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Quantum speed limits set the maximal pace of state evolution. Two well-known limits exist for a unitary
time-independent Hamiltonian: the Mandelstam-Tamm and Margolus-Levitin bounds. The former restricts
the rate according to the state energy uncertainty, while the latter depends on the mean energy relative to the
ground state. Here we report on an additional bound that exists for states with a bounded energy spectrum.
This bound is dual to the Margolus-Levitin one in the sense that it depends on the difference between the
state’s mean energy and the energy of the highest occupied eigenstate. Each of the three bounds can become
the most restrictive one, depending on the spread and mean of the energy, forming three dynamical regimes
which are accessible in a multilevel system. The new bound is relevant for quantum information
applications, since in most of them, information is stored and manipulated in a Hilbert space with a
bounded energy spectrum.
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Quantum speed limits restrict the ultimate performance
of any quantum device by setting a bound to the maximal
rate of state evolution [1]. The first of those limits was
posed by Mandelstam and Tamm (MT), who realized that
the time-energy “uncertainty relation” ΔEΔt ≥ ℏ=2 is not a
statement about simultaneous measurements of observ-
ables, but rather about the intrinsic timescale of unitary
evolution in quantum mechanics [2]. This relation restricts
the minimal time for a unitary system to propagate between
two states, depending on its energy spread ΔE≡ ðhĤ2i−
hĤi2Þ1=2. An additional independent limit was found by
Margolus and Levitin (ML) [3]. The ML bound depends on
the mean energy, E≡ h ˆHi, measured relative to the energy
of the lowest occupied eigenstate (e.g., the ground state).
Levitin and Toffoli showed that the unified bound is tight
[4]. That is, the time required for arriving at an orthogonal
state t⊥ is bounded from below by

t⊥ ≥ τQSL ¼ max fτMT; τMLg: ð1Þ

Here, τMT ≡ πℏ=ð2ΔEÞ and τML ≡ πℏ=ð2EÞ are the min-
imal orthogonalization times due to the MT and ML
bounds, respectively.
In this Letter, we introduce a new bound that holds for

any state whose spectral decomposition is bounded from
above. We call it the dual ML bound because it is
essentially equivalent to the ML bound in time-reversed
dynamics. The dual ML bound is determined by the
difference between the upper bound and the mean energy.
It applies to a wide range of scenarios, including any upper-
bounded Hamiltonian, states composed of a finite number

of eigenstates, band-insulator states, and states that popu-
late a UV-cropped set of levels within an unbounded
spectrum. After proving the bound, we discuss the different
dynamical regimes in systems with two and three levels. In
particular, we show under what conditions the dual bound
dominates the dynamics. Finally, we discuss the require-
ments for the experimental probe of the new bound and the
three dynamical regimes.
Before proving the new limit, we first briefly recall the

original derivation of the ML bound [1,3]. We consider
the evolution under a time-independent Hamiltonian Ĥ.
The time-evolved state at time t can be written as jψ ti ¼P∞

n¼0 cne
−iEnt=ℏjφni, with cn ∈ C such that

P
n jcnj2 ¼

1, and jφni are the eigenstates of Ĥ with eigenenergies
En∶Ĥjφni ¼ Enjφni. Since energy is defined up to an
additive constant, the ground state energy can be chosen
such En ≥ E0 ¼ 0 ∀ n without loss of generality.
To find a lower bound for the orthogonalization time,

we consider the two-time state overlap, hψ0jψ ti ¼
P

n¼
0∞jcnj2e−iEnt=ℏ, and invoke the trigonometric inequality
1 − cos x ≤ ð2=πÞðxþ sin xÞ, which is valid for any x ≥ 0.
We thus obtain

1 − Re½hψ0jψ ti� ¼
X∞
n¼0

jcnj2
�
1 − cos

Ent
ℏ

�

≤
X∞
n¼0

jcnj2
2

π

�
Ent
ℏ

þ sin
Ent
ℏ

�

¼ 2

π

�
Et
ℏ
− Im½hψ0jψ ti�

�
; ð2Þ
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where E ¼ P∞
n¼0 jcnj2En is the energy expectation value.

When the system reaches an orthogonal state, i.e.,
hψ0jψ t⊥i ¼ 0, we have Re½hψ0jψ t⊥i� ¼ Im½hψ0jψ t⊥i� ¼ 0.
Hence, Eq. (2) reduces to 1 ≤ ð2=πÞðE=ℏÞt⊥, implying
t⊥ ≥ τML.
We now turn to prove the dual bound based on the

previous derivation. Let us consider a state with an energy
spectrum bounded from above, with maximum eigene-
nergy Emax, such that En ∈ ½0; Emax� ∀ n. Relying on the
same trigonometric inequality used before, we obtain

1 − Re½e−iEmaxt=ℏhψ tjψ0i�

¼
X∞
n¼0

jcnj2
�
1 − cos

ðEmax − EnÞt
ℏ

�

≤
2

π

�ðEmax − EÞt
ℏ

− Im½e−iEmaxt=ℏhψ tjψ0i�
�
: ð3Þ

Considering the time t⊥, when jψ t⊥i is orthogonal to
the initial state, this inequality reduces to 1 ≤ 2ðEmax−
EÞt⊥=ðπℏÞ. This yields a new bound on the minimum
orthogonalization time,

t⊥ ≥ τ⋆ML ≡ πℏ
2ðEmax − EÞ ; ð4Þ

where τ⋆ML is the dual ML orthogonalization time.
Equation (4) is the main result of this work. With this
additional bound, the unified quantum speed limit Eq. (1)
can be generalized to

t⊥ ≥ τQSL ¼ max fτMT; τML; τ⋆MLg: ð5Þ
Note that the dual ML bound also applies when the
spectrum of the Hamiltonian is unbounded, as long as
the state jψ ti has a bounded spectral decomposition.
The ML bound was generalized to a family of bounds:

t⊥ ≥ τML;p ≡ πℏ=ð21=pEpÞ, where Ep ≡ hðĤ − E0Þpi1=p is
the Lp-norm of Ĥ − E0 [5,6]. Applying the time-reversal
consideration to the derivation of Ref. [6] yields a family of
generalized dual bounds: t⊥ ≥ τ⋆ML;p ≡ πℏ=ð21=pE⋆

pÞ, with
E⋆
p ≡ hðEmax − ĤÞpi1=p. Compared to τML and τ⋆ML, the

generalized bounds can be tighter, depending on the
specific spectral distribution of jψ ti. However, Ep is not
readily associated with a measurable quantity, unlike E and
ΔE [7]. For this reason, the case p > 1 may be less useful
in practice.
In the limit p → ∞, it follows E∞ ¼ Emax − E0 ≡ EBW,

which expresses a measure of the bandwidth. The corre-
sponding bound, t ≥ πℏ=EBW ≡ τBW, is aptly called the
bandwidth speed limit [8–11], and it constitutes its own
dual (τ⋆BW ¼ τBW). We note that this limit can be readily
derived as a corollary of the dual ML bound: Because the
average energy lies in either the lower or upper half of the
spectrum, we have the inequality EBW ≥ 2 min fE − E0;

Emax − Eg. Combining this with Eq. (5) gives t⊥ ≥
τQSL ≥ τBW ≡ πℏ=EBW. These inequalities also show that
the bandwidth limit is less tight than Eq. (5). This limit has
the advantage, however, of not requiring any knowledge
about the state apart from its spectral boundaries.
To get a deeper insight into the dual bound, we exploit a

time-reversal symmetry of the ML bound. We consider a
generic antiunitary operator T̂. Its action on the state jψ ti is
to map t ↦ −t (time reversal). By also shifting the energy
reference by Emax, we thus get

jψ̃ ti≡ e−iEmaxt=ℏT̂jψ ti ¼
X∞
n¼0

cne−iðEmax−EnÞt=ℏjφ̃ni; ð6Þ

where jφ̃ni≡ T̂jφni is a new basis of states. Since, by
definition, jψ t⊥i is orthogonal to jψ0i, it directly follows
that jψ̃ t⊥i is also orthogonal to jψ̃0i, and vice versa.
Therefore, we obtain an equivalent and alternative picture
where the considered times are positive, and the energy
spectrum is inverted, En ↦ Emax − En. Accordingly, the
upper bound of the spectrum Emax corresponds to a lower
bound on the inverted spectrum, and the dual ML bound
can be interpreted as the original one under the applica-
tion of the time-reversal operator. Hence, by applying the
original ML limit [3] to the time-reversed state in Eq. (6),
we directly obtain Eq. (4). We note that in contrast to the
ML bound, the derivation above does not yield a new result
in the case of the MT bound because ΔE is invariant under
the application of the time-reversal operator T̂.
Quantum speed limits can be extended to account for the

case where the system does not evolve to an orthogonal
state. To this end, one considers the absolute value of the
two-time state overlap, jhψ0jψ tij, which gives a measure of
how far the system has evolved from the initial state [12].
The generalized MT bound was shown by Fleming [13] to
be of the form arccos jhψ0jψ tij ≤ ðπ=2Þt=τMT. The ML
bound was extended to arbitrary states by Giovannetti et al.
[14] using the generalized inequality 1 − cos x ≤ axþ
q sin x, which holds for x ≥ 0 ∩ q ≥ 0, with a being a
function of q implicitly defined through a set of equations.
The extended limit can be written as arccos jhψ0jψ tij ≤
ðπ=2Þðt=τMLÞ1=2ξðt=τMLÞ, where ξðxÞ is a function very
close to unity. The approximation ξðxÞ ≈ 1 is often made in
the literature [15].
Like for the original ML bound, we obtain an extension

of the dual ML bound to nonorthogonal states by applying
the derivation from Giovannetti et al. [14] to the time-
reversed state jψ̃ ti with the energy spectrum Ẽn. Hence,
combining the extended dual bound with the previous
results, we find that the minimum time to attain a certain
overlap jhψ0jψ tij is limited by

arccos jhψ0jψ tij

≤
π

2
min

�
t

τMT
; ξ

�
t

τML

� ffiffiffiffiffiffiffiffi
t

τML

r
; ξ

�
t

τ⋆ML

� ffiffiffiffiffiffiffiffi
t

τ⋆ML

r �
: ð7Þ
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The unified limit in Eq. (7) gives rise to three dyna-
mical regimes, as presented in Fig. 1. For states with
ΔE<minfE;Emax−Eg, we have τMT > max fτML; τ⋆MLg,
and the energy uncertainty, ΔE, is the only relevant
quantity determining the timescale of the dynamics. This
is the MT regime denoted by the yellow shading. For states
with ΔE > min fE;Emax − Eg, we get two other regimes.
In the ML regime, when E < Emax=2 (blue shading), the
overlap is restricted by the MT bound for initial times, and
by the ML bound for times longer than a crossover time
defined by τc ≡ ξ2τ2MT=τML. Similarly, in the regime of the
dual ML bound, when E > Emax=2, a crossover occurs at
τ⋆c ≡ ξ2τ2MT=τ

⋆
ML. The diagram shows that the dual ML

bound defines a limit on quantum state evolution that is
complementary to the original ML bound.
The diagram in Fig. 1 is further constrained by

Popoviciu’s inequality [11,16],

ΔE ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðEmax − EÞ

p
: ð8Þ

This additional constraint is depicted by a black line in
Fig. 1, with the forbidden region painted in white. Note that
the inequality in Eq. (8) is saturated if and only if the state
comprises only two levels (a qubit or an effective qubit in a
multilevel system). This fact implies that a qubit is always
in either the ML regime or in the dual ML one. In order to
access the MT regime, in which the evolution is solely
limited by the MT bound, one has to consider a state of at
least three occupied energy levels.
To illustrate the implications of the new bound in Eq. (7),

we consider first the dynamics of a single qubit. The state is

given by jψi ¼ c0j0i þ c1j1i, with jc0j2 þ jc1j2 ¼ 1, and
the Hamiltonian is Ĥ ¼ Emaxj1ih1j. Three different scenar-
ios are presented in Figs. 2(a)–2(c), with the black curves
showing the overlap’s amplitude evolution, which is
bounded by the MT (yellow), ML (blue), and dual ML
(red) limits. The energy moments of these scenarios are
marked by solid circles in Fig. 1.
Figure 2(a) shows the special case of a balanced qubit

(c0 ¼ c1) for which E ¼ ΔE ¼ 1
2
Emax. In this case, the MT

bound coincides with the two-time state overlap for all
times 0 ≤ t ≤ τMT [4]. The balanced qubit is the only case
for which all three limits coincide at a certain time, which is
also the orthogonalization time t⊥ ¼ τQSL. In contrast,
when c0¼2c1, we have E<ΔE, since E¼1

2
ΔE¼1

5
Emax.

In this scenario, a crossover to the ML bound occurs for
t > τc, as shown in Fig. 2(b). If instead we consider the
dual qubit, with 2c0 ¼ c1, the complementary condition is
realized, E > Emax − ΔE, since E ¼ 2ΔE ¼ 4

5
Emax. This

scenario is presented in Fig. 2(c), revealing a similar
dynamics to that shown in Fig. 2(b). For the dual qubit,
however, the quantum state evolution is constrained by the
dual ML bound at times larger than τ⋆c , and never by the
original ML bound. Note that the two-time state overlap
jhψ0jψ tij saturates the original ML bound [panel (b)] for

FIG. 1. Dynamical regimes of quantum state evolution. The
dynamical regimes are displayed on the energy uncertainty (ΔE)
vs mean energy (E) graph. Three regimes are identified depend-
ing on which of three terms in Eq. (7) is most constraining: the
yellow area is the MT regime, the blue area is the (original) ML
regime, and the red area is the regime associated with new dual
ML bound. The solid black line denotes the maximal energy
uncertainty as a function of mean energy when the spectrum is
bounded; see Eq. (8). The circles and triangles are followed by
labels referring to the examples presented in Figs. 2 and 3,
respectively. Note that the point 2(a) is a singular point where all
three regimes touch.

FIG. 2. Qubit system evolution in different dynamical regimes.
The amplitude of the two-time state overlap and its limits are
plotted as a function of time. The black line represents the state
evolution, whereas the yellow, blue, and red lines denote the MT,
ML, and dual ML bounds. The region excluded by the unified
bound in Eq. (7) is indicated by the gray area. (a) The case of
E ¼ ΔE is the only one saturating both bounds. (b) For a qubit
state with E < ΔE, the evolution is initially limited by the MT
bound and at later times by the ML one. (c) A state with E >
Emax − ΔE has its evolution restricted by the dual ML bound for
times t > τ⋆c .
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some time τc ≤ t ≤ τML; same for the dual ML bound
[panel (c)] for a certain time τ⋆c ≤ t ≤ τ⋆ML [14].
As previously noted, a multilevel system is necessary to

appreciate the MT regime. Accordingly, we now consider a
three-level Hamiltonian (qutrit), Ĥ ¼ ηEmaxj1ih1j þ
Emaxj2ih2j with η ∈ ð0; 1Þ. In this system, a general state
is given by jψi ¼ c0j0i þ c1j1i þ c2j2i, where the coef-
ficients can be related to the energy moments E and ΔE:

8>>><
>>>:

jc0j2 ¼ 1 − jc1j2 − jc2j2;
jc1j2 ¼ 1

ð1−ηÞη
h	

1 − E
Emax



E

Emax
− ΔE2

E2
max

i
;

jc2j2 ¼ 1
1−η

h	
E

Emax
− η



E

Emax
þ ΔE2

E2
max

i
:

ð9Þ

Three paradigmatic cases are presented in Fig. 3, with
the same convention of colors and symbols used in Fig. 2.
For simplicity, we set η ¼ ½ in all examples. Considering
the state with E ¼ 1

2
ΔE ¼ 1

6
Emax, the evolution is initially

bounded by the MT bound and later by the ML one, as
depicted in Fig. 3(a). For comparison, we show in Fig. 3(b)
the case of a qutrit state with E ¼ 3

2
ΔE ¼ 1

2
Emax. In this

case, the MT limit is the only bound to participate in the
dynamics. Instead, for a qutrit state with E ¼ 3ΔE ¼
5
6
Emax, the quantum state evolution is constrained by the

dual ML bound at later times, when t > τ⋆c , as presented in
Fig. 3(c). These three qutrit scenarios are marked by solid
triangles in Fig. 1. The qutrit examples show that all the

dynamical regimes depicted in Fig. 1 can occur in real
systems.
In a multiple-level system, the situation falls back to the

case of a single qubit when the quantum state jψ ti can be
written as a sum of two eigenstates. In particular, when the
superposition of the two eigenstates is balanced, all three
terms in the unified limit in Eq. (7) are saturated at t ¼ t⊥.
A balanced superposition of two eigenstates can be realized
in a system of multiple noninteracting qubits when either a
single qubit is allowed to evolvewhile the rest are frozen, or
when the system is prepared in a maximally entangled state
of the Greenberger-Horne-Zeilinger (GHZ) form [17].
Alternatively, a balanced superposition saturating the limit
in Eq. (7) is realized when the qubits can interact through a
nonlocal Hamiltonian [18].
Finally, we discuss the possibility of observing the dual

ML bound in an experiment. As shown above, the dual ML
bound can be explored with a simple qubit system.
However, to probe bona fide the MT regime, it is necessary
to control at least three energy levels. In particular, it must
be possible to vary their populations in order to tune the
ratios between the three orthogonalization times. Moreover,
the state has to feature an energy cutoff, where only levels
with energy lower than Emax are populated. For the
detection, methods should be available to measure the
mean energy, the energy uncertainty and, most importantly,
the two-time state overlap.
Recently, the experimental measurement of the ML and

MT bounds was reported with a spatially excited state of a
single atom in a one-dimensional optical lattice [7]. The
method leverages an atomic interferometer, where in one
branch the atom is prepared by a rapid quench of the
Hamiltonian into an excited state, thus populating many
motional eigenstates, whereas in the second branch the
atom remains stationary in a motional eigenstate and serves
as a reference for the initial state jψ0i. The interference
between the two branches provides a measurement of the
two-time state overlap hψ0jψ ti. In this system, the finite
trap depth induces an effective energy cutoff, where the
excitation of unbounded states causes the atoms to escape
from the trap. Thus, one could effectively avoid the
excitation of unbound states by renormalizing the contrast
of the Ramsey interferometer to account for the loss of
escaped atoms.
Several other systems are also candidates for testing the

unified bound in Eq. (7) with three controlled levels
relying, among others, on single photons [19,20], trapped
ions [21], trapped atoms [22], and artificial atoms in
superconducting quantum circuits [23–25].
To summarize, we have shown that the rate of evolution

of an energy bounded state under the effect of a time-
independent Hamiltonian is constrained by a bound dual to
the ML one. Accordingly, the minimal time to go from an
initial state to an orthogonal time-evolved state is restricted
by three factors: the energy uncertainty (MT bound), the

FIG. 3. Qutrit system evolution in different dynamical regimes.
(a) For a qutrit state with E < ΔE < ðEmax − EÞ, the evolution is
initially limited by the MT bound and at later times by the ML
one. (b) A state with ΔE < E is exclusively restricted by the MT
bound. (c) For a state with ðEmax − EÞ < ΔE < E, the dual ML
bound is the one constraining the dynamics for times t > τ⋆c .
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mean energy difference from the lowest occupied eigene-
nergy (original ML bound), and its difference from
highest populated eigenenergy (dual ML bound). When
the energetic difference of the state from the closest end of
the populated spectrum is smaller than the energy uncer-
tainty, it is in the ML or dual ML regimes, which feature a
two-staged evolution: in the first, the quantum evolution is
constrained by the MT bound and in the second by either
one of the ML bounds.
At the foundation of quantum speed limits, there is the

trade-off between the amount of information known about
the system and how tight is the bound. On one extreme,
there is the bandwidth limit [8–11], which utilizes minimal
knowledge about the state but produces a loose limit.
Conversely, generalized bounds [5,6,26] capture the
dynamics more closely, but require substantial information
about the spectral decomposition of the state. The dual ML,
combined with the original limits, form a set of speed limits
that offers the tightest unified bound that can be constructed
from the first two energy moments of the Hamiltonian—
two quantities readily accessible from experiments [7].
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leurs racines réelles, Mathematica 9, 20 (1935).

[17] V. Giovannetti, S. Lloyd, and L. Maccone, The role of
entanglement in dynamical evolution, Europhys. Lett. 62,
615 (2003).

[18] M. Bukov, D. Sels, and A. Polkovnikov, Geometric Speed
Limit of Accessible Many-Body State Preparation, Phys.
Rev. X 9, 011034 (2019).

[19] N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien,
G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White,
Measuring Entangled Qutrits and Their Use for Quantum
Bit Commitment, Phys. Rev. Lett. 93, 053601 (2004).

[20] Y.-H. Luo, H.-S. Zhong, M. Erhard, X.-L. Wang, L.-C.
Peng, M. Krenn, X. Jiang, L. Li, N.-L. Liu, C.-Y. Lu, A.
Zeilinger, and J.-W. Pan, Quantum Teleportation in High
Dimensions, Phys. Rev. Lett. 123, 070505 (2019).

[21] A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra,
Qutrit quantum computer with trapped ions, Phys. Rev. A
67, 062313 (2003).

[22] N. Belmechri, L. Förster, W. Alt, A. Widera, D. Meschede,
and A. Alberti, Microwave control of atomic motional states
in a spin-dependent optical lattice, J. Phys. B 46, 104006
(2013).

[23] R. Bianchetti, S. Filipp, M. Baur, J. M. Fink, C. Lang, L.
Steffen, M. Boissonneault, A. Blais, and A. Wallraff,
Control and Tomography of a Three Level Superconducting
Artificial Atom, Phys. Rev. Lett. 105, 223601 (2010).

[24] A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Super-
adiabatic population transfer in a three-level superconduct-
ing circuit, Sci. Adv. 5, eaau5999 (2019).

[25] A. Cervera-Lierta, M. Krenn, A. Aspuru-Guzik, and A.
Galda, Experimental High-Dimensional Greenberger-
Horne-Zeilinger Entanglement with Superconducting
Transmon Qutrits, Phys. Rev. Applied 17, 024062
(2022).

[26] H. F. Chau, Tight upper bound of the maximum speed of
evolution of a quantum state, Phys. Rev. A 81, 062133
(2010).

PHYSICAL REVIEW LETTERS 129, 140403 (2022)

140403-5

https://doi.org/10.1088/1751-8121/aa86c6
https://doi.org/10.1007/978-3-642-74626-0_8
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1103/PhysRevLett.103.160502
https://doi.org/10.1103/PhysRevLett.103.160502
https://doi.org/10.1007/s11005-004-5095-4
https://doi.org/10.1103/PhysRevA.74.034301
https://doi.org/10.1126/sciadv.abj9119
https://doi.org/10.1103/PhysRevLett.98.090401
https://doi.org/10.1103/PhysRevLett.118.140403
https://arXiv.org/abs/2111.00297
https://doi.org/10.1088/1367-2630/ac6821
https://doi.org/10.1088/1367-2630/ac6821
https://doi.org/10.1007/bf02819419
https://doi.org/10.1103/PhysRevA.67.052109
https://doi.org/10.1209/epl/i2003-00418-8
https://doi.org/10.1209/epl/i2003-00418-8
https://doi.org/10.1103/PhysRevX.9.011034
https://doi.org/10.1103/PhysRevX.9.011034
https://doi.org/10.1103/PhysRevLett.93.053601
https://doi.org/10.1103/PhysRevLett.123.070505
https://doi.org/10.1103/PhysRevA.67.062313
https://doi.org/10.1103/PhysRevA.67.062313
https://doi.org/10.1088/0953-4075/46/10/104006
https://doi.org/10.1088/0953-4075/46/10/104006
https://doi.org/10.1103/PhysRevLett.105.223601
https://doi.org/10.1126/sciadv.aau5999
https://doi.org/10.1103/PhysRevApplied.17.024062
https://doi.org/10.1103/PhysRevApplied.17.024062
https://doi.org/10.1103/PhysRevA.81.062133
https://doi.org/10.1103/PhysRevA.81.062133

