IAP logo UniBonn logo
  • Increase font size
  • Default font size
  • Decrease font size

Quantum technologies

Dieter Meschede's research group
Home AMO physics colloquia
  • Cord Müller

  • Invited speaker: Prof. Dr. Cord Müller
    Affiliation: National University of Singapore
    Title: Hot Times For Cold Atoms In Random Potentials
    Time and room: 17:15  lecture hall IAP

  • Axel Pelster

  • Invited speaker: Prof. Dr. Axel Pelster
    Affiliation: TU Kaiserslautern
    Title: Dipolar Bose-Einstein Condensates With Weak Disorder
    Time and room: 17:15  lecture hall IAP
    Abstract: The talk discusses several illustrative examples where ultracold dilute atomic gases provide important insights into condensed matter physics. We start with reviewing the properties of Bose-Einstein condensates (BECs) with the anisotropic and long-range dipole-dipole interaction. To this end we investigate the influence of quantum fluctuations upon the equilibrium configuration, the low-lying oscillation frequencies, and the time-of-flight dynamics. We find that both atomic magnetic and molecular electric dipolar BECs offer promising scenarios for detecting beyond mean-field effects. Furthermore, we report on recent progress in understanding the properties of ultracold bosonic atoms in potentials with quenched disorder. This notoriously difficult dirty boson problem is experimentally relevant for the miniaturization of BECs on chips and can also be studied by tailoring disorder potentials via laser speckle fields. Theoretically it is intriguing because of the competition of localization and interaction as well as of disorder and superfluidity.
    Finally, we combine both previous topics and consider the impact of weak disorder upon a
    polarized dipolar BEC at zero temperature. Surprisingly we find that disorder corrections of the
    superfluid density yield characteristic interaction-induced anisotropies which are not present in
    the absence of disorder.

  • Markus Lippitz

  • Invited speaker: Prof. Dr. Markus Lippitz
    Affiliation: Max-Planck-Institut für Festkörperforschung, Stuttgart
    Title: Nonlinear Spectroscopy Of A Single Nanoobject
    Time and room: 17:15  lecture hall IAP
    Abstract: Nanoobjects with a size between 1 and 100 nanometers show fascinating properties that deviate strongly from those of bulk solids. The plasmon resonance of metal nanoparticles or the electron confinement in quantum dots are prominent examples. However, even in the best preparation methods, nanoobjects differ from each other in size, shape, or local environment. Experiments on the single particle level allow the experimenter to circumvent the ensemble heterogeneity. In this presentation I will demonstrate nonlinear optical spectroscopy of a single nanoobject.

    Single nanoobjects, especially at room temperature, show only a weak interaction with light, as only a low number of electrons is involved. Nonlinear optical signals which are already weak for a bulk solid become difficult to detect. I will show how an optical nanoantenna is able to enhance the signal of a single nanoobject so that nonlinear spectroscopy becomes possible. We investigate the mechanical breathing mode of a single gold nanodisc by antenna-enhanced transient absorption spectroscopy [1].
    Very large optical nonlinearities can be found on optical two-level systems such as semiconductor quantum dots. Their quantum-optical properties find use as single photon source or quantum bit. However, to be really used, a quantum bit needs to be connected to some kind of circuit. I will give an overview of our work on coherent reading and writing of quantum bits [2] and their coupling to plasmonic nanocircuits [3].

    [1] T. Schumacher et al. , “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle”, Nature Commun. 2 (2011) 333.

    [2] C. Wolpert et al., “Transient reflection: A versatile technique for ultrafast spectroscopy of a single quantum dot in complex environments”, Nano Letters 12 (2012) 453.

    [3] M. Pfeiffer et al. , “Enhancing the Optical Excitation Efficiency of a Single Self- Assembled Quantum Dot with a Plasmonic Nanoantenna”, Nano Letters 10 (2010) 4555.

  • Adam Cohen

  • Invited speaker: Prof. Dr. Adam Cohen
    Affiliation: Harvard University
    Title: Controlling Light-Matter Interactions: From Superchiral Light To Magnetochemistry
    Time and room: 10:15  lecture hall IAP
    Abstract: Through careful engineering of light-matter interactions, one can achieve surprising levels of control over molecular states, even under ambient conditions.  I will give two examples in which we achieve large enhancements, under ambient conditions, in what are normally very small optical effects.  First I will describe the theory and experiment underlying "superchiral" light, i.e. light that can preferentially excite a chiral molecule of one handedness relative to the mirror image molecule, with selectivity far greater than that of circularly polarized plane waves.  Then I will describe experiments in magnetochemistry, where minuscule magnetic fields have large effects on photochemical reactions under ambient conditions.

    [1] Y. Tang and A. E. Cohen “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light” Science, 332, 333-336 (2011);
    [2] Y. Tang, A. E. Cohen “Optical chirality and its interaction with matter” Phys. Rev. Lett., 104, 163901 (2010);
    [3] H. Lee, N. Yang, A. E. Cohen “Mapping nanomagnetic fields using a radical pair reaction” Nano Letters, 11, 5367-5372 (2011)

  • Prof. Jonathan Keeling

  • Invited speaker: Prof. Jonathan Keeling
    Affiliation: St. Andrews University
    Title: Non-equilibrium Coherence in Light-matter Systems: Condensation, Lasing and the Superradiance Transiton
    Time and room: 17:15, lecture hall IAP
    Abstract: I will discuss theoretical questions prompted by recent experiments on cold atoms in optical cavities [1], and on exciton-polaritons in microcavities [2], discussing the relation between the emergence of coherent light in these systems and ideas of superradiance, Bose-Einstein condensation and lasing. All of these phenomena involve the appearance of coherent fields, but the details of the transition, and the nature of the coherent system differ. In particular, I will discuss the ingredients needed that allow the microcavity polariton system to show coherence while remaining in the strong coupling regime [1], and I will discuss how recent experiments on cold atoms [1] succeed in undergoing the superradiance transition, despite the "no-go theorem" [3] for this transition in equilibrium. Both the cold atom and the exciton polariton systems are intrinsically non-equilibrium, with pumping and decay, and I will explore some of the consequences this has for properties of the coherent state of these systems.

    [1] K. Baumann, C. Guerlin, F. Brennecke and T. Esslinger, Nature 464, 1301 (2010); J. Keeling, M. J. Bhaseen and B. D. Simons Phys. Rev. Lett 105 043001 (2010); [2] J. Kasprzak et al, Nature 443 409 (2006). J. Keeling and N.G. Berloff Contemporary Physics 52 131 (2011); [3] K. Rzazewski, K. Wodkiewicz and W. Zakowicz, Phys. Rev. Lett. 35 432 (1975)