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Abstract
We report on image processing techniques and experimental procedures to determine the lattice-site
positions of single atoms in an optical lattice with high reliability, even for limited acquisition time or
optical resolution. Determining the positions of atoms beyond the diffraction limit relies on
parametric deconvolution in close analogy tomethods employed in super-resolutionmicroscopy.We
develop a deconvolutionmethod thatmakes effective use of the prior knowledge of the optical transfer
function, noise properties, and discreteness of the optical lattice.We show that accurate knowledge of
the image formation process enables a dramatic improvement on the localization reliability. This
allows us to demonstrate super-resolution of the atoms’ position in closely packed ensembles where
the separation between particles cannot be directly optically resolved. Furthermore, we demonstrate
experimentalmethods to precisely reconstruct the point spread functionwith sub-pixel resolution
fromfluorescence images of single atoms, andwe give amathematical foundation thereof.We also
discuss discretized image sampling in pixel detectors and provide a quantitativemodel of noise sources
in electronmultiplying CCDcameras. The techniques developed here are not only beneficial to
neutral atom experiments, but could also be employed to improve the localization precision of
trapped ions for ultra precise force sensing.

1. Introduction

Detection andmanipulation of individual atoms on neighboring sites of an optical lattice have attracted great
interest in recent years for applications in quantum information processing [1–8], quantum simulations [9–13],
and very recently for studying strongly correlated Fermi systems at the single particle level [14–17]. Resolving
atompositions with single-site resolution represents a technological challenge, since in optical lattices the
distance between two lattice sites is on the order of the optical lattice wavelength. In fact, experiments relying on
atoms tunneling between lattice sites require short lattice constants since the tunneling rate decreases
exponentially with larger intersite separation.

Previously, we demonstrated that the number of lattice sites betweenwell-isolated atoms in a one-
dimensional (1D) optical lattice can be resolvedwith high reliability evenwith objective lenses ofmoderate
numerical aperture (NA) [4]. Single-atom localizationmethods are employed in our laboratories ever since to
measure the spatial probability distribution of atoms performing discrete-time quantumwalks [12, 18, 19].
Recent experiments in our laboratory beyond single particle physics require resolving the position of each
individual atom in small clusters at highfilling factors, evenwhen each lattice site is occupied [20]. By exploiting
the discreteness of the atoms’ positions in the lattice, we demonstrate in thismanuscript newmethods that
enable resolving clusters of atomswith high reliability. Super-resolving a cluster of atoms constitutes amuch
bigger challenge than resolving the distance between exactly two atoms, as we originally demonstrated [4].

Besides presenting a conceptually simple introduction to super-resolved fluorescence imaging of atoms and
to the related deconvolution problem, this work develops several newmethodswith respect to our original work
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[4], which include:Wiener deconvolution offluorescence images combinedwith a robust spectral-density-
estimation algorithm for afirst estimation of the atoms’ positions (section 6.3), a weighted nonlinear least
squares estimation of positions accounting for the experimentally characterized noise (section 5.2), and
inclusion of constraints of the atoms’ positions on the periodic lattice (section 6.4), as well as an optimal
algorithm for the iterative reconstruction of the line spread function of the imaging system (the analogue of the
point spread function (PSF) for 1D imaging) (section 4.1)withmathematical treatment of the convergence limit
(appendix C), and ameasurement of optical aberrations from single atom images (section 4.2).

In general, ourmethods for the analysis offluorescence images are closely related to those employed in
superresolutionmicroscopy of biological structures [21–23], or in astronomy,where stars appear as point-like
radiation sources [24]: knowing the exact number of emitters in an observed region of interest allows us to
determine the center position of each emitter with an uncertaintymuch smaller than thewidth of the PSF of the
imaging system. Super-resolution imaging relies on the precise knowledge of the properties of point-like atomic
emitters trapped in an optical lattice aswell as the detailed properties of background noise.

Light sources separated by less then anAbbe radius, ( )l=r 2NAA f (lf is thefluorescence radiation
wavelength and NA is theNAof the imaging system) formblurred, overlapping images, which cannot be optically
distinguished and require super-resolution techniques to be resolved. In thepast few years, theAbbediffraction
limit has prompted ultracold atomexperiments to develop objective lenseswith largerNAs in the range of

< <0.6 NA 0.8 to significantly enhance the optical resolution, thus allowing single lattice sites to beoptically
resolved [10, 11]. These experiments havedeveloped different solutions to the deconvolutionproblem: for
example, linear least-squaresfit offluorescence intensities by a sumof reconstructedPSFs on afixed lattice
combinedwith threshold criterion [10, 13, 15–17], deconvolution througha kernel function containing the PSF
information (thoughnot noise information) and threshold criterion [25], deconvolution through aGaussian
kernel combinedwith a threshold criterion [26], deconvolution byfitting different configurations of occupancies
on afixed lattice (thoughwithout specificallymentioningmethods to account for noise) [11], or simply using a
threshold criterion on the integratedfluorescence in thepixels corresponding to each lattice site [14]. A different
approachbased on electronmicroscopes has demonstrated evenhigher spatial resolution to resolve atoms in an
optical lattice, thoughwithout reaching the sensitivity level needed for detecting single atoms yet [27].

However, experiments working under conditions of a low signal-to-noise ratio or employing amoderately
largeNA (as is our case =NA 0.23) requiremethods that can extract themaximumphysical information on the
positions of atoms, especially when bunched in closely packed clusters. The Fisher informationmatrix provides
themathematical instrument to identify the fundamental limit on the information that an estimator of positions
can extract from afluorescence image (Cramér–Rao information bound) [28]: if such an estimator exists, than
this estimatormaximizes the likelihood function associatedwith the estimated quantity (i.e. positions). In this
sense, themaximum-likelihood estimator defines the gold standard for any image analysis technique. As argued
in section 6.3, we can approach this limit relying on a accurate knowledge of the line spread function and noise
characteristics [29].

Furthermore, wewould like to remark that the techniques and results demonstrated in this work could have
an impact even beyond neutral atom experiments. For example, themajority of techniques for photoactivated
localizationmicroscopy have been optimized for the situation of fully separated fluorophore, while we here deal
specifically with the opposite situation of bunched emitters (atoms) [30]. Ourmethods can alsofind application
to improve the localization precision of trapped ions, where displacements of the equilibriumposition are
recorded to sense extremely tiny forces on the yoctonewton scale [31–34]. Recently, the same techniques
presented in section 4.2 to quantitatively reconstruct optical aberrations have been employed, concurrently with
this work, to characterize the imaging systemof single trapped ions [34].

2. The deconvolution problem

The steps involved in the image formation—from the point-like atomic radiation sources to the final image on
the digital camera—are schematically depicted infigure 1 and summarized below:

(i) Optical diffraction by the imaging microscope transforms all radiation sources into blurred spatial
distributions. This process can bemathematically expressed as the convolution of the original distribution

( )O x y, with the PSF ( )P x y, , which represents the characteristic intensity distribution of an ideal point
source recorded by the imaging system. In case of a systemwhose optical response is translationally
invariant (isoplanatic behavior), thefluorescence image distribution reads

( ) ( )( ) ( ) ( ) ( )ò ò= * = - -
-¥

¥

-¥

¥
I x y P O x y P x u y v O u v u v, , , , d d . 1fluo

In case of a hard circular aperture, for example, the PSF of diffraction-limited aberration-free optical
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system is thewell-knownAiry disc pattern [35], whosefirstminimumcorresponds to r1.22 A , with rA being
the Abbe radius defined above.

(ii) A CCD detector samples and digitizes the image distribution ( ) [ ]I x y I x y, ,i j
, where xi and yj denote

the integer-valued horizontal and vertical positions of a sampling bin and the squared brackets in our
notation distinguish discrete from continuous distributions because in general ( ) [ ]=I x y I x y, ,i j

. In

fact, the discrete and continuous distribution aremathematically related through

[ ] ( ) ( ) ( ) ( ) òå= - D - D D - D -
=-¥

¥

-¥

¥
I x y x n y m n u m v I u v u v, , , , d d , 2i j

n m
i j

,
s s s p s s

whereDs represents the sampling spacing in the object plane, ( ) u v,p is the CCDpixel rectangular

function equal to D1 p
2 for u and v in the interval [ ]-D D2, 2p p and zero outside, withD < Dp s being

the size of the pixel projected onto the object plane (today’s CCDdetector haveD ~ Dp s). Likewise,
( ) u v,s is the sampling rectangular function equal to one for both u and v in the interval [ ]-D D2, 2s s

and zero elsewhere. Equation (2) represents the convolution of the continuous intensity distributionwith
the pixel response function ( ) u v,p (digitization), which ismultiplied by the 2D comb functionwith
spacingDs (discrete sampling) [36–38]. In order to prevent information loss by discrete sampling, the
Nyquist-Shannon sampling theorem shows that the PSF—or,more precisely, the Abbe radius—must be
imaged ontomore than twoCCDpixels, i.e., > Dr 2A s [39, 40].

(iii) Physical information contained in the recorded signal [ ]S x y,i j is partially lost due to diverse noise sources

affecting the image formation process. The effect of noise sources (see table 2 for a complete list) is taken
into accounted through an additive stochastic noise term [ ] x y,i j

, which is added to the fluorescence

intensity distribution:

[ ] [ ] [ ] ( )[ ] [ ] ( ) = + = * +S x y I x y x y P O x y x y, , , , , . 3i j i j i j i j i jfluo

Herewe assumed that the homogeneous background (by digitization offset, stray light, and dark currents
discussed in section 5.1) is subtracted from the signal so that the average value of the noise
vanishes, [ ]á ñ =x y, 0i j

.

In order to retrieve the original information ( )O x y, from [ ]S x y,i j , we need to invert equation (3) through
deconvolution.However, deconvolution problems are in general ill-conditioned, especially in the presence of
noise. A physicalmodel assumption—known as regularization—must be employed to constrain the solutions.
For example, atomswhich are strongly confined in an optical lattice aremodeled as identical, isolated emitters
characterized by only two parameters: positions and fluorescence intensity. Numerous deconvolution strategies
exist in the literature, differing in their effectiveness in constraining solutions and in the computational
resources required [41]. Our specific parametric deconvolution approachmainly relies on amaximum-

Figure 1. Schematic representation of image formation and information extraction.We retrieve the original atomic distribution
( )O x y, from themeasured fluorescence image [ ]S x y,i j by parametric deconvolutionwith the point spread function ( )P x y, of the

imaging system.Herewe use themodel assumption that atoms trapped in a 1Doptical lattice are line-like radiation sources: their
motion is tightly confined along the longitudinal direction (horizontal direction in the images) and optically not resolved (see
also section 4), while it is only loosely confined along the transverse direction (vertical).
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likelihood estimation constrained on a discrete lattice, for which afirst estimation of the atoms’ positions is
provided by the so-calledMUSIC (multiple signal classification) algorithm (see section 6).

3. The detection apparatus

3.1. The opticalmicroscope
The imaging systemdepicted infigure 2 realizes an infinity-correctedmicroscope: the fluorescence light emitted
by the atoms at l = 852 nmf is collimated by a diffraction-limited objective lens (effective focal length

=f 36 mm1 ) [42] and imaged onto an EMCCDdetector by a plano-convex tube lens (focal length =f 2 m2 ).
Themagnification of themicroscope is ~f f 552 1 , so that the Abbe radius ( m=r 1.9 mA ) of the PSF is imaged
over>6 pixels of theCCD camera, thus fulfilling the requirement by theNyquist–Shannon sampling theorem
to avoid information loss [39, 40].

We assembled themicroscope objective from four off-the-shelf spherical lenses, which are stacked into a
one-inch aluminumholder. By design the objective lens operates at the diffraction limit with aNAof
NAobj. lens=0.29. The objective lens was characterizedwith a shear-plate interferometer resulting in a peak-
valley wavefront distortion of less than l 4f over 90%of the clear aperture fulfilling Rayleigh’s quarter
wavelength rule [43]. The longworking distance (36.5 mm) allows the objective lens to bemounted outside of
the vacuum sufficiently far away from the vacuum cell to prevent reflected light frommolasses laser beams from
reaching the camera. Themicroscope objective ismounted on a three-axis translation stage and connected
through blackened tubes to the EMCCDdetector. Inside the tubes five sooted knife-edge apertures are placed

Figure 2. Illustration of the single-atommicroscope. A 1Doptical lattice produced by two counterpropagating laser beams (a) traps
atoms (b) in the object plane of a infinity-correctedmicroscope objective (c). Beam tubes (d) block stray light and reflections of
molasses beams (e) off the glass cell (f). A three-axis translation stage (g) allows precise alignment of themicroscope objective. A tube
lens (h) focuses the image onto an EMCCDdetector (i). Tubes and cube-mounted turningmirrors (j) bridge the distance between the
tube lens and the detector, while several built-in knife-edge apertures (k) and a narrow-band opticalfilter (l) further suppress
remaining stray light. The separation between two adjacent lattice sites in the object plane is imaged to m24 m in the image plane,
which amounts to about 1.5 CCDpixels (m).
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with gradually decreasing inner diameters to block stray light. To further suppress the remaining stray light a
narrow-band (3 nm FWHM) opticalfilter with a transmission of 98% at thewavelength lf is placed in front of
the EMCCDdetector. Over the past few years, single aspheric lenses with longworking distance (a few cm) have
becomewidely available, and their utilization represents a good alternative to build an imaging systemwith a
moderateNA ( < <0.2 NA 0.5).

3.2. Localization of trapped atomswith small number of photons
According toAbbe’s diffraction limit, the optical resolution of our imaging system is m=r 1.9 mA . However, to
achieve single-site resolutionwe need to extract the position of single trapped atomswith an uncertainty smaller
than the lattice spacing a (433 nm). In analogy to super-resolution imaging in biological systems, we can
determine the position of our atoms beyond the optical resolution by precisely knowing its PSF and the
underlying noise. Following [44], in one-dimension the localization precision of the fluorescence peak produced
by a single atom can be estimated by

( ) · ( )p s
D =

+ D
+

D
^x

N

n

N

rms 12 4 rms
, 42 PSF

2
p
2

PSF
3

b
2

p
2

where it is assumed that the fluorescence signal is integrated over n̂ pixels in the direction transverse to the
lattice, and that rmsPSF is the rms width of aGaussian PSF,Dp is the size of a camera pixel in the object plane,N is
the average number of recorded photons per atom, and sb is the rms background noise (see equation (9) in
section 5.1). In the literature, extensions of the result in equation (4) can be found for two-dimensions [45] and,
using the statistical theory based on the Fisher informationmatrix, for a generic disc PSF (e.g., Airy disc) [28].
The Fisher information approach, which for aGaussian PSF yields exactly equation (4), produces the
fundamental theoretical localization limit that can be attained (Cramér–Rao information bound). Note also that
the localization precision in equation (4) concerns only a single localized emitter, which is the case, for example,
of an isolated fluorophore in photoactivated localizationmicroscopy or of a very sparselyfilled optical lattice.
Section 6 is in particular concerned to super-resolve the position of emitters (atoms) clustered in small
ensembles, which constitutes a significantlymore demanding task. In addition, it should be noticed that, when
employing an electronmultiplying CCD (EMCCD) camera (as is the case of the present work), a factor 2must to
be added in front of rmsPSF

2 in equation (4) to account for the effectively halved quantum efficiency due to the
electronmultiplying excess noise (see section 5.1) [46].

In the following, we intend to give an estimate of the localization precision of our imaging systembased on
equation (4): the rmsPSF of our imaging system is m~1.5 m (see section 4) and the parameterDp can be
calculated by dividing the pixel size ( m16 m) by themagnification (~55, see section 3.1). The number of
photoelectrons ( -ph. e ) recorded on the EMCCD sensor per single atom can be estimated by knowing the
photon scattering rate, the solid angle of themicroscope objective intowhich photons are emitted, and the
exposure time. Atoms illuminatedwith nearly resonant light at lf emit photons at themaximal rate of G 2 for
strong saturation, with pG ~ ´2 5 MHz being the radiative decay rate for cesium.However, to prevent atoms
fromhopping along the lattice during imaging, the saturation parameter is typically chosenmuch smaller
[47, 48] ( ~s 0.01), which reduces the scattering rate by a factor of 10 ormore [49]. The solid angle directly
depends on theNAof the imaging system according to the formula ( )pW = - - ~4 1 1 NA 2 1%2 . By
additionally taking into account the finite quantum efficiency of theCCDcamera ( )l ~QE 30%f (see
section 3.3) aswell as photon losses (~6%) due to both reflections fromoptical surfaces (e.g. the vacuumglass
cell) and the transmission of the narrow-band optical filter (see section 3.1), we expect to detect about

-1000 ph. e per atom for a singlefluorescence imagewith an exposure time of =T 1 s. For comparison, in our
experiments we record about - -1300 ph. e s 1per atomas discussed insection 6.1. Themeasured background-
noise distribution, which is analyzed insection 5.2, has a rms width sb of about -0.6 ph. e per camera pixel.
Sincewe integrate the fluorescence images along the direction transverse to the 1Doptical lattice (see
section 4.1), the variance of the background noise sb

2 ismultiplied by the number of transverse pixels n̂
(typically ~n̂ 40). Hence, based on equation (4)we expect a localization precision ofD ~x 60 nm, which is
sufficiently smaller than the separation between two lattice sites. By using longer exposure times it is possible to
improve the resolution even further, however, at the cost of decreasing the duty cycle and increasing the
probability for atoms to either hop to adjacent lattice site or to be lost because of heating and background gas
collisions.Moreover, a slow drift of the entire lattice with respect to the imaging system ( -20 nm s 1 [5]) is
responsible for the existence of an optimal exposure time (estimated around 2 s for our system) beyondwhich
the localization precision deteriorates instead of improving, if the lattice drift is not suitably tracked and
accounted for. Such drifts are especially notable in case of imaging systemswith very high optical resolution, as
recently demonstrated through themeasurement of the Allan variance associatedwith the position uncertainty
of trapped ions [34].

5

New J. Phys. 18 (2016) 053010 AAlberti et al



3.3. The EMCCDdetector
In our experiment, the fluorescence signal of the atoms is detected using an EMCCDcamera (Andor iXon
DV897DCS-FI), whose read-out noise ismore than one order ofmagnitude smaller compared to that of
scientific-gradeCCD sensors. In fact, scientific-gradeCCD sensors are at present limited by a background noise
s > -6 ph. eb per pixel. The increased noise would deteriorate the localization precision estimated for our
systemby a factor of 6 (see equation (4)), therefore preventing reliable single-site resolution. To detect signals of
few photons, such asfluorescence of single atoms, alternative types of imaging sensors exist, which include
intensifiedCCD (ICCD) sensors andCMOS sensors. In appendix Awe provide a review of sensors suited for
few-photon-signal detection, and discuss technical noise sources inherent the different technologies are
discussed.Our EMCCDcamera employs a front-illuminated, frame-transfer, buried channel CCD sensor
(L3VisionCCD97) containing ´512 512 active pixels with a pixel size of m´16 16 m2. Ameasurement
comparing front- with back-illuminated sensors is given in appendix B. The quantum efficiency at the imaging
wavelength lf with the EMCCD sensor cooled to- 70 C is ( )l ~QE 30%f . It should be noted that the
efficiency decreases at lower temperatures for wavelengths>800 nm due to a temperature dependence of the
silicon band gap [50].

In EMCCD sensors, suppression of read-out noise is achieved through the serial electronmultiplying (EM)
register, which amplifies charges by impact ionization at each shift step, similar to a staircase avalanche
photodiode (see appendix A). The EM register of our camera comprises =N 536 shift steps. Even though the
probability of impact ionization at each individual step is only ~p 1.5%imp , due to the large number of steps,

themean gain of the cascadedmultiplication process ( )= +g p1 N
imp can reach valueswell above 1000. The

effect of its stochastic nature on the detection noise is discussed in section 5.1.

4. The atomic sources

To acquirefluorescence images with the detection apparatus described in section 3we trap atoms in a deep
lattice potential with lattice constant =a 433 nm and illuminate themwith a three-dimensional optical
molasses. The saturation parameter of the opticalmolasses and the lattice trap depth ( =U k 0.4 mKB ) are
chosen as such to prevent atoms fromhopping along the lattice direction. Figure 3(a) exemplarily shows a
fluorescence image of eight trapped atoms, which are loaded into a 1Doptical lattice in stochastic positions and
subsequently imagedwith an illumination time of1 s. The intensity distribution for each atom exhibits a
characteristic elliptical shape elongated along the radial direction of the optical lattice with an aspect ratio of

Figure 3. (a) Image of atoms in a 1Doptical lattice acquiredwith a 1 s exposure time. (b)The corresponding integrated intensity
distribution [ ]I xi . The image is subdivided into regions of interest (white regions) and regionswith nofluorescence signal (gray
regions), which are used to determine the constant background baseline (dashed horizontal line). The solid red line shows the result of
the parametric deconvolution, where the vertical dashed lines show the positions of the atoms constrained on a periodic lattice. The
distance of the atoms from the leftmost one are 18, 25, 58, 62, 67, 74, 115 lattice sites. (c)Normalized residuals between the integrated
fluorescence signal and thefittedmodel, resulting in a reduced c = 0.8352 .
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about 6:1 (FWHMalong the axial direction of m1 m). The elongated shape originates from the thermalmotion
of trapped atoms ( m~30 K by sub-Doppler cooling in the opticalmolasses) in the radial direction, alongwhich
the confinement is weaker. Along the lattice direction, instead, trapped atoms can be regarded as localized point
sources with aDirac-delta longitudinal distribution

( ) ( ) ( ) ( )d=O x y O y x, 5

with a certain radial intensity distributionO(y), because the extent of the axial thermalmotion (FWHM
~60 nm) aswell as the drift of the optical lattice ( -20 nm s 1 [5]) is one order ofmagnitude smaller than the
optical resolution. Being primarily interested in extracting the precise position of atoms along the optical lattice,
we integrate the acquired images along the radial direction ( [ ] [ ]= åI x I x y,i j i j ) as depicted infigure 3(b),
which reduces the deconvolution problem to a 1Done. The continuous curve overlappedwith the integrated
fluorescence signal shows the end result of the parametric deconvolution problempresented in section 6, which
yields the atoms’ positionswith single lattice-site precision. Figure 3(c) shows the residuals between the
reconstructed distribution and themeasured signal, normalized to the expected noise strength. The uniform
distribution of residuals with rms spread around one attests the quality of the parametric deconvolution, which
is ensured by an accurate knowledge of the LSF of the imaging system aswell as of the noisemodel. Themethods
to reconstruct the LSF are presented in following section 4.1, while the physical noisemodel is presented in
section 5 and the parametric deconvolution process is illustrated in the last section 6.

4.1. Reconstructing the line spread functionwith sub-pixel resolution
One key element to achieve a resolution beyond the diffraction limit is the accurate knowledge of the response of
our imaging apparatus.More precisely, it is important for the parametric deconvolution problem to know
exactly the imaged fluorescence intensity distribution of a single illuminated atom. The importance of an
accurate knowledge of this distribution is quantitatively demonstrated in section 6.4. In a 1Doptical lattice, the
problemof reconstructing the positions of atoms can be reduced to one-dimension by exploiting the factorized
formof the single-atomdistribution in equation (5). In fact, a single atompositioned at x=0 yields (see
equation (1)) a fluorescence distribution that integrated along the radial direction reads

( ) ( ) ( ) ( )ò ò=
-¥

¥

-¥

¥
I x y y L x O y y, d d , 6fluo

where ( ) ( )ò=
-¥

¥
L x P x y y, d represents the so-called line spread function. As argued in section 2, the response

function required in the deconvolution problem is the convolution of the optical line spread function L(x)with
the 1DCCDpixel function ( ) xp [51],

( ) ( )( ) ( )= *L x L x . 7CCD p

In the followingwe present ourmethod to reconstruct the LCCD functionwith increased signal-to-noise ratio
and sub-pixel resolution, which is based on superimposingmultiple intensity distributions of sufficiently
isolated atoms (for example, the rightmost atom infigure 3(b)). The superimposing process is generally referred
to as image registration in digital signal processing.

Wemake use of a recursive algorithm to process single-atom images, whose end result should ideally
converge to LCCD in equation (7). The algorithm is composed of a preparatory procedure followed by an iterative
one. Thefirst step of the preparatory procedure consists in identifying those regions of interest (ROI) containing
exactly one atomwell separated fromother atoms by several Abbe radii (typically 10) in order to allowus not
only to reconstruct the central peak of the LSF but also thewings containing the diffraction fringes. In the next
step, we apply a Fourier filter to each single-atom image to remove high-spatial-frequency noise. Thefilter
utilizes the fact that every optical systemwith a hard aperture has a cutoff in the optical transfer function (OTF),
defined as the Fourier transformof LCCD, exactly at the Abbe frequency l=r1 2NAA f . After discrete Fourier
transformation (DFT) of the integrated intensity distributions, the filter sets the amplitude of all frequencies
beyond the Abbe cut-off (typically> r1.2 A to reduce Fourier artifacts) to zero because these frequencies
components do not carry physical information ( =OTF 0 in this region). The effect of Fourier filtering is
significant for our imaging systembecause the Abbe frequency is three times smaller than theNyquist frequency
of -0.5 pixel 1—the frequency up towhich noise appears if notfiltered out. The last step of the preparatory
procedure to reconstruct the LSF consists in interpolating the noise-filtered single-atomdistributionswith sub-
pixel resolution, which allows us to reposition them in the subsequent iterative procedure with high precision.
Because of thefinite bandwidth of theOTF, the integrated fluorescence signal can be interpolatedwith an
arbitrary spatial resolution using theWhittaker–Shannon interpolation formula: we extend theDFT
fluorescence distribution in Fourier space beyond the Abbe cut-off with zero values (zero padding), so that the
number of points in the Fourier space is increased by an integer factor swith respect to the original number. The
inverseDFT of the zero-padded signal results in an upsampled distribution, where thewidth of a sub-pixel is
equal s1 of the original pixel’s width. The size of the sub-pixel is chosen smaller than the estimated localization
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precision (typically s= 8 so that = < Dx1 8 pixel 37 nm , seesection 3.2). An alternative yet equivalent
application of theWhittaker–Shannon interpolation formula operates directly in position space by convolving
the spatial distributionwith a sinc function.

The iterative part of the reconstruction algorithm consists chiefly of two steps. In thefirst one, we obtain the
position of each atomby a nonlinear least squares fit of themodel distribution LCCD to the recorded fluorescence
signal (see section 6 formore details). The precise (unrounded) value of the atomposition is used to shift and
align all noise-filtered sub-pixel-interpolated intensity distributions. Hence, superimposing all images gives a
reconstruction of thefluorescence distribution of a single atomwith a signal-to-noise ratio enhanced by a factor

Nat , where Nat is the number of superimposed single atoms (typically a few hundreds). The reconstructed
distribution Lguess provides uswith a new estimate of LCCD. The iterative algorithm stopswhen no change is
observed (typically after 5–10 iterations). For the first iteration, we use aGaussian function to determine the
position of single atoms in case no LSF function is a priori known.

Amathematical derivation (see appendix C) shows that this algorithm converges to

( ) ( )( ) ( )  = * * *L x L x , 8xguess sp p

instead of the desired expression in equation (7), wherex is the probability distribution of the nonlinear least
squares estimator of the single-atomposition for an atom ideally positioned in the origin x=0 (with a rms
widthD ~x 60 nm, see section 3.2), andsp the sub-pixel function equivalent to the pixel functionp but s
times narrower. Because the ‘blurring’ effect by both additional convolutions in equation (8) is on the order of a
few tens of nanometers, we conclude that ( ) ( )( )~ *L x L xguess p to a good approximation. For precise
reconstruction of the LCCD function, equation (8) shows that it is advantageous to increase the illumination time
in order to decreaseDx. The reconstructed LSF and the relatedmodulation transfer function ( ∣ ∣=MTF OTF )
are displayed infigure 4 and analyzed in detail in the following section.

4.2. Analysis of the reconstructed line spread function
Besides its importance to retrieve the atoms’ positions with themaximum localization precision (see
section 6.4), the line spread function contains valuable information about the performance of the optical system.
Since the influence ofp in equation (7) is small (ensured by theNyquist-Shannon condition > Dr 2A s), the
optical line spread function L is well approximated by LCCD. Figure 4(a) shows the reconstructed LSF obtained
with the algorithmoutlined in the foregoing section. In case of an aberration-free imaging system, the PSF is
described by thewell-knownAiry disk, whose corresponding LSF is displayed for comparison in the samefigure.
Besides an overall agreement, the reconstructed LSF exhibits a lowermaximumand a distinct asymmetry such
that the higher-order diffraction peaks are only visible on the left-hand side. These differences arise from
wavefront distortion caused by optical aberration.Mathematically, the PSF is defined by computing the
modulus square of the Fourier transformof the electric field (wavefront) at the pupil (Fraunhofer diffraction).
Thewavefront contains all information about optical aberrations and can be expressed in the basis of Zernike
polynomials [43]. To gain insight into the nature and amount of the optical aberrations affecting our optical

Figure 4. (a)The solid blue line shows the reconstructed LSF frommore than 200 single-atom images, the dashed–dotted black line
shows the ideal, diffraction-limited LSF derived from anAiry diskwith =NA 0.228, and the dashed red line represents thefitted
model based on awavefront expansion in Zernike polynomials. The dashed–dotted curve is normalized to have amaximumvalue of
1, while the other two curves are normalized to the same area of the dashed–dotted one. (b)Correspondingmodulation transfer
functions. All three curves show the hard cut-off at the Abbe frequency r1 A.

8

New J. Phys. 18 (2016) 053010 AAlberti et al



system,we fitted to the reconstructed LSF the one obtained from awavefront expansion in low-order Zernike
polynomials up to spherical aberration. Thefitted LSF is displayed in the same figure, demonstrating a
remarkable agreementwith the experimental curve. Thefit analysis reveals that the leading aberration
contribution arises from astigmatism. The detailed list of Zernike coefficients is given in table 1. Combining all
contributions in the table yields an overall rms wavefront error of l~ 17 (whereas the peak-valley deviation is
l 3), which corresponds to a Strehl ratio of 0.87 defined as the ratio between themaxima of themeasured PSF
and the ideal one.Note that the Strehl ratio, in general, differs from the ratio obtained analogously for the 1D
LSF (about 0.92, see figure 4). In addition, thewavefront analysis gives an estimate of the actualNAof the optical
system, ( )=NA 0.228 3 . The deviation between the estimatedNA and the one of the objective lens design
( =NA 0.29) ismost likely caused by clipping at the knife-edge apertures along the imaging path, see figure 2.
Concurrently with this work, a similar wavefront analysis based onZernike polynomials has been carried out to
characterize the aberrations affecting two-dimensional fluorescence images of single trapped ions [34].

Figure 4(b) shows themodulation transfer function of the reconstructed LSF compared to that of an
aberration-free optical system and of the fittedwavefrontmodel. TheMTFof an optical systemwith a hard
aperture has a simple, direct geometrical interpretation, which explains the shape as well as the hard cut-off. In
general, it can be shown that theMTF is directly computed by convolving the pupil functionwith itself, where
displacements of the electricfield distribution in the convolution integral directly translate into spatial frequency
units of theMTF [35]. Therefore, an optical systemwith a hard aperture, outside of which the pupil function is
strictly zero, results in a cut-off of theMTF at the Abbe frequency. This cut-off also provides a directmethod to
extract the actualNAof the optical systemwithout resorting tofittingwavefront distortions.

4.3. Isoplanatic regions
The deconvolution problemdescribed in section 2 relies on a translationally invariant response of the optical
system.However, in real systems the LSF varies over thefield of view because of optical aberrations primarily due
to coma.Due to spatial variations, the localization precision of the atoms’ positions is reduced if a single LSF is
employed over the full field of view. In the literature, regions over which the LSF remains effectively unchanged
are known as isoplanatic regions. To characterize the homogeneity of the LSF of our imaging system, we divide
the full CCD region into five patches, each spanning over 100 pixels, wherewe reconstructed the LSF
individually for each patch using the algorithmpresented insection 4.1, seefigures 5(a)–(e). Thefirst three
patches exhibitminor changes in the optical response, while the rightmost one shows a clearly visible
broadening and decreased peak hight. Fluorescence images of atoms analyzed in thismanuscript are from the
three leftmost regions only. To even account forminor spatial deviations, the first three regions are further

Table 1.Result of thewavefront fitting to themeasured LSF expressed in terms of low-order Zernike polynomials. The
overall wavefront distortion is obtained by adding the different contributions in quadrature. 1D fitting of ourmodel to
the LSF cannot prevent a certain ambiguity on the identification ofwavefront distortion angles (not displayed).

Defocus Astigmatism Coma Trefoil Spherical

Orders (radial, azimuthal) (2,0) (2,2) (3,1) (3,3) (4,0)
Rmswavefront distortion (λ units) ( )0.016 2 ( )0.048 2 ( )-0.007 1 ( )-0.025 1 ( )0.013 1

Figure 5.Reconstructed LSFs for different patches of the CCDchip. Patches (a)–(c) showno significant change in the shape of the LSF
and can therefore be regarded as an isoplanatic region. The height of the LSF drops for the last patch (e) to below 80%,whereas the
width increases by 16%.
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divided into sub-patches, each of themwith an individual local LSF used to reconstruct atoms’ position. The
result of thewavefront-deviation analysis of the sub-patches, according to themethod presented in the previous
section, is illustrated infigure 6.

5.Modeling the noise sources

In order to identify the exact lattice-site locations of individual atomswith high reliability, not only the optical
response of the imaging system should be precisely known (see previous section 4) but also an accuratemodel of
all relevant noise sources should be constructed. Awell-designed imaging apparatus should strive to attain a rms
noise limited by fluorescence photon shot noise, which represents the true fundamental noise contribution. In
general, this can be reached (as is the case of this work) by understanding, and suppressing where required, the
technical noise contributions affecting the image formation.Moreover, one should also be aware of the excess
noise adding on top of shot noise, which is caused by the EM register in EMCCDcameras. This noise
contribution effectively decreases the signal-to-noise ratio by a factor 2 and cannot be simply eschewed as it is
intrinsic to the technology of EMCCDcameras. Alternative detectors such as CMOS cameras, which also feature
small read-out noise, are discussed in appendix A. In this section, we discuss the relevant noise sources and show
that the next noise contribution after fluorescence photon shot noise is photon shot noise caused by background
stray light (» -0.5 ph. e pixel ). A summary of individual noise components with their scaling and quantitive
estimates is provided in table 2.

5.1. Noise sources in the detection process

Fluorescence photon shot noise originates from fluctuations in the number Sfluo of accumulated photoelec-
trons. This noise component originates from three independent stochastic processes: scattering of photons
by atoms (Poissonian distributed), photoelectron generationwith finite quantum efficiencyQE (lf )

Figure 6. Strehl ratio (a) and coma (b), as an example of spatially varying optical aberration, are shown for six consecutive sub-patches.

Table 2.Noise contributions affecting single-atom imaging, a EMCCDdetector cooled to- 70 C , and 1 s exposure time. The overall noise
σ is obtained from equation (9), which takes into account the EMamplification factor g and the excess noise factor F . Rms noise values
extracted from: (a)figure 8, (b)figure 7. Rms noise values referring to technical specifications: (c) for invertedmode operationCCDwith
< - T 50 C, (d) for EMCCD sensors, (e) 10 MHz read-out rate.

Noise type Physical origin Scaling rms noise

Fluorescence photon shot

noise

Uncorrelated scattered photons á ñSfluo
1 2 ( ) s -4 e pixel sfluo

a

Stray light shot noise Spuriousreflections oflaserfields á ñSstray
1 2 ( )s ~ -0.5 e pixel sstray

b

Laser intensity noise Technicalfluctuations á + ñS Sfluo stray s int

Photo response non-

uniformity

CCD substrateinhomogeneity á + ñS Sfluo stray sPRNU

Dark current Thermal chargegeneration á ñStherm
1 2 ( )s ~ - -0.01 0.1 e pixel stherm

c

Clock induced charges Charge transfer á ñSCIC
1 2 ( )s ~ - -0.05 0.1 e pixelCIC

d

Read-out noise Amplification and digitization

processes

Read-out rate,

temperature

( )s ~ -M50 e pixelreadout
e

Excess noise EMamplification Constantfactor

for g 1

=F 2
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(binomially distributed), stochastic partitioning by imaging the PSF over several CCDpixels (binomially
distributed). The resulting pixel’s fluorescence distribution follows Poissonian statistics characterized by an
average fluorescence signal [ ] [ ] ( ) [ ]lá ñ = =S x y I x y F x y T, , QE ,i j i j i jfluo fluo f , where [ ]F x y,i j is the average

photonflux directed onto a given pixel of the CCD sensor,T is the exposure time, and [ ]I x y,i jfluo the intensity

distribution fromequation (3). The rms shot noise is [ ] [ ]s = á ñx y S x y, ,i j i jfluo fluo
1 2.

Stray light contributes with Poissonian noise due tofluctuations in the number of photoelectrons
[ ]S x y,i jstray . Stray light can beminimized by shielding the objective and blocking reflections of themolasses

laser beams as shown infigure 2. The remaining homogeneous stray-light background yields a rms
noise s = á ñSstray stray

1 2.

Illumination intensity noise is produced by temporal intensityfluctuations of the laser light that illuminates
the atoms. Thefluorescence emission rate is directly proportional to the illumination intensity for small
saturation parameters (see section 3.2). Hence, fluctuations of the laser intensity result in a rms noise
proportional to the detected signal, [ ] [ ]s µ á ñx y S x y, ,i j i jint fluo .

Photo-response non-uniformity (PRNU) is caused by variations in the pixel geometry and in the substrate
material across theCCDchip. In back-illuminated EMCCD sensors, this also includes the so-called etaloning
effect due to interference fringes in the a back-thinned silicon substrate (see appendix B). The rms noise is
proportional to the overall incident photon flux, [ ] [ ]s µ á ñ + á ñx y S x y S, ,i j i jPRNU fluo stray . Because of its

static nature, this noise contribution can be reduced by calibrating theCCD sensor sensitivity with a uniform
illumination source in order to remove pixel-to-pixel variations.

Read-out noise occurs in the charge-to-voltage amplification and analog-to-digital conversion process.
Because this noise component sreadout is not amplified by the EM register, it is effectively suppressed by setting
themultiplication gain to large values.

Dark current noise arises from thermally generated charges. Buried-channel sensors are affected by two
contributions—bulk and surface dark currents—dependingwhether electron–hole pairs are generated in the
depletion region or at the silicon-silicon dioxide interface.Midgap edge states, either localized in the
proximity of bulk impurities or at the front interface, strongly enhance the probability of electrons to
thermally hop from the valence to the conduction band through a two-step trap-assisted process [52]. A third
contribution, in general negligible at low temperatures, comes fromdiffusion ofminority carriers (electrons)
from the p-doped silicon substrate into the depletion region. Because of the large continuumof edge states at
the interface with the silicon dioxide layer, the surface contribution dominates by about two orders of
magnitude. Since all dark currents are amplified by the EM register, cooling of theCCD sensor is necessary to
detect signals with few photons. For Peltier-cooled sensors ( > - T 100 C), the contribution by surface dark
currents is suppressed in inverted-mode EMCCDchips by applying a large negative bias voltage (multi-
pinned phasemode [53]), which creates an inversion layer of holes at the surface preventing electrons from
filling themidgap states, and thus suppressing the charge generation process. Fluctuations of the number of
thermally generated electrons in the bulk, Stherm, adds a Poissonian noise componentwith rms
noise s = á ñStherm therm

1 2.

Clock-induced charges (CICs) are a spurious electronic signal, SCIC, generated during the charge transfer
process in theCCD sensorwhen the clock voltage switches the pixel from inversion to non-inversionmode.
The process accelerates holes at the inversion layer back to the heavily doped p-type regions (channel stops),
which produce charge carriers through impact ionization. Despite their ubiquitous presence in every CCD
sensor, CICs can only be detected in EMCCD sensors due to the extremely low read-out noise. CICs are
reduced by high parallel transfer rates, small slew rates, and small clock swing [54], while they cannot be
suppressed by cooling the EMCCDchip (the probability of impact ionization even increases with lower
temperatures). By advanced clock-waveform shaping,modern EMCCDcameras can strongly reduceCICs
produced by the vertical transfer process [55]. CICs produced in the serial andmultiplication register cannot
be simply explained in terms of impact ionization by the accelerated holes. Inmodern EMCCDcameras, the
generation probability of horizontal CICs per shift step results similar to that of vertical CICs [56] in spite of
whatwas originally deemed [57]. The stochastic generation of CICs is Poissonian distributedwith a rms noise
denoted by s = á ñSCIC CIC [58].

Excess noise arises from the stochastic nature of the gain process in the EMregister of EMCCDcameras, which
causes an asymmetric broadening of noise distributions. The resulting noise distribution after amplification
by the EM register has an rms noise increased by the so-called excess noise factor (denoted by F), which tends
to 2 for a large number ofmultiplication stages ( g 1), as can be shown [59].
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The overall signalmeasured by the EMCCDcamera is the sumof all components,
[ ] [ ]= + + +S x y S x y S S S, ,i j i jfluo stray therm CIC, whose variance s2 is the quadrature sumof all individual

noise components

[ ] ( [ ] [ ] [ ] ) ( )s s s s s s s
s

= + + + + + +x y F x y x y x y
g

, , , , . 9i j i j i j i j
2 2

fluo
2

stray
2

int
2

PRNU
2

therm
2

CIC
2 readout

2

2

Note that [ ]s x y,i j
2 is also the variance of [ ] x y,i j

, which is defined as [ ] [ ] [ ] = - á ñx y S x y S x y, , ,i j i j i j in

equation (3). Equation (9) shows that high EMgains g improve the signal-to-noise ratio for signals of few
photons by effectively removing the read-out noise component sreadout, which inCCD sensors dominates over
sfluo, instead. In turn, EMCCDcameras are affected by excess noise through the factor F , which effectively halves
the quantum efficiency.

5.2. Noisemodel
The knowledge of each individual noise contribution and their physical scalingwith respect to the spatially
dependent fluorescence signal [ ]S x y,i jfluo (see table 2) permits to construct a noisemodel, which is used in the

parametric deconvolution process in section 6.3. Based on the functional dependence ofσ on Sfluo, we rewrite
equation (9) in the form

( ) ( )s sá ñ = + á ñ + á ñS c S c S , 10fluo b
2

1
2

fluo 2
2

fluo
2

where the rms background noise sb aswell as the coefficients c1 and c2 are parameters to be experimentally
determined.When the signal Sfluo is given in photoelectron units, the coefficient c1 is directly given by the excess
noise factor =F 2 . The coefficient c2 is compatible with zero for our experimental apparatus as shown in the
following.

We determine the coefficient sb by analyzing the background noise of the imaging system froma series of
images recordedwithout atoms in the optical lattice (see inset offigure 7). The histogram infigure 7 shows the
background signal per pixel binned by signal strength in units of photoelectrons. The characteristic shape of the
histogrammainly arises from read-out noise (Gaussian peak) and stray light (exponential tail). Calculating the
rmswidth of the recorded histogram yields the desired coefficient s = -0.6 ph. e pixelb for 1 s illumination
time. To obtain quantitative insight into the different noise components of the background signal, wemodel it in
terms of Poisson-distributedCICs, which are stochastically amplified through the EMregister, on top of which
Gaussian-distributed read-out noise is added [60]. The red line infigure 7 shows thefittedmodel reproducing
closely the recorded background-noise histogram,whereas the dashed blue line shows the samemodel fitted to a
background-noise histogram for images recordedwith the camera shutter closed. Due to the blocked stray light,
the exponential tail is reduced bymore than one order ofmagnitude. However, it does not fully vanish because
of dark currents and primarily CICs (see section 5.1). Fitting the background-noise histogram allows not only a
more accurate estimate of the rms background noise (sb), but also a precise calibration of the EMgain g, which is
a free fitting parameter. In fact, the parameter g enters themodel through the probability to record y electrons

Figure 7.Histogramof the background noise evaluated on individual CCDpixels. The red solid line depicts a quantitativemodel fitted
to themeasured distribution. The rmswidth is dominated by stray light noise ( -0.5 ph. e pixel ), while read-out noise contribute
onlymarginally ( -0.03 ph. e pixel ). Also shown for comparison is the samemodel fitted to the background-noise histogram
recordedwithout stray light (blue dashed line). The inset shows exemplary the signal of a single rowofCCDpixels of one of the
recorded images, where the spikes originate fromCICs.Note that the histogram contains negative values since the read-out noise is
centered at zero.
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after the EM register for x initial electrons—comprising both spurious electrons and photoelectrons—which is
given by [61]

( ∣ ) ( )
( )!

( ) =
-

-

-
y x

y y g

g x

exp

1
. 11

x

x

1

To validate the noisemodel given in equation (10), we perform ameasurement of the signal-to-noise
relationship [62]. Based on>1000 sets offive consecutive fluorescence images (3 s exposure time each)
containing a small ensemble of atoms, we estimate for every CCDpixel the average signal as well as the standard
deviation (rms noise) in each set of images. Note that we consider only image sets where the distribution of
atoms remains constant (neither atomhopping nor losses). The cloud of dots infigure 8 shows the correlation
between the estimated average signal and the estimated rms noise, both expressed in photoelectron units. By
binning the signal-to-noise data points by their signal strength, we obtain a precise reconstruction of the signal-
to-noise relationship, as shown in the figure. Themeasurement is in good agreement with the noisemodel
calculated using the coefficients sb, c1 and c2 given above, therefore confirming the square-root dependence of
the rms noise on thefluorescence signal strength Sfluo. Furthermore, because no linear dependency is discernible
in the recorded signal-to-noise relationship, we set c2 to zero.

6. Localization of atoms by parametric deconvolution

We retrieve the position of atoms in the optical lattice using a parametric deconvolution process, which
comprises several stages: (1) the 1D integrated fluorescence images are divided into ROI, eachwith a small
number of atoms. (2)The number of atoms is determined for eachROI based on the total number of
photoelectrons. (3)Wecreate amodel function of the fluorescence distribution for the given number of atoms
and (4)use it to obtain afirst estimate of the positions of atoms employing a spectral-density estimation
algorithm. (5)The estimated positions provide the starting values for a nonlinear least squares estimate, which
yields the location of atomswith improved precision. (6)We further enhance the localization accuracy by an
additional stage that constrains the atoms’ positions to the discreteness of the optical lattice andmerges all ROIs
together.

6.1. Counting atoms inROI
The knowledge of the exact number of atoms is a necessary prerequisite in order to determine the positions.
While the identification of the number of atoms is relatively straightforwardwhen the atoms are well separated
from each other, e.g. by counting the number of peaks in the intensity distribution, it ismore difficult when the
atoms cluster togetherwith separations smaller then the optical resolution. In such a situation, the peaks of
individual atoms are no longer discernible. Hence, instead of counting peaks, we estimate the number of atoms

Figure 8.Measurement of the signal-to-noise ratio curve. The square points with error bars depict the binned distribution of the
estimated signal-to-noise data points (blue dots). The solid red line is the noisemodel according to equation (10)with no free
parameters. Fromabove, the two horizontal dashed lines indicate the values of sb and of the read-out rms noise, while the vertical
dashed line shows the average background signal.
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from the total number of recorded photoelectrons normalized to that of a single atom. Figure 9 shows the
histogramof the integrated photoelectrons of a large number of ROIs, exhibitingwell-separated equidistant
peaks. Each peak corresponds to a different number of atomsm, with the leftmost peakmarking the number of
photoelectrons per atom (about 1300 ph. e− s−1). The continuous curve in the figure shows the bestfit to the
recorded histogrambased on the sumof sevenGaussian distributions combinedwith a homogeneous
background, which is added to account for atom losses during the exposure time corresponding to the flat
background. Thewidth of the peaks obtained from the fittingmodel (see inset in figure 9) increases with m .
This broadening implies that adjacent peakswith >m 5 overlap significantly, thus preventing an unambiguous
identification of the exact number of atomsm. This is one reasonwhywe divide every integrated fluorescence
distribution into smaller, well-separated ROIs, each containing at least one atom, as shown infigure 3(b). The
width of eachROI is determined by thresholdingmethod known as image segmentation algorithm. Besides, the
subdivision in ROIswith a small number of atoms is also beneficial to reduce the computation time of the
nonlinear last squares estimation of positions, which scales quadratically with the number of atoms in a ROI.

The parametric deconvolution problem requires as a precondition that the number of atoms is correctly
determined. Therefore, it is important to identify acceptance regionsRi of the integrated photoelectron signal
where the statistical hypothesisHi—the analyzed ROI contains precisely i atoms—is verifiedwith a probability
higher than certain desired confidence levels.Moreover, we should also take into account the additional
statistical hypothesisH0 that one ormore atoms are lost during the exposure time. Referring to thefittingmodel
infigure 9, the ithGaussian function describes the probability distributionwhenHi occurs, while the
homogenous backgroundmodels the probability distributionwhenH0 occurs. The acceptance regionsRi

(shaded regions in thefigure) are obtained bymaximizing their width (i.e., the probability ( ∣ ) R Hi i defining the
power of the statistical test) under the provision that the statistical confidence remains higher than a certain
desired confidence level (percentage numbers in the figure). The confidence level for the regionRi is defined as
the probability that the hypothesisHi is verifiedwhen the integrated photoelectron signal is detected inRi,
namely ( ∣ ) H Ri i

4. From the analysis of acceptance regions infigure 9we find that, given a certain confidence
level, thewidth of the acceptance region is strongly determined by atom losses (homogeneous background). This
result shows that is beneficial tominimize the atom loss probability during the illumination process (~1% in
our case). By post-selection analysis, we only retain ROIs forwhich the integrated photoelectron signal lies inside
one of the acceptance regions. Higher confidence levels can be chosen, but this implies narrower regionsRi and,
therefore,more ROIs post-selected out. In order to achieve for the one-atompeak confidence levels>99%with
small rejection rates (<1%), we segment the fluorescence image in smaller ROIs than those considered in the
example displayed infigure 9.

The describedmethod to determine the number of atoms, which relies on the total number of
photoelectrons in eachROI, is relatively robust and simple to implement. However, it does notmake optimal

Figure 9.Histogramof integrated photoelectrons from approximately 6000fluorescence images, each acquiredwith an exposure time
of 1 s. The histogram shows equidistant peaks corresponding to different numbers of atomsm, whose shape is reproduced by
Gaussian functions added to a homogenous background (solid line). The height of the peaks is solely determined by the abundance of
the corresponding number of atoms in the analyzed dataset. In the inset: the rmswidth of the peaks increases as m (solid line). A
systematical discrepancy is visible between themeasuredwidths and the curve expected fromPoisson statistics of photon counts
combinedwith the EM register’s excess noise (dashed line).We cannot explain this discrepancy in terms of the noisemodel presented
in section 5.

4
The conditional probability can be computed as ( ∣ ) ( ) ( ∣ ) ( ) ( ∣ )    = åH R H R H H R Hi i i i i j j i j .
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use of physical information contained in the image since spatial information is lost after the integrating
photoelectrons for eachROI. It is possible to improve the accuracy by incorporating the spatial information of
the recordedfluorescence images through a Bayesian updating algorithm [63].

6.2. Themodel distribution
When illuminated by nearly resonant light, atoms in a deep optical lattice behave like identical light sources
positioned at certain sites of the lattice. Supposing that the number of atomsm is exactly known (see section 6.1),
wemodel the integrated signal of equation (3) as

[ ] ( ) ( )å x= -
=

I x A L x , 12i
l

m

l i lM
1

CCD

where xl are the positions of the atoms, and the amplitude factorsAl account for inhomogeneities from the the
illumination lasers as well as from atom losses during the exposure time. LCCD is the response function of the
imaging systemdefined in equation (7) representing thefluorescence distribution of a single atomwith sub-
pixel resolution (numerical interpolation between sub-pixels permits its evaluation for any real-valued
argument). Becausewe performbackground subtraction on all integrated intensity distributions, themodel in
equation (12) does not require an additional constant offset. In addition, relying on the discreteness of positions
in the optical lattice, we can express xl as

( )x d= +a p , 13l l L

where pl are the desired integer positions in lattice-site units, a is the separation between lattice sites inCCDpixel
units, and dL is the position offset of the optical lattice. For small optical aberrations (see sections 4.2 and 4.3), it
is sufficient to consider a single value of a (1.47 pixels per lattice site) for the entire field of view.Moreover, losses
by light-induced collisions prevents the detection of two (ormore) atoms in the same lattice site in deep optical
lattices [64, 65]. Hence, ¹ ¢p pl l for any pair of atoms l and ¢l .

6.3. The parametric deconvolution process
To retrieve the atoms’ positions, we employ a nonlinear least squares optimization algorithm, which fits the
model distribution IM in equation (12) to the recorded fluorescence distributions. This parametric
deconvolution approach allows us tomake optimal use of physical information contained in the response
function of the imaging system and in the noisemodel. However, nonlinear least squares optimizations require
well-chosen starting parameters in order to guarantee the convergence to the global optimum.The parameters
of ourmodel are the amplitudesAl and positions xl of atoms.While an initial estimate ofAl can be directly
obtained from the average number of photoelectrons per atom (see section 6.1), an estimate of positions xl

demands a separate procedure. Hence, to obtain the first estimate of positions for the nonlinear least squares
optimization, wemake use of theWiener deconvolution combinedwith a spectral density estimation algorithm
(MUSIC algorithm).

Wiener deconvolution.Themain idea underlying our approach to obtain an estimate of xl is understood by
considering the Fourier transformof themodel distribution in equation (12),

( )[ ] [ ] [ ] [ ] ( ) å= =p x

=

I k k A k f kOTF e OTF , 14
l

m

l
k

M CCD
1

i2
CCDl

where the convolution theorem enables the optical transfer function [ ]kOTFCCD (see section 4.1) to be factored
out of the sum. The function [ ]f k is an oscillatory signal containing exactlym Fourier components, whose
frequencies are exactly the positions xl. This allows us to recast the problemof estimating the positions xl in that
of estimating a discrete numberm of frequencies (spectral density estimation). The presence of noise in the
recorded signal [ ]S xi , however,makes [ ]f k difficult to be computed from the ratio ( )[ ] [ ] S k kOTFCCD . In
fact, because the noise [ ] xi has awhite spectrum, if we divided the Fourier-transformed recorded signal

( )[ ] S k by the reconstructed optical transfer function [ ]kOTFCCD , noise spectral components in the proximity
of the Abbe frequencywould be strongly amplified owing to the smallmagnitude ofOTF at higher frequencies
(see section 4.2). In order to obtain [ ]f k avoiding noise amplification, we employ theWiener deconvolution
algorithm [66], which computes

[ ] ( )[ ]
[ ]

[ ]
[ ] [ ]

( )
=

+
f k

S k

k

k

k kOTF

MTF

MTF 1 SNR
, 15

CCD

2

2

where [ ] [ ] s=k f kSNR 2 2 is the signal-to-noise ratio defined as the ratio between the estimated deconvolved
signal [ ]f k , which is obtained by applying the filter iteratively (typically 10 iterations), and the integrated noise
power in the analyzed ROI, which is estimated as s s= +n̂ n F N2

b
2 2 (see also section 5.2).We recall that n̂

and n represent the number of CCDpixels in the ROI in the direction transverse and parallel to the lattice,
respectively, andN is the integrated number of photoelectrons. TheWienerfilter factor in equation (14) is
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relevant only at higher frequencies, while it is approximately 1 at lower frequencies because [ ]kSNR is very large
(typically>100) and [ ] ~kMTF 1 for k r 1A .

Spectral density estimate (MUSIC algorithm). Severalmethods exist in the literature to estimate the spectral
density from a noisy signal [ ]f k . The simplestmethod known as periodogrammethod employs aDFT of [ ]f k
to determine the n dominant Fourier components, whose frequencies yield an estimate of the positions xl.
However, thismethod suffers fromknowndeficiencies such as being a biased estimator and exhibiting spectral
leakage.More refinedmethods known as subspacemethods have been developed for the estimation of the
spectral components when the signal contains exactlym dominant Fourier components (i.e.m atoms)with
amplitudes well above the noise background. Among the subspacemethods, the so-calledMUSIC algorithm
(multiple-signal classification)has been identified as the one exhibiting the highest spectral resolution [67].
MUSIC yields a pseudospectrum [ ]f k exhibiting a negligible bias in case of sufficient signal-to-noise ratio [68]
and not suffering from spectral leakage in contrast to non-parametricmethods (e.g., periodogram). In
particular, the strength ofMUSIC algorithm for the first estimation of the atoms’ position resides in its
robustness against noise disturbances and in the fact that no prior knowledge of the parameters (i.e. the atoms’
positions) is required. This differs from least-squaresminimization procedures, which require good starting
parameters to ensure a rapid converge to a globalminimum.While our implementation ofMUSIC algorithm
requires the prior knowledge of the number of atoms,m, in the ROI, extensions of the algorithm exist in the
literature that also estimate the number of sources [69], which could be helpful to handle very large ROIswith
highfilling factors. The solid line infigure 10 displays the estimated power spectral density obtained from the
MUSIC algorithm applied to thefluorescence distribution shown infigure 3. The pseudospectrum exhibits eight
sharp peaksmuch narrower than the diffraction-limit width, each approximately centered on the atoms’
positions (note the logarithmic scale in the figure). Thefigure shows that the positions estimated by theMUSIC
algorithm are very close to those determined by themore accurate nonlinear least squares estimator, which takes
into account the dependence of noise on the signal.

Nonlinear least squares estimator.Weuse the position of the atoms estimated by theMUSIC algorithm as
input parameters of the nonlinear least squaresminimization

( [ ] [ ])
( [ ])

( )


å s
-

x x¼ ¼ =

⎛
⎝⎜

⎞
⎠⎟

S x I x

I x
min , 16

A A i

n
i i

i, 1

fluo M
2

2
Mn n1 1

where [ ]S xifluo is the background-subtracted fluorescence distribution, [ ]I xiM themodel distribution given in
equation (12),σ the noisemodel presented in equation (10), and n is the number of pixels in the 1DROI. In the
minimization problemof equation (16), the positions xl are treated as real-valued free parameters (compare
section 6.4). Furthermore, we use themodel distribution IM instead of themeasured signal S to estimate the
noise variance s2 at the pixel xi because themodel function provides a better estimate of the fluorescence signal
after a few iterations of the least squaresminimization. Several algorithms exist to carry out theminimization in
equation (16) such as the Levenberg–Marquardtmethod. In our case we employ a trust-region algorithm, which
allows us to constrain the amplitude parametersAl to physical boundaries (typically five times thewidth of the
one-atompeak infigure 9). An example of the least squares parametric deconvolution is shown by the solid red
line infigure 3(b). The accuratemodel in equation (12) constructed from themeasured LSF and theweighting
factors in equation (16) accounting for the correct variance of noise in each pixel ensureflat residuals with a
variance around 1, as displayed infigure 3(c). For normal distributed residuals, the nonlinear least squares fit is
equivalent to amaximum-likelihood estimator of positions [30], which defines the gold standard concerning the

Figure 10.Pseudospectrumobtained by theMUSIC spectral density estimate algorithm (in logarithmic scale). The narrowpeaks
provide an estimate of the eight atoms’ positions. The binned intensity distribution is the same as infigure 3(b) (in linear scale). The
positions estimated by theMUSIC algorithm (vertical dashed lines) are very closewithin one lattice site to the positions determined by
the least squares algorithm (arrows).
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extraction of physical information from fluorescence images, as argued in section 1. Because each 1Dpixel of the
integrated signal carries a large number offluorescence photoelectrons (see figure 3(b)), the dominating
Poisson-distributed shot noise is well approximated by aGaussian distribution. However, excess noise in the
EMCCDcamera causes non-Gaussian deviations, which can be seen, for example, in the logarithmic graph of
figure 7. Even neglecting this super-Poissonian noise characteristic, previous work using EMCCDcameras
reports localization of single emitters with a precision attaining theCramér–Rao information bound [70]. It is
the purpose of future work to refine our estimation of the atoms’ positions bymaximizing the appropriate
likelihood function in order to account for the EMexcess noise [71] aswell as for the Poissonian statistics in the
limit of very small signals [72]. In addition, wefind that the distribution of the sumof squared residuals obtained
by analyzing the positions of atoms in> 5000 ROIs is well described by a c2 distributionwith  -n m2 degrees
of freedom. This result suggests that theminimization procedure of equation (16) approaches the limit of the
maximum-likelihood estimator of the atoms’ positions.

6.4. Enhancing the localization precision at higherfilling factors
The parametric deconvolutionmethod outlined in section 6.3works very reliably in case of ROIs containing
only a few atoms separated by several lattice sites. This is the situation, for example, of single-particle
experiments such as quantumwalks [12, 18, 19]. However, the determination of the atoms’ positions is less
reliable for atoms clustered in small ensembles, where the lattice filling factor approaches unity [4]. In
experiments investigating strongly interacting particles, it is particularly important to reconstruct the atoms’
positionswith a high reliability alsowhen the spacing between particles is close to, or is even less than, the optical
resolution of the imaging system [13]. By taking the discreteness of the lattice into account, we demonstrate that
the previously presented parametric deconvolutionmethod can be extended to achieve high success rates also
for small ensembles of atoms that are closely packed. As argued in section 6.2, the fact that atoms are trapped in
an optical lattice provides uswith two pieces of information: (1) the distance between two atoms can only be a
multiple of the intersite separation a (see equation (13)) and (2) two ormore atoms cannot occupy the same
lattice site. To exploit the discreetness of the optical lattice, the lattice constant a (433 nm)needs to be precisely
known in units of CCDpixels. Its value can directly be computed from themagnification factor (see section 3.1)
and the pixel size (see section 3.3) ormore accuratelymeasured by analyzing the distribution of distances
between two atoms, which are obtained using the deconvolutionmethod presented in the previous section.

To include the constraints (1) and (2), we adopt the following procedure: the positions of the atoms are
initially determined by the parametric deconvolution process described in the previous section, and rounded to
an integermultiple of lattice sites.We subsequently produce an array of all combinations of distances between
atoms, where each distance is let vary by±1 lattice site with respect to the initial estimate. Furthermore, we
exclude all combinationswhere two atoms occupy the same lattice site. For each combination of distances, we
perform a nonlinear least squaresminimization of equation (16)with the amplitudesAl and the lattice position
offset dL as the only free parameters.Wefinally choose the combination of distanceswith themaximum
likelihood, which provides uswith the best guess of the positions of atoms.Moreover, the c2 distribution of the
sumof squared residuals (see equation (16)) allows us to perform a likelihood-ratio test (e.g., Neyman–Pearson
lemma) that rejects the reconstructed positions if the statistical confidence lies below a certain specified value. A
related approach has also been reported in [11], however, without discussing hownoise contributions are
handled in the deconvolution problem.

In order to quantitatively benchmark the reliability of the discrete deconvolutionmethod against the
continuous one presented in the previous section, we employMonte Carlo simulations offluorescence images,
which provide large statistics and the exact knowledge of the true positions. To simulate a pattern of atoms in the
lattice, themodel distribution in equation (12) is used to construct thefluorescence images, where the noise is
randomly drawn to reproduce shot noisefluctuations of the fluorescence signal and the background noise
distribution shown infigure 7.OurMonte Carlo simulations also incorporate the stochastic fluctuations
produced by the EM register. In particular, we simulated four atoms equally spacedwith the spacing varying
fromone to nine lattice sites. Figure 11 shows the success rate in determining the correct distance between the
four atoms. The analysis of simulated images shows that the success rate of the continuous parametric
deconvolution rapidly decreases for separations smaller than the Abbe radius rA (diffraction limit). The drop in
the success rate is evenmore evident when aGaussian function is used instead of the precisely reconstructed LSF
LCCD, see section 4.1. In contrast, it is remarkable that the success rate of the discrete parametric deconvolution
remains above 90% for almost all lattice filling factors.Moreover, the success rate even increases at unityfilling
since the number of possible configurations of the four atoms is strongly reduced.

We recently developed a new atom resorting technique that allows us to deterministically position a small
ensemble of atoms in any arbitrary pattern on the 1Doptical lattice. The experimental details of the resorting
technique are the subject of a future publication [20].We employed this technique to reposition, on demand,
four atoms along the lattice, thus reproducing the same distributions studied infigure 11, with the atoms
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separated by an equal number of sites (10, 5, 2 or even 1 lattice sites). Though based on a significantly smaller
statistics, the experimental results are consistent with the theoretical findings obtainedwith a large number of
simulated images, confirming an enhancement in the reliability of the parametric deconvolution if the positions
are constrained onto the lattice.

7.Outlook

Optical diffraction imposes a stringent limit on the bandwidth of an optical system: physical information
contained in the spatial frequency components above the Abbe frequency r1 A is not captured by the imaging
system.However, this physical information is not irremediably lost as long as prior knowledge of the structure of
the imaged object is available. Advances in image processing techniques—especially driven by thefield of super-
resolvedfluorescencemicroscopy—have demonstrated that in this case the higher-frequency components of
the imaged objectʼs spectrum can be extrapolated from the imaged distribution. This principle is what enables
information retrieval with spatial resolution beyond the diffraction limit. The prior knowledge is necessary to
solve the deconvolution problem,which ideally reconstructs the original objectʼs distribution (and its entire
spectrum) by eliminating diffraction-induced blurring and noise effects. In this article, we presented state-of-
the-artmethods that solve the deconvolution problem forfluorescence images of neutral atoms in optical
latticesmaking optimal use of the prior information on the physical system (sub-pixel-reconstructed line spread
function, accurate noisemodel, discreteness of the optical lattice). The image processingmethodswe developed
are applicable to any experimental apparatus forfluorescence imaging of trapped atoms and ions, and can be
directly generalized to two-dimensions.

Ourmethods are particularly beneficial to improve the localization reliability in experiments with
constraints on the number of scattered photons, or on theNAof the objective lens. For example, experiments
imaging light fermions like lithium and potassium atoms suffer from low fluorescence scattering rates, which are
generallymore than one order ofmagnitude smaller than those achievedwith heavier atoms like Cs andRb.
Recent experiments with light fermions have shown that even for largeNAs >NA 0.8 the number of
photoelectrons recorded per atom is around 1000 for an exposure time of 1 s [14–16]. Similar yields of
photoelectrons are obtained in our apparatus wherewe employ an objective lenswithmuch smallerNA
( =NA 0.23). By taking advantage of our deconvolutionmethods, these experiments canminimize the exposure
timewhile ensuring a high reliability to localize each individual atom in the lattice. Short exposure times reduce
the probability of atoms to hop to neighboring sites, thus avoiding localization errors as well as losses of atoms
colliding inelastically with a second neighboring atom.

In our laboratory, the construction of a new experimental apparatus for imaging single atomswithmuch
higherNA ( >NA 0.9) is underway, which ensures a twenty times higher collection efficiency and a four times
narrower PSF. The analysismethods demonstrated in this article, when applied to the new imaging apparatus,

Figure 11. Success rates offinding the correct distances between four atoms equally spaced using different parametric deconvolution
methods. Note that the success rates refer to the correct identification of all three distances separating the four atoms. For each point,
we analyze 10 000 simulated images of four atomswith equidistant separations (1 s exposure time). The solid line includes the
constraints on the atoms’ positions by the optical lattice, the dashed line refers to the continuous deconvolutionmethodwith
unconstrained positions, and the dotted–dashed line shows for comparison the success rate whenGaussian functions are used instead
of the reconstructed LSF. Allfits produce good success rates for separations larger than theAbbe limit (right-hand side), but only the
discrete parametric deconvolutionmethod achieves high success rates for all lattice filling factors.
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should enable single-site resolutionwith unprecedentedly short exposure times (<10 ms)5, allowing us to
directly discriminate between the two internal hyperfine states of Cs atoms (qubit states) [48, 63, 73].Moreover,
it is the goal of future work to investigate whether compressed sensing techniques, which rely on a completely
different principle than our parametric deconvolutionmethod, provide advantages for information retrieval
beyond the diffraction limit [74, 75].
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AppendixA. Single-photon cameras

With current technology, the sensitivity limit of conventional CCD sensors is determined by read-out noise,
which is produced during the processes of charge-to-voltage and analog-to-digital conversion [76]. Low-noise
CCD cameras cooled to low temperatures (<- 50 C) and operating at high read-out rates ( )> -10 Mpixel s 1 )
have rms values of read-out noise equivalent to -6 ph. e .When operating at low read-out rates (<20 kHz),
commercial state-of-the-art CCD sensors can attain lower read-out noise around -2 e , however, still above the
value of one electron per pixel—the ultimate limit for single photon imaging. Recently, research prototypes
showed that sub-electron read-out noise could be realized in the near future [77].

For weak radiation sources (e.g.fluorescing single atoms) the amount of shot noise can amount to very few
electrons. Onewould ideally needCCD sensors with sub-electron sensitivity to avoid that the read-out noise
dominates over shot noise. To overcome the technical limit imposed by read-out noise, threemajor technologies
have been developed over the years and foundwidespread application: EMCCDcameras and ICCD cameras,
andmore recently CMOS sensors. All these technologies rely on the preamplification of the physical signal—the
number of photoelectrons—prior to the read-out amplification stage. These three technologies are shortly
reviewed in the following.

A.1. ICCD cameras
The basic idea underlying ICCD cameras dates back to the first half of the 20th century: it consists in employing a
photocathode to convert the incoming photons into photoelectrons, whose number can then bemultiplied by
avalanche amplification. A gating electric field is used to precisely control the access of photoelectrons into a
microchannel plate, where the avalanchemultiplication process takes place. The electrons exiting the
microchannel plate are accelerated towards a phosphor screen, uponwhich they recreate the same distribution
of photons impinging at the photocathode. Secondary photons emitted by the phosphor screen are eventually
imaged onto a low-noise CCDdetector. Electronmultiplication in themicrochannel plate can readily reach
amplification factors up to104, which allow read-out noise to be effectively suppressed down to values as low as

- -10 e pixel3 . For amore detailed account of ICCD cameras, please refer to [78] and references therein.

A.2. EMCCDcameras
Thefirst practical demonstration of EMCCDcameras has been provided in 2001 [79–81]. In essence, EMCCD
sensors are CCD sensors equippedwith a low-noise electronmultiplying (EM) register in addition to the
conventional register used to transport electron charges. In comparison to conventional CCD registers, the EM
register uses a higher clocking voltage to provide the electronswith sufficient kinetic energy to cause impact
ionization. Through avalanchemultiplication, the EM register is able to stochasticallymultiply the number of
electrons by factors in the range of a few thousands. The read-out noise is thereby effectively reduced on the
order of - -10 e pixel2 , which is smaller than noise produced by dark counts andCIC [82]. For amore detailed
account, please refer to [83] and references therein. In addition, bothCIC and read-out noise can be further
suppressed by hardware binning theCCDpixels along the vertical direction [84]. It is understood that spatial

5
Because the localization precision in equation (4) scales as ( )lD µx NA Nf (assuming only shot noise), the twenty times larger

collection solid angle and the four times narrower PSF should enable single-site resolutionwith exposure times
around ( · ) »1000 ms 16 20 3 ms.
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resolution along the binned direction is reduced depending on howmany pixels are vertically binned together.
Note that hardware binning is not exploited in this work.

A.3. Comparison between ICCDandEMCCDcameras
In contrast to EMCCD sensors, ICCD sensors are virtually insensitive to spurious CIC and thermal dark
electrons since these processes occur after the amplification process. They are, however, sensitive to dark
electrons generated in the photocathode (so-called equivalent background illumination), whose rate is generally
small -1 e pixel s already at room temperature. Therefore, cooling of the sensor to low temperatures is not
needed for short exposure times lasting only a few seconds.On the other hand, ICCD cameras have a lower
quantum efficiency than EMCCDcameras (see also discussion in appendix B) because of the lower sensitivity of
photocathodematerials, especially at longer wavelengths. For instance, at ourfluorescence wavelength
l = 852 nmf , ( )lQE f does not exceed 20%at the present time. ICCDs allowmuch shorter gate times than
EMCCDs, though this feature is not particularly relevant for imaging single atoms trapped in optical potentials.
In addition, the finite radius of themicrochannel plate in ICCD sensors limits the resolution to about 50 line
pairs/mm; for the Abbe radius rA of ourmicroscope objective, for instance, amagnification factor of the order of
50 is required to avoid affecting the overall optical resolution. A detailed comparison of noise properties has been
published elsewhere [85–87].

A.4. CMOS sensors
Due to significant advances over the past two decades inmanufacturingmicroscale, ultralow-noiseMOSFET
devices, CMOS image sensors represent today an appealing alternative to conventional CCDdetectors in low
light imaging applications [88, 89]. The basic element consists here of an active pixel sensor, which provides the
charge-to-voltage conversion electronics and the transistors needed for voltage buffering and pixel addressing
[90]. The absence of theCCD shift register enables faster parallel read-out rates and excludes the noise
contribution caused byCIC. Read-out noise inCCD sensors is dominated by Johnson noise at the charge
amplifier, whosewhite spectrum is inevitably fed into the large video bandwidth. In contrast, parallel
amplification inCMOS sensorsmakes it possible to directly amplify the signal at the active pixel location, where
the signal is formed. In such away, the bandwidth of the source-follower and column amplifier used to amplify
the charge signal into a voltage signal can be limited through a low-pass filter. This prevents high-frequency
noise components to be amplified and fed through the high-bandwidth analog-to-digital conversion circuitry
[91, 92]. Commercially available CMOS cameras exhibit read-out noise as low as -1 e pixel, which is nearly
independent of the video frame rate. The presence of transistors in the pixel area significantly screen the silicon
photosensitive area from the impinging photons, thus reducing the pixel’sfill factor. To circumvent this
problem, an array ofmicrolenses is usually employed in scientific-grade sensors to efficiently collect photons in
front of each pixel. Alternatively, back-illuminated CMOS sensors (see e.g. OmniVision Technologies, Inc.) can
also be employed. A detailed comparison of CMOS cameras withCCD, ICCD, and EMCCDcameras has been
carried out elsewhere [93, 94].

Appendix B. Front versus back illuminatedCCDdetectors

In silicon-based detectors, the quantum efficiency (QE) of CCDdetectors is determined by the probability that
an incoming photon is converted into an electron–hole pair inside the photosensitive region—a region that is
completely depleted ofmobile charge carriers—where electrons are efficiently collected into the pixel bymeans
of a built-in electric field. ForCCDdetectors that are frontally illuminated, photonsmustfirst transverse the
polycrystalline silicon structure of electrodes and a silicon-oxide insulating layer before they can reach the
photosensitive region. Reflections and absorptions by the electrodes cause a reduction ofQE, which can be
avoided if the back side, i.e. the one opposite to theCCDelectrodes, is turned towards the radiation source. This
can be achieved by etching the chip to a thin layer around – m10 20 m thick. Back-illuminated back-thinnedCCD
detectors have thereby doubled theQEwith peak values above 90%.

Wehave tested a commercial, state-of-the-art back-illuminated EMCCD sensorwith read-out noise
specified at< -0.05 e pixel and dark current noise at< ´ - -5 10 e pixel s3 for a temperature below- 65 C.
This sensor provides aQEof 60% at the fluorescence wavelengths of 852 nm, which is about the double of that
achieved by our front-illuminated camera. As a downside, the sensor displays interference fringes caused by
multiple reflections ofmonochromatic photons at the interface between the substrate and the silicon-oxide layer
and at the interface between the substrate and the air. In fact, the silicon substrate behave like an etalon plate at
longer wavelengthswhere the absorption depth of silicon increases. The etaloning effect is evidenced in
figure 12, where variations of the substrate thickness results in visible fringes with a contrast~40%.We have
verified that the interference pattern is stable and has only aweak dependence on temperature, as the
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interference pattern shifted by about half a fringe for a temperature change of 20 C. Despite the large intensity
variations across the sensor, the stability of interference pattern allows us tofilter it out by dividing the recorded
signal by a calibrated spatialmask.

Larger reverse-bias voltages (~100 V) togetherwith thicker substrates ( m~100 m) of high-resistivity silicon
results inmuchwider photosensitive regions (deep depletion) [95]. Thicker depletion regions permit to enhance
theQE especially in the near-infrared, where the absorption depth of silicon is m>10 m. Because of the higher
thickness, photons are converted into electron–hole pairs before reaching the silicon-oxide layer, with the result
that the etaloning effect is strongly suppressed.However, the suppressed etaloning effect comes alongwith about
a one hundred-fold increase of dark counts, which can be suppressed by cooling to low temperatures<- 50 C.
Up to the present, there exists neither CMOSnor EMCCDcameras that are based on a deep-depletion back-
thinned sensor, whichwould be ideal for detecting small signals in the near-infrared.

AppendixC. Asymptotic limit of the iterative PSF reconstruction

We study the LSF produced by the iterative reconstruction algorithm in the limit of infinitelymany single-atom
images that are overlappedwith sub-pixel resolution according to the algorithmpresented in section 4.1.
Although the following discussion specifically focuses on the reconstruction of LSF in one-dimension,
analogous results can be demonstrated for the PSF in two-dimensions.

The algorithm first constructs from the image of an atompositioned in x0 a new real-valued distribution
with sub-pixel resolution

( ) ( ( ) [ ]) ( ) ( ) å= D - + D - D
=-¥

¥

I x L n x n x n , 17x
n

CCD s 0 s sp s0

where LCCD is the response of the imaging systemdefined in equation (7), ò is the additive noise,Ds is the
spacing betweenCCDpixels, and ( ) xsp is the sub-pixel function (one for-D < < Dx2 2sp sp and zero
elsewhere, whereD = D ssp s for some integer s). In essence, equation (17)maps the signal ( )D -L n xCCD s 0

recorded at the nthCCDpixel to a s-fold narrower signal ( ) - Dx nsp s , yielding a continuous distribution in

the real-valued variable x. The function ( )-L k
guess

1 , which is produced by the algorithm at the iteration -k 1, is
fitted to the recordedfluorescence distribution to provide amaximum-likelihood estimator x̃0 of the atom
position x0. This estimator is a stochastic variable due to the noise term ò in equation (17). Because of symmetry
reasons, its probability distribution is symmetrically centered on x0 (unbiased estimator). Subsequently, the
reconstruction algorithm translates with sub-pixel resolution the distribution in equation (17) by ˜-x0,
producing a new distribution [ ˜ ]+I x xx 00

. The algorithm adds all repositioned single-atom intensity
distributions to yield a new estimate of the LSF

Figure 12. Interference fringes in a back illuminated chip under coherent illumination at lf . The average peak-to-valley variation
amounts to about 40%of the signal. A peak-to-valley fringe corresponds to a thickness change of the back-thinned silicon layer by less
than 100 nm. The axes shows the spatial scale corresponding to theCCDchip.
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where ( ) x0 is the probability of the single atom to be in x0, and ( ˜ ∣ ) x x0 0 is the conditional probability
expressing the uncertainty distribution of themaximum-likelihood estimator x̃0. In the asymptotic limit of
infinitelymany images, the noise contribution  averages out so that the expression of equation (18) takes the
form
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This expression can be further simplified by assuming an isoplanatic response function of the imaging system
such that ( ˜ ∣ ) ( ˜ ) = -x x x xx0 0 0 0 , wherex is the uncertainty distribution of themaximum-likelihood
estimator of the atom’s position. In addition, wemake the physical assumption that ( ) x0 is uniformly
distributed, which is ensured by the incommensurability of the optical lattice with respect to theCCDarray and
by small drifts in the time of the optical lattice. The latter condition is particularly important to guarantee that all
sub-pixels of the reconstructed LSF are equally sampled. After some algebra, equation (19) can be recast in the
form

( ) ( )( ) ( )( )  = * *L x L x , 20k
xguess sp CCD

which proves the expression used in equation (8).
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