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Detecting topological invariants in chiral symmetric insulators via losses
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We show that the bulk winding number characterizing one-dimensional topological insulators with chiral
symmetry can be detected from the displacement of a single particle, observed via losses. Losses represent
the effect of repeated weak measurements on one sublattice only, which interrupt the dynamics periodically.
When these do not detect the particle, they realize negative measurements. Our repeated measurement scheme
covers both time-independent and periodically driven (Floquet) topological insulators, with or without spatial
disorder. In the limit of rapidly repeated, vanishingly weak measurements, our scheme describes non-Hermitian
Hamiltonians, as the lossy Su-Schrieffer-Heeger model of Rudner and Levitov, [Phys. Rev. Lett. 102, 065703
(2009)]. We find, contrary to intuition, that the time needed to detect the winding number can be made shorter
by decreasing the efficiency of the measurement. We illustrate our results on a discrete-time quantum walk, and
propose ways of testing them experimentally.
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Topological insulators [1] are materials whose bulk is
gapped, and is characterized by a topological invariant.
Depending on the dimensionality of the system and the discrete
symmetries it possesses, this invariant can be a Chern number,
a winding number, or some other mathematical index [2,3].
The bulk invariant predicts a number of robust low-energy
eigenstates at the edges via the so-called bulk-boundary
correspondence [4,5]. In one dimension, these are bound states
at the ends of the topological insulator wire. The energy of
these states is protected against perturbations due to either
particle-hole symmetry, as for the Majorana fermions [6]
which might be used to store qubits, or to chiral (sublattice)
symmetry, as for bound states at domain walls in polyacetylene
molecules [7]. Hence, bulk topological invariants control the
robust properties of topological insulators.

Of special interest are experiments implementing topo-
logical insulators with artificial matter setups, where bulk
topological invariants can not only be inferred from the
presence of edge states, but also measured directly [8].
Recently, such experiments have been performed using cold
atoms in optical lattices [9–14], and using light [15–17] or
microwaves [18] in photonic crystal-like structures. These
setups often employ periodic driving as a tool to engineer
topological phases. Topological invariants are detected by
measuring the displacement of a cloud of particles [9,10], or
by interferometric schemes [19]. Alternatively, the topological
invariant can be observed by attaching leads to the system, and
measuring the reflection amplitudes for scattering off the bulk
[20–23]. This last approach has recently been applied to detect
winding numbers in a one-dimensional quantum walk, an ideal
system for periodically driven topological insulators [24].

Topological invariants can also appear in non-Hermitian
systems, as predicted by Rudner and Levitov [25], and
recently realized experimentally [16]. In that scheme, the
Su-Schrieffer-Heeger (SSH) [7,26] model—a nearest-
neighbor-hopping Hamiltonian with topological invariants due
to chiral symmetry—is modified by adding losses to every

second site. The average distance traveled by a particle,
initialized on a nonlossy site, before it is lost, is an integer
coinciding with the winding number of the original SSH
model. However, whether a similar correspondence holds for
all chiral symmetric systems in one dimension, has so far
remained an open question.

In this Rapid Communication, we show that the expected
displacement of a single particle, measured through losses, is
given by the bulk topological invariant for any chiral symmetric
one-dimensional topological insulator, even in the presence of
periodic driving, with or without disorder. Our approach is
formulated in the language of periodically driven systems, but
by including weak measurements we are also able to cover the
case of time-independent multiband Hamiltonians. Note that
we use losses to detect topological invariants of the unitary
dynamics—unlike other work where topological invariants are
engineered through dissipation [27,28].

The setup. We consider one-dimensional lattice systems
of noninteracting particles. To describe the state of a single
particle we use position eigenstates |x,c〉, where x = 1, . . . ,L

denote the unit cells and c = 1, . . . ,2N are the states forming
a basis of a single unit cell. These can be 2N different sites,
but can also be regarded as 2N internal states of the particle
[29].

The dynamics is given by a periodically driven Hamiltonian
Ĥ (t) = Ĥ (t + T ). This includes time-independent systems,
where T is arbitrary. The time evolution during a whole driving
period is described by the unitary operator Û = Te−i

∫ T

0 dtĤ (t),
where T denotes time ordering.

It is useful to think of the dynamics in terms of a time-
independent effective Hamiltonian Ĥeff, defined by

Û = e−iĤeffT . (1)

The eigenvalues of Ĥeff, called quasienergies and denoted En,
are periodic with period 2π/T and can be chosen to lie in the
interval En ∈ [−π/T ,π/T ). The corresponding eigenstates
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are stationary states of the discrete-time evolution that only
acquire a phase e−iEnT during a full cycle. Note that for time-
independent systems, the effective Hamiltonian and the usual
Hamiltonian coincide. In the following, we use dimensionless
energy εn = EnT .

Chiral symmetry and winding number. To enable the system
to have nontrivial topological phases, we need to impose some
constraint on it, which in this work is chiral symmetry. Chiral
symmetry for lattice Hamiltonians is also known as sublattice
symmetry, since it can be defined by first grouping all internal
states into two sets, the sublattices A and B. We define these
by projectors

P̂A =
∑
x∈Z

N∑
a=1

|x,a〉〈x,a|, P̂B = 1̂ − P̂A, (2)

where 1̂ is the identity. Chiral symmetry means that the
effective Hamiltonian has no matrix elements between states
on the same sublattice [30], i.e.,

�̂Ĥeff�̂ = −Ĥeff for �̂ = P̂A − P̂B. (3)

The chiral symmetry operator �̂ acts on each unit cell
separately and satisfies �̂−1 = �̂† = �̂.

An immediate consequence of chiral symmetry is that
the eigenstates come in pairs {|n〉,�̂|n〉}, with quasienergies
{−εn,εn}. We will use the projectors onto the upper and lower
half of the spectrum,

Q̂− =
∑

−π�εn�0

|n〉〈n|, Q̂+ = �̂Q̂−�̂. (4)

Chiral symmetry allows the system to have nontrivial bulk
topological phases. These are characterized by an integer
winding number, defined in its most general form [31] as

ν = − 1

L
Tr {P̂BQ̂P̂A [X̂,P̂AQ̂P̂B]}, (5)

where X̂ = ∑
x∈Z

∑2N
c=1 x|x,c〉〈x,c| is the position operator,

and Q̂ = Q̂+ − Q̂− is the flatband limit of the (effective)
Hamiltonian, defined in terms of the projectors in Eq. (4). In the
presence of translational invariance, the above formula for the
winding number reduces to its usual definition in quasimomen-
tum space. However, the real-space formula for ν is also valid
for disordered systems. Physically, it measures the difference
of the electric polarizations of the two sublattices [31].

Weak partial measurement after each period. To detect the
winding number, we initialize a single particle on a site on
sublattice A, then apply the unitary Û repeatedly, with each ap-
plication followed by a partial position measurement. We call
this a partial measurement, because it measures position only
on sublattice B, while avoiding any interaction with the sites
of sublattice A. The measurement operation is parametrized
by its efficiency 0 < pM � 1. Weak measurements (pM < 1)
can be realized by coupling the sites of sublattice B to
initially unoccupied ancillary sites for a fixed, short time,
and then measuring the occupation of the ancillary sites, as
shown in Fig. 1. The measurement can yield a positive result,
with conditional probability pM , in which case we detect
the position x of the particle and halt observing its quantum
evolution. If the measurement returns with a negative result—a

FIG. 1. Weak measurement of position on one sublattice only,
represented by the operator M̂ , following each unitary step Û . First,
sites of sublattice B (light gray circles) are coupled (red dashed
lines) for a fixed time to ancillary sites. Then, the population of each
ancillary site is measured. If all ancillary sites are found empty, we
have a negative measurement, and the next unitary step follows. The
blue arrows represent matrix elements of the effective Hamiltonian
Ĥeff.

negative measurement—then we continue with the next unitary
driving cycle, followed by the next measurement, and repeat
this procedure until a successful detection occurs.

A practical tool to treat such repeat-until-detection quantum
dynamics is the conditional wave function. To define it, we first
introduce the linear but nonunitary operator M̂ , representing
the effect of a negative measurement on the wave function, as

M̂ = P̂A +
√

1 − pMP̂B. (6)

The conditional wave function after j driving cycles but before
the j th measurement is

|�̃(t = jT )〉 = Û [M̂Û ]j−1|�(0)〉 for j ∈ N. (7)

The norm 〈�̃(jT )|�̃(jT )〉 is the probability that the particle
was not detected during the first j − 1 measurements.

By allowing for weak measurements, with pM < 1, we
also cover the case of nondriven, time-independent systems,
as in Ref. [25]. There, the chiral symmetric Hamiltonian Ĥ is
modified by an imaginary term describing losses,

Ĥ → Ĥ − i
γ

2
P̂B, (8)

where γ is a decay rate. Trotterization of the corresponding
time evolution is equivalent to Eq. (7) in the limit T → 0, with
pM = γ T and Û = e−iĤT .

Winding number from average displacement. We are inter-
ested in the displacement of the particle and the dwell time—
the time it spends in the system before it is detected—averaged
over many repetitions of the experiment with the same initial
state |x,a〉. The probability of detecting the particle in |y,b〉
after j steps is

s(x,a)→(y,b)(j ) = pM |〈y,b|Û [M̂Û ]j−1|x,a〉|2. (9)

We define the average displacement and dwell time as

〈�x〉(x,a) ≡
∑
j∈Z+

L∑
y=1

(y − x)
2N∑

b=N+1

s(x,a)→(y,b)(j ), (10)

〈t〉(x,a) ≡ T
∑
j∈Z+

L∑
y=1

j

2N∑
b=N+1

s(x,a)→(y,b)(j ). (11)

To get a general result, valid for arbitrary N and for spatial
disorder, we need to average over all states on sublattice A
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where the particle is initially prepared. We define these double-
averaged quantities as

〈〈�x〉〉 =
∑

x,a 〈�x〉(x,a)

NL
, 〈〈t〉〉 =

∑
x,a 〈t〉(x,a)

NL
. (12)

Note that for a large, disordered sample, averaging over all
initial sites is expected to give the same result as averaging over
different disorder realizations. Note also that for translationally
invariant systems 〈�x〉(x,a) and 〈t〉(x,a) are independent of the
initial position, and in this case the averaging over x can be
omitted.

To compute 〈〈�x〉〉 and 〈〈t〉〉, we write the conditional wave
function as

Û [M̂Û ]j−1|x,a〉 =
∑

n

[
α(x,a)

n (j )|A〉n + β(x,a)
n (j )|B〉n

]
,

(13)

where the states |A〉n = (|n〉 + �̂|n〉)/√2 and |B〉n =
(|n〉 − �̂|n〉)/√2 have support on sublattices A and B, re-
spectively, and the sum is taken over the lower half of the
spectrum. The coefficients evolve in time as

αn(j + 1) = αn(j ) cos εn − iβn(j )
√

1 − pM sin εn, (14a)

βn(j + 1) = βn(j )
√

1 − pM cos εn − iαn(j ) sin εn, (14b)

with indices (x,a) omitted, since these only appear in the initial
condition α(x,a)

n (0) = √
2 〈n|x,a〉. Note that β(x,a)

n (0) = 0 since
the initial state has support on sublattice A. We read off from
Eq. (14) that for modes at quasienergies εn = 0 or εn = π the
coefficient α(x,a)

n (j ) remains constant in time. Therefore, these
are dark states of the lossy dynamics and if the particle has
some initial overlap with them, then it has a finite probability
of staying in the system forever.

To compute the averages defined in Eqs. (10) and (11)
we need the coefficients β(x,a)

n (j ), which can be obtained by
solving Eq. (14), as we show in the Supplemental Material
[32]. Substituting the result into Eqs. (12) allows one to
perform the sum in Eq. (10) over the discrete time j (assuming
that there are no dark states in the spectrum). We thus obtain
a compact formula for the double-averaged displacement
(derivation in the Supplemental Material [32]),

〈〈�x〉〉 = − 2

NL
Tr {X̂�̂Q̂−}. (15)

Note that X̂�̂ = P̂AX̂P̂A − P̂BX̂P̂B is the difference of
the projections of the position operator—i.e., electric
polarization—onto the two sublattices. Thus, the above for-
mula is clearly related to the sublattice polarization of Eq. (5).
Indeed, after some further algebraic manipulations, we find

〈〈�x〉〉 = ν/N. (16)

This is our main result that relates the average displacement
of a single particle in the lossy system to the winding number
associated with the unitary time evolution. It is valid in the
same form for static systems, where position is measured via
losses as per Eq. (8). Note that to apply either Eq. (5) or Eq. (15)
to a finite system with periodic boundary conditions, one has
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FIG. 2. Plot of the formula (18) for the double-averaged dwell
time 〈〈t〉〉 as a function of the measurement efficiency pM , for
different values of the quantity τ defined in Eq. (17). The gray
dashed line shows the minimal average dwell time, obtained by
substituting Eq. (19) for different τ . Due to the quantum Zeno effect,
〈〈t〉〉|pM=1 = T τ can be much larger than 〈〈t〉〉|min.

to use an appropriately modified definition of the position
operator [33,34].

Dwell time and quantum Zeno effect. We also find compact
formulas for the average dwell time using Eqs. (13) and (14).
We detail the derivation in the Supplemental Material [32], and
just discuss the results here. First, for strong measurements,
pM = 1, the average dwell time can be expressed, in the
thermodynamic limit of L → ∞, using the density of states
ρ(ε) as

〈〈t〉〉|pM=1 = T

N

∫ π

ε=0

ρ(ε)

sin2 ε
dε ≡ T τ, (17)

where we introduced the shorthand τ for the integral. For weak
measurements, this result is modified as

〈〈t〉〉 = T

[
pM(

1 + √
1 − pM

)2 τ + 2
√

1 − pM

pM

]
. (18)

The average dwell time can become long, or even diverge,
in the presence of almost-dark states: In Eq. (17) the integral
is dominated by states near ε ≈ 0 and ε ≈ π . These states can
occur not only near the topological phase transition but also
due to strong disorder. For these states the transition amplitude
from sublattice A to B during a single step is infinitesimal. As
a consequence, repeatedly measuring the particle’s presence
on sublattice B can prevent it from ever occupying it, similarly
to the well-known quantum Zeno effect.

A counterintuitive way to speed up the measurement
process is to decrease the measurement efficiency pM . As
the first term in Eq. (18) shows, for pM ≈ 1, decreasing pM

decreases the dwell time, in close analogy with the quantum
Zeno effect. The price to pay for weak measurements is the
second term of Eq. (18), which diverges in the limit pM → 0
as 〈〈t〉〉 ∝ 1/pM . Hence, there is an optimal value of pM that
minimizes 〈〈t〉〉, given by

p∗
M = 2

τ
√

2τ − 1 − (2τ − 1)

(τ − 1)2
. (19)

For τ � 1, this optimal choice of pM = p∗
M ≈ √

8/τ reduces
the time needed to perform the measurement from T τ to
〈〈t〉〉|min ≈ T

√
2τ , which is a speedup by a factor of O(

√
τ ).

These results are illustrated in Fig. 2.
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Translating our results for the dwell time to the nondriven
case of Eq. (8), where γ is the loss rate, we find

〈〈t〉〉 = γ t2

4
+ 2

γ
, t2 ≡ 1

N

∫ ∞

0

ρ(E)

E2
dE. (20)

The quantum Zeno-like effect applies here, too. The integral
can diverge due to dark and almost-dark states at E ≈ 0. The
optimal choice of the decay rate is γ = √

8/t, when the two
terms of Eq. (20) are equal. In this case, 〈〈t〉〉 = √

2 t. For
the translationally invariant lossy SSH model of Ref. [25],
with staggered hopping amplitudes v and v′, we find t =
|v2 − v′2|−1/2, whereby for v ≈ v′ we obtain 〈〈t〉〉 ∝ 1/|v − v′|
as in Ref. [25]. We note that also the usual quantum Zeno
effect shows up here: In the limit γ → ∞, the measurement
process slows down instead of speeding up, with the dwell
time diverging as 〈〈t〉〉 ∝ γ .

Experimental proposal. Our results could be tested using a
discrete-time quantum walk—a quantum particle with internal
states moving in discrete steps on a one-dimensional lattice.
These are periodically driven quantum systems where the ef-
fective Hamiltonian cannot be simply obtained perturbatively
from the time-dependent Hamiltonian [35]; moreover, they
have the advantage of realizing chiral symmetry exactly, a
condition which is hard to guarantee in other lattice setups
with nonvanishing long-range couplings [17]. In the past,
they have been realized using trapped ions [36], cold atoms
in optical lattices [37,38], pulses of light [39–43], and most
recently using superconducting devices [44,45]. In particular,
ultracold atoms trapped in polarization-synthesized optical
lattices [46] are ideal candidates to test our results. We
have recently demonstrated that negative measurements of the
atom’s position can be realized using long spin-selective shift
operations [38,47]. The spatial distribution of the removed
atoms can be recorded via fluorescence imaging [48] after the
last step.

To provide a numerical example, we choose the split-step
quantum-walk protocol [49], which hosts a variety of topolog-
ical phases. We consider 2N = 2 internal states, denoted by
|↑〉 (c = 1) and |↓〉 (c = 0), which we refer to as spin. The
operator describing the unitary evolution of a single step of
the walk is defined as

Û (θ1,θ2) = R̂(θ1/2)Ŝ↓R̂(θ2)Ŝ↑R̂(θ1/2), (21)

where R̂(θ ) rotates the spin around the y axis by an angle
θ (x), depending in general on site x, and S↑ (S↓) shifts the
particle by +1 (−1) site if the internal state is |↑〉 (|↓〉),
leaving it unaffected otherwise. The topological invariants
depend on the rotation angles θ1 and θ2, and are well known for
both translationally invariant [49,50] and spatially disordered
angles [21,51]. The chiral symmetry operator is �̂ = 1̂ ⊗ σx ,
so that the two sublattices correspond to the two internal states
|±〉 = (|↑〉 ± |↓〉)/√2. The particle starts in |x = 0〉 ⊗ |−〉;
after each unitary step, we remove it if it occupies the
state |+〉 [52], and record its position. Experimentally, a
spin-selective removal of the particles can be achieved with
long spin-dependent shift operations [38,47], followed by
fluorescence imaging to record the position of the removed
particles [48]. This realizes a strong measurement, pM = 1,
represented by the operator M̂ = 1̂ ⊗ |−〉〈−|.
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FIG. 3. Average displacement and dwell time for the split-step
quantum walk with strong measurement (pM = 1) as the coin angle
θ1 is tuned (θ2 centered at π/4, L = 50 sites). Step changes of the
average displacement indicate topological phase transitions. (a), (b)
A homogeneous split-step walk with the time evolution terminated
after jmax steps. (c), (d) Split-step walk with disordered rotation angles
uniformly distributed in intervals of width π/5 (see text), with a total
number of steps jmax = 40. Black dots correspond to different initial
sites, and the red curve represents their average.

The average displacement and the average dwell time
are shown in Fig. 3 for numerical examples, both with and
without spatial disorder. In the translationally invariant case,
for parameters far from topological phase transitions, ten
steps are sufficient to observe the quantized displacement
predicted by Eq. (16) [53]. Close to a phase transition, the
average dwell time becomes large, according to Eq. (17),
and the quantization of the displacement breaks down if the
particle is observed only for a finite number of steps. In
the disordered case we use rotation angles chosen uniformly
from the intervals θ1,2 ∈ [〈θ1,2〉 − π/10,〈θ1,2〉 + π/10]. While
the displacements for different initial states are no longer
quantized, their average yields the quantized winding number,
for time evolution terminated after 40 steps.

Discussion and conclusions. We proved that losses can be
used to detect bulk topological invariants in chiral symmetric
one-dimensional lattices, with any number of internal states,
disordered or translationally invariant, periodically driven or
static. This is a powerful generalization of some of the results
of Rudner and Levitov on the SSH model; as in their case, we
expect that it should even be possible to relax the requirement
of chiral symmetry and allow for certain types of decoherence
[25,54]. This approach should also be useful to obtain (weak)
topological invariants of chiral symmetric systems in two
dimensions and above. Exploring the relations between our
results and the inspiring recent work by Cardano et al. [43,55]
on the periodically driven SSH model would be an interesting
topic for future research.
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