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lation between brightness and vertical flow direction
(12). This constitutes evidence for a convective flow
pattern that transports the energy flux emitted in
the penumbra. Other studies show a correlation
between intensity and line-of-sight velocities
(13), which for sunspots observed outside the
center of the solar disk is dominated by the hor-
izontal Evershed flow. This is consistent with our
findings, because in the penumbra the horizontal
flow velocity is correlated with the vertical flow
direction.

Our detailed analysis (8) shows that the spatial
scales of the flows providing the major part of the
convective energy transport are similar for both
undisturbed granulation and penumbra. The primary
difference is that there is no preferred horizontal
direction for granulation, whereas the energy-
transporting flows in the penumbra are distinctly
asymmetric: Convective structures are elongated in
the radial direction of the sunspot. These properties
were already indicated in earlier simulations (5, 6)
and suggested as an explanation for the Evershed
outflow in (14). The simulation shown here con-
firms this suggestion and demonstrates the convec-
tive nature of a fully developed penumbra.

The horizontal asymmetry of the convective
flows is also manifest in the correlation of 0.42
between the corresponding flow component (vx)
and the brightness. We find that the rms of the
outflowingvelocity component (vx) in the penumbra
is much larger than the transverse component (vy)
(perpendicular to the filament direction), showing
an asymmetry similar to that found by the scale
analysis. The total rms velocity profile as a func-
tion of depth is very similar to its counterpart for
undisturbed granulation, apart from a slightly
higher peak value, confirming the physical sim-
ilarity of convection in granulation and penumbra.

The mass flux and energy flux show similar
properties with respect to the length scales and
asymmetry (8), indicating that most of the
outflowing material emerges, turns over, and de-
scends within the penumbra. In the deeper layers,
there is some contribution (of the order of 10 to
20%) to both energy and mass fluxes by the large-
scale flow cell surrounding the sunspots.

The analysis of our simulations indicates that
granulation and penumbral flows are similar with
regard to energy transport; the asymmetry be-
tween the horizontal directions and the reduced
overall energy flux reflect the constraints im-
posed on the convective motions by the presence
of a strong and inclined magnetic field. The de-
velopment of systematic outflows is a direct con-
sequence of the anisotropy, and the similarities
between granulation and penumbral flows strong-
ly suggest that driving the Evershed flow does not
require physical processes that go beyond the
combination of convection and anisotropy intro-
duced by the magnetic field. Weaker laterally
overturning flows perpendicular to the main fila-
ment direction explain the apparent twisting mo-
tions observed in some filaments (15, 16) and
lead to a weakening of the magnetic field in the
flow channels through flux expulsion (6).

Although our simulation of large sunspots is
realistic in terms of relevant physics, it does not
faithfully reproduce all aspects of the morphology
of observed penumbral filaments. The penumbral
regions are considerably more extended than in
previous local simulations, but they are still some-
what subdued, probably owing to the proximity of
the periodic boundaries. The filaments in the inner
penumbrae appear to be too fragmented, and short,
dark lanes along bright filaments (17) form only
occasionally, likely a consequence of the still-
limited spatial resolution of the simulation. Lastly,
the initial condition of the magnetic field under-
lying the sunspot is quite arbitrary, owing to our
ignorance of the subsurface structure of sunspots.
Notwithstanding these limitations, the present sim-
ulations are consistent with observations of global
sunspot properties, penumbral structure, and system-
atic radial outflows. These and earlier simulations
(5, 6, 10) suggest a unified physical explanation for
umbral dots aswell as inner and outer penumbrae in
terms of magnetoconvection in a magnetic field
with varying inclination. Furthermore, a consistent
physical picture of all observational characteristics
of sunspots and their surroundings is now emerging.

References and Notes
1. S. K. Solanki, Astron. Astrophys. Rev. 11, 153 (2003).
2. J. H. Thomas, N. O. Weiss, Annu. Rev. Astron. Astrophys.

42, 517 (2004).
3. J. Evershed, Mon. Not. R. Astron. Soc. 69, 454 (1909).
4. J. H. Thomas, N. O. Weiss, Sunspots and Starspots

(Cambridge Univ. Press, Cambridge, 2008).
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Quantum Walk in Position Space with
Single Optically Trapped Atoms
Michal Karski,* Leonid Förster, Jai-Min Choi, Andreas Steffen, Wolfgang Alt,
Dieter Meschede, Artur Widera*

The quantum walk is the quantum analog of the well-known random walk, which forms the basis
for models and applications in many realms of science. Its properties are markedly different
from the classical counterpart and might lead to extensive applications in quantum information
science. In our experiment, we implemented a quantum walk on the line with single neutral atoms
by deterministically delocalizing them over the sites of a one-dimensional spin-dependent
optical lattice. With the use of site-resolved fluorescence imaging, the final wave function is
characterized by local quantum state tomography, and its spatial coherence is demonstrated.
Our system allows the observation of the quantum-to-classical transition and paves the way for
applications, such as quantum cellular automata.

Interference phenomena with microscopic
particles are a direct consequence of their
quantum-mechanical wave nature (1–5). The

prospect to fully control quantum properties of
atomic systems has stimulated ideas to engineer
quantum states that would be useful for applica-
tions in quantum information processing, for
example, and also would elucidate fundamental
questions, such as the quantum-to-classical
transition (6). A prominent example of state engi-
neering by controlled multipath interference is
the quantum walk of a particle (7). Its classical

counterpart, the randomwalk, is relevant inmany
aspects of our lives, providing insight into diverse
fields: It forms the basis for algorithms (8), de-
scribes diffusion processes in physics or biology
(8, 9), such as Brownian motion, or has been
used as a model for stock market prices (10).
Similarly, the quantum walk is expected to have
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implications for various fields, for instance, as a
primitive for universal quantum computing (11),
systematic quantum algorithm engineering (12),
or for deepening our understanding of the efficient
energy transfer in biomolecules for photosyn-
thesis (13).

Quantum walks have been proposed to be ob-
servable in several physical systems (12, 14, 15).
Special realizations have been reported in either
the populations of nuclear magnetic resonance
samples (16, 17) or in optical systems, in either
frequency space of a linear optical resonator (18),
with beam splitters (19), or in the continuous
tunneling of light fields through waveguide
lattices (20). Recently, a three-step quantumwalk
in the phase space of trapped ions has been ob-
served (21). However, the coherent walk of an
individual quantum particle with controllable in-
ternal states, as originally proposed by Feynman
(22), has so far not been observed.We present the

experimental realization of such a single quantum
particle walking in a one-dimensional (1D) lattice
in position space. This basic example of a walk
provides all of the relevant features necessary to
understand the fundamental properties and differ-
ences of the quantum and classical regimes. For
example, the atomic wave function resulting from
a quantum walk exhibits delocalized coherence,
which reflects the underlying quantum interfer-
ence. Simultaneous detection of internal state and
the atomic position in the lattice by an optical
microscope allows for local quantum state tomog-
raphy of the wave function. This is an important
requirement to realize applications in quantum
information science, such as the quantum cellular
automaton (23–25).

In the classical random walk on a line, a coin
is tossed in each time step. Depending on the
outcome (heads or tails), a walker takes one step
to the left or to the right. After N time steps, the

probability of finding the walker at a certain site
on the line follows a binomial distribution with a
width increasing proportional to

ffiffiffiffi
N

p
.

In the quantum case, the walker can be
brought in a coherent superposition of going to
the right or left. This can be realized by adding
internal states to the walker, providing an addi-
tional degree of freedom, which can be used to
control the system. We consider a two-level par-
ticle with internal states |0〉 and |1〉. In every step
of the walk, the coin operator brings each internal
state into a coherent superposition of the two
states. The essence of the general quantum walk
is to entangle this internal state with the position
of the corresponding wave packet by a state-
dependent transport. This can be realized by shift-
ing both internal states into opposite directions,
which coherently delocalizes the particle over
two lattice sites. Repetition of the unitary coin-
shift operation sequence results in the so-called

Fig. 1. (A) Schematic experimental
sequence for the quantum walk show-
ing the paths for the internal states |0〉
(green) and |1〉 (red). The walking dis-
tance is extracted from the initial (B)
and final (C) fluorescence image. The
results of several hundreds of identical
realizations form the probability dis-
tribution, which is symmetric for the
initial state (|0〉 + i|1〉)/

ffiffiffi
2

p
(D) and anti-

symmetric for the initial state |1〉 (E).
The analogous random walk sequence
(F) yields a binomial probability dis-
tribution (G). The displayed path is one
of many random paths that the atom
can take. Measured data are shown as
a histogram, and the theoretical ex-
pectation for the ideal case is denoted
with a solid line. Error bars indicate the
statistical T1s uncertainty.

Fig. 2. (A) Scaling of the SD of the mea-
sured spatial probability distributions for
quantum walk (red) and random walk
(green). The solid lines indicate the ex-
pectations for the ideal cases. Error bars
are smaller than the size of symbols. The
measured quantum walks follow the ideal
linear behavior until, because of decoher-
ence, they gradually turn into a random
walk. The probability distributions for N =
12 (B) and N = 20 (C) show a gradual
change from the quantum to a classical
shape. The theoretical prediction is shown
as a solid line for the pure quantum walk
and as a dashed line for the random walk.

www.sciencemag.org SCIENCE VOL 325 10 JULY 2009 175

REPORTS

 o
n 

A
ug

us
t 3

, 2
01

1
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/


quantum walk. After two steps of the quantum
walk, two parts of the wave function are re-
combined at a common lattice site. Being in
different internal states, they cannot interfere. The
next coin operator, however, mixes the internal
states in a deterministic way, which gives rise to
quantum interference of the two overlapping
wave packets. Further steps result in a multipath

interference (Fig. 1A), which then alters the
properties of the quantum walk as compared
with the classical random walk. In particular, the
width of the probability distribution to find the
walker at a certain position scales proportional to
N for the quantumwalk, as in a ballistic transport,
in contrast to the diffusive

ffiffiffiffi
N

p
scaling of the

random walk. The influence of internal states on

the quantum walk provides another distinguish-
ing feature: Whereas the probability distribution
of the random walk is fully determined by the
balance of the coin, the quantum walk distribu-
tion strongly depends on the initial internal state
of the walker and can be either symmetric or
strongly asymmetric for one and the same coin
operator (Fig. 1). Furthermore, as the quantum

Fig. 3. (A) Local quantum state tomog-
raphy of the atomic wave function after a
six-step quantum walk. The distributions
belong to the eigenstates of the Pauli spin
operators %siði ¼ x, y, zÞ: (a) |0〉 (+z axis),
(b) (|0〉 − i|1〉)/

ffiffiffi
2

p
(−y axis), (c) (|0〉 + |1〉)/

ffiffiffi
2

p
(+x axis), (d) |1〉 (−z axis), (e) (|0〉 + i|1〉)/

ffiffiffi
2

p
(+y axis), and (f) (|0〉 − |1〉)/

ffiffiffi
2

p
(−x axis). (B)

Reconstructed Bloch vectors at each posi-
tion in the lattice. The tips of the recon-
structed and ideally expected Bloch vectors
are shown as black and red dots, respec-
tively. The lines for Bloch vectors extend to
the surface of the Bloch sphere to guide the
eye; deviations from the surface illustrate
the effect of decoherence andmeasurement
errors.

Fig. 4. (A) Time-reversal sequence for refocusing the de-
localized state of a six-step quantum walk. After six steps, the
total application of the coin and shift operator is reversed, where
( ŜĈ)–1 = Ĉ–1Ŝ–1. (B) The resulting probability distribution shows
a pronounced peak at the center, to where, ideally, the am-
plitude should be fully refocused. We observe a refocused am-
plitude of 30%, surrounded by a Gaussian background (fitted
curve).
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walk is fully deterministic and unitary, the multi-
path interference can be reversed by inverting
coin and shift operations.

We realize a quantum walk with single laser-
cooled cesium (Cs) atoms, trapped in the
potential wells of a 1D optical lattice (12) with
site separation of l/2 = 433 nm (here, l is the
wavelength of the lattice laser light). The atoms
are thermal with a mean energy of kB × 10 mK,
whereas the optical potential depth is kB × 80 mK
(here, kB is the Boltzmann constant). They are
distributed among the axial vibrational states
with a mean occupation number of nax ¼ 1:2.
Initially, the atoms are prepared in the |0〉 ≡ |F =
4, mF = 4〉 hyperfine state by optical pumping,
where F is the total angular momentum, and mF

its projection onto the quantization axis along
the dipole trap axis. Resonant microwave ra-
diation around 9.2 GHz coherently couples this
state to the |1〉 ≡ |F = 3, mF = 3〉 state. A p/2
pulse of 4 ms initializes the system in the
superposition (|0〉 + i|1〉)/

ffiffiffi
2

p
. Coin operators

are realized in the form of Hadamard-type gates
C% : j0i!ðj0i�j1iÞ= ffiffiffi

2
p

,j1i!(j0i+j1i)�
=

ffiffiffi
2

p g.
The state-dependent shift operation is performed by
continuous control of the trap polarization, moving
the spin state |0〉 adiabatically to the right (whereas
state |1〉 moves to the left) along the lattice axis
within 19 ms (26). After N steps of coin operation
and state-dependent shift, the final atom distribu-
tion is probed by fluorescence imaging. From
these images, the exact lattice site of the atom
after the walk is extracted (27) and compared to
the initial position of the atom. Spin echo opera-
tions are combinedwith each coin operation (26),
leading to a coherence time of 0.8 ms.

The final probability distribution PN(x) to
find an atom at position x after N steps (Fig. 1) is
obtained from the distance each atom has walked
by taking the ensemble average over several hun-
dreds of identical realizations of the sequence.
Ideally, one expects a double-peak distribution
with large amplitude close to the edges of the
distribution (7). The relative heights of the left and
right peaks—and therefore the symmetry—depend
on the choice of the initial state. Decoherence grad-
ually suppresses the pronounced peaks (12, 28).
We compare the measured distributions for the
symmetric and asymmetric quantumwalks ofN= 6
steps (Fig. 1, D and E) with the theoretical expec-
tations for the ideal case and find good agreement.

In contrast, a randomwalk distribution can be
recovered by introducing decoherence after each
step of the walk. Omitting the spin-echo from the
coin operation and additionally waiting 400 ms
between coin and subsequent shift operation de-
stroys the phase relation between subsequent steps
of the walk. The resulting probability distribution
is described by a binomial distribution (Fig. 1G),
as expected for a purely classical random walk.

The scaling of the width of the quantum and
the random walk distribution with the number of
steps is one of the most prominent distinguishing
features. We have investigated this scaling be-
havior for both walks for up to N = 24 steps (Fig.

2). For the quantum walk, the width follows
closely the expected linear behavior for up to 10
steps. The subsequent deviation is due to deco-
herence (26), which asymptotically turns the quan-
tumwalk into a classical randomwalk. In contrast,
for the random walk, the typical square-root scal-
ing is recovered.

To get a more detailed characterization of the
wave function prepared by a six-step quantum
walk sequence, we extract information on the
internal state populations and relative phase by
local quantum state tomography. This is based on
site-resolved, state-selective detection combined
with single-particle operations (26, 29), provid-
ing a population distribution for each eigenstate
of the Pauli spin operators s% iði ¼ x,y,zÞ (Fig. 3).
Essentially, at each lattice site, the internal quan-
tum state is represented by a vector on the Bloch
sphere, which we reconstruct from the result of
the tomography. These Bloch vectors fit well to
the theoretical prediction at the edges of the dis-
tribution, but they show increasing deviations in
a region close to the initial site of the walk. At
these lattice sites, matter wave interference oc-
curs at almost every step during the sequence,
which makes these lattice sites more sensitive to
decoherence compared with sites further apart.

The local tomography, however, does not yield
information about the off-diagonal elements of the
position space density matrix, which essentially
contain information about the phase relation be-
tween the wave function at different lattice sites
rather than at each site. To demonstrate the spatial
coherence of the state over all populated lattice
sites, we invert the coin operation C–1: {|0〉 →
(|0〉 + |1〉)/

ffiffiffi
2

p
, |1〉 → (|0〉 – |1〉)/

ffiffiffi
2

p
}, as well as

the shift operation, and continue the walk for six
additional steps (Fig. 4). Ideally, the inversion
acts as an effective time-reversal and refocuses
the multipath interference pattern of the wave
function back to the initial lattice site. We find
partial refocusing of 30% of the atomic popula-
tion to the expected lattice site reflecting the
fraction of atoms which have maintained
coherence throughout the sequence.

We have studied the quantum walk of single
neutral atoms in an optical lattice and charac-
terized the quantum state of the delocalized atom.
We have found good agreement with the ideal
case of a quantum walk for up to 10 steps. Inver-
sion of the walk causes the delocalized wave
function to refocus to the initial lattice site. Al-
though the atoms in our experiments are ther-
mally distributed among several vibrational states,
we obtain large coherence over a macroscopic
distance. In the ideal case, motional state and
internal states factorize so that the coherence
created in one degree of freedom is not affected
by the other. We have found that, as soon as
internal and external degrees of freedom are
coupled by diabatic transport leading to vibrational
excitations, for instance, the matter wave inter-
ference is quickly suppressed.

It will be interesting to investigate the be-
havior of quantum walks for different conditions

when coin operations depend on position or time.
In particular, monitoring the decay of coherence
under the influence of different noise sources will
further elucidate the transition from the quantum
to the classical regime. Performing the quantum
walk with more than one atom and enabling
coherent interactions between the atoms (30) will
realize first operational quantum cellular automata
that can be probed by full quantum state tomog-
raphy, opening another experimental route toward
quantum information science.
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