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Recently we have demonstrated scalable, nondestructive, and high-fidelity detection of the internal state of
$7Rb neutral atoms in optical dipole traps using state-dependent fluorescence imaging [M. Martinez-Dorantes,
W. Alt, J. Gallego, S. Ghosh, L. Ratschbacher, Y. Volzke, and D. Meschede, Phys. Rev. Lett. 119, 180503
(2017)]. In this paper we provide experimental procedures and interpretations to overcome the detrimental effects
of heating-induced trap losses and state leakage. We present models for the dynamics of optically trapped atoms
during state-dependent fluorescence imaging and verify our results by comparing Monte Carlo simulations with
experimental data. Our systematic study of dipole force fluctuations heating in optical traps during near-resonant
illumination shows that off-resonant light is preferable for state detection in tightly confining optical potentials.
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I. INTRODUCTION

Spatially resolved detection of individual neutral atoms
in optical potentials has paved the way towards observation
of quantum many-body phenomena all the way down to the
individual atom level. For many of the potential applications
in the field of quantum simulation and quantum information
processing with cold neutral atoms, however, it is essential not
only to record spatial distributions of atoms but also to detect
their internal qubit states in situ. In current experiments the
detection of the qubit state of multiple atoms, encoded in their
hyperfine ground state, is achieved by removing atoms in one
of the qubit states from the optical trap with a resonant light
pulse; subsequently the remaining atoms are imaged in a state-
insensitive way [1]. This so-called push out method achieves
high fidelities for arrays of neutral atoms, but has the disadvan-
tage of being intrinsically destructive. The reloading of atoms
lost from their optical trapping potentials, for example, limits
the duty cycle of experiments and fully hinders the application
of feedback in quantum error correction algorithms.

Efficient single-shot readout without atom losses has previ-
ously been achieved for single atoms coupled to high-finesse
optical cavities [2-5]. More recently this has been extended
to individual atoms trapped by optical tweezers in free space
using single-photon counters for state-selective fluorescence
detection [6,7] and in state-dependent optical lattices where
the internal state is mapped onto the atom’s position [8].

In this paper we investigate the processes underlying state-
selective fluorescence that has recently been used to demon-
strate fast, simultaneous, and nondestructive state imaging
of neutral atoms [9,10]. We show that, contrary to usual
detection settings, off-resonant light is preferable over resonant
light when the atoms are trapped in tightly confining optical
potentials.

A. State detection by fluorescence imaging

State-selective fluorescence consists of addressing a cycling
transition of an atom with laser light, such that it will scatter
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a considerable amount of photons, if the atom was initially
in the bright (B) qubit state, and practically no photons if it
started in the dark (D) qubit state. If a sufficient number of
scattered photons is detected, the original state of the atom can
be inferred by statistical analysis.

In practice, the ideal case of well-separated counting distri-
butions for bright and dark state atoms is impaired by several
imperfections: leakage between the bright and dark state due to
off-resonant light scattering fundamentally constrains the state
determination fidelity for a given photon detection efficiency
and atomic level structure. In contrast to trapped ions, where
state detection fidelities beyond the requirements of fault-
tolerant error correction are routinely achieved [11,12], neutral
alkali atoms lack high-lying metastable states that allow for
electron shelving techniques. For neutral atoms, commonly
trapped in shallow optical potentials, also the motional dynam-
ics caused by near-resonant scattering of light plays a decisive
role: The balance of heating and cooling processes caused by
photon recoil, differences in the trap potentials of ground and
excited states, and Doppler and sub-Doppler cooling effects
determine the time at which atoms are lost from the trap during
the illumination process and thus how many photons can be
detected.

B. Structure of the paper

In this paper we study the coupled dynamics of the
internal and external degrees of freedom during photon
scattering. In Sec. II we introduce the experimental setup for
state-dependent fluorescence imaging of neutral atoms. In
Sec. III the model of atom cooling and heating dynamics in
optical potentials induced by near-resonant light scattering is
presented. Analytic and theoretical results obtained by Monte
Carlo (MC) simulations are validated with measurements for a
range of parameters. Section IV focuses on the details of state
detection based on fluorescence imaging, including population
leakage and detector imperfections, and Sec. V concludes with
a discussion about the applicability of our results to other cold
atom experiments. In the Appendices, the measurement of the
experimental photon detection efficiency and the algorithm of
the Monte Carlo simulation are described in more detail.

©2018 American Physical Society
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II. EXPERIMENTAL SETUP

In the experiment, neutral 3’ Rb atoms are confined in a red-
detuned optical dipole trap at a wavelength of Apy = 860 nm.
The optical potential with a maximal trap depth for the
electronic ground states of Uy = kgx3.5mK (with kg the
Boltzmann constant) is a standing-wave formed by two coun-
terpropagating laser beams focused to a waist radius of 4.8 pm.
The atoms are directly transferred into the dipole trap from
a small magneto-optical trap (MOT) loaded from rubidium
background vapor in the ultra-high-vacuum chamber [see
Fig. 1(a)]. The initial spatial distribution of atoms in the trap
is then compressed [13] to within the Rayleigh length of the
dipole trap beams to reduce the inhomogeneity of the potential
depths experienced by the atoms.

Optical molasses illumination by the MOT cooling and
repumping beams cools the atoms in the dipole trap to a
steady-state temperature of about 80 uK. Their fluorescence
light is collected by two in-vacuum, high numerical aperture,
aspheric lenses and imaged onto an EMCCD camera with a
measured magnification of 35.4 and a total photon detection
efficiency of 2.9% (see Appendix A). The high signal-to-noise
ratio image is used for precise determination of the atoms’
positions in the lattice (position detection imaging, PI) [14].

In order to realize state detection imaging (SI) that is
sensitive to the initial hyperfine state, i.e., bright images for
atoms initially in the |F =2,mp =—2) state and dark images
for atoms in the F =1 hyperfine manifold, the atoms are
illuminated by a single state detection beam (SDB). The beam
is circularly polarized and tuned near the |2,—2) — |3/,—3’)
transition. Its propagation direction is precisely aligned with
the quantization axis of the atoms, which is jointly defined by

the magnetic bias field of 1.5 G and the electric-field direction
of the linearly polarized optical dipole trap. The circularity of
the o~ illumination light has been experimentally optimized
to reduce off-resonant excitations to the states |2',—2') and
|2’,—1'), thereby suppressing the dominant population leakage
channel from the bright state into the dark manifold during state
detection [see insets in Fig. 1(a)]. The excellent control over the
light polarization obtained by using a single illumination beam,
however, comes at the cost of losing the three-dimensional (3D)
Doppler polarization gradient cooling during photon scattering
of bright atoms. As a consequence, survival of the atoms in
the optical trap decreases for longer state detection intervals,
and a careful choice of illumination parameters is necessary
to optimize both state detection efficiency and atom survival
probability.

Measurement sequence

To characterize the state detection imaging technique, we
determine the number of scattered photons and the atom loss
probability as a function of the illumination time for atoms in
the bright and the dark state. For this purpose the atoms are
subjected to the sequence of alternating PI and SI shown in
Fig. 1.

During PI the dipole trap depth is held at kg x 1.5 mK and
molasses illumination is applied during 20 ms with cooling
light at an intensity of 3/, intensity and a detuning of —4.4T"
relative to the unshifted |2,—2) — |3’,—3') transition together
with repumping light (F = 1 — F = 2) with an intensity of
about 1/, intensity.

For state detection imaging we explore the parameter space
by varying the dipole trap depth Uy and the SDB detuning
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FIG. 1. Experimental setup and measurement sequence. (a) Schematic view of the experimental setup with propagation directions and
polarizations of the various light fields, and the orientation of the magnetic (B) field. For state-dependent imaging only a single near-resonant
state detection beam (SDB) is employed to scatter photons on the |2,—2) — |3’,—3’) cycling transition. Fluorescence light from the atoms is
collected by two opposing lenses and reflected by a Porro prism used to form a single overlapped image on an EMCCD camera. (b) Diagram of
the experimental sequence used to characterize the atom survival probability and the mean error of the state detection (see text for details). (c)
Typical set of images acquired by the EMCCD camera for position detection imaging (PI) and state detection imaging (SI) during one iteration
of the experimental sequence. For the purpose of state detection, the counts in images acquired during SI are integrated for individual atoms

over the respective region of interest (white boxes).
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Aspg, intensity Ispg, and illumination time fspg. The SDB
is applied to atoms optically pumped into the bright [SII in
Fig. 1(b)] and into the dark state [SI2 in Fig. 1(b)]. We also
record an image without illumination [SI3 in Fig. 1(b)] to
characterize atom losses that are not related to the SDB. By
comparing the atom positions using PI before and after SI,
the atom loss probability related to the illumination process is
determined.

The experimental results are presented in Secs. III C 3 and
III D 3. In order to interpret the measurements we first present
a physical understanding of the dynamics of the atom in the
dipole trap illuminated by the SDB.

III. HEATING DYNAMICS OF OPTICALLY TRAPPED
ATOMS UNDER NEAR-RESONANT ILLUMINATION

In standard methods for laser cooling of atoms, such
as Doppler, polarization gradient, Raman, microwave, elec-
tromagnetically induced transparency, and cavity cooling
schemes, atoms are illuminated by near-resonant fields. The
associated population of excited states causes optically trapped
atoms to experience a dipole force frequently opposing the
confinement action of the optical lattice. In practice, the cooling
schemes are not limited by this effect and it is commonly
assumed that the anticonfining potentials are not relevant for
the motional dynamics of the atoms during near-resonant
illumination [7]. In consequence, their heating contribution
has not received adequate theoretical attention [15] since the
early days of laser cooling [16,17] and only recently it has been
considered to improve Raman cooling in an optical lattice [18].
For our state-selective near-resonant illumination conditions
with a single SDB, the absence of continuous 3D cooling
means that all heating effects must be considered. In the
following sections, we first summarize the heating induced
by photon recoil (Sec. IITA). Then, we introduce a model
for the anticonfining excited-state potential (Sec. IIIB) and
analyze in detail the effect of the dipole force fluctuation for
two different regimes: for a weak, resonant SDB (Sec. IIIC)
and for an intense, detuned illumination field (Sec. IIID).
We present the results of Monte Carlo simulations for both
heating mechanisms and compare the theoretical models to
experimental data.

A. Photon recoil heating

To quantify the heating induced by photon recoil during
the illumination process, we assume that each scattering
event induced by a single, near-resonant light field with
wavelength Agr, = 27 /kgp, increases on average the kinetic
energy of an atom with mass m by an amount comparable
to twice the recoil energy Ey.. = hzkﬁb /2m. By furthermore
making the approximation that an initially cold atom is lost
once its average energy exceeds the ground-state trap depth
Uy, it takes on average N = Uy/2E . photons to lose an
atom. This number would simply be proportional to the trap
depth and, for instance, correspond to & 4800 photons for
Uy = kg x3.46 mK.

B. Dipole force fluctuations

In addition to photon recoil heating, the random dipole
force fluctuation (DFF) caused by excitation and decay from

the anticonfined exited state couples the atom’s internal and
external degrees of freedom. We will show that DFF in deep
optical potentials can severely reduce the number of scattered
photons of the SDB before an atom is lost from the trap. We
take advantage of the simplicity of our experimental setup to
quantitatively measure and interpret this heating mechanism.
The goal is to develop models that describe DFF heating
induced by photon scattering in optical potentials for parameter
regimes that are relevant to fluorescence imaging for a wide
range of neutral atom experiments [19].

State-dependent optical dipole trap potential

We begin our theoretical treatment of an atom that simulta-
neously interacts with the two relevant light fields by highlight-
ing the different mechanisms with which the dipole trap and
the SDB contribute to the dynamics of the atom: The strong,
far-detuned dipole trap is responsible for trapping and repulsive
forces for the electronic ground and excited state that determine
the atomic motion. The homogeneous illumination by the
near-resonant SDB, on the other hand, mainly gives rise to
fluorescent transitions between the internal states of the atom.

The properties of the atoms perturbed by the far-off-
resonant light field, including their dipole transitions, still
correspond closely to the bare atomic states. We thus approx-
imate the atomic states relevant for photon scattering by the
unperturbed bright ground state |g) = |2,—2) and optically
excited state |e) = |3/,—3’) with position-dependent energy
shifts as sketched in Fig. 2. The dipole trap induced scattering
(<0.08 photons per millisecond) is much smaller than the
scattering rate due to the SDB and it is therefore neglected.
Using these approximations, the Hamiltonian for the dipole
trapped atom is given by

2
Appr = f—m + [hiwo + Uo(0)]le)(e] + Uglg) gl (1)
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FIG. 2. Dynamics of an optically trapped atom during fluorescent
scattering according to the picture of absorption and emission jump
events. (a) Photon scattering is assumed to give rise to instantaneous
transitions of the atom between the trapping potentials of the ground
and excited state. (b) Simplified potential shapes of the toy model.
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where wy is the atomic resonance frequency in free space,
U,(r) and U,(r) are the conservative potentials induced by the
dipole trap for the ground and excited state, respectively, and
U, (0) = Up.

Iluminating the atom with the near-resonant SDB induces
transitions between the two states and their associated poten-
tials and therefore drives a coupled evolution of the internal
and external degrees of freedom. As a result, trapped atoms
in a coherent superposition of ground and excited states will
experience a splitting of their atomic wave packet. A fully
quantum-mechanical treatment of the problem, e.g., using
quantum Monte Carlo methods [20-23], quickly becomes
impracticable due to the large number of motional states in
the deep, anharmonic, three-dimensional potentials. For two
limiting regimes, however, the problem can be approximated
using methods that treat the motion of the atoms classically.

In the regime of weak, resonant illumination (Sec. IIIC),
where spontaneous scattering dominates, we neglect coherent
evolution of the internal atomic state and consider transitions
between the ground- and excited-state potential, and vice versa,
as instantaneous photon absorption and emission events.

In the regime of an intense, detuned illumination field
(Sec. IIID), we describe the interaction with the illumination
light using the dressed state (DS) formalism and consider pho-
ton scattering as transitions between dressed states. These cases
are discussed in detail below and compared with measurements
for a wide range of experimental parameters.

C. Heating induced by weak resonant illumination

To illustrate how jumps between different conservative
potentials caused by instantaneous absorption and emission
of SDB photons lead to heating of a trapped atom (see Fig. 2),
we first consider a simplified one-dimensional toy model of
the process.

1. Toy model for a one-dimensional harmonic potential

In order to obtain an analytic solution, the toy model
assumes a flat excited-state potential [see Fig. 2(b)]. We start
by considering an atom in the ground state at position x in the
trap with momentum p and total energy E = U, (x) + p*/2m.
After an excitation from the ground state, the atom remains in
the excited state for a time ¢, where in the absence of a confining
potential it travels at constant velocity for a distance Ax = %t.
Once it decays back to the ground state, the energy change due
to the displacement is given by AE = U, (x + Ax) — U,(x).

By Taylor expanding the ground-state potential and by
assuming an exponentially distributed time in the exited state
(with time constant I'"!), we obtain

B [e¢} (n L n
(AE), = ; Ung>(Fm> 2)

for the mean energy change per scattering event at position x,
where (-), denotes the average over time and " indicates the
nth derivative.

In a one-dimensional conservative potential every point x in
the trap is crossed equally often in the forward and backward
direction, i.e., with positive and negative momentum. There-
fore averaging Eq. (2) over time the odd terms in the expansion

cancel and only the even powers in momentum remain:

e} 2n
(AE), = U“"&)(L) . 3)
; 8 I'm

Assuming small displacements, i.e., excited-state lifetimes that
are short compared to the trap oscillation time, the first term in
Eq. (3) dominates for many practical configurations of optical
traps, including standing-wave potentials, and we can write

2
(AE), ~ U;’m(%) . @)

This means that the average net energy change induced due to
DFF is caused by the curvature of the trapping potential and that
positive and negative curvatures lead to heating and cooling,
respectively. DFF heating is strongest along the axis of the
tightly confining, optical, standing-wave potentials, whereas
weaker effects are expected along the radial direction of fo-
cused Gaussian beams associated with lower trap frequencies.

By approximating the ground-state potential of the atom
as a purely harmonic potential (U,(x) = U/,  x*/2), we can
furthermore calculate the energy change per scattering (i.e.,
combined absorption and emission) event:

2Weonst E
(AE), = / pao(X, E)(AE) (x)dx = ————,  (5)
mI’

where we have averaged over the position probability distribu-
tion ppo(x,E) = 1/m/x2,, — x* of the harmonic oscillator.
Xmax 18 the position of the turning point of the atom with total
energy E = U,(x) + p?/2m [24]. According to Eq. (5) pure
DFF heating would give rise to an exponential energy gain of
the atom during fluorescent scattering.

To compare heating due to DFF with the additional energy-
independent heating effects caused by photon recoil, we
consider an atom trapped in a standing-wave optical potential
Ul ~ —Uokd, for low energies) with optical depth Uy and
dipole trap laser wavelength Apr = 27 /kpr. We find that,
for the simplified potential shapes in our model, the energy
increase per scattered photon due to DFF,

(AE), . 4z, UoE

= , 6
Erec A3 T2 ©

can become larger than the photon recoil heating rate for trap
depths that exceed

)»DTFh

> ~ k%300 K. 7)

Rb
The analytic toy model presented here provides an intuitive
understanding of the DFF heating mechanism, but considers
neither the repulsive potential for the excited state U, nor
the strong anharmonicity of the potentials. These two effects,
which are expected to lead to additional heating and cooling
contributions, respectively, are considered in the Monte Carlo
treatment in Sec. III C 2.

2. Monte Carlo simulation of heating

In order to perform a quantitative comparison with our
experimental data, we have carried out a simulation of the
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heating effects during fluorescent scattering, which accurately
represents the experimental system, including the anharmonic,
three-dimensional nature of the optical potentials. Early, pio-
neering studies of the dynamics of optically trapped atoms by
Gordon and Ashkin [16] and Dalibard and Cohen-Tannoudji
[17] determined momentum diffusion coefficients from semi-
classical models to investigate the motional dynamics in state-
dependent potential using Fokker-Planck equations (FPEs).
With coefficients and FPEs for the total energy, atom loss due
to heating in conservative optical traps was also studied (under
the assumption of harmonic confinement) by calculating the
evolution until the energy of the particle exceeds the trap
depth [25].

In the case of optically trapped atoms illuminated with near-
resonant light, numerical simulations of the atom dynamics
based on FPEs are complicated by the strongly position-
dependent light shifts in deep optical potentials. The position-
dependent shifts of the effective detuning for the SDB modify
the local photon scattering rates and thereby couple the motion
degrees of freedom along the three trap axes. For this reason
we have implemented a classical Monte Carlo simulation to
reproduce the coupled evolution of the internal and external
degrees of freedom due to photon scattering.

The trajectory-based approach of a MC calculation more-
over makes it easier to include additional scattering channels
of the multilevel atom, which can lead to the transfer of the
atom into the dark hyperfine manifold.

The MC simulation for the DFF model implements the full
heating dynamics in the picture of absorption and emission
jumps by numerically solving the equations of motion in the
confining and anticonfining potential, for atoms in the ground
and excited state, respectively. For an atom in the ground state,
the next photon absorption event is randomly chosen according
to the position- and velocity-dependent [26] instantaneous
scattering rate (see Appendix B1). Each absorbed photon
adds one recoil momentum to the atomic motion along the
propagation direction of the SDB. Following photon absorp-
tion the atom remains in the excited state for a time ey,
which is randomly chosen from the exponential distribution
o(t) = I' exp(—TI"t) before it decays back to the ground state.
Each spontaneous emission adds one recoil momentum along
a direction that is randomly chosen according to the dipole
radiation distribution of sigma polarized light. Further details
regarding the simulation, including the modeling of transitions
to the dark state, are provided in Appendix B 2.

For comparison with the experimental data we also simulate
the recoil model neglecting all DFF effects, i.e., only consid-
ering energy changes by photon recoil (see Sec. III A). The
MC simulation for the recoil model ignores the excited-state
potential and calculates the trajectory in between scattering
events as if the atom remained in the ground-state potential U,
throughout. The effects due to photon recoil and the random
sampling of photon absorption and emission times are treated
identically to the DFF model.

3. Measurements of heating versus trap depth

The measurements to study the heating induced by DFF
in the weak resonant excitation regime are performed using
experimental sequences similar to the ones described in Sec. 11

and Fig. 1. For three depths of the dipole trap Up meas = kB X
{0.28,0.7,3.46} mK, atoms in the bright state are illuminated
by the SDB with detunings (relative to the unshifted atomic
resonance) of Agpp meas = 277 X{6,15,79} MHz, respectively.
In this way the SDB is approximately resonant with the ac light
shifted |g) — |e) transitions at the points of maximal energy
splitting (x = 0), for all three trap depths, respectively. The
intensity of the homogeneous illumination by the SDB is set
t0 0.015/gy.

At each trap depth we determine for various illumination
times the number of scattered photons during SI (using the
recorded number of photons and the independently measured
photon detection efficiency of Appendix A) and extract the sur-
vival probabilities considering the preceding and subsequent
PI (see Fig. 1). The measurements are shown in Figs. 3(a)-3(c)
together with the results of the two different theoretical models
explained below.

4. Comparison of experiment and theory

In Fig. 3 the number of scattered photons and the survival
probability for weak resonant illumination are compared with
the results of Monte Carlo simulations of the recoil model and
DFF model. For each of the models we perform the simulation
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FIG. 3. Dynamics under weak resonant illumination for different
depths of the optical trap. (a) Survival probability and (b) number of
scattered photons as a function of the illumination time for an atom ini-
tially trapped in the bright state. The simulation results obtained for the
best-estimate values of the independently characterized experiment
parameters are indicated by the blue dashed and red solid lines for the
recoil and the DFF model, respectively. The shaded region indicated
the uncertainty of the simulated results (see text for details). (c) The
survival probability for a given number of scattered photons, which
is a more important figure of merit for nondestructive, state-selective
fluorescence imaging. Error bars of the experimental data in this and
all further plots of the paper indicate 95% confidence intervals.
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using the best-estimate values of the independently measured
trap depths Up meas, i1lumination intensity Ipeas, and detunings
Aneas- The shaded bands indicate the uncertainties in the sim-
ulation when considering the uncertainties of the experimen-
tal parameters (Upsim = Uo.meas £ 4%, Isim = Imeas £ 20%,
AspB sim = AspB.meas = 1 MHz). Assuming adiabatic ramping
of the trap potentials from the initial molasses configuration,
the initial temperatures of the atoms used for the calculations
are T = {30,50,110} uK, for the shallow, intermediate, and
deep trap, respectively. The comparison in Figs. 3(a) and 3(b)
shows that the predictions of survival probability and the
number of scattered photons as a function of time are sensitive
to small changes in the experimental conditions. Changes in
the detuning and the intensity strongly modify the rate at
which the atoms scatter photons. A more important figure
of merit is, however, the total gain of energy per scattered
photon. This can be visualized when plotting the survival
probability as a function of the number of scattered photons
[Fig. 3(c)]. This quantity is insensitive to small experimental
uncertainties. At the lowest value for the trap depth (Up meas =
kg x0.28 mK) DFF heating does not play a significant role
compared to photon recoil heating [see Eq. (7)] and both
models (recoil and DFF) yield similar results and agree with
experimental data. With stronger confinement of the atoms
(Uo,meas = kx0.7 mK) DFF heating starts to dominate over
recoil heating. The total number of photons scattered before
an atom is lost decreases despite the large increase in the trap
depth of the optical potential (U meas = kg x3.46 mK).

For weak resonant illumination we have thus found (for our
particular optical trap geometry) a strict limit of a few hundred
fluorescence photons that can be scattered before an atom is
lost.

D. Heating induced by intense detuned illumination

We now investigate the scattering of light from atoms in
optical trap potentials using larger detunings for the SDB and
higher intensity. For intense, nonresonant illumination, the
coherences in the evolution of the atom, which are not captured
in the bare-state absorption and emission picture, cannot be
neglected anymore.

To intrinsically include the coherent atom-field coupling
into our model for the motional dynamics of the system, we
make use of the dressed state formalism [27,28] following a
similar approach as in Ref. [18]. We start with

H= ﬁA—DT + ﬁSDB + I:IA-SDB,

Hspp = thDB(&gDB&SDB)’ (8)
1 spB
2

A, 5B (6'asps + 6 ﬁ;DB),

where we consider the coupling with the nonresonant SDB
in the rotating wave approximation and treat the effect of the
dipole trap again as position-dependent ac Stark shifts to the
atomic transitions [see Eq. (1)]. EzéDB and dspg are the creation
and annihilation operators, and 2o spg and wspg denote the
resonant Rabi frequency and the angular frequency of the SDB,
respectively.
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FIG. 4. Dressing of the states of an optically trapped atom by
intense, detuned near-resonant illumination. (a) Two-level atom in
the dipole trap illuminated by the homogeneous SDB. (b) Examples
of dressed state potentials with Uy = 3.46 mK and Qsps/27 =
35MHz for Aspg/2m = —5MHz (top) and Agpg/2m = +39 MHz
(bottom). For the first case, the atom is never in resonance with the
SDB, and for the second the atom is in resonance with the SDB at
ro & +0.5Ap7/4. (c) Photon scattering in the dressed state picture.
An atom trapped in a dressed state potential transitions to another
dressed state potential by removing one photon from the SDB and
emitting it into free space.

1. Near-resonant light dressed state potentials

The eigenstates of the Hamiltonian in Eq. (8) are the SDB-
dressed states

|+, Nspg) = sin(0(r))|g, Nsps)
+ cos(8(r))le,Nspg — 1), 9

|—=.Nspg) = cos(6(r))|g, Nsps)
— sin(6(r))|e,Nspp — 1), (10)

where the mixing angle is defined by

1 Q
0= Earctan(—oA’—leB) + %H(Al),
Ug(r) — U.(r)
Ay(r) = ASDB"’gT- (11)

Here, H() denotes the Heaviside step function, Agpg =
wspp — wo is the detuning of the SDB from the atomic
transition of the untrapped atom, and A (r) represents the total
detuning of the SDB at position r, which takes into account
the ac Stark shift induced by the dipole trap [see Fig. 4(a)].
The eigenenergies corresponding to the new dressed states in
Eq. (9) are

E+ spg = Nsppliwsp + U+(r) (12)
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with
h
UL(r) = U,(r) + 5[—A1(l‘) + Qg ()], (13)
where Qgpp(r) =,/ A%(r) + Q%’SDB is the generalized Rabi
frequency.

For large (red or blue) detunings (|A(r)| 3> Qo spp) of the
SDB from the resonance, the potentials for the SDB-dressed
states U, (r) are almost identical in shape to the original
dipole trap potentials, whereas at resonance (A(rp) = 0) the
curvature of the dressed state potentials (see Fig. 4) is modified
by the occurrence of anticrossings.

2. Photon scattering without change of potentials

The full dynamics between the SDB-dressed states due to
photon scattering is described by the optical Bloch equations
(OBE?5). In the secular approximation that applies for large
detunings or intense fields (2o spg,|A1(r)| > I') the OBE in
the dressed state basis can be can be written as [17]

Py =T pip +T__p__,
pe=—T_p_+T pis, (14)
P1— = —(iR20,5pB + Lcon) 04—,

where p;; = ZN (i,Nspslpl|j,Nsps), i € {+,—} are the re-
duced populations and coherences. The reduced coherences
decay towards their vanishing steady-state value at the decay
rate I'eop = I'( % + cos? 9 sin?9). Equation (14) neglects nona-
diabatic transitions induced by the motion of the trapped atoms
in the position dependent DS potential [17], which is a valid
approximation for the case (A{(r) > Q0 sps).

The transition rates between the dressed states are given by
[17]

I',, =Tsin*6cos’6, I'_, =T sin*6,

ry,_ = I cos*o, [__ = I'sin’# cos? 6. (15)

In the case of red detuning (A(r) < 0) the transition rates
evaluate to

Q 2
- W( O,SDB> Crar

2A4(r)

r,~ F<QO,SDB>4’ ~ F<QO,SDB)2‘ (16)

2A4(r) 2A4(r)

Due to the relative strength of the transition rates, atoms
most strongly populate the state | — ,Nspg) and most likely
decay |—,Nsps) — |—,Nsps — 1) during steady-state photon
scattering. As a consequence, for most photon scattering events
the atom is confined by the same trapping potential (U_) and
hence no energy change due to DFF occurs (see Fig. 4). In
analogy, photon scattering happens predominantly between
(U4) potentials for blue detuning (A(r) > 0).

3. Measurements of heating versus detuning

The experimental setup and sequence to explore the heating
for different illumination conditions are described in Sec. II.
Using a trap depth of kgx3.46 mK, the survival and the

number of scattered photons were measured as a function of
the illumination time for different sets of SDB parameters. For
SDB detunings in the range Agpg /27 = +38 and +112 MHz
data were taken at a SDB intensity of 0.6 Iy, while for the
larger detunings in the range Agpp/2m = —12 to +39 MHz
and at +123 MHz the data were recorded at intensities of
4 I and 1.9 Iy, respectively. For a few selected detunings
the time-dependent survival and photon scattering curves are
shown in Fig. 5. The full set of recorded data has been used
to compute the results in Fig. 6, which shows the survival
probabilities for a given number of scattered photons, as a
function of the SDB detuning. This quantity, which represents
a relevant figure of merit for nondestructive, state-selective
fluorescence imaging, is clearly optimized for large blue or
red detunings of the SDB.

4. Comparison of experiment and theory

The measured, time-dependent survival and photon scatter-
ing curves in Fig. 5 are plotted with the theoretical results of
Monte Carlo simulation from three different heating models.
The first two models are the recoil model and the DFF
model introduced in Sec. III C 2. In the third model (dressed
state DFF model) the three-dimensional equation of motion
is solved for the atoms in the DS potentials of Eq. (13).
The jump events between the DS potentials are chosen in
the MC simulation according to the population changing
rates in Eq. (15). The parameters assumed in the simulations
have been adjusted within their experimental measurement
uncertainties (see Sec. A) t0 Iy = 0.815 lexp, AspBsim =
ASDB,exp + 0.5 MHz, Up sim = 0.96 UO,exp’ and T = 140 uK
to improve the fit of the recoil and dressed state DFF model
to the data with large blue or red detuning. For illumination
settings (Aspg = {—5,38,113} MHz in Fig. 5), where atoms
scatter most of the photons with large red or blue effective
detunings [A;(r)] the dressed state DFF model agrees well
with the measurement data and predicts heating dynamics
that are dominated by the recoil effect. At smaller detunings
(Asps = 85MHz in Fig. 5), the dressed state DFF model
predicts increased heating by dipole force fluctuations from
transitions between dressed state potentials and continues to
agree better with the measured data than the recoil or the
DFF model. For weak resonant excitation (Aspg = 66 MHz
in Fig. 5) the secular approximation used in the dressed state
DFF model fails and it underestimates the heating effect. This
regime is well described by the DFF model of Sec. IIIC.

We conclude that the heating process for atoms in standing-
wave optical potentials due to photon scattering can be
well described in two different regimes by simple clas-
sical models. In the intermediate regime, however, a full
quantitative description would have to consider the effect
of coherences of atomic states and nonadiabatic transitions
due to Landau-Zener crossing, which are neglected in our
models.

IV. STATE-DEPENDENT FLUORESCENCE IMAGING

Fluorescence-based state detection as described in Sec. I A,
relies on distinct photon count signals for atoms that are
initially in the bright or the dark state. In previous sections
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FIG. 5. Fluorescence dynamics under intense near-resonant illumination for different detunings and intensities. (a) Survival probability
and (b) number of scattered photons as a function of the illumination time for an atom initially trapped in the bright state. The Monte Carlo
simulation results for the dressed state DFF model are shown together with the pure photon recoil model and dipole force fluctuations DFF
model described in Sec. III C 2 (cf. Fig. 3). (c) The position dependent photon scattering rate and (d) the dressed state potentials U_[r = (x,0,0)]
and U, [r = (x,0,0)] are displayed for positions along the standing-wave trap axis. The trap depth is kg x3.46 mK.

we have shown that for atoms in strongly confining optical
traps high survival probabilities and a large number of scattered
photons can only be achieved by suppressing DFF heating with
either blue or red detuned illumination light.

A. Leakage to the dark state

Whereas both red and blue detunings lead to equal amounts
of energy transfer per scattered photon, the choice of detuning
gives rise to different leakage rates between the bright and the
dark states. In order to achieve the low leakage rates to the dark
state, that are required for high-fidelity fluorescence state de-
tection, the closed cycling transition relies on strong frequency
suppression in addition to high polarization purity. Figure 7(a)
shows the dominant leakage channel from the bright to the dark
F = 1 manifold due to off-resonant excitation of the transition
F =2 — F’ =2 by polarization contaminated 7t photons.
The state F' = 2 is separated in frequency from F’ = 3 by
Agep/2m = 266 MHz + Ac, where the last term accounts
for the ac Stark shifts induced by the dipole trap. The ratio
of excitation rates to the state F' = 2 and hence the transfer
rates to the dark state for blue and red SDB detunings of equal

magnitude A is then given by
(R=5)
Agep + A

RES(A)
R(A)
leading to a smaller leakage rate for blue detunings.
In order to experimentally determine transfer probabilities
to the dark state, atoms initially prepared in the bright state
(F =2,mp = —2) are illuminated by the SDB in a trap of

a7

kg x3.46 mK depth. To count the number of atoms transferred
to the state F' = 1, atoms in the state F' = 2 are removed using
the push-out technique and the remaining atoms are detected
in a subsequent reference image. Figure 7(b) shows the results
of measurement taken for three different frequency detunings
Aspp/2m = —5, 4 24, and 123 MHz, where the illumination
intensities of I /I, = 3.7, 1.2, and 3.2, respectively, have been
chosen such that the same number of photons is detected after
17.5 ms. The measurements confirm that the transfer to the
dark state is minimized for blue detuning.

B. State detection by threshold method

Combining the previous insights on heating and popu-
lation leakage during photon scattering, we now employ
state-dependent fluorescence imaging to perform high-fidelity
nondestructive hyperfine state readout for arrays of %’Rb
atoms in the optical standing wave. In our system the set of
experimental parameters with kgx3.46 mK trap depth and
Aspp/2m = 4123 MHz detuning and I = 1.9/, intensity
of the SDB represents a compromise between heating and
population leakage. These settings lead to the detection of
an average of ~31 photons from an atom in the bright state
during 10 ms of integration time. After the readout process,
98.4(2)% of the atoms in the bright and 99.1(1)% of the
atoms in the dark state remain trapped in the same lattice
site. Furthermore ~98% of the surviving atoms remain in
their initial state. Therefore, the presented method is not
only nondestructive, but also preserves the internal hyperfine
state.
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FIG. 6. Survival probability of atoms in the trap vs detuning of the SDB for a given number of scattered photons. The x axis shows the
detuning for free space (bottom) and for the ac Stark shifted atoms at the minimum of the trap (top blue). The results computed from the data
shown in Fig. 5 and the full data set described in Sec. III D 3 show that nondestructive, state-selective fluorescence imaging is best achieved

for large blue or red detunings of the SDB. The curves are not centered

at the ac Stark shifted resonance since the atoms spend most of the time

not at the bottom of the trap. Therefore, for A; < 0, the atoms become resonant with the SDB, which, however, does not occur for A; > 0.
The lines connecting the data points serve as guides to the eye. The small insets are a zoom into the data points for red (left) and blue (right)

detuning.

To quantify the fidelity of the state detection method, we use
the experimental sequence described in Sec. II and depicted
in Fig. 1. The counting statistics for the bright and dark
state shown in Fig. 8 has been compiled from the region-of-
interest binning of the EMCCD counts in state detection image
for 1.5x10* well-resolved atoms that have been prepared
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ES @ Ay /21 = +123 MHz
267TMHz 5 5 15 SbB
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FIG. 7. Leakage into the (dark) F = 1 state manifold. (a) ac Stark
shifts for a linear m-polarized dipole trap at 860-nm wavelength
interacting with 8’Rb. The numbers in the level diagram indicate the
shifts in units of MHz/mK trap depth. Only Zeeman levels relevant
to the fluorescent scattering are shown. Leakage into the dark state
occurs by spontaneous decay, subsequent to excitation into the F’ = 2
manifold by predominantly m-polarized contamination photons (see
the Appendices). (b) Atoms transferred to the state F' = 1 (top) and
number of detected photons (bottom) for different detunings and
illumination times. The lines represent a linear fit to the data (top) and
a guide to the eye (bottom). All error bars represent 95% confidence
intervals.

in the bright and dark state, respectively. The optimal thresh-
old for state discrimination Tgp is found as the threshold
value that minimizes the mean value of the state detection
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FIG. 8. Counting statistics for single atoms during fluorescence
state detection. The counts from the EMCCD camera are integrated
over the region-of-interest windows as illustrated in Fig. 1. (a)
Histogram of the number of detected counts for atoms prepared
in the dark state F' = 1. The inset highlights the low probability
events, which are expected during the 10-ms interaction time from
dark to bright state leakage in spite of the large 27 x6.8-GHz
detuning of the SDB. (b) Histogram for atoms prepared in the
bright state ' = 2,my = —2. The EMCCD count signal for a bright
atom corresponds to an average of ~31 detected photons. The
vertical blue line indicates the optimal discriminator value for state
detection by the threshold method. The area of each histogram is
normalized.
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error [6,7,11]

Er(T,|D) = /oo P(c|D)dc, (18a)
T

T

Err(T,|B):/ P(c|B)dc, (18b)
0

where P(c|S) are the normalized count distributions for

S=B,D. Applying the state detection to well-resolved atoms

we find a mean detection error for the threshold method of
1.4(2)%.

V. CONCLUSION

From the theoretical models and the experimental results
here presented we conclude the following.

(1) In optical traps with weak confinement (e.g., in running-
wave optical traps) the heating effects associated with the
different potential of the optically excited state can be neglected
compared to photon recoil.

(2) In optical traps with tight confinement (e.g., in deep
standing-wave lattices), illumination by weak resonant light
leads to strong DFF effects that are well described by the
semiclassical absorption and emission picture. In particular for
deep traps, the DFF becomes the dominant heating mechanism
and the scattering of only a few photons can lead to the loss of
the atom from the trap.

(3) DFF induced by the state detection beam is suppressed
using off-resonant illumination (|A;(r)| >> T'). This is of great
significance since it shows that deep optical lattices can be used
to increase the number of scattered photons without atom loss.

(4) The two models implemented in the Monte Carlo simu-
lations describe well the measured data for two experimentally
relevant regimes: When resonant light creates strong DFF and
when a large detuning suppresses the DFF.

(5) We have found adequate illumination settings for our
particular experimental system to perform spatially resolved,
high-fidelity state-dependent imaging. The detailed under-
standing of the underlying DFF heating processes presented
here, however, is general and can be useful for a wide range of
experiments with neutral atoms in optical potentials.
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APPENDIX A: DETECTION EFFICIENCY

All the information we obtain from the atoms is provided by
the detection of photons by the EMCCD camera. The collection
efficiency (CE) of a single aspheric lens (see Fig. 1) is obtained

by integrating the dipole emission pattern (o polarized in our
case) [29] over the solid angle subtended by the lens:

0=0, rd=¢o

CE, = / / —(cos 0 4+ 1)sin0dOd¢, (Al)

o=6. Jo=—g, 167
o i NA’ : (A2)

= arcsin _— |,
0 sin?¢  tan?0
4 .

0y = ) =+ arcsin(NA). (A3)

Using the numerical aperture of our system (NA = 0.43)
Eq. (A1) leads to CE, = 3.8%. The losses along the imaging
path and the camera’s quantum efficiency reduce the photon
detection by 50(10)%, leading to an overall detection efficiency
of 1.9(5)%.

We also directly measure the detection efficiency with the
following sequence. After loading a few atoms the trap is then
adiabatically reduced to 200 uK and switched off. The atoms
are illuminated for 10us by two beams: a z-propagating beam
resonant with the cycling transition |2,—2) — |2,—3) and a
repumper resonant with the transition F = 1 — F’ = 1. The
beams have an intensity of 21 I, and 14 I, respectively. We
detecton average Nger,; = 3.6 (Nger2 = 5.2) measured without
(with) the Porro prism.

To calculate the total number of photons that the atom emits
Nemit in the experiment, we assume that the atom scatters
photons like an ideal two-level system at a rate

Re=\5 77"
2)14+4A/T) +5

where s is the saturation parameter and A is the detun-
ing of the illumination light from the atomic resonance.
We assume an uncertainty of 10% on illumination inten-
sity and £2m x 2.5 MHz on the frequency. With these
considerations, the number of emitted photons is Nemir =
Rictprobe ~ 182“:%;. Finally, we compare the theoretical num-
ber of scatted photons and the measurement to determine de-
tection efficiency Dj = Nyet1/Nemit = 1.971035% and D, =
Net2/ Nemit = 2.871”8:(3);% using the Porro prism. The mea-
sured detection efficiency D; agrees with the expected value
calculated at the beginning of this section.

(A4)

APPENDIX B: DETAILS OF THE MONTE
CARLO SIMULATION

1. Photon scattering statistics

The Monte Carlo simulation considers two important as-
pects of the photon scattering statistics in our system. First, the
photon rate Ry is not constant due to the position dependent ac
Stark shift. Second, the multilevel structure of the atom leads to
the possibility of leakage into the dark state F = 1. To simulate
these effects we proceed as follows.

a. Position-dependent rates

As shown by Zipkes et al. [30] the random time be-
tween two scattering events can be efficiently sampled, if
a scattering rate has an upper bound Rg.(r) < Rpyax: For
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our model, an atom initially at a position ry moves in the
trapping potential during a time 7 drawn from the distribution
Prax = Rmax €Xp (—Rpax?). At the position r(t) we use the
rescaled rate g = Ry [r(7)]/Rmax to decide whether the scat-
tering event occurs by using an auxiliary random number
r € [0,1) drawn from a uniform distribution and check if
r<g.

b. Multiple scattering rates

We consider a system where a total of N independent
random events can take place and each event is character-
ized by an exponential distribution a p = R; exp (—R;t) with
rate R;. We decide which event occurs by defining T, =
min{ty,7, ...,Ty}, Where 7; are random numbers drawn from
their respective distribution. The event i for which 7., = 1; is
the one that takes place [31].

c. Leakage to a dark state

In order to determine the polarization impurity of the ideally
perfectly o~ -polarized beam SDB, we tune the SDB to be
resonant with the transition F = 2 — F’ = 2 and illuminate
atoms initially in the |2,—2) state. From the number of atoms
transferred to the state F = 1 and their distribution over Zee-
man states (which we obtain using microwave spectroscopy)
the polarization impurity and its polarization components
can be determined. We measure a total light impurity of
Peont/ Pioal & 1x1073 and find that the polarization impurity
of the light mainly consists of the 7 component (-5~ < 5%).
This allows us to simulate the state transfer with a simplified
model: Just the 7 component for the polarization is considered
and we assume that the events are instantaneous, i.e., the
dynamics while the atom is in the “wrong” mp state is
neglected.

2. Monte Carlo loop implementation for the weak resonant field

The simulation describes a neutral atom trapped in an
optical dipole trap interacting with a weak resonant field. In this
case the effects of polarization contamination are neglected.

(1) The atom is initially in the ground state |2,—2).

(2) The atom is initially at position ry with momentum py
and a total energy E( drawn from a Boltzmann distribution for
a given temperature 7.

(3) Calculate the maximum scattering rate Rp,x = Ry [A(r)]
for all energy-accessible positions.

(4) Draw a random time #; from the distribution p = R,
exp(— Rmax?)-

(5) Advance the system by time #; by solving the equations
of motion for U,(r) to obtain the position and momentum r;
and p; at time .

(6) A scattering event takes place with a probability g =
Ry.(r1)/Rmax- If there is a scattering event, add the photon

recoil due to absorption and then continue to point 7, otherwise
ro = r; and pp = p; and go back to point 4.

(7) The atom remains in the excited state for a time 1z,
drawn from the distribution p(¢) = I" exp (—I'#) where I is the
natural decay rate. The position and momentum of the atoms
are updated by solving the equations of motion for U,(r) and
the photon recoil due to emission is added.

(8) The simulation terminates if the energy of the atom is
larger than the trap depth or if the total simulation time has
reached the limit. Otherwise, the atom is again in the ground
state and go back to point 3.

3. Monte Carlo loop implementation
for the dressed state potentials

The simulation describes an atom trapped in the dressed
state potential created by the interaction with a near-resonant
field with an intensity / that contains a small polarization
contamination I, = I/250.

(1) Initial atomic parameters: The hyperfine state is |2, —2),
and the dressed state is | — , N)(|+, N)) for red (blue) detuning
of the SDB.

(2) The atom is initially at position ry with momentum pg
and a total energy Ey drawn from a Boltzmann distribution for
a given temperature 7.

(3) Calculate maximum rates for the current energy. These
are the decay rates I'+y ,I'++ (using the subindices for the
current dressed state) according to Eq. (15) and the scattering

rates for 77 contamination R, , and R, where
2,-2)~12,-1) 8€12,-2)~11,-1)
RE

sc linitial)— [finaly 18 Calculated using the Kramers-Heisenberg
formula for light polarizations Q = m,o [32].

(4) Draw random times from exponential distributions for
all the rates. We define t as the minimum for the drawn times
and identify the rate R(r) for the event that takes place and its
upper bound Rax.

(5) Advance the system by a time t by solving the equation
of motion for the current dressed state potential in Eq. (13).

(6) The scattering event takes place with a probability g =
R(r)/ Rmax- If the event does not take place then go back to
point 4.

(7) Update the new hyperfine or dressed state according to
the scattering event that has occurred, add the photon recoil to
the atom’s momentum, and calculate total energy.

(8) If the atomic state is |2,—1), change the state to either
|2,—2) with probability Py, or to |1,—1) with probability
(1 — Pyack), Where

g
RSCIZ—I)—»\Z,—Z) (r)

Re (1) + Ry, )(r)'

§C2,-1)— (2,2 $C2,—1)—>|1,~1

Prack = (B1)

(9) The simulation terminates if the energy of the atom is
larger than the trap depth, or if the total simulation time has
reached the limit, or if the hyperfine state is |1,—1). If none of
the previous conditions is fulfilled, then go to point 3.
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