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Abstract. We have recently demonstrated the creation of regular strings of
neutral caesium atoms in a standing wave optical dipole trap using optical tweezers
[Miroshnychenko Y et al 2006 Nature (London) 442 151]. The rearrangement
is realized atom-by-atom, extracting an atom and re-inserting it at the desired
position with submicrometer resolution. We describe our experimental setup in
detail and present systematic measurements as well as simple analytical models
for the resolution of the extraction process, for the precision of the insertion, and
for heating processes. We compare two different methods of insertion, one of
which permits the placement of two atoms into one optical micropotential. The
theoretical models largely explain our experimental results and allow us to identify
the main limiting factors for the precision and efficiency of the manipulations.
Strategies for future improvements are discussed.
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1. Introduction

Neutral atoms stored in light-induced potentials form a versatile tool for studying quantum
many body systems with controlled interactions. One of the most interesting cases occurs if
the coherence of such processes is preserved, and hence the build-up of many body quantum
correlations can be studied in detail. Such experimental systems are of great interest for quantum
information processing [1], and, more generally, for quantum simulation [2]. Using far detuned
optical dipole traps, neutral atoms can be well confined in various geometrical configurations,
while at the same time offering long coherence times of their internal states [3, 4].

Two general approaches towards the realization of suitable neutral atom systems can be dis-
tinguished: in the typical ‘top-down’approach, one starts with a large sample of Bose-condensed
atoms which are then adiabatically transferred into a three-dimensional optical lattice. A close
to perfect array of 105 to 106 atoms is then obtained with almost exactly one atom per site by
inducing the Mott insulator state [5]. For this system, the method of spin-dependent transport [6]
has made possible the creation of large-scale entanglement by inducing controlled, i.e. phase
coherent, collisions between neighbouring atoms. However, due to the small distance between
adjacent atoms, the manipulation and state detection of individual atoms is still a big challenge.

This problem is overcome in our ‘bottom-up’ approach where strings of trapped neutral
atoms are created one by one. We have experimentally demonstrated [7] that regular strings
consisting of up to seven atoms spaced several potential wells apart can be created in a one-
dimensional optical lattice. Due to the larger interatomic distance, we are able to address
individual atoms reliably [8]. Moreover, the exact number of empty potential wells between
two atoms has been measured [9]. Thus by the method of spin-dependent transport, one should
be able to carry out controlled cold collisions between neighbouring atoms [6].

Small strings of neutral atoms are not only excellent experimental objects to implement
controlled coherent collisions, they are also well suited for deterministic coupling using cavity-
QED concepts [10]. Here, atom–atom entanglement can be created by synchronous interaction
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Figure 1. Scheme of the experimental setup for the rearrangement of trapped
atoms. Two counter-propagating laser beams produce a horizontally oriented
optical standing wave dipole trap (HDT). After loading an exact number of
caesium atoms from a magneto-optical trap (MOT) into the HDT, a fluorescence
picture, recorded with an intensified CCD camera (ICCD), reveals the initial
positions of the atoms. A second, vertically oriented standing wave dipole trap
(VDT) is used as optical tweezers to extract a selected atom out of the HDT and
to re-insert it at the desired position into the HDT. The ICCD image shows four
atoms which have been rearranged into a regular string in the HDT (exposure
time 1 s).

of two atoms with a single mode of the cavity field. Typical modes have diameters of a few tens
of micrometers, compatible with the interatomic separations on the order of 5–15 µm in our
strings.

In this paper, we give a detailed and quantitative analysis of the properties and limitations
of our atom sorting apparatus [7] which we use to create such regular strings.

2. Experimental tools

2.1. Standing wave optical dipole traps

We trap neutral caesium atoms in a red-detuned optical standing wave dipole trap, oriented
horizontally (HDT) (see figure 1). It is formed by two counter-propagating laser beams with
parallel linear polarization, generating a chain of potential well located at the intensity maxima.
For a Nd:YAG laser, the periodicity is λHDT/2 = 532 nm. The beams are focused to a waist radius
of wHDT = 19 µm yielding a Rayleigh range of 1 mm. An optical power of 1 W per beam results
in a measured trap depth of U0

HDT = 0.8 mK.

Individual atoms trapped in the HDT can be extracted and re-inserted with another
optical standing wave trap used as optical tweezers. This trap (VDT) is oriented vertically and
perpendicularly to the HDT. The standing wave is created by retro reflecting the linearly polarized
beam of an Yb:YAG laser (λVDT = 1030 nm). This laser beam is focused to a waist radius of
wVDT = 10 µm. The typical power of 0.3 W creates a measured trap depth of U0

VDT = 1.4 mK.

The power of the VDT laser beam is controlled by an electro-optic modulator (EOM), acting as
a tunable retarder plate between two crossed polarizers.
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2.2. MOT

Our vacuum chamber consists of a glass cell connected to an ultra-high vacuum main chamber
and a caesium reservoir separated from the chamber by a valve. An ion getter pump maintains a
background gas pressure below 10−10 mbar.

We use a high gradient MOT as a source of single atoms for our experiments [11]. The laser
system of the MOT consists of two diode lasers in Littrow configuration, frequency-stabilized
by polarization spectroscopies. The cooling laser is stabilized to the F = 4 → F ′ = 3/F ′ = 5
crossover transition and shifted by an acousto optic modulator (AOM) to the red side of the
cooling transition F = 4 → F ′ = 5. The z-axis of the MOT coincides with the axis of the VDT,
whereas the two other axes of the MOT are in the x–y-plane at 45◦ to the axis of the HDT. The
saturation parameter s = I

I0
[1 + ( 2�

�
)2]−1 of each MOT beam is s = 0.5 (I: intensity of the cooling

laser; I0 = 1.1 mW cm−2: saturation intensity of the caesium D2 transition; � = 2π · 5.2 MHz:
linewidth of the excited state 6P3/2; � = 1.5�: detuning of the cooling laser). The MOT
repumping laser is stabilized to the F = 3 → F ′ = 4 transition. It is linearly polarized and
propagates along the axis of the HDT. We typically use 100 µW focused to a waist W0 = 1 mm.

The high magnetic field gradient of the MOT (∂B/∂z = 340 G cm−1) is produced by water
cooled magnetic coils mounted symmetrically with respect to the glass vacuum cell. The magnetic
field can be switched within 60 ms (mainly limited by the eddy currents in the metal parts of the
coils). Due to the high field gradient, the spontaneous loading rate of Caesium atoms from the
thermal background vapour into the MOT is negligibly low.

In order to load the MOT, we temporarily reduce the magnetic field gradient to ∂B/∂z =
25 G cm−1 for the time τload to increase the capture cross-section. Varying the loading time τload

from few tens to few hundred milliseconds, we can select a specific average number of loaded
atoms ranging from 1 to 50.

The atoms are transferred from the MOT into the HDT by simultaneously operating both
traps for several tens of milliseconds.

2.3. Atom detection

The procedures described in this paper rely on our ability to nondestructively determine the
exact number and the position of trapped atoms by detecting their fluorescence. For this
purpose, the fluorescence light is collected by a home made long working distance (36 mm)
microscopic objective (NA = 0.29), covering about 2% of the solid angle [12]. The fluorescence
is monitored in the time domain by an avalanche photo diode (APD, type SPCM200 CD2027 from
EG&G, quantum efficiency 50% at 852 nm) and spatially by an ICCD (type PI-MAX:1K,HQ,RB
from Princeton Instruments with image intensifier Gen III HQ from Roper Scientific, quantum
efficiency of 10% at 852 nm) [13], see figure 2.

2.3.1. Atom number detection. Our atom counting method exploits the fact that each atom
contributes equally to the intensity of the MOT fluorescence signal and on the high signal to
noise ratio of our detection system, allowing us to distinguish discrete levels in theAPD count rate.
For n trapped atoms, we detect Nn = (Rstray + n · R1atom) · τint photons during the integration time
τint, see figure 3. Here, Rstray is the count rate due to the stray light and the detector background,
and R1atom is the actual one-atom fluorescence rate. For typical MOT parameters, we detect
R1atom = 45 000 s−1 and Rstray = 25 000 s−1.
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Figure 2. Experimental setup with the detection optics for the MOT fluorescence.
The fluorescence light is collected and collimated by an objective. One part of the
fluorescence signal is spatially and spectrally filtered and detected with an APD.
The other part is only spectrally filtered and sent to an ICCD camera.

5

Figure 3. Histogram of the APD counts detected within the integration time
τint = 60 ms after loading five atoms on average into the MOT (1800 repetitions).
The peaks correspond to different number of atoms in the MOT.

The standard deviation of the detected photon number is fundamentally limited by Poisson
statistics to N−1/2

n . Fluctuations of the MOT laser beams including intensity, phase and pointing
instability are taken into account in analogy with the description of intensity noise in laser beams
by a global relative intensity noise RIN = δN2/N2 where δN2 represents the rms-value of these
fluctuations. In our case, RIN = 0.012–0.022.

In order to distinguish between n and n + 1 atoms, the total width of the peaks corresponding
to neighbouring atom numbers (�N = (Nn + RIN · N2

n)
1/2) has to be compared to their
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separation R1atomτint. In order to distinguish atom numbers with better than 95% confidence,
the ratio

kn = �N

Nn+1 − Nn

=
(

Rstray

R1atom
+ n

) √
1

(Rstray + nR1atom)τint
+ RIN (1)

must be smaller than 1/4. In our experiments, RIN begins to dominate this ratio for integration
times τint � 60 ms. This time was chosen discriminating atom numbers from the APD signal,
since it is short compared to other experimental procedures, and longer times do not improve
the signal to noise ratio. This method allows us to discriminate 1–20 atoms in the MOT with a
confidence level above 95%.

2.3.2. Atom position detection. The positions of the atoms in the HDT are determined by
illuminating and cooling them with an optical molasses and detecting the fluorescence with the
ICCD. For this purpose, we use the MOT beams with reduced intensity and increased detuning
such that the saturation parameter of each beam is s = 0.01. The optically cooled trapped atoms
allow continuous observations of up to 1 min [13]. We detect about 160 photons per atom on the
ICCD within the 1 s exposure time. The y-positions of the individual atoms trapped in the HDT
(see figure 1) are determined by binning the pixels of the ICCD image in the vertical z-direction
after suitably clipping the image to minimize background noise. The resulting one-dimensional
intensity distribution along the y-direction is fitted with a sum of Gaussians, which are used as
an approximation to the line spread function of our imaging system [9]. We define the centres
of the Gaussians as the y-positions of the atoms, which can be determined with a precision of
140 nm rms (below the wavelength of the imaging light) within 1500 ms (1000 ms of exposure
and 500 ms read-out and image processing). In this way, we are able to determine the number
of potential wells separating two simultaneously trapped atoms with a probability of more than
75%. This probability can be increased to over 99% by recording several images of the same
atom pair [9].

Since we want to transport atoms over distances up to 1 mm with submicrometer accuracy,
it is essential to obtain a precise calibration of camera pixel to the position in the object plane of
the microscope objective.

For this calibration, we take advantage of the fact that the atoms in the HDT are trapped in
the potential minima separated by exactly λHDT/2 = 532 nm. Therefore, the measured distance
between two simultaneously trapped atoms d given in units of camera pixels must correspond
to an integer multiple of λHDT/2 in the object plane:

αd = nλHDT/2, (2)

where α is the calibration parameter in µm/pixel. In order to determine α, we have first
accumulated about 500 images with two to four atoms trapped in the HDT. Then we have
determined the interatomic separations in each image, resulting in n ≈ 700 distance values di,
shown in figure 4. In order to avoid any inaccuracy caused by overlapping peaks at short distances,
only separations of more than 10 µm then were taken into account. To find the periodicity of
the distribution, we construct a function built by summing the delta functions at the positions of
each di

f(y) = 1

n

n∑
i=1

δ(di − y) (3)
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Figure 4. Histogram of measured distances and its Fourier transform. The only
one prominent contribution at k0 = 0.9336 wells pixel−1 corresponds to the
periodicity of λHDT/2 in the object plane of the microscope objective. The inset
shows the original function f(y). Here, for presentation purposes, each delta
function was replaced by a Gaussian with the width of 0.05 pixel.

and Fourier transform it:

g(k) = 1√
2π

∫ ∞

−∞
f(y) e2πiky dy = 1√

2πn

n∑
i=1

e2πikdi . (4)

In the idealized case (i.e., each di corresponds to an integer multiple of λHDT/2) the real part
of (4) should be maximum at the spatial frequency corresponding to the spatial frequency of the
standing wave pattern

k = α

λHDT/2
, (5)

while the imaginary part should cross zero. In our case, both criteria give the same values within
the statistical uncertainty.

The real part of the Fourier transform of g(k) for our measured distances is shown in figure 4.
The most prominent peak at k0 = 0.9336(±0.0003)1/pixel thus yields our calibration parameter
α = 0.4967(±0.0002) µm pixel−1.

The error of this value is dominated by the statistical error due to the finite sample and the
130 nm uncertainty in the determination of each distance [9]. The statistical error is estimated
by randomly selecting a subset of n/2 distances and determining α by the above mentioned
calculations on this subset. Using 20 different subsets, the standard deviation (δα)n/2 was
determined. The statistical error for the full set is therefore (δα)n = (δα)n/2/

√
2. The slight
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modification of the wave length λHDT in the Rayleigh zone by the Guoy phase is on the order of
10−5 and hence negligible here.

2.4. Three-dimensional transport of atoms

We transport atoms in the x–y plane using the HDT. Vertical transport of the atoms along the
z-direction is realized by the VDT.

2.4.1. Transportation along the y-direction. An ‘optical conveyor belt’ [14] along the trap axis
is realized by means of AOMs installed in each arm of the HDT, see figure 1. Mutually detuning
the AOM driving frequencies using a dual-frequency synthesizer, detunes the frequencies of the
two laser beams. As a result, the standing wave pattern moves along the axis of the trap.

The optical conveyor belt allows us to transport the atoms over millimetre distances with
submicrometer precision [9, 14] within several milliseconds. The accuracy of the transportation
distance is limited to 190 nm by the discretization error of our digital AOM-driver [9]. In this
experiment, we typically transport atoms over a few tens of micrometres within a few hundred
microseconds.

2.4.2. Transportation along the x-direction. Displacement of the HDT along the x-direction is
realized by synchronously tilting the mirrors M1 and M2, see figure 1, in opposite directions
around the z-axis using piezo-electric actuators. For tilt angles below 0.1 mrad, the variation of
the interference pattern is small and to a good approximation pure x-translation is realized.

We typically move atoms in the x-direction by two times the waist radius of the HDT
(∼40 µm) with a precision of a few micrometres within 50 ms. The maximum transportation
distance is limited to about 40 µm by the dynamic range of the actuators. The minimal
transportation time is limited to about 10 ms by the bandwidth of the PZT-system.

2.4.3. Transportation along the z-direction. The VDT acts as optical tweezers and extracts and
re-inserts atoms in the z-direction. To axially move the standing wave pattern of the VDT, the
retro-reflecting mirror M3 is mounted on a linear PZT stage, see figure 1.

In our experiments, the VDT transports an atom over about 70 µm along the z-axis by
applying a sinusoidal voltage ramp to the PZT within 50 ms. The precision of the transportation
is limited to a few micrometres by the hysteresis of the piezo-crystal, whereas the transportation
time is limited by the inertia of the mirror.

3. Positioning individual atoms in the HDT

3.1. Outline of the distance-control procedure

Immediately after loading the HDT with n � 2 atoms, they are randomly distributed over an
interval of about 100 µm along the axis of the trap. In order to create regular strings with
a target interatomic separation dt, atoms are repositioned one by one with the VDT-optical
tweezers. For this, the initial positions of all atoms are first determined by recording and
analysing a fluorescence ICCD image, see figure 5(a). Then, the atoms are rearranged in
the HDT by sequential application of the ‘distance-control’ operation: the string of atoms in the
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Figure 5. Distance-control operation [7]. After the initial positions of all the
atoms are determined (a), the rightmost atom is transported to the position of
the VDT (b). This atom is extracted vertically with the optical tweezers out of
the HDT (c). The rest of the atoms is transported along the axis of the horizontal
trap, so that the leftmost atom arrives at the target separation dt from the axis of
the VDT (d). The extracted atom is inserted at the desired position into the HDT
(e). Note that the fluorescence spots, corresponding to individual atoms, were
coloured for visualization purposes.

HDT is transported horizontally along the trap axis, such that the rightmost atom arrives at the
y-position of the VDT (yVDT), see figure 5(b). After adiabatically switching on the VDT, this
atom is transported upwards by approximately three times the waist of the HDT, out of its region
of influence.

This atom is then extracted with the optical tweezers (c). The rest of the string in the HDT
is transported along the y-axis until the leftmost atom of the string arrives at yVDT + dt (d). The
procedure is completed by re-inserting the extracted atom at this position into the HDT (e).
Each operation permutes the order of the atoms, and after n − 1 steps an equidistant string of n
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Figure 6. Equidistant strings of n atoms created by rearranging the atoms of the
string applying n − 1 times the distance-control operation.

atoms is formed. Figure 6 shows ICCD images of equidistant strings of up to seven atoms with
interatomic separations of 15 µm.

A perfect distance-control procedure would extract and re-insert an atom with 100%
efficiency at a separation to the next atom given in terms of an exactly known number of
micropotentials always, i.e., multiple of λHDT/2. We have developed a model of extraction and
re-insertion in order to study the physical limitations of the repositioning procedure.

3.2. Extraction of an atom

For extraction, the VDT-optical tweezers needs to overcome the HDT trapping forces. In both
the HDT and VDT standing wave dipole traps confinement in the axial direction is almost two
orders of magnitude tighter than in the radial direction, the maximal axial forces are thus much
larger than the radial forces. For comparable potential depths of the HDT and the VDT, an atom
in the overlap region will therefore always follow the axial shift of the traps.

Successful extraction of a single atom not only requires efficient handling of the atoms
between the HDT and VDT traps. In addition, other atoms present in the vicinity must remain
undisturbed. We have thus defined and analysed a minimal separation of atoms tolerable on
extraction, which is equivalent to an effective ‘width of the optical tweezers’.

3.2.1. Theoretical model of the width of the optical tweezers. In this model motion in the traps
is treated classically, since at the atomic temperature of about 60 µK and for the typical depths
of the traps in our experiments, the mean oscillatory quantum numbers are nrad ≈ 90, nax ≈ 3
for the VDT, and nrad ≈ 400, nax ≈ 6 for the HDT.
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Figure 7. Trapping potentials along the z-axis. The trapping potential in the
overlap region of the two traps is the sum of the Gaussian profile of the radial
confining potential of the HDT and of the standing wave of the VDT. An atom at
the bottom of the HDT experiences light forces of the standing wave, too.

We consider two crossed standing wave optical dipole traps. For simplicity, we assume
that all the spatial manipulations are carried out within the Rayleigh-range of the standing wave
dipole traps, i.e., we neglect the change of the curvature of the wave fronts. In this approximation,
each dipole trap is described by three parameters: the waist radius of the Gaussian beam, the
depth of the trap, and the periodicity of the standing wave. Atoms are trapped in the different
potential wells of the standing wave of the HDT and are extracted purely along the z-direction.
The motion occurs in the y–z-plane only. Therefore, we consider one-dimensional potentials
along the z-axis at different y-positions in the y–z-plane with x = 0.

In order to separate the effects of the potential shape and the atomic motion on the process
of extraction, we first model the case of atoms at zero temperature, where the energy of the atoms
is well defined. Later, the influence of the thermal energy distribution is discussed.

Tweezers potential. Consider an atom at rest trapped at the bottom of a micropotential of the
HDT at y = 0, which coincides with the axis of the VDT. At this position the HDT-potential in
the z-direction has a Gaussian shape with waist wHDT and depth U0

HDT. After switching on the
VDT, in addition to the Gaussian potential of the HDT, a periodic potential with depth U0

VDT and
period λVDT/2 is superimposed in the z-direction, see figure 7. Since the HDT and VDT laser
frequencies are far apart, the trapping potentials are added incoherently, and the atom is then
additionally subject to the forces of the VDT standing wave.

During extraction of the atom along the z-direction, it is conveyed at the bottom of the
micropotential away from the axis of the HDT. Due to the Gaussian radial profile of the HDT,
the depth of the local potential minima changes along the z-axis and reaches its minimum at the
distance zmax = wHDT/2 from the axis of the HDT. Here, the slope of the Gaussian is maximal
and the effective depth of the local micropotential, see figure 8, can be approximated as

Ueff ≈ U0
VDT − 1

π
√

e

λVDT

wHDT
U0

HDT. (6)

The condition for extracting the atom from the HDT is given by

Ueff > 0. (7)
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Figure 8. Decrease of the effective depth of the potential well. Due to the
Gaussian shape of the confining potential of the HDT in the z-direction, the
depth of the standing wave pattern reaches its minimum at the distance wHDT/2
from the axis of the HDT. If the effective depth Ueff is greater than zero, the atom
remains trapped in the standing wave and will be finally extracted with the VDT
(a). Otherwise, the atom always rolls down during the extraction (b).

Figure 9. Probability for an atom not to be extracted from the HDT. (a) Atoms
at T = 0 K. (b) Atoms at temperatures T1 (solid line) and T2 (dashed line), with
T1 > T2.

Now, consider an atom is trapped at some other position y 	= 0 along the HDT. The potential
along the z-direction will be the sum of the same Gaussian potential well of the HDT with depth
U0

HDT and of the periodic potential of the VDT, but now with the reduced depth U0
VDT e−2y2/w2

VDT .
The sum of the two potentials at the lateral position y generalizes (6) to

Ueff(y) ≈ U0
VDT e

− 2y2

w2
VDT − 1

π
√

e

λVDT

wHDT
U0

HDT. (8)

Consequently, there exists some region −yT < y < yT along the HDT, where condition (7) holds,
and where atoms will be extracted by the VDT. Figure 9(a) shows the probability pnoextr for an
atom to remain trapped in the HDT after the extraction as the function of the lateral position y.
The critical position yT defined by the condition Ueff(yT) = 0 is

yT = wVDT√
2

√
ln

(
π
√

e
wHDT

λVDT

U0
VDT

U0
HDT

)
. (9)

This equation characterizes the width of the optical tweezers, yT, as a function of the trap
parameters for atoms at zero temperature. It shows that lowering U0

VDT reduces the extraction
width 2yT, from which the atoms will be extracted. For T = 0 K and neglecting quantum effects,
this region can be made arbitrary small at U0

VDT = λVDT
π
√

ewHDT
U0

HDT.
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Thermal atomic motion. We now model atomic motion in the dipole trap by an ensemble in
thermal equilibrium at temperature T in a three-dimensional harmonic potential. We assume that
the energy of the atoms is Boltzmann-distributed [15]:

f(E, T ) = 1

2(kBT )3
E2 e−E/(kBT ). (10)

For an atom with a fixed energy E, the condition for the extraction analogous to (7) is

Ueff(y) − E > 0. (11)

For a given temperature T, the fraction of atoms with an energy above Ueff is given by

p(U) =
∫ ∞

max {Ueff ,0}
f(E, T ) dE, (12)

which therefore is the fraction pnoextr of the atoms not extracted from the HDT. As a function of
the lateral position y, we have

pnoextr(y) ≡ p(Ueff(y)) = 1

2

[(
Ueff(y)

kBT
+ 1

)2

+ 1

]
exp

(
−Ueff(y)

kBT

)
. (13)

Figure 9(b) shows pnoextr for the same trap parameters as in figure 9(a). Atomic motion
causes ‘softening’ of the edges of the extraction zone. An increasing temperature causes narrow-
ing of the region of efficient extraction.

Here, we define the region influenced by the optical tweezers [−yT, yT], see figure 9(b), by

pnoextr(yT) � 0.99. (14)

In order to optimize the extraction resolution we vary U0
VDT such that yT is minimal, while still

warranting efficient extraction in the centre. We therefore choose U0
VDT fulfilling the condition

pnoextr(y = 0) = 0.01 (15)

and get the minimal region of influence (−y
opt
T , y

opt
T ) from

pnoextr(y
opt
T ) = 0.99. (16)

3.2.2. Measurement of the width of the optical tweezers. We have experimentally determined
the width 2yT of the optical tweezers as a function of the depth of the VDT by loading the HDT
with atoms distributed over a region larger than yT, extracting atoms with the VDT, and analysing
the distribution of the atoms remaining in the HDT. Images of the atoms in the HDT were taken
before and after extraction, and used to calculate the probability PHDT(y) of the atoms to remain
trapped in the HDT after the extraction. In this measurement, the depth of the HDT was fixed
(U0

HDT/kB = 0.8 mK), whereas the depth of the VDT was varied over two orders of magnitude
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Figure 10. Comparison of the experimental data and the respective theoretical
expectation. (a) Fit of PHDT (solid line) to the experimental data (points) for
U0

VDT/kB = 0.3 mK. (b), (c) The function PHDT with parameters from panel (a)
except U0

VDT/kB = 3.1 mK and U0
VDT/kB = 16.8 mK, respectively. The depth of

the HDT is U0
HDT/kB = 0.8 mK.

from 0.3 to 16.8 mK. The corresponding plots for U0
VDT/kB = 0.3, 3.1 and 16.8 mK are presented

in figure 10.

3.2.3. Analysis. In figure 10, the measured data are compared to the theoretical model described
by (13). Free fit parameters for the data of figure 10(a) include the temperature T of the atoms,
the waist of the VDT wVDT along the axis of the HDT, and the position of the VDT y0, relative to
the picture. The fit to the data set for the depth of the VDT at U0

VDT/kB = 0.3 mK, corresponding
to a power of the incoming VDT laser beam of 0.06 W, yields

T = 60(±1)µK and wVDT = 11.6(±0.2)µm,

see figure 10(a). The temperature thus obtained is in the range of the typical temperatures
measured by other methods [16], whereas the error is probably too small and underestimates the
systematic influence of the approximations of the model. Also, the fitted value of the waist of the
VDT is in reasonable agreement with the value of 10.1(±1.4) µm determined from the oscillation
frequency measurements. In figures 10(b) and (c), we have plotted the model function pnoextr(y)

at U0
VDT/kB = 3.1 mK and U0

VDT/kB = 16.8 mK, respectively, without further adjustment of T

and wVDT, finding good agreement with the experimental data.
Using the quantitative definitions (15) and (16), we can determine the optimal width of

the optical tweezers for our current experimental parameters, i.e., for the depth of the HDT
of 0.8 mK and the atomic temperature of T = 60 µK. Using (15), we find the optimal depth of
the VDT at U0

VDT/kB = 0.5 mK. The corresponding width of the optical tweezers is calculated
with (16) to be 2y

opt
T = 2 × 11.7 µm, see table 1.

3.2.4. Towards ultimate resolution. Ultimate resolution of the optical tweezers is realized, if a
single potential well of the HDT is addressed only. Here, we use our model in order to develop
strategies for the reduction of the width of our optical tweezers. It depends on the depth and
waist of the VDT, of the HDT, and on the temperature of the atoms. Experimentally, variation of
the depth of the traps is straightforwardly realized by changing the power of the respective laser
(up to 20 W for the VDT laser and 1.2 W for each beam of the HDT laser). Changing the waist
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Table 1. Width of the tweezers 2y
opt
T for different parameters

T (µK) Fr y
opt
T (µm)U0

HDT

kB
(mK)

U0
VDT

kB
(mK)

wHDT

λVDT

wVDT

λVDT

Current experiment
1 0.8 0.51 60.0 19 9.8 0.015 11.7

Stronger focusing of optical tweezers
2 0.8 0.51 60.0 19 4.9 0.025 5.9
3 0.8 0.51 60.0 19 2.45 0.025 2.9

Lower atom temperature
4 0.8 0.017 1.0 19 4.9 0.482 2.9
5 0.8 0.0088 0.084 19 2.45 0.920 0.5

size of the traps requires a new lens system, and lowering of the atomic temperature could be
achieved by e. g. Raman sideband cooling techniques [17].

In the following analysis, we ignore further experimental effects not included in our model,
e.g., drifts of the traps, fluctuations of the trap depths, or heating in the traps, which become
relevant for ultimate precision.

Universal extraction function. In order to introduce dimensionless parameters, we rewrite (8)
in the form

Ueff(y)

kBT
= sT

(
e
− 2y2

w2
VDT − Fr

)
, (17)

where the normalized tweezers potential depth is

sT = U0
VDT

kBT
, (18)

and

Fr = 1

π
√

e

U0
HDT

U0
VDT

λVDT

wHDT
, (19)

is a relative measure of the forces exerted by the HDT (∼U0
HDT/wHDT) compared to the VDT

(∼U0
VDT/λVDT). The condition of the extraction (7) translates into

Fr < 1.

The condition (15) that the target atom is efficiently extracted out of the HDT, is satisfied for

sT = 8.4

1 − Fr
. (20)

Now we rewrite (16) in terms of the dimensionless parameters sT andFr and use the substitution 20
to find the connection between the optimal width of the optical tweezersy

opt
T and the dimensionless
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Figure 11. Contour plot for pnoextr(y
opt
T , Fr) = 0.99. Outside the white area, atoms

will remain trapped in the HDT with 99% probability.

parameter Fr:

pnoextr(y
opt
T , Fr) = 0.99, (21)

which is plotted in figure 11.
From this figure, we can already infer two strategies for improved resolution: the value of

Fr should be about unity, and the waist of the VDT should be as small as possible. Fr can be
increased by increasing the depth of the HDT, by reducing wHDT and by lowering the temperature
T of the atoms, see (18) and (19).

Examples of optical tweezers. In table 1, we have listed possible parameters for the traps which
would improve the extraction resolution. In line 1, we have optimized U0

VDT for our experimental
parameters. In lines 2–3, we project parameters for improved resolution by changing the focus
of the VDT, in lines 4 and 5 the effect of lower temperatures is shown (about 1 and 0.1 µK which
can be obtained with Raman cooling [18] and quantum degenerate gases).

3.3. Insertion of an atom

After extraction, the atom is trapped in the potential of the VDT. In order to re-insert the atom
into a potential well of the HDT, the VDT potential is merged with the HDT and finally switched
off. We use two alternative methods to insert an atom back into the HDT: ‘axial insertion’ and
‘radial insertion’.
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Figure 12. Axial insertion. An atom trapped in one of the potential wells of the
standing wave of the VDT is inserted into the Gaussian potential well of the HDT
by axially moving the VDT along the z-direction.

Figure 13. Radial insertion of an atom. (a) An atom in the VDT after the
extraction. The traps are separated by displacing the HDT along the x-direction.
(b) The atom in the VDT is transported to the z-position of the HDT. (c) The
traps are merged by moving the HDT along the x-direction towards the VDT. d)
Evolution of the radial potentials of the traps along the x-axis for steps (b) and (c).

Axial insertion. In this case, the process of extraction of an atom is simply reversed: the VDT
axially transports the atom to the axis of the HDT, see figure 12, and then the VDT is adiabatically
switched off, leaving the atom in the HDT. The whole process of axial insertion takes about 70 ms.

Radial insertion. For radial insertion, the two traps are first radially separated by displacing
the axis of the HDT in the positive x-direction, see figure 13(a). Then the atom in the VDT is
transported downwards to the vertical position of the horizontal trap, see figure 13(b). Along
the x-axis, the atom in this configuration is confined in the Gaussian-shaped radial potential of
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the VDT. In the next step, the VDT is then merged with the Gaussian-shaped radial potential of
the HDT by moving the HDT radially towards the x-position of the VDT, see figure 13(c). In the
final step, the VDT is adiabatically switched off, which releases the atom to the HDT, see
figure 13(d). The process of radial re-insertion takes about 210 ms.

A radical difference of the two alternative insertion methods occurs if the HDT already
holds an atom within the width of the optical tweezers. During axial insertion, the VDT exerts
the same forces as during the extraction of an atom. Therefore, the achievable final distance
between two atoms in the HDT is limited to the width of the optical tweezers, because atoms
within the extraction region will be extracted downwards by the VDT during the re-insertion.
In contrast, if the two traps are merged radially, the VDT does not exert any forces which could
push an atom out of the HDT. Consequently, for radial insertion there are no limitations on
the final separations. In particular, the final distance between two atoms could be set to zero.
In this way, two atoms could be joined in a single micropotential of the standing wave of the
HDT. A disadvantage of the radial insertion is additional heating of the atom in the HDT, see
subsection 3.4.

The ultimate goal of insertion is to reliably place an atom into a given micropotential of the
HDT, for instance an integer number of potential wells away from the neighbouring atom, but
without influencing it.

3.3.1. Insertion precision. There are two independent effects influencing the precision of the
insertion, i.e., how accurately an atom can be placed at a desired position of the HDT: the thermal
motion in the VDT and the position fluctuations of the VDT relative to the HDT. Both of them
equally affect the axial and the radial insertion. Therefore, the following theory applies to both
methods of insertion.

Thermal distribution in the VDT. Before contact with the HDT atoms in the VDT are distributed
thermally along the y-direction (the axis of the HDT) in an approximately harmonic potential
with oscillation frequency 	rad =

√
4U0

VDT/mw2
VDT. It is known that the distribution in this case

is a Gaussian,

pT(y) =
√

m	2
rad

2πkBT
e−m	2

rady
2/(2kBT). (22)

The width of this distribution

δytherm = wVDT

2

√
kBT

U0
VDT

, (23)

can also be expressed in terms of the VDT waist radius and the sT parameter, combining U0
VDT

and the temperature, see (18):

δytherm = wVDT

2s
1/2
T

. (24)
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Figure 14. (a) Spatial distribution p(y) with the width yinsert is projected on to
the standing wave of the HDT as both traps are merged. (b) The same distribution
after projection onto the standing wave. The width of the envelope remains almost
unchanged, but the probability is spatially modulated with the periodicity of
the HDT.

Spatial fluctuations of the VDT. Since the VDT and the HDT laser beams are guided by
independent mechanical setups, their relative position is subject to radial and axial fluctuations.
In our model, these fluctuations are taken into account by δyfluct representing the rms-amplitude
of the fluctuations of the VDT axis.

For our typical experimental parameters, the width of the thermal distribution is on the order
of 0.5 µm, and δyfluct is about 0.5 µm. Assuming these fluctuations are Gaussian distributed the
rms-amplitude of the combined fluctuation is:

δyinsert =
√

δy2
therm + δy2

fluct. (25)

The value of δyinsert ≈ 0.7 µm is the width of the distribution of the probability to find an atom
along the HDT axis p(y). Since this value is larger than the size of one HDT micropotential, the
distribution extends over several potential wells, see figure 14.

Insertion into HDT micropotentials by ‘projection’. In the last step of the insertion, the traps are
merged and the VDT is finally switched off. Due to the periodicity of the HDT, the distribution
p(y) is changed: its envelope reflects the width of the original distribution before the traps were
merged, but under this envelope the distribution is now modulated with the periodicity of the
standing wave of the HDT, see figure 14(b). In harmonic approximation, the distribution in each
micropotential is described again by a Gaussian of width

δymicropot = λHDT

2
√

2π

√
kBT

U0
HDT

,

where T is the temperature.
It is clear that the insertion precision will be improved by better localization of the atoms,

i.e., with lower atomic temperature and deeper VDT potentials for both axial and radial insertion
methods. Ultimately, for δyinsert � λHDT/2 the final distribution will be concentrated into a single
micropotential. This limit corresponds to ‘perfect’ insertion.

New Journal of Physics 8 (2006) 191 (http://www.njp.org/)

http://www.njp.org/


20 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 15. (a) Insertion precision as a function of the depth of the VDT. The
triangular points present the insertion precision for the experimental sequence
without cooling of the atoms before re-insertion. The rectangular points are the
results of the insertion precision with the cooling step. (b) Zoom of panel (a)
showing the data for precooled atoms. The solid line is the fit of (26) to the
experimental data. In this experiment, we have used the axial insertion method.
Every point corresponds to about 25 repetitions of the experiment.

3.3.2. Experimental studies of the insertion precision. We have carried out a series of
measurements in order to experimentally study the dependence of the insertion precision on
atomic temperature and on the depth of the VDT predicted by the above model. For this purpose,
we have loaded atoms into the HDT and extracted the rightmost atom with theVDT, the rest of the
atoms were expelled out of the HDT by switching it off for 30 ms. The events with no or too closely
spaced atoms were discarded. The atom in the VDT was then cooled with optical molasses, and
placed back into the HDT using the method of axial re-insertion. The final positions of the inserted
atoms were determined and the standard deviation δyinsert was calculated. For δyinsert � 0.5λHDT,

we can neglect the discretization of the positions due to the periodic structure of the HDT [19].

3.3.3. Analysis. Figure 15(a) shows the dependence of the measured insertion accuracy δyinsert

on the depth of the VDT. The corresponding graph for the radial insertion, see figure 18(b), shows
comparable insertion precision as expected.

Temperature of the atoms. The temperature was varied by performing the measurement with
(squares) and without the cooling step in the VDT (triangles). The huge difference in δyinsert

qualitatively demonstrates the temperature dependency of the insertion precision and points out
the importance of the cooling step. The extraction process itself can heat up the atom if it is
initially not located on the VDT axis: the atom remains at its y-position until it is released from
its HDT potential well and starts to oscillate radially in the VDT. Therefore we have to cool the
atom before insertion to achieve a good insertion precision. For this purpose, we apply optical
molasses as described in subsubsection 2.3.2 for 100 ms.

Depth of the VDT. In order to insert the atoms at different UVDT, we have first extracted
and cooled the atoms at a fixed depth Uextr

VDT to insure constant cooling parameters, and then
adiabatically changed the depth to UVDT. During this ramp, the temperature of the atoms
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Figure 16. Distribution of the separations between two simultaneously trapped
atoms after setting their distance to 15 µm with our distance-control operation
[20]. The histogram clearly shows that the distances are integer multiples of the
standing wave period λHDT/2, and extending over only about four standing wave
potential wells. The solid line is a theoretical fit with a Gaussian envelope (dashed
line) centred at 15.31 µm and having a 1/

√
e-halfwidth of 0.71 µm. The narrow

peaks under this envelope have a 1/
√

e-halfwidth of 0.130 µm, corresponding to
the precision of an individual distance measurement [9].

adiabatically changes to T = T0

√
UVDT/Uextr

VDT [16]. Using this temperature in (23) and (25),
we obtain the expected insertion precision

δyexp(UVDT) =
√

b2

√
UVDT/kB

+ δy2
fluct. (26)

The parameter b = (wVDT/2)(
√

T0/
4
√

Uextr
VDT/kB) is a combination of the waist of the VDT,

of the trap depth where the atom was cooled and the temperature. We have independently
determined δyfluct = 0.26(±0.03) µm by measuring the position of an atom in the VDT over the
typical duration of an experimental run (200 s). Equation (26) was then fitted to the experimental
data with the fit parameter b, see figure 15(b), yielding b = 0.52(±0.05) µm∗(mK)1/4.
Using Uextr

VDT/kB = 1.6(±0.3) mK and the independently measured wVDT = 10.1(±1.4) µm, we
calculate the corresponding temperature of the atom in the VDT after the cooling step to be
T0 = 13(±4) µK. This temperature is smaller than the typical temperatures measured in the
HDT. The difference between these values could be explained by the fact that the multi mode
operation of our HDT laser impairs the cooling process in the HDT [21], or by systematic errors
due to approximations in our model.

Periodicity of the HDT. Until now we have analysed the insertion precision in the frame of
reference of our ICCD. Much more important is the insertion precision relative to a fixed point
in the HDT, e.g., another atom. Here, we have prepared a pair of atoms with a fixed separation
using our distance-control operation, subsection 3.1. Instead of final positions, we now measure
final distances, see figure 16. Here, the periodicity of the HDT is clearly visible as it is expected
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Figure 17. Radial potential of the two traps. During the radial merging of the
traps, an atom in the radial potential of the HDT has a potential energy Ea relative
to the bottom of the potential well of the VDT. The inset shows the respective
geometry of the traps.

from figure 14(b). In the distance measurement the random axial shot-to-shot fluctuations of the
HDT standing wave pattern cancel out, whereas in position measurements relative to the ICCD,
this modulation is smeared out.

The insertion precision relative to a second atom in the HDT is on the same order of
magnitude as δyinsert measured in the previous section. This allows us to set a distance between
two atoms with an accuracy corresponding to about four potential wells of the HDT.

3.4. Insertion induced heating

As discussed in subsection 3.3, the method of radial insertion allows us to place an atom arbitrarily
close to other atoms in the HDT. It turns out that during this insertion an atom in the HDT at the
position of the VDT is heated up. This heating effect limits the usable depth of the VDT, such
that a compromise between a high precision of insertion and tolerable heating is required.

3.4.1. Adiabatic model. Consider an atom trapped in the HDT at the y-position of the VDT,
when the traps are axially separated along the x-direction. Along this direction the potential is
the sum of two Gaussians, i.e., the radial potentials of the two traps. Just before the two traps
are merged, the potential shape is shown in figure 17. For kBT � U0

HDT, the atom stays near the
bottom of the HDT potential until it falls down into the VDT potential. With respect to the bottom
of this potential, it has an energy of approximately Ea ≈ U0

VDT − U0
HDT. Adiabatically switching

off of the VDT causes the atom to be adiabatically cooled to the final atomic energy [16]:

Efinal
a ≈ Ea

√
U0

HDT

U0
HDT + U0

VDT

, (27)
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Figure 18. Optimal depth of the VDT. (a) The survival probability of an atom in
the HDT as a function of the depth of the VDT. Every point is the result of about
35 repetitions of the experiment. (b) The insertion precision as a function of the
depth of the VDT. Every point corresponds to about 35 radial insertions with a
single atom. The shaded areas show the experimentally unfavourable ranges of
the depth of the VDT.

where the difference between wVDT and wHDT has been neglected. The condition for the atom to
remain trapped in the HDT is Efinal

a < U0
HDT, yielding an upper limit for the depth of the VDT

U0
VDT � 3U0

HDT, (28)

otherwise the atom will be lost.

3.4.2. Measurement of the heating effect. One atom on average was loaded into the HDT
and transported to the y-position of the VDT axis. For the third step, the HDT with the atom was
transported in the x-direction, and the VDT was switched on. At the fourth step, the atom was
transported back towards the VDT as it would occur during the radial insertion. Thereafter, the
VDT was adiabatically switched off. The final image reveals then the presence or loss of the atom
in the HDT. Figure 18(a) shows the survival probability of the atom after this manipulation.
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3.4.3. Analysis. The experimental data in figure 18(a), show that starting from a VDT depth
of about 2.5 mK, the atoms in the HDT were heated up and lost during the radial insertion
procedure. Since the depth of the HDT for this experiment was 0.8 mK, the condition (28)
results in U0

VDT < 2.4 mK, which reasonably agrees with the experimentally observed value.
At the same time, the lower limit on the depth of the VDT is dictated by the insertion

precision, which deteriorates with the reduction of the VDT depth. Figure 18(b) shows the
insertion precision, measured for the same depth of the HDT using the radial insertion method.
For VDT depths below 1.2 mK, the insertion precision is dominated by the thermal component
and starts to deteriorate, see (23).

The non shaded regions in figure 18 indicate the range of experimentally useful depths of
the VDT. For our typical experimental parameters, there is a non empty overlap of these regions.
It can be further enlarged by increasing the depth of the HDT according to (28).

4. Conclusion

Using optical tweezers, we have repositioned individual atoms inside a standing wave optical
dipole trap with a precision on the order of the periodicity of the trap. Regular string containing
2–7 atoms have been prepared atom-by-atom. We have modelled and experimentally analysed
the processes of extraction and insertion of a single atom in detail. We have identified the main
limiting factors and proposed strategies for future improvements.

We demonstrate two methods of insertion, one of which has no limitation on the final
distances between the atoms after the re-insertion. It can therefore be made as small as zero, i.e.,
placing two atoms into the same potential well of the standing wave. We have found suitable
parameters of the traps, which allow us to perform the re-insertion efficiently and with high
precision.
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