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Three-dimensional imaging of single atoms in an optical lattice via helical
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We demonstrate a method for determining the three-dimensional location of single atoms in a quantum
gas microscopy system using a phase-only spatial light modulator to modify the point-spread function of the
high-resolution imaging system. Here, the typical diffracted spot generated by a single atom as a point source is
modified to a double spot that rotates as a function of the atom’s distance from the focal plane of the imaging
system. We present and numerically validate a simple model linking the rotation angle of the point-spread
function with the distance to the focal plane. We show that, when aberrations in the system are carefully
calibrated and compensated for, this method can be used to determine an atom’s position to within a single
lattice site in a single experimental image, extending quantum simulation with microscopy systems further into

the regime of three dimensions.
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I. INTRODUCTION

The advent of quantum gas microscopy, wherein one can
manipulate and image atoms with high resolution, has revo-
lutionized the field of analog quantum simulation. The first
quantum gas microscopes were based on fluorescence imag-
ing of ultracold bosonic atoms trapped in cubic optical lattices
placed near a high-resolution microscope objective [1,2], and
in recent years, fermionic systems [3—7], molecular systems
[8] and systems with noncubic lattice shapes [9,10] have been
demonstrated. These systems have been used to study, among
others, entanglement dynamics [11], many-body localization
[12,13], and the Fermi-Hubbard model [14-16].

However, these lattice-based systems have largely been
limited to studies of quantum simulation in two dimensions,
where a single plane of the lattice has been prepared, with
some exceptions for bilayer studies [17,18]. This is in no small
part due to the fact that, like with conventional microscopy
systems, the imaging signal is obtained by integrating the
atomic fluorescence along the direction of the optical axis of
the microscope. Additionally, given a selected lattice plane,
it is extremely difficult to distinguish the fluorescence signal
emitted by in-plane atoms from that of out-of-plane atoms,
since the diffraction-limited depth of focus of the quantum
gas microscope can extend over several planes, even at high
numerical apertures NA =~ 0.6. Tomographic methods, where
multiple images are taken while the microscope objective
is moved between exposures, were first demonstrated for
large-spacing lattices [19,20] and later for lattices with half-
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wavelength plane spacing [21], but these methods’ multiple
exposure requirement limits their efficacy due to long imaging
times.

Pulsed-ion microscopes, wherein the atoms are ionized
based on their position, have been demonstrated [22], but de-
tection efficiencies are low [23] and they are limited to ~1 pm
resolution, thus rendering them unable to distinguish between
adjacent planes of a typical cubic lattice with ~500 nm plane
spacing. Moreover, such ionizing techniques do not allow one
to reuse the same atoms for subsequent measurements. Three-
dimensional imaging methods with microlens arrays [24] and
holographic imaging methods [25] also suffer from low spa-
tial resolution, although a recent holographic method—while
still requiring multiple exposures—overcomes the conven-
tional axial resolution limitations and could be applied to
quickly image a bulk cloud in three dimensions [26]. How-
ever, a high-resolution imaging technique based on coupling
atomic fluorescence into a multimode fiber (instead of a
high-resolution objective) has shown promise for three-
dimensional reconstruction of the atoms’ positions [27].

In this work, we demonstrate three-dimensional imaging
of single atoms in a quantum gas microscope using point-
spread-function (PSF) engineering of the atoms’ fluorescence
signal. Inspired by similar work in the imaging of biolumi-
nescent molecules [28], we modify the phase of the atoms’
fluorescence with a spatial light modulator (SLM) placed in
the Fourier plane of the imaging system. In this way, we
encode each atom’s position along the optical axis of the
imaging system (here, the z direction). Specifically, the typical
point-like PSF of a single atom is modified into a two-point,
double-helix PSF (DH-PSF) that rigidly rotates as a func-
tion of its z position. This is done by writing the phase of
a superposition of Laguerre-Gaussian modes onto the SLM

©2024 American Physical Society
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[29-31]. In particular, we show that this method has promise
with regards to determining the three-dimensional distribution
of atoms in a lattice system, when aberrations in the system
are carefully controlled.

This paper is organized as follows. In Sec. II we describe
the basic theoretical aspects of the rotating PSF. We describe
the experimental setup in Sec. III and present our experimental
results in Sec. IV. Simulations of the effects of aberrations in
the experimental system are presented in Sec. V. Section VI
discusses our results and concludes.

II. THEORY

The theoretical background for rigidly rotating PSFs has
been discussed in detail in Refs. [28-31], and we present
only the most relevant aspects here. In general, in the parax-
ial approximation, one can construct a rotating PSF from
superpositions of Laguerre-Gaussian modes [29], which are
themselves a complete basis set of solutions to the parax-
ial Helmholtz equation in cylindrical coordinates. We denote
these modes as |/, p), and they can be written spatially as [30]

(xll. p) =Ci, %(fz P! exp(~7)LI (272)

x exp(iF*z) explilg — iy, (2)], (1)

where 7 = z/zg is the longitudinal coordinate (along the op-
tical axis) scaled by the Rayleigh length zgp = nw(z) /A for a
Gaussian spot size wg and light wavelength A. The Gaussian
beam radius changes as a function of Z as w(Z) = wo+/1 + 72
The scaled radial coordinate is 7 = r/w(Z). Note that in gener-
ating the phase fronts, we work at z = 0 such that w(z) = wy.
The azimuthal coordinate is denoted by ¢ € [0, 2rr). The vari-
able Cj, is a normalization factor given by

2p!

m(p+ 1D @

Gy =
The functions making up the orthogonal Laguerre-Gaussian
basis are given by the azimuthal mode number [ € Z, the
radial mode number p € N, and the combined mode number
n=2p+|l|. The Lj) denote the generalized Laguerre poly-
nomials, and v;,(Z) = (n + 1)arctan (Z) is the Gouy phase,
which is zero at z = 0. As n increases, the spatial extent of the
beam becomes larger. The value of [ denotes the number and
handedness of the azimuthal phase windings and there are p
radial zeros for each mode.

Each of these Laguerre-Gaussian modes is an eigenmode
of rotation about the z axis, meaning that the intensity dis-
tribution of the light I o< | (r|l, p) |* is axially symmetric and
stationary. Thus, in order to make a PSF rotate, we must
superpose two or more of these modes. In general, one can
show that, given a superposition of modes {|/;, p;)} such
that An =n;y —n; and Al =1[;; —; are equal for all j
(ordered sequentially for increasing n), the interference terms
in the superposition rotate about the optical axis at the rate

d—¢ = Vi arctan (z/zr), 3)
dz dz
where V = An/Al. Here, and moving forward, we return
to using z/zgr over Z for clarity. Combinations of modes

(@) 0.6
Wo =
- 0 p—
" " [ [ TT
3
~
Y | .
-1 -0.5 0 0.5 1
z/zr
(b) . z-dimension © o x- and y-dimension
o —DH
= 6 Std. 6
< &
S 4 - 4
E :
Y 2 2
0 0
-5 0 5 -
z/7r z/zr

FIG. 1. (a) Intensity and phase profile of the DH-PSF at different
axial positions within the Rayleigh range. The upper end of the
intensity color scale corresponds to the maximum intensity of the
unmodified PSF. (b and c) Fisher information Z, as a function of
axial position z/zg of the DH-PSF (blue) and the standard PSF (Std.,
orange) with respect to the (b) axial z dimension, (c) x dimension
(solid), and y dimension (dashed). Note the different units of the
ordinates, as well as the fact that Z, = 0 at z = 0 for the standard
PSE.

satisfying the above condition lie along a line in the Laguerre-
Gaussian modal plane [32]. The superposition has an intensity
distribution whose axial rotational symmetry is broken due to
the interference of modes of different orbital angular momen-
tum phases e'/¢ (for Al # 0). The dynamics along the optical
axis are provided by the different Gouy phases v, (z) (for
An # 0). Overall, the interference pattern performs a rigid
axial rotation along z [scaled by w(z)]. Details are given in
Appendix A. The total rotation from z = —oo to z = 00 is
given by V7, so beams with higher An will have larger spatial
extents but will also rotate faster. Half of this rotation occurs
within [—zg, zr]; outside the Rayleigh range, the rotating rate
decreases. For a given distance z away from the focal plane,
we get from Eq. (3) the rotation angle of the PSF

0 =V arctan (z/zR) + a, €]

where « is the (arbitrary) measured angle of the rotating PSF
in the focal plane.

As an example PSF, consider the superposition |/, p) =
(10,0) + |12, 1))/ V2, whose transverse intensity and phase are
shown in Fig. 1(a). This mode combination has a double-
helical structure, hence the name double-helix PSF. With
V = 2 the rotation angle is unambiguous within the Rayleigh
range. The topology of the intensity pattern is particularly
well suited for determining both the angle of rotation and the
center position while leaving the energy as spatially focused
as possible. This is also the reason why we use this particular
PSF in this work.
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A further advantage provided by this DH-PSF is given
by the degree to which one can localize an atom in three-
dimensional space. For an atom positioned in (x,y, z), the
classical Fisher information informs us how efficient our esti-
mate of its position can possibly be. It is defined as

a 2
Z, =E[<a—lnf(x;n)) n}, (5)
n

where f(X;n) is the probability density function for an ob-
servable X, given a parameter 1 = x, y, or z. More precisely,
the reciprocal of the Fisher information sets a lower bound for
the variance of an unbiased estimator that uses the detected
fluorescence signal to reconstruct the atom’s position. Thus,
the Fisher information is independent of how we construct the
estimator based on the observed fluorescence signal, and it
provides a measure of how efficient an (unbiased) estimator of
the atom’s position can be. Comparing the Fisher information
of the DH-PSF with the ordinary PSF, we can directly quantify
how much more information about the atom’s position we can
extract from the detected fluorescence signal. By identifying
the normalized transverse intensity distribution as a proba-
bility density, we compute—as a function of z—the Fisher
information with respect to each Cartesian coordinate for the
DH-PSF and, as comparison, for the fundamental Laguerre-
Gaussian mode, as shown in Figs. 1(b) and 1(c). The latter
can be considered the standard, Airy-disk PSF in terms of
Laguerre-Gaussian modes; this is what is commonly seen
in quantum gas microscopy experiments. We do not assume
any noise here. A complete noise model would allow us to
quantify the resolution achievable in the experiment using
the theoretical Fisher information, but this is outside of the
scope of this work. Details on the computation can be found
in Appendix B. As can be seen, the DH-PSF provides a higher
Fisher information for the localization along all dimensions
as compared to using the standard PSF. In particular, unlike
the standard PSF, it provides high axial information even
near the focus, as evident from Fig. 1(b). Remarkably, the
Fisher information of the standard PSF vanishes for z = 0,
indicating its inability to differentiate between positive and
negative positions of the atom along the z axis, while the
Fisher information of the DH-PSF is close to its maximum
near the focus. The superior axial information of the double
helix thus provides a decisive advantage over merely relying
on the defocus.

Regarding localization along the lateral dimensions, it is
interesting to note that the DH-PSF yields larger Fisher in-
formation over the entire Rayleigh range, as can be seen in
Fig. 1(c), which also improves the effective depth of field.
However, this does not necessarily give the DH-PSF a better
performance for applications with emitters in a single lateral
plane, as the larger extent of the PSF makes the localization
of closely spaced emitters less trivial, and the peak intensity is
lower for a limited photon budget. At the focus, the DH-PSF
consists of two lobes shifted from the origin along the x
axis. This azimuthal asymmetry results in a slightly higher
maximal Fisher information along the x dimension than the y
dimension.

Finally, it is important to note that the PSFs based on
Laguerre-Gaussian mode superpositions are not the only
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FIG. 2. A schematic of the fluorescence imaging system. The
atoms are trapped in a three-dimensional lattice below a high-NA
in vacuo microscope objective. After passing through a 90/10 beam
splitter [which allows for the vertical magneto-optical trap (MOT)
beam to enter the chamber], the light is then reimaged onto an
electron-multiplying CCD (EMCCD) camera with a magnification
of M = %;/‘f“% In the Fourier plane of this reimaging system, the
phase of the atoms’ fluorescence is modified by an SLM, which gives
rise to the helically diffracting PSF that encodes information on the
atoms’ z position along the optical axis.

possible engineered PSFs that can be applied to a given system
[33], but these ensure rigid rotation about the focal plane of the
imaging system, so they provide an excellent test bed for the
proof-of-principle three-dimensional imaging demonstrated
in this work.

III. EXPERIMENTAL SETUP

The experimental system is similar to that used in
Refs. [34,35] and described in detail in Ref. [36]. In particular,
we trap ultracold '**Cs atoms in a three-dimensional cubic lat-
tice positioned near a custom in vacuo high numerical aperture
(NA) objective with a maximum NA of 0.92 [37] capable of
site-resolved imaging of the individual atoms in the lattice.
The horizontal lattice is created by a three-beam lattice with a
wavelength of Ay = 866 nm, giving rise to a single-site lattice
spacing of Ay/+/2 ~ 612 nm. The vertical lattice is provided
by a retro-reflected lattice with wavelength Ay = 1064 nm,
so the distance between adjacent vertical lattice planes is
di, = 532 nm,; it is this vertical spacing that we seek to resolve
in this work.

The atoms are prepared first by standard cooling in a MOT
and polarization gradient cooling, after which we load the
atoms into the three-dimensional lattice. In order to sparsely
load the lattice, we hold the atoms in the lattice for 5s and
resolve, on average, six atoms in the lattice when we begin
imaging. It is important to note that no plane selection is
performed, so we load many (>10) vertical lattice planes per
experimental run.

The imaging system used in the experiment is shown in
Fig. 2. The light collected by the high-NA objective is re-
imaged onto an EMCCD camera. In an intermediate Fourier
plane of this imaging system, we place an SLM (Santec SLM-
100, with 1440x 1050 pixels and a pixel pitch of 10.4 um) that
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modifies the phase of the imaging light with a modulation
depth >4m, a 10 bit resolution, and a typical response time
of 100 ms. A polarizer placed before the SLM allows us to
only select the light polarization that is modified by the SLM,
and the use of a knife-edge mirror allows us to direct the light
into the SLM at an angle near normal incidence, where the
SLM is designed to operate. The knife-edge mirror must be
carefully aligned so that the beam is significantly narrower on
its surface, but does not correspond exactly to the intermediate
image planes, otherwise any defect on the mirror surface will
be imaged directly onto the camera. We calibrate the SLM
phase mask to account for curvature of the SLM chip as well
as aberrations in the imaging setup.! The SLM also allows us
to apply a holographic lens, enabling us to shift the focal plane
of the imaging system by a given amount and thus focus on
different vertical lattice planes (for details see Appendix C).
Nominally, the imaging system is designed to make full use of
the 0.92 NA microscope objective, but a motorized iris above
the objective allows the effective NA of the imaging system to
be reduced, which increases the depth of field of the system at
the expense of horizontal resolution.

The imaging system is designed as a 4f correlator system,
and it allows a multiplication in Fourier space by a field whose
Fourier transform gives the desired PSFE. In image space, this
is equivalent to convolving the lateral atom positions with
the PSF. To create the DH-PSF with the desired Laguerre-
Gaussian mode superposition in image space, we program the
phase of this field onto the SLM placed in the pupil. This
is possible because the Laguerre-Gaussian modes are eigen-
functions of the two-dimensional Fourier transform expressed
in polar coordinates [38]. Due to the fact that the amplitude
is not modulated in the pupil and due to diffraction at the
finite aperture (which acts as a low-pass filter), the possible
mode fidelity in image space is constrained. As reported in
Ref. [39], achievable mode fidelities reach around 80 % at
certain ratios of aperture radius and Laguerre-Gaussian mode
waist a/wy, with values around a/wy = 2 to 4 for low mode
numbers p, [ < 5, depending on the specific mode. Here, wy
is the waist of the phase mask in the pupil plane. In the case
of our Laguerre-Gaussian mode superposition, we manually
optimize wy in an optical test setup until the resulting PSF
is as close as possible to the desired DH-PSF, resulting in
a/wo = 2.97. As our simulations confirm (cf. Sec. V), the
mode fidelity is sufficient, since the rotational properties do
not deviate significantly from the simple model of scaled-rigid
rotation Eq. (4), except for very large NAs.

We take three images of the atom cloud with the modified
PSF via fluorescence imaging on the D2 line of cesium (A =
852 nm). For our intermediate NA of 0.6, compared to the
maximal NA, both the axial resolution through the standard
PSF and the rotation angle per vertical lattice plane of the
rotating PSF are smaller, thereby posing a greater challenge
to vertical plane resolution than at higher NA. In addition, due
to lower photon collection efficiency, the reduced solid angle
also results in a smaller signal-to-noise ratio. Finally, similar

This aberration correction is done empirically by adding Zernike
polynomials to the SLM and optimizing the PSF of the atoms without
the DH-PSF phase mask applied.

numerical aperture values are typical in ultracold atom exper-
iments, where other factors such as the need for long working
distance, large field of view, and chromatic corrections often
prevent reaching values higher than NA = 0.6-0.7. Thus, the
demonstration of the use of the DH-PSF at the intermediate
NA = 0.6 is of greater relevance.

By using the SLM to vary the focal plane between images
(in addition to engineering the PSF and correcting for aber-
rations), the first and third images are set to image a focal
plane at position zp = 0, while the second image focuses on
a plane zp + ndy, where n is an integer that describes the
number of vertical lattice planes by which we have shifted
the focal plane. In this work, we vary n from —4 to 4 in
steps of 2. Because our system was not optimized to eliminate
atom hopping in the lattice (horizontally or vertically), we take
the third image in order to postselect on atoms that have not
hopped in any direction. Our imaging exposure times were 1 s,
with a delay of 500 ms between images to allow the SLM to
update.

IV. RESULTS

The phase-engineered fluorescence imaging system is used
with a DH-PSF to localize single atoms in all three dimensions
of the three-dimensional optical lattice. We present a scheme
for calibrating the axial rotation angle of the DH-PSF. As we
show, this allows the vertical lattice structure to be resolved
while preserving the lateral single-site resolution.

Figure 3 shows images of an axially thick atomic ensemble
in a sparsely filled optical lattice taken with the DH-PSF com-
pared to the standard PSF. In the figure, atoms with a similar
standard PSF but different lattice plane locations exhibit a
clear difference in their DH-PSF. That is, the standard PSF’s
symmetry about z = 0 is no longer present for the DH-PSF,
allowing for one to discriminate between atoms on the positive
or negative side of the focal plane. As such, the DH-PSF
contains more information about the atoms’ position than the
standard PSF. Additionally, the DH-PSF enhances the depth
of field of the imaging system; even atoms that look blurry
with the standard PSF can be well localized with the DH-PSF.
Note, however, that the in-focus rotation angle of the DH-PSF
is nonzero; we will return to this later in the manuscript. Fi-
nally, we observe a disadvantage of the DH-PSF—the energy
is split between two peaks—giving a poorer signal-to-noise
ratio per pixel compared to the standard PSF for an equal
photon budget.

To extract the atoms’ position information from an image,
one must determine the rotation angle of the DH-PSF as well
as its center position. We low-pass filter the images (after a
mean background subtraction) to limit the effect of shot noise.
A local maxima search algorithm then finds the position of
each peak. The pairwise separation of all peak combinations
in an image is calculated. Of these, only those pairs that are
within a certain distance range, set by manual inspection of
the detected PSFs, are retained. We then sort out those pairs
where both peaks are simultaneously paired with each other.
This gives unambiguous pairs of peaks which, by construc-
tion, correspond each to a single atom. Finally, the position
and rotation angle of the DH-PSF are determined by fitting
a cropped region around the atom center (in the middle of
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FIG. 3. Example of an image section taken with the standard PSF (left) and the DH-PSF (right). The (background corrected) images at
NA = 0.6 with an exposure time of 1 s have been consecutively taken from the same ensemble of atoms. Note that there is some atom hopping
and loss between images. Atom A appears relatively in focus, while atom B is clearly out of focus, resulting in a different angle of the DH-PSF
relative to atom A. Atom C also appears moderately defocused, but based on its DH-PSF angle it can be concluded that, unlike atom B, it is
located above the focal plane. Atom D shows an example of an atom that is lost between images.

the two peaks) to the sum of two elliptical two-dimensional
Gaussian functions.

The mapping from rotation angle to vertical position is, in
theory, directly possible using Eq. (4), as long as the Rayleigh
length zr of the Laguerre-Gaussian mode superposition in
object or image space is known. However, we define the zg
of the mode combination by choosing the Laguerre-Gaussian
waist wg of the phase mask in the pupil plane. More precisely,
the resulting field in image space does not fully match the
desired Laguerre-Gaussian mode superposition (cf. Sec. III),
although the overlap is high. Note that here the effective wy
or zg defining the Laguerre-Gaussian basis with the highest
overlap are unknown a priori. A calibration of the vertical
position is desirable to account for experimental effects not
captured by this simple model (e.g., aberrations), even if the
effective Rayleigh length zg is known. By shifting the focal
plane by a known distance—by programming a holographic
lens on the SLM—we obtain a vertical length reference which
is used for calibration. The change in the measured angle of
the image with shifted focus 6; compared to the unshifted
image 6 is related to the displacement of the focal plane Az

according to
60— Az
) - —:| + . (6)
|4 ZR

The experimental data sets with different shifts Az are (si-
multaneously) fitted to this model by nonlinear least squares
minimization. Here, we take V = 2 as defined by our DH-PSF.
We postselect on atoms that have not hopped (in any Cartesian
direction) around the lattice during imaging by requiring that
0, ~ 65, where we denote by 6, the atom’s rotation angle in
image ¢, and both ¢ = 1, 3 are taken at the unshifted focus,
and the approximation takes into account minor inaccuracies
in the peak finding and angle determination algorithms as well
as the systematic shift due to gravity, which will be discussed
shortly. The result is shown in Fig. 4. We can see that the mea-
sured angles follow Eq. (6) quite well. The in-focus angle « =
(34.0 & 1.4) deg can be detected as a result of the nonlinear
model. If Eq. (6) was linear, 6; would not depend on «; this is

6, =V arctan |:tan (

clearly seen if we replace tan and arctan with the identity func-
tion. The effective Rayleigh length zg = (14.39 £0.11)d;,
is determined by the distance between stripes of equal Az.
This demonstrates the strongly extended depth of field of the
DH-PSF as opposed to the theoretical A /(2NA2) & 2.2 dy for
standard PSF at NA = 0.6.

Due to hopping along the optical axis of our system (here,
the vertical direction, cf. Fig. 2) during the exposure time, the

O (1439+0.11)d, 7]
a=(34.0+14)de d
125 + ( ) g o/ 1
MSE=11.4 . KX 7/
100 1
“on
3
~ 75t data .
sl ° _4
2
50 F .0 % ]
] +2 <
25| +4 _
global fit
O (. 1 1 1 1 1 1
0 25 50 75 100 125 150

6 (deg)

FIG. 4. Axial calibration of the DH-PSF giving the effective
Rayleigh range zg, the angle offset o, and the mean squared error
(MSE) of the nonlinear fit of Eq. (6) to the experimental data. The
angle measured in the image with shifted focal plane 6 is related to
the angle measured in the unshifted images 8 by Eq. (6). Different
focal plane shifts Az are shown in different colors. The lines corre-
sponding to odd integer focal shifts, in units of the vertical lattice
constant d , are marked in gray dashed lines.
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data points are scattered around the fit lines corresponding to
a particular, selected plane of the three-dimensional lattice,
which is also evident from the relatively large mean squared
error of 11.4, which is obtained from the nonlinear fit of
Eq. (6) to the experimental data. We expect that a reduction
in vertical hopping will result in measured angles lying closer
to the relevant lines, thus clearly resolving the different planes.
Importantly, the fitted calibration parameters of our model
in Eq. (6) are not affected by the atoms hopping between
different planes. Such hopping events are not expected to
produce a bias in the fitted parameters, as we explain in the
following. Gravity makes it more probable for the atoms to
hop vertically downwards during imaging, leading to a small
bias in the DH-PSF angle. However, the fit includes both
the (61, 6,) and (63, 0,) data pairs. Their directional angle
shifts due to gravity are statistically canceled out because they
occur in opposite directions. This is not true for the data with
Az = 0 for which we use the pairs (8;, 63). Thus, in this case,
gravity causes a systematic shift of the data points below the
identity line 6; = 6, which amounts on average to 0.63°. Upon
closer inspection, one can discern a higher density of blue
points below the identity line in Fig. 4. However, this bias
does not affect the calibration, since Eq. (6) yields the identity
without any free parameters for Az = 0. As we will show,
the accuracy of the axial length reference—given by the focus
shift through the holographic lens—does not introduce any
bias.

The measured in-focus angle « deviates from the 0 deg
expected from the selected DH-PSF; we expect o = 0 due to
the fact that the SLM and camera axes coincide. This deviation
arises due to residual aberrations. As we will show in Sec. V,
certain (low-order) aberrations can have a strong influence on
this offset angle.

The calibration opens up the possibility of calculating the
axial position of an atom by rearranging Eq. (4) into

60— 7
v ) (7N

This can be employed, for instance, to determine the vertical
distribution of atoms in the lattice. In this way, it is also
possible to check the calibration against another known axial
length reference, namely, the distance between vertical lattice
planes dy..

Figure 5(a) shows a histogram of the determined vertical
positions of atoms imaged as described in Sec. III. For this
purpose we take each of the first images of the dataset as for
Fig. 4, a total of 1173 atoms. Together with the determined
lateral positions, the three-dimensional positions of the atoms
in the lattice are thus reconstructed. The detected atoms lie
mostly above the focal plane within a range of around ten
vertical lattice planes centered around z = 5d. This means
that the focal plane of the microscope is shifted relative to the
center of the atom cloud loaded into the lattice, which also
shows that our method can be used as a means of calibrating
the objective position relative to the position of the atoms
loaded into the lattice. The enhanced depth of field by the
DH-PSF is apparent from the fact that atoms can be readily
detected more than +10 dp, away from the focus, i.e., a range
of 20 dy , as opposed to the 2.2 d;. depth of field of the standard
PSF.
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FIG. 5. (a) Histograms of the calculated z position of the atoms
for a given focus setting, calculated from their measured angle 6.
(b) Fourier transform of the histogram in (a), showing a peak around
& =1/d., as expected due to the discrete nature of the lattice
structure. This peak is, however, obscured due to between-planes
hopping and inhomogeneous aberrations in the imaging system, as
we describe in the main text.

A clustering at integer lattice sites is observed, as expected
from the nature of the vertical lattice. To investigate the pe-
riodicity of the vertical atom distribution in more detail, we
calculate the spatial frequency spectrum as shown in Fig. 5(b)
using the discrete Fourier transform. The spectrum peaks at
the spatial frequency & = 1d ! as expected. Vertical hop-
ping during the image exposure leads to a smearing of the
expected discrete structure (cf. the calibration fit shown in
Fig. 4). Another contribution to the broadening arises due
to aberrations inhomogeneously distributed over the field of
view; in particular, the Strehl ratio of our objective lens de-
creases with increasing distance from the optical axis [37].
As such, in the following section, we present simulations that
allow us to better understand the effect of the aberrations in
the system.

V. SIMULATIONS

The basic idea of the simulations presented here is to phys-
ically model the light field emitted by a given atom (point
source) in the pupil or SLM plane, and then to calculate
the far field in the image or camera plane. The resulting
intensity distribution corresponds to the PSF. PSFs for atoms
at different axial positions are calculated by propagating the
simulated image plane field for an in-focus atom along the
optical axis. The object plane is conjugate to the image
plane and the respective z coordinates are simply related via
the axial magnification.
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FIG. 6. Visualization of the simulated field emanating from a
single atom without aberrations for a NA of 0.6 (a) in the SLM
plane and (b) in the image plane at z = 0, after modification by the
SLM into a DH-PSE. The SLM plane intensity is normalized to its
maximum and increases towards the edges due to the apodization
of the objective lens. The pupil radius corresponding to the NA of
0.6 is a = 230 SLM pixels and we use the same Laguerre-Gaussian
waist wy as in the experiment such that a/w, = 2.97. Only a central
section of the calculated output matrix is shown, so that the PSF
is clearly visible. Here, the axes are given in object/atom plane
coordinates. The image plane intensity is normalized to the maximal
intensity of the standard PSF.

The field in the pupil plane is given by the apodization
function of the objective lens and the phase-modulated gen-
eralized pupil function, which captures arbitrary aberrations
and the programmed DH-PSF phase mask. The pupil radius
in the SLM plane NA f, fo;/f1 corresponds, for NA = 0.6,
to 230 SLM pixels, in our case. We define the pupil plane
field by a 1050x 1050 matrix with the physical pixel size
corresponding to the SLM pixel size. This selection is deemed
reasonable, considering the smooth and gradual variation of
the field resulting from the apodization and Zernike polyno-
mials that characterize the aberrations across the pupil plane.
Phase discontinuities are introduced only by the phase mask
programmed onto the SLM and therefore, due to the digital
nature of the device, only occur at pixel boundaries. Inten-
sity and phase are shown exemplarily without aberrations in
Fig. 6(a).

We calculate the corresponding field in the image plane
using the two-dimensional discrete Fourier transform. The
output plane pixel size is given by Afupe/d, where d is
the physical side length of the pupil plane matrix. Prior to
the transformation, the matrix is subjected to zero padding,
increasing its size by a factor of 10, thus increasing the reso-
lution in the output plane. The field at different axial positions
in the image plane is computed by Fresnel propagation. The
resulting transverse intensity distribution, shown in Fig. 6(b)
for z =0, corresponds to the SLM-modified DH-PSF; this
allows the study of its inherent properties.

Z/dL

FIG. 7. Computed rotation angles and corresponding Laguerre-
Gaussian model fits of the DH-PSF for three different NAs. The PSF
was calculated at each of 81 axial positions in the interval from —4
to4 dL.

As an example, we can compute the DH-PSF’s rotation
angle for a range of axial positions, varying the NA of the
system, as shown in Fig. 7. The amount of rotation strongly
depends on the NA; a high NA corresponds to a small radial
scale wy and axial scale zg, giving a faster rotation and de-
focus. A nonlinear least squares minimization is used to fit
the rotation angle to Eq. (4) describing the expectation for
a perfect rendering of the Laguerre-Gaussian mode superpo-
sition. We find that the smaller the NA, the better the fit of
the Laguerre-Gaussian model. The DH-PSF created solely by
phase modulation is still quite well described by this model, in
particular at low and intermediate NAs.> Our method indeed
creates the DH-PSF Laguerre-Gaussian mode superposition
with high fidelity. Additionally, leakage into other Laguerre-
Gaussian modes occurs symmetrically about the straight line
in the (/, p) Laguerre-Gaussian modal plane (cf. Sec. II), as
was shown by Ref. [32], and thus has negligible influence
on the rotational behavior. Hence, the result of these simu-
lations supports our assumption that Eq. (4) represents a good
estimator of the atoms’ axial position based on the measured
DH-PSF. In case of significant deviations, a lookup table of an
atom’s axial position from the detected rotation angle can be
established.

Our simulations are further aimed at understanding which
aberrations most affect the rotation angle of our DH-PSF.
From these, we find that the measured in-focus angle «
is most sensitive to vertical astigmatism (both primary and
secondary), as well as spherical aberration and, in a trivial
way, defocus. Thus, in the experiment, the degradation of the
wavefront distortion away from the optical axis results in an
inhomogeneous angle o« across the field of view. Using an
averaged angle ¢, as determined by calibration, introduces an
uncertainty in determining an atom’s vertical position that is
dependent on its lateral position within the field of view; this
effect is not captured by our simplified model that does not in-
clude inhomogeneous aberrations. Aggregating atoms across

2The SLM used in this work can only modulate phase; ideally a
device would be used that could modulate both phase and amplitude.
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the entire field of view results in “smearing” of the measured
angle at different focal positions; the peak of Fig. 5(b) is thus
similarly smeared out. We know from previous work [37]
that defocus and astigmatic effects are the main sources of
aberration due to our objective, but other aberrations are likely
due to other optical elements and misalignment of the system;
these were only partially corrected by the SLM during the
experiment.

To study the effect of aberrations on the DH-PSF, we use
the relation between the PSF and the wavefront. We express
the aberrated pupil wavefront as an expansion of (lowest-
order) orthogonal Zernike polynomials [40]. For our DH-PSF
at the NA of 0.6, we simulate different types of aberrations by
adding in the pupil plane each of the lowest-order nontrivial
Zernike polynomials with varying Zernike coefficients. We
compute the resulting PSF in a range from —10dy, to 104,
and determine the rotation angle.

Since certain aberrations significantly change the double-
peak structure of the DH-PSF above a certain strength, we
determine the rotation angle not from a double Gaussian fit
of the PSF intensity distribution as for the experimental data
but rather using a nonparametric method based on the Radon
transform. The Radon transform of the PSF contains the line
projections of the intensity distribution under all projection
angles and projection displacements. Here, the line projection
refers to the sum of all pixel values in an image along a line
with a given angle. For lines that are not horizontal or vertical,
the algorithm used in this work chooses how to weight the in-
dividual pixel values in the sum.? We numerically compute the
Radon transform of the simulated PSFs for projection angles
in the interval [—m /2, 4+ /2) with a resolution of 0.01 deg.
For a DH-PSF centered at the origin of the coordinate system,
the rotation angle is the projection angle that corresponds
to the maximum value of these Radon transforms at zero
displacement.

Figure 8 shows the results of this analysis. We find that
the different types of aberrations affect the in-focus rotation
angle o = 6, to very different extents. As expected, the de-
focus trivially shifts the entire rotation curve along z, thereby
also impacting «. From the other aberrations, only vertical
astigmatism (both primary and secondary) and spherical aber-
ration have a substantial impact on «, all to a similar extent.
Unsurprisingly, the simulation reveals that a higher absolute
value of the Zernike coefficient (corresponding to a stronger
aberration) results in a greater shift in the rotation angle. As
can be seen, the rotation angle is also affected at z # 0, espe-
cially for oblique and vertical primary astigmatism, spherical
aberration, and vertical secondary astigmatism. The impact of
spherical aberration closely resembles that of defocus but with
an opposing sign. While vertical and horizontal coma, and
to some extent vertical and oblique trefoil as well as oblique
secondary astigmatism, do not significantly alter the rotation
curves, we find that these aberrations do change the shape of
the DH-PSF at higher Zernike coefficients.

While we do not know the exact residual aberrations
present in our imaging system, the simulation of the

3We use the Radon transform algorithm implemented in the MAT-
LAB function radon (version R2022b).

DH-PSF with aberrations presented here leads us to conclude
that certain aberrations have an appreciable influence on the
rotational behavior of the DH-PSFE. In addition to defocus,
vertical astigmatism (primary and secondary) and spherical
aberration shift the rotation curves. It is therefore plausible
that the measured in-focus angle o deviates significantly from
zero due to such aberrations (cf. Sec. IV). Since we know that
the aberrations are not completely homogeneous across the
field of view, we must also conclude that the calibration of the
rotation angle, which is based on an aggregation of PSFs from
different lateral positions, leads to a value of « averaged over
our field of view. This leads to a small uncertainty in the angle
determination depending on the lateral atom position. Hence,
optical aberrations, together with between-planes hopping, are
believed to be the main reason for the imperfect separation of
different lattice planes, as observed in Figs. 4 and 5.

VI. DISCUSSION AND CONCLUSION

This work describes a method to accurately determine
an atom’s position in a quantum gas microscope in three-
dimensional space. The data presented is currently limited
by aberrations in the system, but the lattice structure that is
nevertheless visible in Fig. 5 demonstrates that the rigidly
rotating, double-lobed DH-PSF has the capability of resolv-
ing single planes of an optical lattice with typical submicron
spacing. Additionally, the engineered PSF greatly increases
the depth of field compared to a typical Airy-like PSE. Our
data furthermore confirms the accuracy of the axial length
reference used for the calibration of axial position detection,
i.e., the use of a focal shift by a holographic lens on the SLM.
This use of a holographic lens for shifting the focal plane of
our atom images is a much simpler alternative to the common
technique of piezo control of the objective in systems in which
an SLM is used for PSF engineering [28] or systems involving
spatial atomic tomography with multiple imaging exposures
[21].

Our simulations demonstrate how aberrations impact the
rotation angle of the DH-PSF and to what extent. Specifically,
our simulations show how the rotation angle of an aberrated
DH-PSF in the focal plane depends on the type and degree of
aberrations present in the imaging system. Inhomogeneities
of aberrations across the field of view thus introduce an
uncertainty in position determination. This effect was also
observed and characterized in DH-PSF microscopy of single
molecules [41] where, to calibrate the system, the PSF was
sampled across the field of view with an accurate axial and
lateral length reference, using a regularly spaced subdiffrac-
tion aperture grid filled with fluorescent dyes. Effectively, the
simple calibration method presented here for extracting the
axial position from the detected PSF’s rotation angle averages
over atoms detected within a larger region of the field of view.
Due to the regular geometry of our lattice, such a calibration
parametrized over the field of view is possible in the future
using experimental data of the type we recorded. By mapping
aberrations over the field of view, it should be possible to
mitigate uncertainties caused by inhomogeneous aberrations
and, thereby, enhance the precision of axial localization. How-
ever, we expect that in microscopes with better aberration
homogeneity, the proposed mapping of aberrations over the
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FIG. 8. Angle of rotation of the DH-PSF as a function of axial emitter position in the presence of aberrations for an NA of 0.6. Each
subplot shows the effect of a different Zernike polynomial wavefront aberration (up to Noll index 13, omitting the trivial piston, horizontal,
and vertical tilt) for varying Zernike coefficients or aberration strengths W. The rotation angle 0 is determined from the computed DH-PSF
using the Radon transform for every integer position within the axial range of —10—104dy, (see text for details). The rotation angle of our
DH-PSF with V = 2 is only unique within an angle interval of length 7. Since our angle determination is restricted to 6 € [—m /2, 4+ /2) by
construction, the computed angles jump by £ at the edges of this interval.
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field of view will not be necessary to resolve typical optical
lattice spacings over the entire field of view of interest. Since
the DH-PSF is sensitive to (certain) aberrations, the modified
PSF could also be used for precise aberration characterization.
Moreover, we remark that the SLM in the intermediate Fourier
plane then allows the addition of a phase map that compen-
sates for the detected aberrations, regardless of whether a
DH-PSF or a regular Airy-like PSF is used; another method
of aberration correction can be found in Ref. [42].

For quantum gas microscope experiments with densely
filled optical lattices [43], it is of interest not to lose the
lateral single-site resolution due to the widening of a modified
PSF, leading to an overlap in the signals from nearby atoms.
Taking the DH-PSF as an example, the larger extent of the
PSF and the task of correctly attributing lobes of overlapping
PSFs to the right atoms can initially be believed to be an
inherent disadvantage. However, as reported in Ref. [44], the
particular shape and spacing of the lobes can help determine
the underlying positions of the emitters. In fact, similar to the
one-dimensional PSF case described in Ref. [45], relatively
dense ensembles in which the PSFs of close-by emitters over-
lap can be superresolved, in all three dimensions [44]. This
is supported, to some extent, by the Fisher information cal-
culations presented in Fig. 1, although further work remains
to be done along these lines. For example, a complete noise
model would allow the theoretical resolution of the system to
be calculated [46]. In particular, one can explore nonhelicoidal
PSFs that can provide sufficient information about an atom’s
(x,y, z) position without breaking into two rotating points,
which could make the application of deconvolution and other
postprocessing algorithms (as in Ref. [47]) much easier. Fur-
ther optimizations of rotating PSFs have been reported, such
as iteratively optimizing the phase pattern programmed onto
the SLM by enhancing the Laguerre-Gaussian modal compo-
nents that define exact PSF rotation [32], or maximizing the
Fisher information of the PSF by varying the number and po-
sition of vortex singularities using an analytical expression for
the phase mask [48]. Yet another approach maximizes Fisher
information while restricting the phase degrees of freedom to
the lower Zernike modes [33]. These improvements will pos-
sibly allow for the accurate three-dimensional reconstruction
of an atomic distribution within a quantum gas microscope
using a single experimental exposure, even in the regime of
high filling of the lattice sites. Furthermore, we would like
to highlight that our methods are not limited to quantum
gas microscopes; any atomic or ionic system that provides
a fluorescence image, e.g., trapped ions or atoms in optical
tweezers, could utilize similar methods. The work presented
here thus provides the proof of principle for future work that
extends the power of such quantum simulators into studies of
more complex three-dimensional systems.
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APPENDIX A: SUPERPOSITION OF
LAGUERRE-GAUSSIAN MODES

We present here derivations concerning the rotating PSFs
from the superposition of Laguerre-Gaussian modes. This
derivation is analogous to the one in Ref. [29], but due to the
different notation and choice of normalization, we present it
here for the sake of clarity.

The Laguerre-Gaussian transverse modes of order ([, p)
(orthogonal basis set of solutions to the paraxial Helmholtz
equation in cylindrical coordinates) are given by

wp(r, ¢, 2) =Cipy —— exp(—F*) exp(iF’z)

w()

=:G(r,z)
x (V2R)L (27 explilgp — 1y, (2],

=:R;p(r,2)

(AL)

with the definitions given in Sec. II. The field U;,(x, 1),
for clarity, is then given by the components Uj,(x,t) =
ng(x)e’“‘” with Ulp(x)zul,,(r,q&,z)eikz. The paraxial
Helmholtz equation

2 30, Uip _
\Y U;,,+2k 3 =0 (A2)

Z
has the same form as the free space Schrodinger equation in
two dimensions under substitution of the z coordinate by the
time ¢, the transverse mode function u;,(x) = (x|/, p) by the
wave function W(x, y,t) = (x, y| ¥(¢)), and the wave number
k by m/h. This allows us to use the quantum mechanics
formalism for the analysis of paraxial waves by using time
domain semantics to describe the evolution along the z axis,
e.g., the convenient use of Dirac notation. For instance, the
orthonormality relation of the Laguerre-Gaussian modes can
concisely be written as
(ll, p/ll’ p> = 811’8[7[7” (A3)
with the standard scalar product.
Let us examine a superposition of N Laguerre-Gaussian
modes with normalized coefficients a; € C,

N
A=Y a;llj, pj),
j=1

with the modes sorted according to their combined mode
indices n; = 2p; + |/;| such that n; < n;4;. The intensity is
[using the abbreviations defined in Eq. (A1)] then given by

N

where Z |aj|2 =1,

j=1

(A4)

2

N
€pC
166) = -\l = == | 3 a (el p)) (AS)
j=1
€nc N N
0
== DD aid {xlly. p;) (k. pelx) (A6)

j=1 k=1
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N
€oC 2 )
= E la;1”| (x11j, p;j) |

(A7)
j=l1
N N
+2> " Re(aja (x|l p;) (. pilx))
j=1 k=j+1
€nC N 2
= (Z|aj| |xl1;, pj)| (A3)
j=1
N N
+2> 3" (1ajllal |l p)| 1k, pe)l)
j=1k=j+1
x coslarg({x|l;, p;)) — arg({x|lx, p))
+ arg(a;) — arg(ak)]>
€oC
- % 1G(r, 2)? (Z la;*CL, Ry, (1 2)
N N
+23 Y 1a;llaklClyp, CopRiyp Ry,
j=1 k=j+1
x cos[(l; — lx)¢ — (nj — ny) arctan(z/zr)
+ arg(a;) — arg(ak)]>. (A9)

The first sum is axially symmetric and stationary in z except
for a scaling with w(z). Therefore, these terms do not con-
tribute to the targeted scaled-rigid rotation. The terms in the
second sum rotate linearly with arctan(z/zgr) at the rotation

rates
d¢
(&),-

where Anj, :=n; —npand Al :=1; — ;.

As can be seen in the cosine term of Eq. (A9), in order
to break the axial symmetry, at least two modes must have
different azimuthal mode numbers, Al; # 0, such that their
different orbital angular momentum phases e’/# and e'*? give
an azimuthal interference pattern. Similarly, the necessary
condition for dynamic behavior along the z axis is that Anj; #
0 for at least two modes. The different Gouy phases ¥, ,, and
Y.p, then lead to z-dependent interference patterns.

Scaled-rigid rotation occurs if and only if all interference
terms rotate at the same velocity. Evidently, a necessary con-
dition for this is that

Al’ljk d arct ( / )
— an
Al]k dz Z/ZR

(A10)

njy1 —nNj . Anj

= =V (A11)
lj+1 — lj Alj J

is the same for all Laguerre-Gaussian modes, that is,

V:i=V;=const. Vje{l, 2, ...,N} (A12)

This condition is also sufficient, as can easily be by proven
by induction: Assume that Eq. (A12) holds. As by defini-
tionn; = 2p; + |l;], it follows that both An; = const. =: An

and Al; = const. =: Al hold. We now need to show that

Vk e {1,2,...,N} with k # j the fraction of mode number
differences are equal to V, i.e.,
L (A13)
Iy — 1

Without loss of generality, we can take k > j (if kK < j, just
rename k <> j). From our assumption directly follows that
Eq. (A13) holds for k = j + 1. Thereby also, ny — n; = An
and [ — [; = Al separately hold for k = j + 1. We proceed
by showing the induction step k — k + 1,

M1 —Rj M — Rj + N — N
=1+ hy — I
An + Any 2An

= = = V’
Al + Al 2Al

L1 =1

(Al4)

by using the induction hypothesis. It follows that Eq. (A12) is
also a sufficient condition for scaled-rigid rotation.

In particular, any combination of only two Laguerre-
Gaussian modes yield scaled-rigid rotation. We can conclude
that for mode combinations meeting the condition of scaled-
rigid rotation, the rotation velocity of the transverse intensity
pattern can be written according to Eq. (A10) as

d¢ =V d tan(z/zr),
= — arctan
dz dz /R

which is nothing else but Eq. (3). Integration gives the rotation
angle of the intensity pattern, i.e., Eq. (4).

(A15)

APPENDIX B: CALCULATION OF
THE FISHER INFORMATION

We present the details on the computation of the Fisher
information for the Laguerre-Gaussian fundamental mode and
the DH-PSF. Engineering a rotating PSF only makes sense
if it also provides better three-dimensional position informa-
tion than the existing regular PSF. The information theoretic
approach mentioned in Sec. II provides the mathematical
framework to study this question and is introduced, e.g., in
Ref. [49].

To define the Fisher information, consider an observable
X whose probability depends on a parameter 1. The Fisher
information describes the amount of information that the
observable X contains about the unknown parameter 7. For
a single parameter 1 and the probability density function
f(X;n), the Fisher information is defined to be the variance
of the partial derivative of the log-likelihood function with
respect to the parameter

|

5 2
IH=E|:<£lnf(X;n)>

P 2
:/(ﬂlnf(x;n)) FGmdy. (BI)

Note that it does not have to be a probability distribution over
a one-dimensional space. The distribution is assumed to be
single-parametric here; for multiparameter models, the Fisher
information can be written as a matrix.
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A normalized transverse intensity distribution can be un-
derstood as a probability density. Thus, Eq. (B1) can be used
to calculate and compare the Fisher information with respect
to a spatial coordinate n € {x,y, z} for transverse intensity
distributions

FCyin) = lul—y * (B2)

at axial position zo. Here, u is the normalized transverse mode
as defined in Appendix A. Accordingly, the integration dy
is along both transversal dimensions. For the fundamental
Laguerre-Gaussian mode, one obtains the simple analytical
expressions

2 52
I.= 4(ﬂ) —X ~ and (B3)
R/ (14+72)
4
I=1= : B4
Y1+ B

For more complex expressions, such as those arising in
the DH-PSF |/, p) = (|0, 0) + |2, 1))/+/2, we compute the
derivative and integration numerically. To evaluate the numer-
ical error introduced hereby, the numerical calculation for the
fundamental mode was compared with the analytical result
from Eq. (B3), revealing very good agreement.

Here, for simplicity, we assumed no noise or other detri-
mental effects (such as a limited mode fidelity) so that the
Fisher information can be calculated analytically from the
theoretical intensities. However, when considering a limited
signal-to-noise ratio and taking into account the limited mode
fidelity, the DH-PSF provides higher and more uniform Fisher

information for three-dimensional localization as compared to
using a standard PSF, as has been shown in Refs. [50-52].

APPENDIX C: FOCAL PLANE SHIFT
OF THE HOLOGRAPHIC LENS

We show the calculation of the displacement of the focal
plane introduced by a holographic lens displayed on the SLM
in the setup described in Sec. III (cf. Fig. 2). A quadratic phase

142~|—v2

2 fhol

Ghol(u, v) = —k mod 27, ChH
where k = 27 /A, is programmed on the SLM. This can be
understood as a controlled insertion of a defocus aberration,
or equivalently as programming a holographic lens or Fresnel
lens of focal length fi, located in the SLM plane. Let us
first look only at the lens system consisting of holographic
lens and the lens with f, creating the intermediate image. The
distance between these shall be d. The shift is calculated from
the difference of the front focal length of the lens system with
and without the holographic lens

Sf2(d = frol)

AZI=f2—LFF=f2—m,

(C2)

which for d = f; yields

2
Az = 5 . (C3)

Jhol
The corresponding shift Az with respect to the initial focal
plane at the atoms is then related to Az; by the axial magnifi-

cation f,/f{ and yields

2bjf22
Az =222 C4
‘ f12fhol ( )
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