum consists of three parts. The continuous bands (filled regions) represent the bulk spectrum

3 In our case, these states exist at the interface of two distinct topological phases and hence they are protected by topology.
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and the lines (solid and dashed), connecting these bands, are the TP edge states. The solid (dashed) lines
represent the TP edge states that are localized at the left (right) edge of the strip. Each bulk gap has a net
number of edge state equal to the invariant (ν) of the gap (states with opposite chirality on a given edge
are counted with opposite sign).

4.2.2 Topological Island: A Closed Boundary

A remarkable feature of these TP edge states is their robustness against deformations in the system
parameters as long as the bulk remain insulating. These states are protected by the bulk gaps and are
spatially localized on the boundary separating two distinct topological domains. To demonstrate these
properties, I consider a closed boundary in the form of a topological island on a 2D lattice with M = 81
and N = 81 for numerical computation. The boundary function b(x, y) now defines a closed path in the xy
plane. The magnetic field takes the value −B inside the island, and +B outside. I initialize a walker close
to the spatial boundary of the topological island. In the presence of a TP edge state, the initial state of the
walker will have a significant overlap with it [84]. I evolve the initial state of the walker by periodically
applying the walk protocol defined in (eq. (4.2)) with inhomogeneous magnetic field. I found that after a
large number of steps (n = 500) of the walk evolution, the walker remains localized along the boundary
even in the presence of sharp corners in the boundary which act as spatial deformations. Figure 4.5 (c)
shows the time evolution of an initially localized walker close to the boundary of the topological island.
The numerical simulation is carried out using the realistic conditions of the experiments, i.e. taking into
account the finite resolution of the imaging system. (sec. 4.3.3). For robustness of the TP edge states
against experimental deformations, see fig. 4.8.

4.3 Experimental Realization with Neutral Atoms in Optical Lattices

We propose a realistic scheme for engineering an artificial magnetic field, which is based on ultra cold
neutral atoms trapped in optical lattices. This scheme has a number of unique advantages. One of the
unique feature of this scheme is that it does not rely on laser-assisted tunneling in a lattice but rather
atoms are delocalized through state-dependent transport. Laser assisted tunneling is usually accompanied
by scattering processes which results in heating the atoms. The proposed scheme avoids the problem of
high scattering rates and damping of tunneling rates that arise when working with super lattice potentials.
Our scheme is based on state-dependent transport, which allows to shift individual spin state of the atom
over several lattice sites in a controlled way [98, 99]. This makes it possible to effectively enlarge the
lattice constant and work with super lattice potentials. Another remarkable feature is that it allows for
generating arbitrary landscapes of synthetic vector potentials giving the flexibility to change the direction
of the simulated magnetic field at ease. This is favourable to create different topological domains with
sharp spatial boundaries along which TP edge states can be localized and probed.

4.3.1 Homogeneous Magnetic Field to Study Bulk Dynamics

This scheme is based on a single neutral cesium (Cs) atom trapped in an optical lattice at a specific
wavelength λL = 866 nm. The outermost hyperfine ground states define the two spin states of the walker,
i.e. |↑〉 = |F = 4,mF = 4〉 and |↓〉 = |F = 3,mF = 3〉. The 2D optical lattice consists of two superimposed
optical-lattice potentials with right and left circular polarizations, which are controlled independently.
Due to the fact that the ac polarizability of the two spin states (|↑〉 and |↓〉) depends on polarization, hence
each of them experiences mainly the potential of either right or left circular polarized optical lattice [100].
The spin-dependent shift is then realized by changing the polarization angles of the laser beams forming
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Figure 4.5: Quasienergy spectrum of the walk Ŵ2DM in the presence of a strip shaped boundary along the y axis of
the 2D lattice. (a) Schematic of the strip boundary which I implement to study the edge spectrum. The boundary
maintains translational invariance of the problem in the y direction and breaks it the x direction. The magnetic
field is pointing along the positive normal of the 2D lattice (+B) with φ = 1/3 outside the strip, and is pointing in
opposite direction (−B) with φ = −1/3 inside the strip. (b) The quasienergy spectrum computed in the presence
of this boundary. The filled bands represent the bulk spectrum and the states propagating in the gaps represent
the edge spectrum. The solid (dashed) lines represent the edge states localized on the left (right) edge of the strip
(shown in (a)). The magnetic field in the two domains is pointing in opposite direction, which changes the sign of
the Chern numbers of the bands. Hence the number of edge states in each gap of the spectrum is twice of their
respective gap invariant (shown in fig. 4.2). (c) Demonstrating the robustness of these TP edge states against spatial
deformation and its propagation along the whole length of the boundary while remaining exponentially localized to
it. Probability density (maximum, intermediate and minimum values are indicated by orange, white and blue colors
respectively), at different time steps n, of a walker initially localized at the top left corner of the closed boundary
that separates two distinct non-trivial topological phases. The flux ratio (φ) is (−1/3) inside the island, and (1/3)
outside. These simulations are carried out for realistic parameters of the experiment, i.e. for a simple lattice (see
fig. 4.8) with the synthetic magnetic field simulated by the proposal given in sec. 4.3. The relative shift between the
lattice and the intensity profile is kept to 0.5, for which the quasienergy gap width is maximum, as shown in fig. 4.8.
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Figure 4.6: Schematic of the cesium atom’s fine and hyperfine structure. A laser beam, detuned by ∼ 4.6 GHz
from the D2 line is used (blue detuned with respect to the spin-up and red detuned with respect to the spin-down
state). The two spin states get light-shifted by an equal magnitude but opposite in sign resulting in a spin-dependent
optical dipole potential for the atom. Because of the detuning of the laser, the contribution of the small hyperfine
splitting to the optical dipole potential and scattering rate can be ignored.

the lattice. To implement uniform global coin operations, we use microwave radiation at 9.2 GHz that
is resonant with the splitting between the two spin states (for details on experimental setup, we refer
the readers to [91, 92]). To include the effects of a magnetic field in the QW experiment, we need to
project spatial patterns of light field on atoms to generate and modulate ac stark shifts for the two spin
states. In this way we engineer the spin-dependent force F̂ defined in eq. (4.1). This is implemented
in a stroboscopic manner, i.e. first the walker is shifted in the lattice and then the spin-dependent force
is turned on for a short period, resulting in a spin-dependent phase shift of the walker wavefunction.
In contrast to other cold atoms realizations, where the implementation of extra phase is coupled to
the tunneling of an atom in the lattice, here they are realized in two separate operations illustrated
schematically in fig. 4.1 (b).

We make use of the position and spin-dependent optical dipole potential of the pseudo spin states to
generate a spin-dependent force (F̂exp.), which is given by

F̂exp. =
∑

r

|r〉 〈r| ⊗

e
i
(U↑dip.(r)t

~

)
0

0 e
i
(U↓dip.(r)t

~

)
 . (4.5)
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Figure 4.7: Spatial profile of the engineered synthetic gauge potential (intensity of the laser has the same profile)
along the x axis of the superlattice. For the chosen gauge of the vector potential, the profile is independent of the y
coordinate. Due to the 2π-periodicity of the imprinted phase, the linear ramp of the intensity and hence that of the
gauge potential (shown by the dashed line extending beyond the first Floquet zone) is folded to the first Floquet
zone. Inside the first Floquet zone, the solid saw-tooth line represents the ideal profile of the vector potential that
is required, and the dashed line (after taking into account the effects of the imaging system) is the one which the
atoms will experience. The small filled circles, lying on the linear slope of the saw-tooth profile, represent the
atoms’ positions in the superlattice.

Here U↑dip.(r) (U↓dip.(r)) is the position-dependent optical dipole potential of the spin-up (spin-down) state
of a Cs atom, t is the time duration for which the force operator should be applied and ~ is the reduced
Planck’s constant. When a Cs atom is dressed in a laser field that is detuned (∼4.6 GHz) from the D2 line
(852 nm), the two spin states get light-shifted generating an optical dipole potential for the atom. The
dipole potential for the two spin states can be written as [101],

U↑dip.(r) '
πc2

2

[(
ΓD2

ω3
D2

)(
2

2πc( 1
λ −

1
λD2

) +
2π∆Hyp.

2

)

+

(
ΓD1

ω3
D1

)(
1

2πc( 1
λ −

1
λD1

) +
2π∆Hyp.

2

)]
I(r), (4.6)

U↓dip.(r) '
πc2

2

[(
ΓD2

ω3
D2

)(
2

2πc( 1
λ −

1
λD2

) − 2π∆Hyp.
2

)

+

(
ΓD1

ω3
D1

)(
1

2πc( 1
λ −

1
λD1

) − 2π∆Hyp.
2

)]
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Here c is the speed of light, ΓD2 (ΓD1) is the scattering rate of the D2 (D1) line, ωD2 (ωD1) is the transition
frequency from the ground state to the excited state of D2 (D1) transition, λD2 (λD1) is wavelength
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corresponding to the D2 (D1) transition, λ is the wavelength of the laser being used, ∆Hyp. is the hyperfine
splitting of the ground state and I(r) is the intensity of the laser field. Due to the detuning of the laser
field much larger than the hyperfine splitting of the D1 and D2 lines, we have neglected the contribution
of this splitting to the dipole potential and to the scattering rate, as schematically shown in fig. 4.6. The
optical dipole potential for the two spin states is equal in magnitude but has opposite sign which results
in opposite phase shifts for the two spin states. We can write the phase shift for the two spin states in
terms of the mean and difference values of the optical dipole potentials in the following way:

∆Udip.(r) = U↑dip.(r) − U↓dip.(r), Udip.(r) =
(
U↑dip.(r) + U↓dip.(r)

)
/2,

=⇒ U↑dip.(r) = Udip.(r) + ∆Udip.(r)/2,

U↓dip.(r) = Udip.(r) − ∆Udip.(r)/2. (4.8)

Using these definitions, eq. (4.5) can be rewritten as,

F̂exp. =
∑

r

|r〉 〈r| ⊗ e
i
(

Udip.(r)t
~

) e
i
(

∆Udip.(r)t
2~

)
0

0 e
−i
(

∆Udip.(r)t
2~

)
 . (4.9)

The factor Udip.(r) results in a position-dependent global phase which is similar for both spin states. This
generates an artificial electric field for the atom, which is similar to case already studied in our group
[102]. The effects of F̂exp. (in the form given in eq. (4.9)) will be interesting to study electromagnetic
QWs; however, here we focus only on simulating artificial magnetic field and set Udip.(r) = 0. The phase
∆Udip.(r)t/2~ plays the role of the vector potential for the neutral atom. The difference of the optical
dipole potentials, and hence the phase shift for the two spin states, varies linearly with the intensity of the
light field. By applying a linear intensity ramp, a linear gradient of the potential is generated that results
in a spin-dependent force and hence a linear gradient of the phase shift for the atom. The spatial profile of
the intensity is controlled by using a spatial light modulator (SLM). The scattering rate for the two spin
states, for detuning much larger than the hyperfine splitting of the D1 and D2 lines, can be estimated as
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The scattering rate can be kept lower by using a large detuning at a given intensity [101]. The strength
and direction of the simulated field can be tuned by changing the intensity profile of the laser beam. By
using this technique, a uniform and strong magnetic field can be generated which does not require any
rectification in contrast to some of the earlier proposals [33, 35].
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4.3.2 Sawtooth Intensity Profile

To simulate magnetic field with φ = 1/3 corresponding to the Landau gauge ~A(x) = (0, 2πφx, 0), the
intensity profile of the laser field is dialed in such a way that the phase shift, resulting from the optical
dipole potential, has a gradient 2π/3 in the x direction of the lattice. However, a linear slope of intensity
over the whole lattice would require high intensities (for higher values of x), which will in turn result in
an increased photon scattering rate as it is clear from equations (4.10), (4.11). This will results in heating
of atoms and decoherence in the system [91], which we want to avoid. This problem is more significant
for generating a strong magnetic fields, as weak fields do not suffer from this problem as long as the
walker’s position remain in the proximity of the origin. However, by taking advantage of the Floquet
nature of the system, this problem can be circumvented. Since the imprinted phase shift (∆Udip.(r)t/2~)
due to the light field repeats itself every third lattice site, a saw-tooth profile of the intensity resulting
in ∆Udip.(r)t/2~ mod 2π can be used. This is shown in the first Floquet zone of fig. 4.7. This has the
advantage of generating the same magnetic field as the linear slope does over the whole lattice, without
going to the high intensity regime and hence the scattering of photons from atoms can be kept lower.
Numerical simulations, assuming λ = λD2 = 852 nm, show that the operator (eq. (4.9)) can be applied in
a time below 10 µs, which is much shorter than the decoherence time of the system. The numerically
estimated scattering probability of photons per operation is 1%. This could be strongly attenuated by
devising a scheme for 2D state-dependent transport with the quantisation axis perpendicular to the lattice.

In experiments, the spatially varying intensity profile generated by an SLM passes through the objective
of the imaging system before illuminating the atoms. The light field intensity profile experienced by the
atoms is the convolution of the intensity profile generated by the SLM and the point spread function of
the imaging system. The solid saw-tooth profile shown in the first Floquet zone of fig. 4.7 is the ideal
intensity profile intended to shine onto the atoms. The atoms will experience the intensity pattern shown
by the dashed curve in the first Floquet zone, which is the result of the convolution of the ideal intensity
profile and a gaussian function (approximation of experimentally measured point spread function of the
imaging system). One of the experimental challenges is to properly align the intensity profile of the laser
beam with the lattice so that an atom at a particular site of the lattice is illuminated with the required
field. Particularly, falling slopes of the intensity profile (gauge potential) should not be at the position of
a lattice site, otherwise an atom at that position will experience a non-uniform magnetic field leading
to the deformation of the quasienergy spectrum shown in fig. 4.2. Under certain amount of mismatch
(relative shift of intensity pattern with respect to the lattice), this deformation is small and the topological
structure of the quasienergy bands is preserved. However, for sufficiently large amount of mismatch the
deformation is large enough to close the quasienergy gaps leading to a topological phase transition.

In fig. 4.8, we quantify the deformation of the quasienergy spectrum of the magnetic QW. We examine
the gap width of the spectrum while shifting the saw-tooth intensity profile with respect to the lattice
through one complete lattice constant. The results show that for generating the desired synthetic magnetic
field, the mismatch should be kept at a particular value, for which the quasienergy gap width is maximum.
One way to make the experiment more robust against alignment errors is to use superlattices, i.e. to
use only every nth site of the optical lattice instead of every second lattice site. This can be achieved
by using the state-dependent transport, where each individual spin state can be coherently transported
over nth lattice sites in a controlled manner. Mathematically, this means that to use

(
Ŝ x

)n instead of Ŝ x.
This reduces the alignment errors as the gap width becomes quite insensitive to relatively large range of
mismatch (from 0.2 to 0.8, as shown in fig. 4.8).
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Figure 4.8: Quasienergy gap width of the bulk spectrum (gap width is same for all four gaps) depicted in fig. 4.2 vs.
the relative shift between the intensity pattern of the laser beam generating the synthetic gauge potential and the
lattice. The three different curves are for a simple lattice (•), a super lattice having lattice constant two times larger
than the normal one (�) and a super super lattice having lattice constant four times larger than the normal one (N).
Working with super and super super lattices is experimentally favorable as they are relatively robust against a wide
range of mismatch between the atoms positions in the lattice and the required intensity of the light field.

4.3.3 Inhomogeneous Magnetic Field to Implement Topological Phase Boundaries

In order to implement the spatial boundaries, as defined in sec. 4.2 (separating two different topological
domains having magnetic field B and −B), the intensity profile discussed in sec. 4.3.1 should be modified.
In a region of the lattice where the magnetic field is B, the intensity profile remains as shown in fig. 4.7.
The slope of the intensity profile and hence that of the gauge potential is reversed in a region of the lattice
where the magnetic field −B is required. In our numerical study, I include the effects of the imaging
system affecting the intensity pattern of the light field by carrying out a 1D or a 2D convolution, for
implementing a straight boundary or a closed boundary. The edge spectrum computed in the presence
of a strip-shaped boundary and the evolution of the edge modes along the closed boundary, shown in
fig. 4.5 (b) and (c), are simulated under the realistic conditions of the experiment (by taking into account
the finite optical resolution of the imaging system) mentioned here.
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Conclusion and Outlook

In this chapter, I have shown with my numerical results that QWs of neutral atoms trapped in optical
lattices provide an excellent platform for realizing flat-band Floquet Chern insulators. Our scheme has a
number of unique advantages for exploring the physics of the strong-field regime. It allows for generating
arbitrary landscapes of synthetic vector potentials giving the flexibility of changing the direction of the
simulated magnetic field at ease. This is in turn important for creating different topological domains with
sharp spatial boundaries along which TP edge states can be probed. Another unique advantage of our
scheme is that it does not rely on laser-assisted tunneling and hence avoid the problem of high scattering
rates and heating (although it still suffers from scattering with 1% probability per step operation). In
QWs experiments, a neutral atom is delocalized through state-dependent transport which does not suffer
form damping of tunneling rates. This makes it possible to work with super lattice potentials. The results
presented here are for a single particle in a clean environment, however, it can be extended to study
interactions-induced topological states and disorder effects. Theoretically, it has already been shown that
interaction in QWs of two atoms in 1D lattice leads to the formation of stable molecular states [71]. In
experiments, systems of neutral atoms trapped in optical lattices are celebrated for their high degree of
controllability of particle-particle interactions, which can be exploited to investigate interaction-induced
effects [103]. In the presence of disorder, scattering matrix approach (introduced in chap. 5) can be
employed to investigate topological properties of the system.
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CHAPTER 5

Probing the Hofstadter Spectrum with
Scattering in Magnetic Quantum Walks

T
he Hofstadter spectrum (fig. 2.3) represents the energy spectrum of electrons moving in a 2D

periodic potential in the presence of a perpendicular magnetic field. The corresponding energy
bands and gaps form a fractal structure as a function of the magnetic field strength. Such
complexity is a consequence of frustration in the system, which arises due to the competition

between the characteristic length scales associated with the two quantizing fields, i.e. the magnetic
length scale and the period of the 2D potential. Since its first appearance in 1976 [24], the Hofstadter
spectrum has attracted much attention, not only due to its fascinating fractal structure, but also due to its
connections to other physical phenomena in condensed matter systems, like quantum Hall phenomena.
It is additionally a proof of the role that number theory and topology play in nature, which were
previously considered as pure mathematical subjects [104]. At the time of its discovery, the experimental
observation of the Hofstadter spectrum seemed unreachable due to the required magnetic field strength. In
conventional solid-state materials (having a lattice constant of the order of 2Å), the magnetic field strength
required to reach the interesting scenario of φ ∼ 1 is of the order of 105 T, which is not possible with
the current available technology. Alternative approaches such as superlattices with considerably larger
lattice constants [28, 105–108] and moiré superlattices [29, 109] have made it possible to experimentally
access some of the properties of the Hofstadter spectrum. In these physical realizations, one of the main
challenges is to avoid disorder that limits the resolution of the experimental measurements. Efforts have
also been made in other systems where concepts similar to those in solid-state physics were investigated
for the experimental demonstration of the Hofstadter-type spectrum [110, 111].

Ultracold atoms in optical lattices offer an excellent platform for simulating the Hofstadter spectrum,
due to their disorder-free and controllable environment, along with the possibility to artificially synthesize
strong magnetic fields. In fact, the Harper Hamiltonian has been realized with neutral atoms in optical
lattices by generating an artificial magnetic field [39, 40]. So far, however, the corresponding band
structure has not yet been observed. In this chapter, I present a numerical study of the scattering matrix
approach in magnetic QWs of neutral atoms in optical lattices to probe the Hofstadter spectrum. I start
with a brief introduction to the scattering matrix formalism (section 5.1) and employ it to compute
the topological invariants of the magnetic QWs (section 5.2). The bands and gaps of the spectrum are
identified from the transport properties, i.e. the transmission and reflection probabilities of a walker from
the scattering region (section 5.3). The introduction contains the basic concepts used in this chapter
and, therefore, it is not meant to be a thorough, self-contained analysis. For a rather comprehensive
study of the scattering matrix formalism, I refer to [112] and other references mentioned in the following
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paragraphs.

5.1 A Brief Introduction to Scattering Matrix Formalism

The scattering matrix formalism is one of the central tools necessary to describe transport phenomena
at low temperatures, frequencies, and voltages [112]. An early version of this approach was used by R.
Landauer [113] to study the residual resistivity problem in metals. As opposed to the approach used for
dealing with electrical conduction (in which the electrical force was considered as the causative source
and the resulting motion of charged particles as a response) here the conductor was considered as a
target and the incident flux of charged particles as the causative agent. Subsequently this formalism got
considerable attention in the study of disordered systems, where the conductance was formulated in terms
of transmission and reflection probabilities [114–119].

In topological insulators with disorder (where the translation invariance is broken) the scattering matrix
formalism is used as one of the alternative descriptions to the band theory. It provides an efficient tool for
the evaluation of the topological invariants without requiring translational symmetry and the complete
spectrum of the Hamiltonian (see e.g. section 5.2 for the evaluation of the topological invariants of the
magnetic QWs). The scattering matrix approach provides a new framework for probing topological phases
by relating topological invariants of a topological insulator (superconductor) directly to its electrical
(thermal) conduction, which are experimentally accessable observables [120–123].

In the following, I briefly introduce the scattering matrix in 2D, following a similar treatment as the
ones given in [112, 121]. Let us consider a phase coherent scattering region subjected to disorder (the
transport properties of which are required to be probed) that is connected to two reservoirs through
identical ideal leads (see scheme in fig. 5.1). The leads are free of disorder and are used to define the
basis for the scattering matrix of the scattering region. In the lead region, particles travel freely and can
be described by plane waves along the x axis. In the case of a mesoscopic sample as a scattering region,
the wave function of an electron in the lead regions at the Fermi energy is written (in the basis states) as,

Ψ±i (x, y) = Φi(y)e±iki x, (5.1)

with Φi(y) being the transverse part of the wavefunction and k the wavenumber along the translational
invariant direction (which corresponds to the x-axis here). The subscript i is a positive integer with values
from 1 to N. It represents propagating modes that are also known as scattering channels. For example, an
electron propagating in the lead region with a given wavenumber k and transverse wavefunction Φi(y)
constitute a single scattering channel. The wave function is normalized to carry unit current. Particles
propagating in the lead region and incident on the scattering region from both sides are expressed in the
above-mentioned basis by a vector of coefficients

Ψin = (aR
1 , a

R
2 , ...., a

R
N , b

L
1 , b

L
2 , ...., b

L
N)T . (5.2)

The coefficients (ai, bi : for i = 1, 2, . . . ,N) stand for the propagating modes in the left and right lead
respectively. The superscripts R and L stand for the direction of propagation (right and left) and T for
transposition. Similarly, particles which are leaving (reflected or transmitted) the scattering region on
both sides are characterized by vector of coefficients

Ψout = (aL
1 , a

L
2 , ...., a

L
N , b

R
1 , b

R
2 , ...., b

R
N)T . (5.3)

The scattering matrix S relates the incoming vector Ψin to the outgoing vector Ψout such that
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Scattering regionLeft lead Right lead

Figure 5.1: Schematic illustration of a general scattering setting. The system is a phase-coherent disorder sample
(scattering region, dark grey), the transport properties of which are to be probed. This is connected to two ideal
leads (light grey) on its left and right sides. The modes of each lead are labeled by a and b, and their corresponding
directions by R and L. The color coding shows the incoming (red, solid arrows) and outgoing (blue, dashed arrows)
modes.

Ψout = SΨin. (5.4)

It is clear that S is a 2N × 2N matrix and has the block structure

S =

(
r t′

t r′

)
, (5.5)

where r (r′) is a N × N matrix (reflection matrix) containing the probability amplitudes for the particle
incident on the scattering region from the left (right) lead being reflected back to the left (right). The
matrix t (t′) (transmission matrix) contains the probability amplitudes for the particle in the left (right)
lead being transmitted to the right (left) after scattering. The scattering matrix S is unitary, i.e. S† = S−1,
which follows from the particle-current conservation. We consider that the incoming and outgoing
modes are equal and normalized to carry unit current. This implies that the current coming to the system
(scattering region) must be equal to the current leaving the system. In mathematical form, this reads

|Ψout|2 = Ψout†Ψout

= Ψin†S†SΨin

= |Ψin|2 (5.6)

where eq. (5.4) and the particle current conservation S†S = 1 have been used. The unitarity of the
scattering matrix is important for the numerical stability of transport calculations [124]. In the absence
of other symmetries (TRS, PHS, or CS), unitarity is the only constraint on the scattering matrix. The
presence of other symmetries in the scattering region impose additional constraints (which can be found
in [112, 121]).

Various transport properties can be determined from the transmission block of the scattering matrix. For
example, the electrical conductance G of a mesoscopic sample (at zero temperature) can be determined
from the sum of the transmission probabilities (tr(t t†)) with the Landauer formula [113],

G = G0 tr(t t†) = G0 tr(t′t′†), (5.7)

where G0, the conductance quantum, is equal to Q2/h for the electrical transport.
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Transfer Matrix

Another equivalent description of the scattering region (disordered sample) can be given in terms of the
so called transfer matrix formalism. The transfer matrix, in contrast to the scattering matrix, relates the
coefficients of states in the left lead to those in the right lead. For a state of a particle in the left lead, the
coefficients can be written in a vector form in the following way:

Ψleft = (aR
1 , a

R
2 , ...., a

R
N , a

L
1 , a

L
2 , ...., a

L
N)T . (5.8)

The coefficients with superscript R are representing the incoming particle (traveling to right) and the one
with L are for the reflected one (traveling to left). For a particle in the right lead, the coefficient vector is

Ψright = (bR
1 , b

R
2 , ...., b

R
N , b

L
1 , b

L
2 , ...., b

L
N)T . (5.9)

Here the coefficients with the superscript R are for the reflected particle and the ones with L are referring
to the incoming particle. By definition, the transfer matrixM can be written as

Ψright =MΨleft, (5.10)

which is a 2N × 2N matrix. The transfer matrix has a convenient property of multiplicative composition
rule. According to this rule, for a number of scattering regions connected in series by ideal leads, the
transfer matrix can be written as the product of transfer matrices of the individual regions. The current
conservation between the two sides of the scattering region imposes a pseudo-unitarity constraint on the
transfer matrix, i.e.

DM−1D =M†, (5.11)

with D a diagonal matrix having Dii = 1 for 1 ≤ i ≤ N and Dii = −1 for N < i ≤ 2N. Despite the
aforementioned advantages, the eigenvalues of the transfer matrix can take exponentially larger and
smaller values, which can make numerical calculations with the transfer matrix unstable [124].

5.2 Computing Topological Invariants of the Magnetic Quantum
Walks with Scattering Matrix Approach

Topological invariants of topological insulators can be related to their transport properties using the
scattering matrix approach. The type of relation depends on the presence of certain symmetries (TRS,
PHS or CS) in the system. In closed systems described by single-particle Hamiltonians, these symmetries
are used for the classification of topological insulators and superconductors giving ten possible symmetry
classes represented by Cartan labels [86, 87]. These symmetries impose additional constraints on the
scattering matrix [125]. In each spatial dimension, five out of ten symmetry classes are in topologically
non-trivial phases, which are characterized by different topological invariants. In the case of QWs, the
walk protocol, the corresponding effective Hamiltonian, and the scattering matrix depend on the choice
of a time frame (the notion of time is discussed in Chapter 3). As a result, the discrete symmetries and
topological invariants of a walk protocol are also time-frame dependent. An explicit choice of the time
frame should be made to investigate the discrete symmetries and topological invariants of a walk.

By adapting concepts and methods developed for time independent systems, the scattering matrix form-
alism has been used in 1D QWs to compute the topological invariants of the quasienergy spectrum [69,
126]. In contrast to the Hamiltonian-based approaches for computing the topological invariants, the
scattering matrix approach requires much less information and hence is numerically more efficient [125].
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For gapped QWs, the unitarity of the reflection matrix (in the limit of large system size) allows the
definition of topological invariants for the five topologically non-trivial symmetry classes of the symmetry
classification. These are summarized in [126], along with their relationship to the reflection matrices.

The magnetic QW has CS in a shifted time frame, as we show in Appendix E. The topological
invariants ν ∈ Z of such QWs are winding numbers assigned to the bulk quasienergy gaps [75, 93].
According to the bulk–boundary correspondence principle, ν is equal the net number of edge states
crossing a gap, which the scattering matrix approach identifies as the winding number of the determinant
of the reflection block (r) of S. To compute this invariant, Let us consider the walk operator given by
eq. (4.2) of Chapter 4:

Ŵ = F̂Ŝ yĈŜ xĈ,

with the magnetic field operator F̂ = eiB x σz (here B = 2πφ). Ŝ x (Ŝ y) shifts the walker along the x-axis
(y-axis) of the lattice, and the coin operator Ĉ manipulates the internal state of the walker (see Chapter 4).
As an example, I fix φ = p/q = 1/3, for which the quasienergy spectrum is already shown in Chapter 4.
The layout of the calculation is as follows:

1. Define and attach a semi-infinite lead1 to the semi-infinite system;

2. Define the modes in the lead for a fixed transverse wavenumber k;

3. Find the scattering states: eigenstates of the walk with incidence from one mode in the lead;

4. Find the elements of the reflection matrix from the scattering states;

5. Repeat the above steps for several values of the transverse wavenumber k, and calculate the winding
of the determinant of the reflection matrix.

In the following I present a detailed description of these steps.

Attaching a Lead to the System

We open up the walk, here referred to as “system” (equally called scattering region), by attaching a
metallic “lead” to it as shown in fig. 5.2 (a). The “system” consist of all sites with x ≥ 0 where the walker
evolves with the walk operator (eq. (4.2)). The lead consist of all sites with x < 0 and is defined by
modifying the unitary time step operator: for x < 0, both coins, shift Ŝ y, and magnetic field operators
are replaced by identity operations 1. This construction maintains translation invariance along y, so the
wavenumber ky is conserved. The whole system can be treated as a 1D chain of sites along the x axis
with twisted boundary conditions along the y axis with wavenumber ky (as depicted in fig. 5.2 (b)).

For this setting of the walk, the coin, shift, and magnetic field operators (for x < 0) are modified in the
following way:

Ĉ =
∑
x<0

(
|x〉〈x| ⊗ |↑〉〈↑| + |x〉〈x| ⊗ |↓〉〈↓|

)
+

∑
x≥0

|x〉〈x| ⊗ e−i
θ σy

2 , (5.12)

Ŝ y =
∑
x<0

(
|x〉〈x| ⊗ |↑〉〈↑| + |x〉〈x| ⊗ |↓〉〈↓|

)
+

∑
x≥0

|x〉〈x| ⊗ e−iky σz , (5.13)

F̂ =
∑
x<0

(
|x〉〈x| ⊗ |↑〉〈↑| + |x〉〈x| ⊗ |↓〉〈↓|

)
+

∑
x≥0

|x〉〈x| ⊗ eiB x σz . (5.14)

1 In scattering matrix theory of electronic conduction, an electronic waveguide (or metallic wire) is usually called a lead. This
supports incoming and outgoing modes for the scattering region. In our case, we define a region of the 2D lattice, where a
walker is propagating freely, as a lead.
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Figure 5.2: Schematic illustration of the scattering setting in QWs. (a) A “system” of magnetic QWs (dark grey
lattice with solid lines) is connected to a single 2D ideal metallic “lead” (light shaded lattice with dashed lines) on
its left. (b) Due to the translational invariance in the y direction, the system is reduced to a 1D chain of sites along
x. In the lead there is no shift along y, while in the scattering region Ŝ y is present which imprints a factor e±iky

into the particle’s wave function with sign “±” depending on the internal state. The connecting blocks represent
the walk protocols in the lead and scattering regions. In the lead region only Ŝ x is active, while the rest are set to
identity. In the scattering region, all operators of the protocol are set to their normal operations.

62
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Equation (5.12) shows that the coin angle is set to 0 in the lead region and θ in the system. In this
definition, the spatial transition of the coin angle from 0 to θ is sharp, which is not possible in cold-atoms
experiments due to the diffraction limit and other aberrations in the imaging system (the same applies for
the magnetic field operator). For the model to be more realistic, we choose the error function to represent
a smooth transition from the lead to the system. In this case, the coin angle and the magnetic field vary
smoothly. In terms of the error function2 (erf(x)), eq. (5.12) and eq. (5.14) take the following form:

Ĉ =

+∞∑
x=−∞

|x〉〈x| ⊗ e−i
θ σy

2
1+erf(Px)

2 (5.15)

F̂ =

+∞∑
x=−∞

|x〉〈x| ⊗ eiB x σz
1+erf(Px)

2 . (5.16)

Here P is a parameter used for tuning the smoothness of the transition.

Defining Modes in the Lead

The modes in the lead region are plane waves along x with i.e. ε = kx. The incident and reflected modes
in the lead are defined in the following way:

||Ψlead(ε)〉inc. =
∑
x<0

eiε x |x, ↑〉 , (5.17)

||Ψlead(ε)〉ref. =
∑
x<0

e−iε x |x, ↓〉 . (5.18)

The modes are normalized to carry unit current (indicated by the notation ||〉). Since the 2D problem is
restricted to a 1D chain, there is a single incident (reflected) channel. For the incident mode ||Ψlead(ε)〉inc.,
the particle is considered to be in the spin-up state (in accordance to the definition of Ŝ x). The shift
operator Ŝ x evolves this state to the right in order to probe the scattering region. The reflected part of the
wavefunction will travel to the left in the lead region and will be in the spin-down state.

Finding the Scattering States

To obtain the scattering matrix, it is required to find the scattering states. The scattering state (||Ψscat.(ε, ky)〉)
corresponding to the incident mode is an eigenstate of the walk operator, which can be written as

||Ψscat.(ε, ky)〉 =
∑
n∈Z

eiε nŴ(ky)n |x, ↑〉 . (5.19)

2 Error function is defined as

erf(x) =
1
√
π

∫ x

−x
e−t2 dt,

which gives

0 ≤ erf(x) ≤ 1 if x ≥ 0

−1 ≤ erf(x) < 0 if x < 0,
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Figure 5.3: Topological invariants ν of the gaps of the magnetic QW (with p/q = 1/3) computed numerically with
L = 100, nmax. = 500. The values of the invariant are indicated by the thick black lines, which changes somewhere
in each bulk band. Transmission probabilities (1−|det(r)|2) are indicated by the red dashed line. Since the reflection
(transmission) signal is also a function of the quasimomentum ky, here I only show the signal for ky = −π/2 which
gives a very good contrast of the transmission signal for bands vs. gaps regions. The colored shadings represent
DOS and are shown for the purpose of indicating the positions of each bulk band. The winding of the reflection
matrix (topological invariant of the gap) reproduces changes somewhere in each bulk band.

This is an eigenstate of Ŵ with eigenvalue eiε, as can be checked by substitution. It contains the incident
mode |Ψlead(ε)〉inc., since

||Ψlead(ε, ky)〉inc. =
∑
n<0

eiε nŴ(ky)n |x, ↑〉 (5.20)

as can be seen by comparing with (5.17).

Constructing the Reflection Matrix

In general, the element r jl of the reflection matrix is the coefficient of the jth scattered mode in the
scattering state originating from the lth incident mode. This can be written as

r jl(ε, ky) = 〈 j, ↓|
∞∑

n=1

eiε nŴ(ky)n |l, ↑〉 , (5.21)

for j, l ∈ N, 1 ≤ j, l ≤ ymax.. In the considered specific case (1D chain of sites along x) ymax. = 1, hence
the reflection matrix has the dimension 1 × 1. The reflection matrix can be numerically obtained by
directly evaluating eq. (5.21). As pointed out in [126], the scattering matrix is determined by initializing
a particle in an incoming mode of a lead region and evolving it in time until it enters an outgoing mode.
This renders most of the most of the lattice sites irrelevent for the numerical calculations, as it is not
explored by the particle in a single step of the walk. Therefore, for the numerical calculations the 1D
chain along the x axis can be truncated to a finite size chain. I consider the scattering to have total L sites

64
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along x, i.e. x = 0, 1, . . . , L, with an absorbing boundary condition at x = L. For the lead, only those
sites are needed which are non-trivially involved during one time step of the walk evolution. Since the
walk protocol consists of only one shift operator (Ŝ x), then a particle initially localized on a single site
of the lead close to the system’s boundary, i.e. |x = −1, ↑〉, can enter the scattering region in one time
step of the walk. Similarly, a particle in the scattering region can at most explore only one site (x = −1)
of the lead region in one time step. This one site of the lead is the only site non-trivially involved in
the scattering during one step of the walk. On the remaining sites of the lead, the particle follows the
trivial evolution of the lead region which takes no part in the scattering and hence are not relevant for
the numerical calculations. Therefore, I consider a single site lead which is seamlessly connected to the
system. The sum over n is also truncated to some nmax.. Thus the shift operator Ŝ x, for this truncated
problem, takes the following form,

Ŝ x =

L−1∑
x=−1

(
|x + 1, ↑〉〈x, ↑| + |x, ↓〉〈x + 1, ↓|

)
, (5.22)

which annihilates states |x = −1, ↓〉 and |x = L, ↑〉. Both L and nmax. can be simply chosen large enough
in order to have a better reflection signal.

Computing the Winding of the Determinant of the Reflection Matrix

From the reflection matrix r (which is a 1 × 1 matrix in the considered setting of the problem), the
winding number of its determinant will be the scattering invariant:

ν[ε] =
1

2πi

∮ π

−π
dky

d
dky

log det r(ε, ky) (5.23)

=
1

2π
lim

N→∞

N∑
j=1

arg
det r(ε, k j+1)
det r(ε, k j)

.

The numerically obtained values of the invariants are shown in fig. 5.3, which are in agreement with the
net number of edge states shown fig. 4.5 (b) of Chapter 4.

5.3 Probing the Hofstadter Spectrum with Scattering Matrix
Approach

I now use the scattering setting in 2D magnetic QWs to probe the Hofstadter spectrum. The idea is to
initialize a walker in the lead region (where it propagates freely), impinge it on the scattering region,
and compute its reflection and transmission probabilities. A walker with quasienergy tuned to the bands
of the scattering region will be transmitted with high probability. Otherwise, it will be reflected if its
quasienergy is tuned to that of the gap. Hence the resultant reflection (transmission) probabilities contain
signatures of the energy spectrum of the scattering region. Here, I will compute just the reflection
probabilities, since they also provides the transmission probabilities.

The setting is the same as described in section 5.2, with the difference that the lead region is now
extended to a finitely large number of sites. The reason is to evolve a walker, initialized in the lead region,
for a large number of time steps n without projecting it into a lead state in the intermediate steps of the
evolution. The number of time steps is chosen large enough so that the walker either completely reflected
or transmitted. The final state of the walker is then projected to a plane wave state in the lead region with

65



Chapter 5 Probing the Hofstadter Spectrum with Scattering in Magnetic Quantum Walks

spin component down to get the reflection probability as a function of the quasienergy. The detailed steps
are shown in the following.

5.3.1 Computing the Reflection Probabilities

First Method: Using an Extended Lead

I start with a walker localized on a single site in the lead, lying close to the scattering region, i.e. x = −1,
such that the normalized initial state of the walker can be written as

|Ψi〉 = |x = −1, ↑〉 . (5.24)

This initial state is then evolved by applying the magnetic QW operator of eq. (4.2) (modified for the
scattering setting, i.e. using the operators given in eqs. (5.12 – 5.14)) for a given rational value of the
flux ratio (φ). The initial state is evolved for a large number of time steps to get the scattering state. The
maximum number of time steps and size of the lead are chosen large and comparable to each other so that
the reflected part of the scattering state do not reach the boundary of the opposite lead region (x→ −∞).
The normalized scattering state of the walk is,

|Ψscat.(ky)〉 = Ŵn=nmax.(ky) |Ψi〉 . (5.25)

This state is projected to a plane wave state (with spin down) along the x axis in the lead to get the
reflection probabilities. A plane wave state in the lead is defined as

|Ψlead(kx)〉 =

−1∑
x=−xmax.

e−ikx |x+1| |x, ↓〉 , (5.26)

and its reflection probability is

R(kx = ε, ky) =
∣∣∣〈Ψlead(kx)|Ψscat.(ky)〉

∣∣∣2. (5.27)

In the lead, the walker is propagating freely and hence its quasienergy is proportional to its quasimo-
mentum kx. Figure 5.4 shows the transmission probabilities (1 − R(kx = ε, ky)) along with the bulk bands
for four different values of φ = p/q. The bulk bands are plotted in order to give an indication of the bands’
position. It is clear that the transmission probabilities, beside its dependence on quasienergy, also depend
on quasimomentum ky due to the dispersion of the bulk spectrum. For a given value of p/q, ky is scanned
through the whole BZ (in discrete steps) and the transmission signal is monitored. The selected ky values
are those for which the transmission signals show a better contrast amongst bands vs. gaps regions.

Second Method: Using a Single-Site Lead

The reflected part of the scattering state can be reconstructed by following an alternative numerical
method. The purpose is to carry the trivial evolution (free propagation) of walker’s wavefunction in the
lead without using the walk operator. I consider a single site lead and start with a particle in spin-up
state localized on this site (x = −1). After each step of the walk, the final state is projected to the
initial state (but with spin-down) in the lead. This projection thus excludes the transmission part of the
scattering state. Each projection is then trivially evolved in the lead (without using the walk operator) for
the corresponding remaining time steps of the walk evolution (like it would have evolved by the walk
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Figure 5.4: Bulk bands of the magnetic QW defined in eq. (4.2) (left panel) and the resulting transmission
probabilities (right panel) computed using the scattering matrix approach. From top to bottom, the flux ratio is
φ = p/q = 1/2, 1/4, 1/7 and 1/25. For odd values of q, there is a single peak in the transmission signal for each
isolated single band (except at at ε = 0 where band gap closes). For even values of q, the bands are making groups
by closing the gap at different values of ε, hence, there is a single peak in the transmission signal corresponding to
each single group of bands. For higher values of q (both even and odd), the peaks in the transmission signals are
not fully resolved. Due to the fact that the transmission probability is not only a function of the quasienergy (ε) but
is also function of the quasimomentum (ky), I have plotted transmission probabilities for those ky values which give
a better contrast of the transmission signal for bands vs. gaps regions.
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operator in the case of an extended lead). All the trivially evolved states are then added to get the final
reflected state.

For the numerical calculations, I consider a finite Hilbert space of the scattering region with L = 80
and one site of the lead region. The maximum number of time steps of the walk is nmax. = 400. The
initial state of the walker is the same as given in eq. (5.24). After each step of the walk, the final state is
projected to a state localized at position x = −1 in the lead with spin-down state, i.e. |x = −1, ↓〉. The
projection is

an(ky) = 〈x = −1, ↓| Ŵn(ky) |x = −1, ↑〉 , (5.28)

where n represents the time step after which this projection is obtained. The trivial evolution of this
projection is carried out without using the walk operator. The corresponding final state is

|Ψ
(n)
ref.(ky)〉 = an(ky) |x = −1 − (nmax. − n), ↓〉 . (5.29)

We made use of the fact that the velocity of the walker in the lead is one lattice site per step of the walk
evolution. The superscript n represent that this final state corresponds to the projection taken at time step
n. At the end of the complete time evolution (from n = 1 to n = nmax.), the total reflected state is obtained
performing the sum in equation (5.29) over all values of n, i.e.

|Ψref.(ky)〉 =

nmax.∑
n=1

|Ψ
(n)
ref.(ky)〉 . (5.30)

The reflection probabilities are obtained by projecting this state to the plane-wave state (eq. (5.26) with
xmax. = 400), i.e.

R(kx = ε, ky) =
∣∣∣〈Ψlead(kx)|Ψref.(ky)〉

∣∣∣2. (5.31)

5.3.2 Reconstructing the Hofstadter Spectrum from the Reflection Probabilities

I repeated the above procedure for φ = p/q = 0 to 0.5 in the step size of 0.02 and computed the reflection
(transmission) probabilities. We define a threshold for reflection (transmission) probabilities. For each
value of p/q, a quasienergy value belongs to the Hofstadter spectrum’s bands if its corresponding
reflection probability is smaller than 0.8 (the threshold value). In other words, a quasienergy value
belongs to the Hofstadter spectrum’s bands if its corresponding transmission probability is greater than
0.2. I plot all those quasienergy values, which are in the bands regions for all values of p/q, i.e. 0 to 0.5.
The bands for 0.5 < p/q ≤ 1.0 are obtained by using the fact that the spectrum and hence the reflection
probabilities are same for p/q and 1 − p/q. The reconstructed Hofstadter spectrum is shown in fig. 5.5.

Conclusion and Outlook

The numerical results show that the scattering matrix approach in magnetic QWs of neutral atoms in
optical lattices can indeed be used to probe the Hofstadter spectrum. The underlying system provides a
clean and controllable environment, along with the possibility of engineering strong artificial magnetic
fields. Also, as demonstrated, this approach provides an efficient tool to compute topological invariants.
This does neither require translational symmetry in the system nor complete information of the bulk spec-
trum. In this framework, topological invariants are related to transport properties, which can be measured
by locally probing the insulator material. For example, in QWs experiments, the Floquet topological
invariants of the bulk gaps can be probed by preparing a particle in a well-defined quasimomentum
(energy) state. A particle having quasienergy tuned to a gap of the scattering region (which in this case
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Figure 5.5: Hofstadter spectrum reconstructed from the reflection (transmission) probabilities of a walker form the
scattering region. The values of the flux ratio φ = p/q ranges from 0 to 1 in the step size 0.02. For each value of
p/q, black dots represent the quasienergy values for which the computed reflection probability is less the 0.8 or
the transmission probability is greater than 0.2 and hence are selected as bands of the Hofstadter spectrum. The
spectrum for p/q = 0 to 0.5 is computed from the reflection probabilities and for 0.5 < p/q ≤ 1.0 it is obtained by
using the reflection symmetry present in the spectrum.
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will be a topological insulator) will be reflected back. The interferometric measurements of the reflection
amplitudes will determine the corresponding topological invariant. As the scattering matrix approach
does not require translational invariance, it can additionally be used to investigate topological properties
in the presence of disorder, thus demonstrating the versatility of this approach in a wide range of settings.

70



CHAPTER 6

Summary and Outlook

I
n this thesis I employed QW protocols as a tool to simulate and study the physics of a charged
particle in the presence of both a 2D periodic potential and an external magnetic field. The
underlying system is composed of a single neutral atom trapped in a 2D squared optical lattice.
To simulate the effects of a magnetic field on neutral atoms, I proposed a realistic scheme based on

QWs of a single neutral atom. This scheme has a number of unique features that allows the exploration
of the physics in the strong-field regime.

I started with the time-independent tight binding model in 2D in the presence of a strong external
magnetic field (Harper’s equation) and investigated its topological properties (Chapter 2). I demonstrated
that the topological invariants (Chern numbers) of the magnetic Bloch bands fully determine the number
of edge states, which exist in the presence of a boundary. To simulate this type of physics with QWs
of neutral atoms, I introduced QWs in 1D and 2D (Chapter 3). I investigated the topological properties
of the effective Hamiltonians and showed that the corresponding invariants do not fully determine the
edge spectrum of the QWs. This fact is highlighted with examples both in 1D and 2D, and the new set of
topological invariants, that capture the complete topological structure of the walks, are introduced.

In Chapter 4, I extended the 2D QW protocol to simulate the effects of magnetic fields. In the presence
of a magnetic field, the magnetic subbands are characterized by non-vanishing Chern numbers, indicating
the Floquet Chern insulating nature of the system. I computed the invariants of the quasienergy gaps that
uniquely determine the edge spectrum. I demonstrated the existence of TP propagating edge states and
their robustness against spatial and experimental deformations. In Chapter 5, I introduced the scattering
matrix formalism in QWs for computing the topological invariants of the 2D QW and for probing the
Hofstadter spectrum. By computing the reflection matrix, the topological invariant of a gap is identified
as the winding number of its determinant. The reflection and transmission probabilities of the walker
from the scattering region give access to the quasienergy spectrum.

Although the work in this thesis is focused on the physics of a single particle which provides a
platform for the understanding and classification of topological matter, it also sets the stage for studies of
many-body topological states in the presence of interactions. In the following I give a brief outlook on
the directions in which this work can be extended.

Modifying the Setting of the Scattering Matrix Problem in the Perspective of our 2D QW
Experiment: The results of the scattering matrix approach (topological invariants of the walk and
the Hofstadter spectrum) are computed with only one shift operator, i.e. along the x-axis (Ŝ x), active in
the lead region (Chapter 5). However, in our experimental setup, the spin-dependent shift operators act
globally and cannot be deactivated locally. In order to configure the scattering matrix approach in the
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perspective of our 2D QW experiment, the immediate next step will be to carry out these computations
with both shift operators, i.e. Ŝ x and Ŝ y, active in the lead region of the scattering setting as shown in the
schematic fig. 6.1.

Interaction Induced Topological Phases: Interactions amongst particles in a topological insulator
can lead to novel and less explored topological states of matter, e.g. fractional quantum Hall states for
partially filled Chern bands. An interest in these states developed due to their potential application in
spintronics devices and topological quantum computation, as quantum information stored in topological
degrees of freedom is less susceptible to local perturbations [127, 128]. Accessing interaction-induced
effects with conventional condensed matter systems is a challenging task as these cannot be easily
isolated from the system [129]. QWs of neutral atoms trapped in optical lattices, on the other hand, due
to their high degree of controllability of particle-particle interactions, can be exploited to investigate
interaction-induced effects by including onsite coherent cold collisions between atoms [103]. In a
bottom-up approach to investigate many-body interacting states, it has been theoretically shown that
interaction in QWs of two atoms in 1D lattice leads to the formation of stable molecular states [71]. To
investigate two-body interaction effects in QWs, a walk protocol of the following form can be used,

Ŵint. = UW(p, k) · Uc =
(
Ŵ1 ⊗ Ŵ2

)
·

1 when x1 , x2

γ when x1 = x2
,

withUW(p, k) the free walk operator andUc (representing the interaction part of the walk operator) a
unitary operator acting only on the collisional subspace. The molecular bound state can be obtained by
solving the Lippmann-Schwinger equation for a discrete time system.

The single-particle picture of a 2D magnetic QW presented in this thesis, shows that the system
behaves as a Floquet Chern insulator with relatively flat bands separated by large gaps. This provides a
favorable condition for strongly correlated states as interactions among particles in these circumstances
are the dominating physical mechanism. As topological phases in interacting QWs are not explored yet, it
will be interesting to study the effects of interactions on the topological features of Floquet topologically
insulating states. More important will be to investigate whether novel topological states can emerge by
adding interactions to topologically trivial insulating states underlying QWs. To investigate interaction-
induced topological effects with QWs, in experiments based on neutral atoms in optical lattices, atoms
have to be cooled down to their motional ground states. On the theory side, the Floquet-Keldysh approach
and the time-evolving block decimation numerical methods can be used to investigate Floquet topological
phases of interacting QWs.

Disorder Effects: The presence of topological order in a system (QWs) not only has profound
implications in the non-trivial phenomena at the edges but it also has strong influence on the transport
in the bulk in the presence of static spatial disorder. The common intuition is that spatial disorder
always leads to localization phenomena, the well known Anderson localization [130]. For QWs in
1D with a spatially disordered coin operation, such strong localization has been predicted [68], and
dynamical localization under irrational artificial electric field has been experimentally demonstrated [102].
The presence of non-trivial topology, however, can lead to a counterintuitive behavior, the so called
localization-delocalization transition in both 1D and 2D QWs. Numerically, it has been shown that a
walker can escape localization if the walk is tuned to a phase boundary between two distinct topological
phases [69, 70].

For the magnetic QW presented in this thesis, it will be worth to explore the effects of disorder
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Figure 6.1: Schematic of the scattering setting for probing the topological invariants of the gaps for a 2D magnetic
QW, and the Hofstadter spectrum. To take into account the fact that the spin-dependent shift operators act globally
in our 2D setup, the numerical computation needs to be carried out with both shift operators, i.e. Ŝ x and Ŝ y, active
in the lead region.

on the critical transport phenomena, e.g. similar to the localization-delocalization transition between
two adjacent Hall plateaux in integer QHE underlying a lattice. It will be important to investigate the
robustness of edge transport against different types of disorder and the conditions leading to a topological
phase transition, similar to those investigated for 2D QWs without magnetic fields [70, 93]. In the
presence of disorder, the scattering matrix formalism can be employed to investigate the topological
invariants of the walk. In QWs, a spatial static disorder can be introduced by adding an extra operator to
the walk protocol that implements a position-dependent random phase shift to the walker (the phase shift
can be spin-dependent as well). Similarly, disorder can also be introduced through a coin operator by
varying the coin angle from site to site randomly.

Non-Abelian Gauge Potentials: The proposed scheme for implementing a synthetic gauge potential
is for the abelian case, where the simulated magnetic field results in a phase shift of the walker. An
extension to non-abelian gauge potentials will be interesting to investigate with QWs. In the case
of non-abelian gauge potentials, the phase shift due to a magnetic field is replaced by a matrix with
dimensions depending on the internal Hilbert space of the particle. There has been a number of proposals
for generating synthetic non-abelian gauge fields for neutral atoms [30, 31]. These are used for simulating
spin-orbit coupling of electrons in condensed matter systems, which is at the heart of a number of
interesting phenomena, such as topological insulators.
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APPENDIX A

Derivation of the Phases of the Magnetic
Translation Operators

The phases {Xx
j,l,X

y
j,l} of the magnetic translation operators {T̂x, T̂y} are derived in [54, 55]. However, for

completeness of the Chapter 2 I add the derivation here, which is closely followed from [54, 55]. The
phases {Xx

j,l,X
y
j,l} can be obtained from the requirement that the two MTOs should commute with the

Hamiltonian eq. (2.17). Since this Hamiltonian consists of shift operators {Ŝx, Ŝy}, so the requirement is
that the {Xx

j,l,X
y
j,l} should commute with the shift operators. This gives us four conditions on the phases

of the MTOs, which can be derived using the following steps.

Consider the commutation
[
Ŝx, T̂x

]
and apply this on a single-particle state at a lattice site with coordinates

( j, l),

ŜxT̂x | j, l〉 = Ŝx

(∑
j′,l′

eiXx
j′ ,l′ ĉ†j′+1,l′ ĉ j′,l′

)
ĉ†j,l |0〉

= Ŝx eiXx
j,l ĉ†j+1,l |0〉 , for j′ = j and l′ = l

=

( ∑
j′′,l′′

eiΘx
j′′ ,l′′ ĉ†j′′+1,l′′ ĉ j′′,l′′

)
ei Xx

j,l ĉ†j+1,l |0〉

= ei
(
Θx

j+1,l + Xx
j,l

)
ĉ†j+2,l |0〉 , for j′′ = j + 1 and l′′ = l

= ei
(
Θx

j+1,l + Xx
j,l

)
| j + 2, l〉 . (A.1)

Similarly

T̂xŜx | j, l〉 = ei
(
Θx

j,l + Xx
j+1,l

)
| j + 2, l〉 . (A.2)

This gives [
Ŝx, T̂x

]
| j, l〉 =

(
ei
(
Θx

j+1,l + Xx
j,l

)
− ei

(
Θx

j,l + Xx
j+1,l

))
| j + 2, l〉 . (A.3)
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For
[
Ŝx, T̂x

]
= 0, we get the condition,

ei
(
Θx

j,l + Xx
j+1,l

)[
ei
(
Θx

j+1,l + Xx
j,l − Θx

j,l − X
x
j+1,l

)
− 1

]
= 0

⇒ ∆x Θx
j,l = ∆x X

x
j,l. (A.4)

Using the same procedure, we get the following conditions:
For

[
Ŝy, T̂y

]
= 0,

= ei
(
Θ
y
j,l + X

y
j,l+1

)[
ei
(
Θ
y
m,l+1 + X

y
j,l − Θ

y
j,l − X

y
j,l+1

)
− 1

]
= 0

⇒ ∆y Θ
y
j,l = ∆y X

y
j,l. (A.5)

For
[
Ŝx, T̂y

]
= 0,

= ei
(
Θx

j,l + X
y
j+1,l

)[
ei
(
Θx

j,l+1 + X
y
j,l − Θx

j,l − X
y
j+1,l

)
− 1

]
= 0

⇒ ∆x X
y
j,l = ∆y Θx

j,l = ∆xΘ
y
j,l − 2πφ j,l. (A.6)

For
[
Ŝy, T̂x

]
= 0,

= ei
(
Θ
y
j,l + Xx

j,l+1

)[
ei
(
Θ
y
j+1,l + Xx

j,l − Θ
y
j,l − X

x
j,l+1

)
− 1

]
= 0

⇒ ∆y X
x
j,l = ∆x Θ

y
j,l = ∆yΘ

x
j,l + 2πφ j,l. (A.7)

In the last two conditions, we have made use of the discrete lattice derivatives eq. (2.14). The values of
{Xx

j,l,X
y
j,l}, for which the MTOs commute with the Hamiltonian eq. (2.17), are obtained by solving the

above conditions. For this, the flux ratio can be written as,

φ j,l = ( j + 1)φ j,l − jφ j,l

= ∆x
(
jφ j,l

)
. (A.8)

Putting this in eq. (A.6), we get the Xyj,l. Similarly, we can write the flux ratio as,

φ j,l = (l + 1)φ j,l − lφ j,l

= ∆y
(
lφ j,l

)
. (A.9)

By putting thise into eq. (A.7), we get Xx
j,l. The resulting solutions are given in eq. (2.20).
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APPENDIX B

Fourier Transformation of the Harper Equation

On the spatially regrouped lattice (introduce in sec. 2.2), we use the following Fourier transformation,

ĉ jq+ j′,l =
q

2π
1

2π

∫ +π/q,+π

−π/q,−π
dkx dky ĉkx,ky, j′ ei( jq+ j′)kx eikyl, (B.1)

with the inverse transformation

ĉkx,ky, j′ =
∑
j, j′,l

e−i( jq+ j′)kx e−ikylĉ jq+ j′,l. (B.2)

By putting the transformation eq. (B.1) in the Hamiltonian eq. (2.30), the first two terms can be written as

∑
j, j′,l

ĉ†jq+ j′+1,lĉ jq+ j′,l →
q

(2π)2

∫ +π/q,+π

−π/q,−π
dkx dky ⊗

(∑
j′

e−ikx ĉ†kx,ky, j′+1 ĉkx,ky, j′

)
,

∑
j, j′,l

ei2πφ( jq+ j′) ĉ†jq+ j′,l+1ĉ jq+ j′,l →
q

(2π)2

∫ +π/q,+π

−π/q,−π
dkx dky ⊗

(∑
j′

ei(2πφ j′−ky) ĉ†kx,ky, j′
ĉkx,ky, j′

)
.

(B.3)

The Hermitian conjugate of these two terms are,

∑
j, j′,l

ĉ†jq+ j′−1,lĉ jq+ j′,l →
q

(2π)2

∫ +π/q,+π

−π/q,−π
dkx dky ⊗

(∑
j′

eikx ĉ†kx,ky, j′−1 ĉkx,ky, j′

)
,

∑
j, j′,l

e−i2πφ( jq+ j′) ĉ†jq+ j′,l−1ĉ jq+ j′,l →
q

(2π)2

∫ +π/q,+π

−π/q,−π
dkx dky ⊗

(∑
j′

e−i(2πφ j′−ky) ĉ†kx,ky, j′
ĉkx,ky, j′

)
.

(B.4)

Adding these four terms, we obtain the Hamiltonian eq. (2.31).
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APPENDIX C

Computing the Chern Numbers of the Magnetic
Bloch Bands

Chern numbers are generally defined for quantum states parametrized by two periodic parameters. The
magnetic Bloch states, introduced in sec. 2.1.1, are parametrized by quasimomentum kx and ky. Hence,
we can compute Chern numbers for the corresponding energy bands. Due to the periodicity of the
magnetic Bloch states in both kx and ky direction, the topology of the BZ is similar to a torus and the
Chern numbers do have a physical significance [131]. In continuum, the Chern number of a jth isolated
band corresponding to a normalized magnetic Bloch state |u j(k)〉 is defined as

C j = −
1

2π

∫
MBZ

dkxdky
(∂A( j)

y

∂kx
−
∂A( j)

x

∂ky

)
, (C.1)

where A j is known as the Berry connection of the jth band and the integrand is known as the Berry
curvature. Explicitly, the Berry connection of the jth band is defined as

A( j)
µ (k) = i 〈u j(k)|

∂

∂kµ
|u j(k)〉 , for µ = (x, y). (C.2)

The normalized magnetic Bloch states |u j(k)〉, with j representing the band index, are obtained by solving
the Schrödinger equation 2.32. For numerical computation of the Chern number of a band, one can use
the discrete version of the formulas (C.1), (C.2). These, in general, deal with gauge-dependent quantities
and must be taken care of (by fixing the gauge of the wavefunctions). This procedure for computing
Chern numbers is relatively difficult. I use an alternative method presented by Fukui et al. [59], which
does not need gauge fixation of the wavefunctions and Chern numbers can be computed with any arbitrary
gauge. I used this method for computing the Chern numbers of the magnetic Bloch bands shown in
fig. 2.5.

For simplicity, let us consider a single band that is isolated from other bands by energy gaps with
corresponding eigenfunction u(k). The idea is to discretize the MBZ by considering a squared grid
and compute u(k) on the restricted data points. Consider a 2D MBZ with −π/q1 ≤ kx < π/q1 and
−π/q2 ≤ ky < π/q2 with q1 and q2 are positive non-zero integers. Divide the MBZ into small square
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(-π/3, -π)

ky

(-π/3, π)

(π/3, -π)

(π/3, π)

kx

(-π/3, -π) (-π/9, -π)

(-π/3, -7π/9) (-π/9, -7π/9)

U1(-π/3, -π)

U2(-π/9, -π)

U1(-π/3, -7π/9)-1

U2(-π/3, -π)-1

Figure C.1: Schematic of the discretized MBZ which is 3-times smaller along the kx direction for q1 = 1/3 and
q2 = 1. This asymmetry of the MBZ is due to our choice of the Landau gauge. We have considered N0 = 3 which
gives N1 = q2N0 = 3 (number of plaquettes along kx) and N2 = q1N0 = 9 (number of plaquettes along ky) direction.
The links variables for the first plaquette (shaded) of the lattice is shown from which the corresponding lattice field
strength F̃12(−π/3,−π) can be obtained using eq. (C.4). The Chern number of a band is obtained by adding the
lattice field strength of all the plaquettes.

plaquettes as shown in fig. C.1. The coordinates of each point ki in the discretized BZ are

ki = (kx, ky), i = 1, 2, . . . ,N1N2

kx = −
π

q1
+

2πi1
q1N1

, i1 = (0, 1, . . . ,N1 − 1)

ky = −
π

q2
+

2πi2
q2N2

, i2 = (0, 1, . . . ,N2 − 1). (C.3)

By choosing N1 = q2N0 and N2 = q1N0, each plaquette is a square with edge length 2π
q1q2N0

in both
directions. The Hamiltonian is diagonalized at these points of the BZ to obtain u(ki). From these discrete
states, a lattice field strength (a quantity analogous to Berry curvature or Berry flux) is defined for each
plaquette in the following way:

F̃12(ki) ≡ ln U1(ki)U2(ki + ê1)U1(ki + ê2)−1U2(ki)−1, (C.4)

with ê1 = 2π
q1q2N0

(1, 0) and ê2 = 2π
q1q2N0

(0, 1) are vectors in quasimomentum space in the kx and the ky
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direction. The U(1) link variables U1,2 for the eigenfunctions u(ki) is defined as

U1,2(ki) =
〈u(ki)|u(ki + ê1,2)〉
| 〈u(ki)|u(ki + ê1,2)〉 |

. (C.5)

From the definition of the lattice field strength eq. (C.4), it is clear that it is a gauge independent quantity
and can take values within the principle branch of logarithm, i.e. −π < 1

i F̃12 ≤ π. The Chern number of
the band is then obtained by adding the lattice field strength of all the plaquettes, i.e.

C =
1

2πi

∑
i

F̃12(ki). (C.6)

The Chern number computed through this procedure does not require gauge specification and has been
shown to reproduce correct values even for coarsely discretized BZ [59].

This method can be extended to the non-abelian Berry connection for computing the Chern number of
the bands which are touching each other. For the magnet Bloch bands (fig. 2.5(b)), the two innermost
bands are touching and hence I use the extension of the above method to compute their Chern number.
In general, for j touching bands separated by gaps from other bands, the modified non-abelian Berry
connection is a j× j matrix associated with the multiplet (u1(ki), u2(ki), . . . , u j(ki)), and has the following
form

Ã1,2(ki) =



〈u1(ki)|u1(ki + ê1,2)〉 〈u1(ki)|u2(ki + ê1,2)〉 · · · 〈u1(ki)|u j(ki + ê1,2)〉
〈u2(ki)|u1(ki + ê1,2)〉 〈u2(ki)|u2(ki + ê1,2)〉 · · · 〈u2(ki)|u j(ki + ê1,2)〉

...
...

. . .
...

〈u j−1(ki)|u1(ki + ê1,2)〉 〈u j−1(ki)|u2(ki + ê1,2)〉 · · · 〈u j−1(ki)|u j(ki + ê1,2)〉
〈u j(ki)|u1(ki + ê1,2)〉 〈u j(ki)|u2(ki + ê1,2)〉 · · · 〈u j(ki)|u j(ki + ê1,2)〉


. (C.7)

The corresponding link variable is then obtained by taking the determinant of Ã1,2(ki), i.e.

Ũ1,2(ki) =
det Ã1,2(ki)
| det Ã1,2(ki)|

. (C.8)

The corresponding field strength and the Chern number of the bands is obtained using the definitions
given in equations (C.4)-(C.6). For the example shown in fig. 2.5(b), the modified non-abelian Berry
connection is a 2 × 2 matrix (for the two touching bands) and the Chern number is computed using the
above procedure. The resultant value of the Chern number is an integer similar to that in the abelian case
(fig. 2.5).

91





APPENDIX D

Particle–Hole Symmetry of the Harper
Hamiltonian

I briefly discuss the PHS of the Harper Hamiltonian, as a result of which the Chern number of a magnetic
Bloch band with energy E is equal to the one with energy −E. This symmetric distribution of the Chern
numbers is exemplified in Chapter 2. For details on other symmetry properties of the Harper Hamiltonian,
we refer the readers to the paper by X. G. Wen and A. Zee [56].

Due to the presence of PHS, the energy values of the Harper Hamiltonian come in pairs, i.e. for each
state ψ j,l with an energy E there exist a state ψ′j,l = (−1) j+lψ j,l with an energy −E. The two states are then
called particle-hole symmetric partners. I show the existence of this symmetry by closely following [55].
By putting the ansatz for the wavefunction

ψ j,l = e−i jkx e−ilkya j | j〉 (D.1)

in the Schrödinger equation
Ĥψ j,l = Eψ j,l, (D.2)

with the Hamiltonian Ĥ given in eq. (2.27). This gives,

Eψ j,l = −J(ψ j+1,l + ψ j−1,l + ei2πφ jψ j,l+1 + e−i2πφ jψ j,l−1). (D.3)

Now putting ψ
′

j,l = (−1) j+lψ j,l in the Schrödinger equation D.2, we have

− Eψ′j,l = −J(ψ′j+1,l + ψ′j−1,l + ei2πφ jψ′j,l+1 + e−i2πφ jψ′j,l−1). (D.4)

This shows that the wave function ψ
′

j,l is also a solution of the Schrödinger equation but with energy
−E. This confirms the fact that for each eigenstate ψ j,l with an energy E of the Harper Hamiltonian,
there exists a state ψ′j,l with an energy −E. By making use of the generalized Bloch periodicity of the
wavefunction eq. (D.1), i.e. ψ j+q,l = e−iqkxψ j,l and ψ j,l+1 = e−ikyψ j,l, eq. (D.3) reduced to the eigenvalue
equation

Ekx,ky a j = −J(e−ikx a j−1 + eikx a j+1 + 2 cos(2πφ j − ky) a j), (D.5)

which is same as eq. (2.34). Similarly eq. (D.4) reduced to the eigenvalue equation

− Ekx,ky a′j = −J(e−ikx a′j−1 + eikx a′j+1 + 2 cos(2πφ j − ky) a′j), (D.6)
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which is again same as eq. (2.34) but with E → −E. This can also be written as

Ekx,ky a′j = −J(e−i(kx+π) a′j−1 + ei(kx+π) a′j+1 + 2 cos(2πφ j − (ky + π)) a′j), (D.7)

which by comparing with eq. (D.5) shows the fact that an eigenstate associated with a magnetic Bloch
band of positive energy is related to the one with negative energy by the relation

a j(kx, ky) = a′j(kx + π, ky + π). (D.8)

PHS transforms a state with an energy E to a state with an energy −E and in addition results in a shift in
the quasimomentum space, i.e.

(
kx, ky

)
→

(
kx + π, ky + π

)
. As a result, the energy dispersion of a band

with positive energy E+
kx,ky

is related to the dispersion of a band with negative energy E−kx,ky

E+
kx,ky = −E−kx+π,ky+π. (D.9)

Due to the relationship between two particle-hole symmetric partners states (eq. (D.8)), the Chern
numbers of the corresponding two magnetic Bloch bands have that same integer values.
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APPENDIX E

Chiral Symmetry of the Magnetic Quantum Walk
Protocol

There are conical band touching points for the 2D QWs (see fig. 4.2 (left)). In the case without magnetic
field, there are four such band touching points, at

K±,∓ =
(
kx = ±

π

2
, ky = ∓

π

2

)
, ε = 0; (E.1)

K±,± =
(
kx = ±

π

2
, ky = ±

π

2

)
, ε = π. (E.2)

We now show that these band touching points are topologically protected Weyl points, due to CS – similar
to the Dirac points of graphene.

Chiral Symmetry in Periodically Driven Systems

CS is a unitary TRS. In a periodically driven system with time step operator Ŵ, a CS is represented by Γ̂,
if

Γ̂ŴΓ̂ = Ŵ†; Γ̂† = Γ̂−1 = Γ̂. (E.3)

A consequence of the CS of the timestep operator is the CS of its effective Hamiltonian Ĥeff., defined by
the relation Ŵ = e−iĤeff. . If the timestep operator Ŵ is chiral symmetric, we have

Γ̂Ĥeff.Γ̂ = −Ĥeff.. (E.4)

In the chiral basis, i.e. in the basis where Γ̂ is diagonal, i.e. Γ̂ = 1 ⊕ (−1), the bulk effective Hamiltonian
is off-diagonal,

Γ̂ =

(
1 0
0 −1

)
; Ĥeff(k) =

(
0 h(k)

h(k)† 0

)
. (E.5)

If the Hamiltonian has a bulk gap around zero energy, and it lives in odd dimensions, this brings with
itself a bulk topological invariant, a winding number. In the 1D case, this can be written as,

ν[h] =
1

2πi

∫ π

−π
dk

d
dk

ln det h(k), (E.6)
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where we defined the real-valued functional ν, the winding number of a periodic matrix-valued function.

Chiral Symmetric Timeframe

The 2D QW we consider is chiral symmetric. To show that, I write the time step operator in a chiral
symmetric timeframe. As a first step, I break down the shift operators and the magnetic field operator to
two separate steps, operating on the spin-up part of the wavefunction first, and the spin-down second. For
the shift operators, this reads,

Ŝ d = Ŝ d,↓Ŝ d,↑; (E.7)

Ŝ d,↑ =
∑

x
|x + ed〉 〈x| ⊗ |↑〉 〈↑| + |x〉 〈x| ⊗ |↓〉 〈↓| ; (E.8)

Ŝ d,↓ = σ̂x(Ŝ d,↑)†σ̂x. (E.9)

For the magnetic field operator, this is done by,

F̂ = F̂↓F̂↑; (E.10)

F̂↑ =
∑

x
eiBx |x〉 〈x| ⊗ |↑〉 〈↑| + |x〉 〈x| ⊗ |↓〉 〈↓| ; (E.11)

F̂↓ = σ̂xF̂†
↑
σ̂x. (E.12)

I have Used the notation x = (x, y) ∈ Z2, d ∈ {x, y} and ed is d-direction unit lattice vector. It is the
spin-flip operator σ̂x that will represent CS of the 2D QW. To show this, we need to write the timestep
operator in a chiral symmetric timeframe.

Ŵ′ = F̂↑Ŝ y,↑ĈŜ x,↑Ŝ x,↓ĈŜ y,↓F̂↓ (E.13)

In case there is no magnetic field, the bulk timestep operator reads,

Ŵ′(kx, ky) =
1
2

(
e−ikx−iky − eikx−iky −e−ikx − eikx

e−ikx + eikx −e−ikx+iky + eikx+iky

)
. (E.14)

Expanding this to first order around the gap closing points, using q = k − K, we find:

K±,± : Ŵ′(qx, qy) ≈ −1 + i(±qxσ̂y + qyσ̂z) (E.15)

K±,∓ : Ŵ′(qx, qy) ≈ 1 + i(±qxσ̂y − qyσ̂z). (E.16)

Topological Charges of the Nodes

The nodes are topologically protected. To put this in formulas, we can evaluate the winding number
around each node. To rewrite the effective Hamiltonian in the chiral basis, we need to do a unitary
transformation which takes σ̂x → σ̂z. A suitable transformation uses (1+ iσ̂y)/

√
2, and takes σ̂x → σ̂z,

σ̂y → σ̂y and σ̂z → −σ̂x. Thus, in the chiral basis, the effective Hamiltonian, linearized around the
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nodes, reads

K±,± : Ĥeff.(qx, qy) ≈
(
−π −qy ∓ iqx

−qy ± iqx −π

)
; (E.17)

K±,∓ : Ĥeff.(qx, qy) ≈
(

0 −qy ± iqx

−qy ∓ iqx 0

)
. (E.18)

We can evaluate the winding number using a circle of infinitesimal radius q around the nodes. We just
need to rewrite the top right off-diagonal element h of the Hamiltonian around the nodes,

qx = q cos(ϕ); qy = q sin(ϕ); (E.19)

K±,± : h = ∓iqe∓iϕ; =⇒ ν = ∓1, (E.20)

K±,∓ : h = ±iqe±iϕ; =⇒ ν = ±1. (E.21)

Thus all of these nodes carry a topological charge, a winding number of the Hamiltonian around the node.
The charges of the nodes at the same quasienergy are apposite.

Half-Timestep Operator

A sufficient but not necessary requirement for CS is

Ŵ = Γ̂F̂ †Γ̂F̂ . (E.22)

If that holds, we have two chiral symmetric timeframes, and not one but two topological invariants. This
is a special feature of periodically driven systems, and is connected to the fact that there are two chiral
symmetric quasienergies, i.e. ε = 0 and ε = π. The corresponding topological invariants can be obtained
directly from the blocks of the operator F̂ (k) in the chiral basis,

Γ̂ =

(
1 0
0 −1

)
; F̂ (k) =

(
a(k) b(k)
c(k) d(k)

)
; (E.23)

ν0 = ν[b]; νπ = ν[d]. (E.24)

The spin-flip operator σ̂x represents the CS of the walk here. To show this, we need to write the time step
operator in a chiral symmetric time frame,

Ŵ′ = σ̂xF̂
†σ̂xF̂ ; (E.25)

F̂ = Ŝ x,↓ĈŜ y,↓F̂↓. (E.26)

In the bulk, the matrix of the half-timestep operator F̂ , when there is no magnetic field, is

F̂ (kx, ky) =
1
√

2

(
1 0
0 eikx

) (
1 −1
1 1

) (
1 0
0 eiky

)
=

1
√

2

(
1 −eiky

eikx eikx+iky

)
. (E.27)

This is written in the spinor basis, where |↑〉 = (1, 0)T and |↓〉 = (0, 1)T , i.e. the eigenbasis of σ̂z. We need
to unitary transform it into a basis where the CS operator σ̂x is diagonal. This basis transformation is
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obtained by (1 + iσ̂y)/
√

2, and we obtain

F̂ (kx, ky) =

(
a(k) b(k)
c(k) d(k)

)
=

1

2
√

2

(
1 1
−1 1

) (
1 −eiky

eikx eikx+iky

) (
1 −1
1 1

)
; (E.28)

with

a(k) =
(
1 + eikx − eiky + eikx+iky

)
/(2
√

2); (E.29)

b(k) =
(
−1 − eikx − eiky + eikx+iky

)
/(2
√

2); (E.30)

c(k) =
(
−1 + eikx + eiky + eikx+iky

)
/(2
√

2); (E.31)

d(k) =
(
1 − eikx + eiky + eikx+iky

)
/(2
√

2). (E.32)

Weak Topological Invariants

This is a bulk 2D Hamiltonian, with CS. Along the lines of constant ky or kx we can define winding
numbers, the weak topological invariants. For example, at a fixed ky, we can define the winding number
controlling the 0-quasienergy behaviour as

ν0,x(ky) = ν[b]
∣∣∣
ky

=
1

2πi

∫ π

−π
dkx

d
dkx

lnb(kx, ky). (E.33)

We can find the topological invariants using a graphic solution. For example, to obtain ν0,x(ky), I plot
the curve of b(kx, ky) on the complex plain, at a fixed ky, as a function of kx. This is a circle of radius∣∣∣1 − eiky

∣∣∣ around the point −1 − eiky . The winding number will thus be 1 if the radius of the circle is
larger than the distance of its center from the origin, and 0 otherwise. Thus, the winding number is 1 if∣∣∣1 − eiky

∣∣∣ > ∣∣∣−1 − eiky
∣∣∣, equivalently, if

∣∣∣sin(ky/2)
∣∣∣ > ∣∣∣cos(ky/2)

∣∣∣, which gives

ν0,x(ky) = 1 if
∣∣∣ky∣∣∣ > π/2, and 0 otherwise. (E.34)

In a similar way, I obtain the other winding numbers:

νπ,x(ky) = 1 if
∣∣∣ky∣∣∣ > π/2, and 0 otherwise. (E.35)

ν0,y(kx) = 1 if |kx| > π/2, and 0 otherwise. (E.36)

νπ,y(kx) = 0 if |kx| > π/2, and 1 otherwise. (E.37)

Thus at the gap closing points the winding numbers indeed change.
In the presence of a magnetic field, the elements of the half time step operators F̂ (kx, ky) are square

matrices whose dimensionality depend on the the strength of the magnetic field. I have numerically
confirmed, for the case φ = 1/3, that CS symmetry exists and the weak topological invariants can be
obtained by putting the determinants of the matrix b(k) and d(k) instead of b(k) and d(k) in eq. (E.33).
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APPENDIX F

Computing Topological Invariants of the
Magnetic Quantum Walks from the Spectral
Flow

In this appendix, we show how to calculate the topological invariant ν as the spectral flow induced by an
extra magnetic field. For the purpose of the calculation, I modify the unitary walk operator with an extra
pseudo-magnetic field. Importantly, the vector potential corresponding to this extra magnetic field does
not vary inside the unit cells. The corresponding unitary operator Fextra[β] is defined by

Fextra[β] = e−iσzβbx/qc, (F.1)

where bx/qc is the greatest integer smaller than or equal to x/q. We take β = m/M, with m and M relative
prime integers. In fact, only β = 0 and β = 1/M are needed. Thus, the unit cell of the system has to be
enlarged: it has size 1 along y, but width Mq along x. The full magnetic field operator reads

F1[β = m/M, B] = eiσz{βbx/qc+B(x mod q)}. (F.2)

Finally, I push the quasienergy gap of interest (for which I want to compute the topological invariant) in
to the BZ boundary, by multiplying the unitary walk operator by a factor eiε. Thus, the modified QW
operator reads,

W1[β, B, ε] = eiεF1[β, B]e−iσzkye−iσyπ/4S xe−iσyπ/4, (F.3)

with twisted boundary conditions along x with phase kx. The eigenvalues of this operator are denoted by
e−iε j[β,B,ε], with j = 1 . . . , 2Mq. The formula for the topological invariant of the gap reads,

νε[B] =
1

2π

2Mq∑
j=1

ε j[1/M, B, ε] −
2Mq∑
j=1

ε j[0, B, ε]

 . (F.4)

The numerically obtained values of the invariants are shown in fig. F.1. The DOS (normalized to the
total number of states) is also shown, which indicates the positions of the bulk gaps. The invariants of the
gaps are calculated for a single value of kx and ky; however, we have checked that their values do not
depend on quasimomentum. The computed values agree with the number of edge states shown in fig. 4.5
(b).
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Figure F.1: Spectral flow ν calculated using an extra magnetic field. M = 10, with DOS overlaid (colored shading)
to give an impression of where the bulk bands are. In the band gaps, the spectral flow reproduces the topological
invariants (thick black lines).
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