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Direct Observation and Analysis of Spin Dependent Transport of Single
Atoms in a 1D Optical Lattice
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We have directly observed spin-dependent transport of single cesium atoms in a 1D optical lattice.
A superposition of two circularly polarized standing waves is generated from two counter propagat-
ing, linearly-polarized laser beams. Rotation of one of the polarizations by π causes displacement
of the σ+ and the σ−-lattices by one lattice site. Unidirectional transport over several lattice sites
is achieved by rotating the polarization back and forth and flipping the spin after each transport
step. We have analyzed the transport efficiency over 10 and more lattice sites, and we discuss and
quantify the relevant error sources.
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I. INTRODUCTION

Controlled transport of atoms stored in optical lattices
is a central process in the quest for coherent atom-atom
interactions. Such interactions are at the heart of cre-
ating and manipulating quantum multi-particle systems
for, e.g., quantum simulations. Spin-dependent trans-
port — where the direction of transport depends on the
spin state — opens especially interesting routes because
it allows the creation of spin-position entangled quantum
states as precursors for correlated many-particle states.
A concept for such a transport with neutral atoms stored
in an optical lattice was proposed by Deutsch and Jessen
and by Jaksch et al. [1,2] and first demonstrated by Man-
del et al. [3] with a sample of ultracold rubidium atoms in
a Mott insulator state, where the signature of transport
was observed in momentum space.

Here, we report a direct observation of spin-dependent
transport in a 1D optical lattice through fluorescence
imaging. In contrast to the “top-down” approach of
Ref. 3 we use single cesium atoms prepared in low-energy
thermal states in deep lattice sites [4].

II. SPIN-DEPENDENT TRANSPORT

In a spin-dependent transport, the shift direction of a
trapped atom along the lattice axis is determined by its
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internal spin (or qubit) state |s〉 = |↑〉 or |↓〉. Such trans-
port can be realized using two counterpropagating lin-
early polarized laser beams in a lin-θ-lin configuration [2],
in which the rotation angle θ of the polarization vector of
one of the laser beams is continuously varied (see Fig. 1).
The resulting light field can be decomposed into a σ+ and
a σ− circularly polarized standing wave, contributing to
the trapping potential by U+(z, θ) = U0 cos(kz − θ/2)
and U−(z, θ) = U0 cos(kz + θ/2), respectively. Here,
k = 2π/λ is the wave vector component along the lat-
tice axis, and U0 is the depth of the potential wells.
By varying the rotation angle θ, both standing waves
and their contributions to the trapping potential are
spatially shifted in opposite directions by a distance of
z± = ±θ/π · λ/4, resulting in a relative displacement
of ∆z = z+ − z− = θ/π · λ/2 and an overlapping at
θ/π = 0,±1,±2, . . .. For the outermost Zeeman sub-
levels of the cesium hyperfine ground state manifold, a
magic wavelength λm in between the D1 and the D2 lines
can be found such that one spin state only experiences
the U+(z, θ) component of the trapping potential while
the other spin state is mainly affected by the U−(z, θ)
component.

In our experiment, the rotation angle θ is voltage-
controlled using an electro-optical modulator (EOM)
(see Fig. 1). The EOM is driven by a high-voltage
amplifier with a −3 dB bandwidth of 370 kHz and a
maximum output voltage of 750 V, limiting the ro-
tation angle range to 0 ≤ θ ≤ 1.7π. For the spin
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Fig. 1. (Color online) Experimental setup to control the
rotation angle θ between the polarization vectors of an inci-
dent and a retro-reflected linearly polarized beam using an
electro-optical modulator (EOM). Both principle axes of the
quarter-wave plate, ξfw and ξs (fast and slow axes), and those
of the EOM, ξ1 and ξ2, are parallel and perpendicular to the
polarization vector of the incident beam, respectively. A half-
wave plate in between is used to rotate the incoming polar-
ization to 45◦ with respect to the principal axes of the EOM.

(or qubit) states, we use |↑〉 = |F = 4,mF = 4〉 and
|↓〉 = |F = 3,mF = 3〉. For the optical lattice, we choose
λ ≡ λm = 865.9 nm and U0/kB = 80 µK, resulting in
spin-dependent trapping potentials U↑(z, θ) = U+(z, θ)
and U↓(z, θ) = 1

8U+(z, θ) + 7
8U−(z, θ) with axial and

radial trapping frequencies of ωax = 2π × 115 kHz and
ωrad = 2π × 1 kHz, respectively. Due to the residual
contribution of the U+(z, θ) component to the U↓(z, θ)
potential, its shape changes in depth and contrast during
the shift, affecting the axial and the radial trapping fre-
quencies of atoms transported in state |↓〉. Furthermore,
the spatial shift of U↓(z, θ) depends nonlinearly on the
rotation angle θ, see, e.g., Ref. 1.

The limited range of the rotation angle allows only two
perfectly overlapping trapping potential configurations:
namely, θ = 0 and θ = π, where U↑(z, θ) = U↓(z, θ).
We, therefore, define a single transport step as a shift by
a distance of ±λ/4, i.e., from one overlapping configu-
ration to another. Taking into account the periodicity
of the optical lattice, it is convenient to discretize the
position space along the lattice axis in units of λ/4 (see
Fig. 2). The spin-dependent shift operators then read

Ŝfw :

{
|↑, l〉 → eiϕ↑ |↑, l + 1〉
|↓, l〉 → eiϕ↓ |↓, l − 1〉

(1)

and

Ŝbw :

{
|↑, l〉 → eiϕ↑ |↑, l − 1〉
|↓, l〉 → eiϕ↓ |↓, l + 1〉 ,

(2)

where we use a short-hand notation of spin-position
product states |s, l〉 ≡ |s〉 ⊗ |l〉 with s = {↑, ↓} and
l = 0,±1,±2, . . .. The subscript of Ŝ indicates the rota-
tion direction of the polarization, i.e., forward (fw) for
0 → π and backward (bw) for π → 0, shifting the spin-
dependent potentials from one overlapping configuration
to another. A spin-dependent phase ϕs is accumulated
during the shift with ϕ↑ 6= ϕ↓.

Fig. 2. (Color online) Schematic representation of unidi-
rectional spin-dependent transport of atoms over distances
of one lattice site. Shifts of the spin-dependent potentials
U↑(z, θ) and U↓(z, θ) are indicated by dashed lines and trans-
port of atoms by shaded bold lines.

We implement the shift operators Ŝfw and Ŝbw by
feeding cosinusoidal driving ramps Vfw(t) ≡ V0 + (Vπ −
V0)[1 − cos(π · t/τ)] and Vbw(t) ≡ Vfw(τ − t) to the
amplifier’s input, where τ denotes the ramp time, and
V0 and Vπ are the input voltages corresponding to the
θ = 0 and θ = π configuration, respectively. For ramp
times τ > 14 µs, these ramps almost perfectly translate
to the rotation angle θ(t). The ramp time is chosen such
that excitations between vibrational states of the atoms
are negligible while still being sufficiently fast to finish
the experimental sequence within the phase coherence
time of T2 ≈ 1 ms – a mandatory requirement for ad-
vanced applications of spin-dependent transport [5, 6].
We calculate the excitation probability by using first-
order perturbation theory [7], where the trapping poten-
tials are approximated as harmonic, and the axial and
radial dynamics of the atoms are assumed to be decou-
pled. For the cosinusoidal driving ramps, we find an op-
timum ramp time of τ = 30 µs, resulting in an excitation
probability of less than 3% per shift.

Spin-dependent transport over distances of L =
1, 2, 3, . . . lattice sites to the left or to the right (i.e.,
by ±L · λ/2) is realized by alternating the applications
of the shift operators Ŝfw and Ŝbw with π-pulses flipping
the spin states between (Ûπ : |s, l〉 → i |−s, l〉), see Fig. 2:

T̂2L ≡
(
ÛπŜbwÛπŜfw

)L

T̂2L :

{
|↑, l〉 → (−1)Lei(ϕ↑+ϕ↓)L |↑, l + 2L〉
|↓, l〉 → (−1)Lei(ϕ↑+ϕ↓)L |↓, l − 2L〉 .

(3)

The operator T̂2L is intentionally constructed from an
even number of transport steps. By this, the entire trans-
port sequence always starts and ends in the θ = 0 config-
uration, which, due to technical issues, is the experimen-
tally most robust configuration providing long-term sta-
bility on the time scale of seconds. Such long-term sta-
bility is required for detection of the initial and the final
positions of the atoms in the lattice by using fluorescence
imaging [8] with a typical exposure time of 1 s. Other-
wise, because the trap depth for atoms, except those in
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|F = 4,mF = 4〉, is reduced in the non-overlapping case,
atom losses would be enhanced during irradiation with
the near-resonant light required for the imaging process.

The π-pulses are driven by resonant rectangular mi-
crowave pulses at 2π × 9.2 GHz with a pulse duration of
8 µs (Rabi frequency of ≈ 2π × 60 kHz). Alternatively,
broadband composite pulses, so called 9002251803150-
pulses [9, 10] with a duration of 24 µs are employed to
compensate for possible errors in the pulse frequency or
power. To minimize frequency broadening from vectorial
and tensorial contributions to the differential light shift,
microwave transitions between the internal states of the
atoms are only induced in perfectly overlapping trap-
ping potentials. The microwave pulses are applied after
each shift operation with a time delay of 2 µs, which al-
lows lattice polarization transients to settle. The latter
are caused by the limited bandwidth of the polarization
control setup and by excitation of mechanical resonances
of the EOM crystal. The time delay has been deter-
mined using microwave spectroscopy, utilizing the fact
that spectra are significantly broadened by any displace-
ment of the U↑, U↓ potentials. This method ensures a
maximum deviation of |∆θ| < 10−2 for the rotation an-
gle in the overlap configuration, corresponding to a max-
imum relative displacement of the spin-dependent trap-
ping potentials of less than 1 nm from perfect overlap.

III. MEASUREMENTS AND DISCUSSION

To investigate the efficiency of our spin-dependent
transport over distances of several lattice sites, we load
an average of eight atoms into the optical lattice, which
are randomly distributed over a region of about 150 lat-
tice sites. We determine the initial positions of the atoms
by fluorescence imaging (exposure time of 1 s) and pre-
pare them in the spin state |↑〉 by using optical pumping.
Details on state-preparation and detection can be found
in Refs. 8 and 11. We subsequently apply the trans-
port sequence defined by T̂2L for L = {1, 2, . . . , 11}, each
composed of an even number of 2L transport steps (see
Eq. (3)). After transporting the atoms, we determine
their final positions by fluorescence imaging and calcu-
late their transport distances, i.e. the final positions rel-
ative to the initial ones, by considering only those atoms
that are initially sufficiently far separated so that even
in case of transport errors, their transport paths cannot
cross. In Fig. 3, probability histograms of transport dis-
tances for different numbers of transport steps 2L are
shown. Each histogram has been normalized to the total
number of analyzed atoms (500 – 1000). Digitized his-
tograms with a bin width of λ/2 reveal the probability
P2j of finding an atom transported over a distance of
j · λ/2 (j = 0,±1,±2, . . .). Densely sampled histograms
with a bin width of λ/20 reveal Gaussian peaks centered
at integer multiples of λ/2. These peaks clearly repro-
duce the periodicity of the optical lattice verifying the

Fig. 3. (Color online) Probability histograms of transport
distances of atoms initialized in the spin state |↑〉 after a
spin-dependent transport comprising 2L transport steps for
(a) L = 1, (b) L = 4, (c) L = 7, and (d) L = 10. Digitized
histograms (light shade) with a bin width of λ/2 indicate the
transport distances in units of lattice sites. Densely sam-
pled histograms (dark shade) with a bin width of λ/20 reveal
the periodicity of the optical lattice, indicating the absence
of significant lattice drifts during the transport sequence. In-
sets show initial (upper) and final (lower) fluorescence sample
images of transported atoms.

position resolution achieved in our fluorescence detection
and indicating that no significant drifts of the optical lat-
tice, relative to the imaging optics occurred during the
transport sequence. From the Gaussian peaks, we es-
timate the reliability of inferring the correct transport
distance j · λ/2, yielding > 99.7%.

In the ideal case, starting from state |↑〉 and apply-
ing 2L transport steps, we expect only a single his-
togram bar at transport distance L · λ/2 with proba-
bility P2L = 100%. We, indeed, observe the majority of
atoms at the expected transport distance, however, with
a reduced probability. The transport efficiency for 2L
transport steps is the measured probability for an atom
to arrive at the nominal transport distance. Note that
this definition does not contain any statement regarding
the coherence properties of the transport. It solely re-
veals the successful displacement of atoms by L lattice
sites.

At a temperature of 10 µK and a potential depth of
kB × 80 µK, tunneling of atoms is extremely improbable
during shifts of the spin-dependent potentials (≈10−4

per shift, inferred from band-structure calculation). For
our analysis, we, therefore, assume perfect shift opera-
tions Ŝfw and Ŝbw and attribute the imperfections to the
preparation and the evolution of internal states of atoms.
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1. State Initialization and Photon Scattering

Errors in the state initialization at the beginning or
scattering of photons from the light field of the optical
lattice during the transport sequence may transfer the
atoms into spin states outside the Hilbert space of the
qubit, i.e., to |F = 4,mF 6= 4〉 or |F = 3,mF 6= 3〉. Ex-
cept for mF = 0, atoms in these states effectively still ex-
perience a spin-dependent trapping potential due to an
unequal fraction of potential contributions U+(z, θ) and
U−(z, θ), however, with a reduced trap depth at θ = π/2.
Hence, for atoms in states |mF| < 3, we expect significant
atom losses during the transport sequence. More impor-
tantly, once the internal states of the atoms have left
the Hilbert space of the qubit, their possible transition
frequencies are far detuned from the preset π-pulse fre-
quency by at least 2π×1 MHz. These atoms are then no
longer affected by the microwave pulses of the transport
sequence. For an even number of transport steps, they
are henceforth transported back and forth close to the
lattice site at which their internal state left the Hilbert
space of the qubit for the first time, staying behind the
nominal transport distance and thus reducing the trans-
port efficiency. In contrast to the scattering of photons,
which can be regarded as a per-step imperfection, state
initialization is a one time operation that is performed
only once at the beginning of each transport sequence.
The corresponding error imposes, therefore, merely an
upper limit on the transport efficiency, irrespective of
the number of subsequent transport steps, P2L ≤ Pini.

In our experiment, state initialization is limited by the
optical pumping efficiency, yielding Pini > 97%. The
scattering of photons from the light field of the optical
lattice with a calculated Raman and Rayleigh scattering
rates of 10 s−1 and 5 s−1, respectively, is negligible at the
time scale of a typical transport step with a probability
of the order of 10−4. The effect of photon scattering on
the transport efficiency is, thus, neglected.

2. Perturbations of π-pulses

Typical pulse errors can be divided into static and dy-
namic perturbations of pulse area, frequency and phase
during the pulse. In ensemble averages, these perturba-
tions usually contribute to inhomogeneous (static per-
turbations) or homogeneous (dynamic perturbations)
broadenings or shifts. Their effect on the transport ef-
ficiency P2L can be calculated by replacing the ideal π-
pulse operators Ûπ in Eq. (3) by their perturbed coun-
terparts.

Static phase perturbations do not affect the transport
efficiency, because spin states of correctly transported
atoms are automatically prepared in the pure basis states
|↑〉 or |↓〉 by the shift operations. The same holds for
phases accumulated during the shift so that the trans-
port efficiency is insensitive to shift-induced dephasing.

Fig. 4. (Color online) Transport efficiency P2L as a
function of the number of transport steps 2L for a se-
quence employing rectangular 1800(π)-pulses (◦) and com-
posite 9002251803150-pulses of equal Rabi frequency (•). The
vertical, dotted line indicates the upper transport efficiency
limit imposed by the state initialization Pini. The solid
(dashed) line shows a fit of the model function of Eq. (4)
to the data obtained for 1800-pulses (9002251803150-pulses)
in the transport sequence.

Static perturbations of pulse area and frequency, on the
other hand, directly affect the spin-flip efficiency in each
step and, thus, the transport efficiency P2L as well. Such
perturbations, for instance, are induced by the radial os-
cillation of atoms in the trapping potential, which in our
case may be regarded as frozen on the time scale of a sin-
gle pulse [12]. Similarly, the thermal distribution over
the axial vibrational states causes an inhomogeneous fre-
quency broadening and induces a static perturbation of
the Rabi frequency and, thus, of the pulse area via the
Franck-Condon factor [13]. Vibrational excitation dur-
ing the shift operations may even increase these inhomo-
geneities. From the transport efficiency alone, however,
static perturbations are not only indistinguishable from
one another but also from different dynamical perturba-
tions such as repeatable drifts or fluctuations of lattice
depth and polarization or magnetic fields. We, therefore,
subsume all these perturbations in an effective spin-flip
efficiency P̄flip per pulse.

Assuming that P̄flip does not significantly change over
the entire transport sequence, we expect the transport
efficiency to exponentially decay according to

P err
2L = Pini · (P̄flip)2L−1

. (4)

The alignment procedure of the experimental setup aims
at identical microwave spectra for both overlapping con-
figurations, θ = 0 and θ = π, including the amplitudes,
positions and shapes of the resonance peaks, supporting
this assumption.

In Fig. 4, the measured transport efficiency as a func-
tion of the number of transport steps is shown. It fits
well to the exponential dependence of Eq. (4), yielding

P̄flip = (95.5± 0.3)% . (5)

Slight deviations of individual data points from the fit in
Fig. 4 could be partially attributed to slow drifts of lat-
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tice polarization over time. Such drifts have been moni-
tored independently by measuring the polarization state
of the retro-reflected beam after passing the trapping re-
gion of the atoms.

To reduce possible effects of static frequency and
pulse area perturbations on the spin-flip efficiency, in-
cluding the corresponding inhomogeneous broadening
mechanisms, we have replaced the regular, rectangular
π-pulses by broadband composite pulses in the trans-
port sequence, namely 9002251803150-pulses. The latter
are robust against static detunings within a calculated
(Pflip ≥ 95%)-range of |δ| < 2π × 54 kHz (compared to
|δ| < 2π × 14 kHz of the regular, rectangular π-pulses)
for static pulse area perturbations of up to ±10%. The
measured transport efficiency as a function of the num-
ber of transport steps for this case is shown in Fig. 4 (•).
From a fit of Eq. (4), we obtain

P̄flip,CP = (95.5± 0.3)% , (6)

which incidentally agrees with the value for the regular
π-pulses (see Eq. (5)). This means that the compen-
sation of static perturbations (e.g., inhomogeneities) by
the composite pulses does not improve the transport ef-
ficiency. This finding suggests that the finite transport
efficiency is dominated by dynamic perturbations, such
as lattice polarization drifts and fluctuations (decoher-
ence) during the pulse affecting the internal state of the
atom. Also, we cannot exclude that the improvement of
the spin-flip efficiency of the composite pulse is counter-
acted by additional dephasing during the pulse due to
its three times longer duration.

3. Dynamic Perturbations and Decoherence

Decoherence is typically characterized by a longitudi-
nal relaxation time T1 and a dephasing time T2. We
have measured longitudinal relaxation by preparing the
atoms in state |↑〉 or |↓〉 and performing a typical trans-
port whereby π-pulses are removed from the sequence,
and thus their possible errors as well. Atoms are then
only transported back and forth to the initial lattice site.
Finally, we determine the population in state |↓〉 after dif-
ferent times by using state-selective push out [11], yield-
ing T1 ≈ 100 ms, in agreement with the calculated limit
imposed by the Raman scattering processes in the lat-
tice. Measuring dephasing during the pulses in the trans-
port sequence and precisely inferring the irreversible T ′

2

time, e.g., from decay of Rabi oscillations, turns out to be
non-trivial due to technical instability of the θ = π over-
lapping configuration on the time scale required. We,
therefore, estimate this T ′

2 time by solving the (pulse-
driven) optical Bloch equations for the measured spin-
flip efficiency of Eqs. (5) and (6), yielding T ′

2 ≈ 100 µs.
The corresponding spectrum, calculated from the opti-
cal Bloch equations, deviates, however, from the mea-
sured spectra in shape. These deviations may arise from

Table 1. Compilation of error probabilities (shift + pulse)
limiting the measured transport efficiency or affecting the
quantum state fidelity.

Error source Probability

A. One time errors

Transport distance detection < 0.3%

State initialization < 3%

B. Per step errors

Tunneling of atoms 0.01%

Raman scattering 0.01%

Imperfection of π pulses

– Regular rectangular pulses < 4.5%

– Broadband composite pulses < 4.5%

– For comparison: no transport < 1.1%

Vibrational excitations < 3%

repeated (non-random) dynamic perturbations that are
not covered by the simple relaxation model in the Bloch
equations. Consequently, these perturbations should not
be interpreted as fluctuations, and the true irreversible
dephasing time T ′

2 may be much longer then estimated
above. In comparison, in a “static” lattice configuration
(no transport), this dephasing time T ′

2 is on the order of
several milliseconds, as inferred from Rabi oscillations.
We conclude from this fact that the spin-flip efficiency
in the transport sequence is, indeed, reduced by dynamic
perturbations, probably caused by drifts or oscillations
of the lattice polarization, which possibly have not yet
fully decayed after each shift, when the pulses are ap-
plied. On the one hand, such dynamic perturbation di-
rectly translate into drifts and fluctuations of differen-
tial light shifts, leading to homogeneous broadening of
the transition frequency and, thus, dephasing. On the
other hand, they translate into drifts and fluctuations
of the Rabi frequency and, thus, of the pulse area via
the Franck-Condon factor [13]. Our interpretation is,
furthermore, supported by the higher spin-flip efficiency
of (98.9 ± 0.2)% measured in a “static” optical lattice.
Employing optimum control techniques [14], either by
microwave pulse-shaping or active polarization control,
might help to counteract or compensate for dynamical
drifts of our system, and, thus, improve the pulse effi-
ciency in the future.

IV. SUMMARY

We have directly observed and analyzed the transport
efficiency of a unidirectional spin-dependent trans-
port of single cesium atoms in a 1D optical lattice.
Relevant error sources are compiled in Table 1. For
our experimental parameters, tunneling of atoms is
negligible during the transport, and excitations between
vibrational states are minimized by numerically finding
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an optimum ramp time for a chosen ramp. Photon
scattering processes and errors in state initialization
play marginal roles while successful displacement of the
atoms is insensitive to dephasing during the shift. The
transport efficiency is mainly limited by the evolution of
the internal states of the atoms. Our analysis of static
and dynamic pulse perturbations suggests that spin-flip
efficiencies are limited by repeated drifts or fluctuations
during the transport operations.
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