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We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled
to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify
experimental parameters to deduce the atomic spin state nondestructively from the stream of photons trans-
mitted through the cavity, achieving a compromise between a good signal-to-noise ratio and minimal
measurement-induced perturbations. In order to extract optimum information about the spin dynamics from
the photon count signal, a Bayesian update formalism is employed, which yields time-dependent probabilities
for the atoms to be in one of the two hyperfine states. This analysis is extended to short time bins where a
simple threshold analysis would not yield reasonable results. We discuss the effect of super-Poissonian photon
number distributions caused by atomic motion. © 2010 Optical Society of America
OCIS codes: 000.1600, 270.0270, 270.2500, 270.5580.

1. INTRODUCTION

Systems comprised of neutral atoms coupled to a single
mode of a high-finesse resonator belong to the key model-
systems in quantum optics [1]. In the so called strong cou-
pling limit an atom periodically exchanges its excitation
energy with the resonator light field. In this case the dy-
namic evolution is governed by a priori entangled light-
matter quantum states, namely, the combined dressed
states of the atom-cavity system. Due to the symmetric
interaction, described by the Janyes—Cummings Hamil-
tonian [2], information about the state of the system can
be obtained from two complementary partial measure-
ments: In the optical domain, experiments rely on the de-
tection of photons emitted from the cavity [3-9], whereas
in the microwave regime the quantum state of atoms
transiting the cavity field is detected [10].

Optical cavity quantum electrodynamics (cavity QED)
systems are attractive for applications in quantum infor-
mation science, e.g., for quantum networks. The success-
ful demonstration of, for instance, the mapping of the co-
herent state of a traveling qubit (a photon) to the atomic
state memory qubit [11] as well as single-photon genera-
tion [12—-14] are recent examples of significant progress in
controlling the interaction of a single atom with the cavity
field. For the creation of two-particle entangled states,
promising proposals rely on either applying deterministic
protocols [15] or measurement-induced (probabilistic) pro-
jection [16,17].

More generally for the investigation of strongly inter-
acting atom-cavity systems it is vital to understand the
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spin dynamics of one and especially more than one atom
simultaneously coupled to the resonator field. In the work
presented here we concentrate on the case of one and two
atoms and investigate how maximum information about
their hyperfine ground states can be retrieved from the
stream of photons arriving at the detector. We outline and
detail the identification of optimal experimental settings
such as atom-cavity detuning.

Random telegraph signals are obtained by continuously
observing quantum jumps between the spin states of a
single atom. Here previous work presented in [9] is ex-
tended by applying a Bayesian update formalism for the
analysis of the cavity transmission. In complementary ex-
periments [18,19], the photon number state (Fock state)
of a microwave cavity field is interrogated by a stream of
circular Rydberg-atoms acting as quantum probes. There
Bayesian analysis has proven to be a useful method of
analysis, too. Random telegraph fluctuations are a univer-
sal phenomenon observed in many different fields, includ-
ing a large variety of solid-state systems [20].

In order to study two-atom dynamics, we identified ex-
perimental parameters for which the intracavity intensity
depends on the number of atoms in a specific spin state.
The virtue of the Bayesian method is evident in analyzing
the corresponding telegraph signals, for which the atomic
state cannot be unambiguously deduced from the mea-
sured transmission signal because of technical limitations
on the signal-to-noise ratio.

In our measurements we observe fluctuations in the
transmission exceeding shot noise, which we attribute to
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thermal motion of the atom. We discuss the impact of this
external dynamics on the performance of the Bayesian
analysis.

2. EXPERIMENTAL TECHNIQUES

A. Setup to Trap and Transport Single Atoms

At the beginning of every experimental sequence, a con-
trolled number of cesium (Cs) atoms are transferred from
a magneto-optical trap (MOT) into a standing wave far-
off-resonant dipole trap (FORT) with Aporr=1030 nm
and a trap depth of Uggrr=%kp X1 mK. This trap acts as
an “optical conveyor belt” [21] to transport atoms into the
optical resonator. The fundamental TEMy, mode of the
cavity has a waist diameter of 2wy=46 wum and a length
given by the mirror distance of 158 um. The finesse is
F=1.2x10°.

A conceptual drawing of the main components is de-
picted in Fig. 1; for details of the cavity-setup and the sta-
bilization scheme see [8]. To study the atom-cavity sys-
tem, the transmission of a weak probe laser through the
cavity is detected with a single-photon counting module
(SPCM). Using a custom-built time-to-digital converter,
we record—for each photon click—the time since the last
click, where for our typical count rate dead time effects
are negligible. This list of click-intervals is then converted
into a binned transmission signal by counting the detec-
tor clicks in each bin time interval Az,.

The total detection efficiency for the probe laser light—
including absorption and scattering by the mirror coat-
ings, losses at various optical elements along the optical
path, and the quantum efficiency of the detector—
amounts to 7=4.4%, which is a threefold improvement
compared to our earlier work presented in [9]. The main
challenge was to optimize the separation of probe and sta-
bilization lasers, with typical powers of a few 1071% and
106 W, respectively. In a first step, they are separated by
their carefully adjusted orthogonal polarizations. Im-
proved spectral filtering was achieved by replacing a stan-
dard ruled diffraction grating with a volume holographic
grating, allowing us to omit an additional interference fil-
ter used before, while still achieving a total suppression of
the stabilization laser to better than 1078,

The probe laser frequency is set close to the |F'=4)
—|F" =5) transition of the Cs D, line, where F is the total
angular momentum quantum number. For this transi-
tion, the important parameters of the atom-cavity system
are (g,x,y)=2mX%(13.1,0.4,2.6) MHz, where g is the

probe laser

MOT

cavity mirrors repumper

FORT o

z
xl—y
single photon detector

Fig. 1. (Color online) Schematic setup of MOT, FORT, and cav-
ity mirrors (not to scale). Details of the experimental setup and
the stabilization of the cavity resonance frequency are given in
[8].
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nominal coupling strength for an atom at the position of
maximum coupling, « is the cavity field decay rate, and y
is the atomic dipole decay rate. For typical probe laser
powers for which 30 photons/ms are detected by the
SPCM, the empty cavity photon number is ny=0.3.

Since in our setup the birefringent splitting of the cav-
ity resonances is larger than the cavity linewidth, the cav-
ity field is always linearly polarized, causing a distribu-
tion of the atomic population over all Zeeman sublevels
due to photon scattering by the probe laser. Thus the cou-
pling strength g given above is obtained from a weighted
average over all couplings g(mp), based on the steady
state mp distribution for linearly polarized optical pump-
ing [22,23]. With the single-atom cooperativity parameter
C1=g%/(2ky)>1, our system is in the strong coupling re-
gime, where already a single atom significantly influences
the cavity spectrum.

B. Nondestructive State Detection

In our system the two long-lived hyperfine ground states
|F=3) and |F=4) serve as qubit states [24]. For the
coupled atom-cavity system we measure this state by tun-
ing the cavity close to the |F'=4)—|F’=5) transition,
where only an atom in the |F=4) state leads to a drop in
the transmission, while an atom in |[F=3) is so far de-
tuned (around 9.2 GHz) that it effectively decouples from
the system and does not influence the cavity transmission
(see Fig. 2).

The probe laser with an angular frequency w, is ini-
tially tuned to the resonance frequency of the empty cav-
ity w.=w,, so when an atom in |F'=4) is inserted into the
cavity the transmission is reduced to a level which de-
pends on the detuning A, = w,— v, where w, is the angu-
lar frequency of the atomic |F=4)— |F'=5) transition, in-
cluding the alternating-current (AC)-Stark shift induced
by the FORT potential. To experimentally distinguish be-
tween an atom in |F'=3) and an atom lost from the trap,
which both result in the same transmission signal, a re-
pumping laser resonant with the |[F=3)—|F'=4) transi-
tion can be applied from the side which brings the atom in
|F=3) back to the |[F=4)—|F'=5) cycle. Thus for an empty
cavity the transmission would remain unchanged, while
for an atom still present in the cavity the transmission
would drop again.

3. SINGLE-ATOM SPIN DYNAMICS

If the state detection technique described above gave the
same result for an unlimited series of state measure-
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Fig. 2. (Color online) Simplified Cs level scheme. (a) An atom in
|F=3) is so far detuned from the cavity resonance that it does not
alter its transmission. (b) If the atom is in |[F'=4), it changes the
transmission, depending on the cavity-atom detuning A,, and the
coupling strength g.
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ments, it would be a perfect projective quantum nondemo-
lition (QND) measurement [25-27], assuming the system
is otherwise unperturbed. However, in our situation the
same laser that we use to detect the atomic state (the
probe laser) can change it via inelastic hyperfine-state-
changing Raman scattering. An atom in the |[F'=4) ground
state can thus be transferred to |[F=3) via the |F’'=3) and
|F'=4) excited states, thereby undergoing a quantum
Jump [28-32].

A. Quantum Jump Rate and Transmission Level as a
Function of Detuning

To experimentally determine the rate R 43 of probe-laser-
induced transitions from |F=4) to |[F=3) and to identify
optimum experimental conditions, we performed the
following measurement: An atom, optically pumped into
|F=4), is transported into the cavity center, causing a
drop of the cavity transmission [see Fig. 3(a)]. Since no re-
pumper is applied, probe laser scattering causes a spon-
taneous transition to |[F=3) after a certain dwell time in
|F=4), visible as an instantaneous rise in transmission
back to the empty cavity level. To check whether the rise
in transmission is really due to a quantum jump and not
caused by atom loss, the repumper is switched on at the
end of the sequence as discussed above.

For each experimental realization, the quantum jump
occurs at a random point in time; see Fig. 3(a) for two ex-
ample traces. Since the rate of state transitions is time in-
dependent, the ensemble average plotted in Fig. 3(b) re-
veals the expected exponential curve with the time
constant being the average dwell time R;;.

This average dwell time was measured for a wide range
of detunings A.,/(27)=38—410 MHz. For the same set-
tings, but with the repumper constantly applied, we mea-
sured the transmission level 7';, defined as the photon
count rate with one atom in |[F=4) coupled to the cavity,
normalized to the empty cavity signal. The results of both
measurements are presented in Fig. 4.

In order to describe our measurements with a simpli-
fied analytical model, we consider a two-level atom at rest
with the probe laser being resonant with the empty cavity
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Fig. 3. (Color online) (a) Black and gray curves show two single
traces of quantum jump measurements. The arrows indicate in-
sertion and removal of an atom. At the end of the sequence, the
repumper is switched on again to check that the atom was not
lost. (b) Ensemble average over 31 single traces. The average
dwell time R;; is obtained from the exponential fit. The averaged
transmission level at the end of the sequence, when the re-
pumper is switched on, is higher than the initial drop, indicating
a lower average coupling strength. This could be caused by in-
creased thermal motion, a redistribution over different my levels,
or a combination of both effects.
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Fig. 4. (Color online) (a) Normalized one-atom-transmission as
a function of the cavity-atom detuning A.,. The solid lines are
calculated for an atom at rest with effective coupling strengths of
Se/(2m)=8, 9, and 10 MHz for the upper, middle, and lower
curves, respectively. (b) Average dwell time R;; as a function of
detuning. The shaded area is the result of a theoretical model
taking motion of the atom into account, and the range of values
represents our limited knowledge about the exact distribution
over the Zeeman sublevels.

(w,=w,). In the weak excitation regime, the one-atom-
transmission level can be expressed analytically as [33]

K*(AZ + )
(yk+ 8207 + (M)

Tl(Aca ’geff) = (1)

The distribution over Zeeman sublevels, thermal motion
of the atom, and other conceivable perturbations are all
accounted for by an effective coupling strength g It is
defined by Eq. (1) in such a way that a stationary two-
level atom with a coupling strength of g ¢ would yield the
experimentally measured transmission level. Thermal
variations of the AC-Stark shift amount only to a few
megahertz and are smaller than experimental uncertain-
ties on the detuning A.,. The solid lines in Fig. 4(a) are
calculated according to Eq. (1) with g.¢/(27)=8, 9, and 10
MHz, and this range of effective couplings describes the
data reasonably well. We attribute the difference between
the nominal coupling strengths of g/(27)=13.1 MHz and
Zofr mainly to thermal motion of the atom.

To describe the measured average dwell times theoreti-
cally [see Fig. 4(b)], R,3 is calculated as a function of de-
tuning using the Kramers—Heisenberg-formula [34]. For
this calculation, one has to treat the distribution over all
Zeeman sublevels and thermal motion separately since
this situation cannot be modeled as a two-level system
with an effective coupling. The measured data agree sat-
isfactorily with the theoretical model, confirming that the
best approximation to a projective QND measurement
with longest dwell times is close to resonance. A practical
limitation is that stable coupling was never observed for
detunings A,, <27 X 30 MHz, probably due to cavity cool-
ing becoming less effective [35,36].

B. Statistical Analysis of Single-Atom Random
Telegraph Signals

In the experiments discussed so far, the repumping laser
was either switched off or its intensity was adjusted such
that an atom off-resonantly transferred to |F'=3) was
pumped back to |F=4) immediately, compared to all rel-
evant time scales in our experiment. In contrast, for the
measurements presented in the following, we deliberately
attenuated the continuously applied repumping laser to a
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level at which the transfer rate R34 from |[F=3) to |[F=4)
was comparable to R,3. Therefore, the resulting quantum
jumps occur in both directions on a similar time scale of
several milliseconds and are thus detectable as a random
telegraph signal; see Fig. 5(a) for an example trace.

We quantify our knowledge about the atom’s hyperfine
spin by probabilities assigned to the different atomic
states. For the following discussion we introduce the pa-
rameter « to denote the number of atoms in |F'=4). In this
section « attains only the values of 0 and 1, whereas the
case of two atoms (see Section 4) also permits the value of
a=2. Internal state changes of a single atom are transi-
tions between the two states «=0,1, and they occur with
the rates Ry and Ry, which are identical to R43 and Ry,
respectively. Although we imagine the transitions to occur
randomly and at discrete instances of time, the probabili-
ties for the atom to occupy the different states change in a
continuous manner governed by the following rate equa-
tions:

dpo(?)
q =—Rypo(t) + R1gp4(2), (2)
t

do®) )
T 1001(8) + R1po(t) = - T 3)

The average steady state probabilities p, and p; are ob-
tained by setting dp((¢)/dt=dp;(¢)/d¢=0 and using p,
+p1=1. The solutions are thus given by the ratios be-
tween the transition rates,

— )
Po=5——5 >

’ Rig+Rn
B Ry, 5)
Pri=p (%

' Ryy+Ry

The average probabilities and thus the ratio of the rates
Ry and R; can therefore be obtained from photon count
histograms by the following procedure: Along with the
telegraph signals, transmission traces for an empty cavity
(a=0), and for one continuously coupled atom (a=1), were
measured for otherwise identical settings. From these
three sets of data, normalized photon count histograms
P(n), P(n]0), and P(n|1) are computed, with n being the

(a)

counts per ms

(b)

probability p,

0 200 400 600 800 1000
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Fig. 5. (a) Random telegraph signal for one atom coupled to the

cavity. (b) Bayes analysis yielding p(¢), i.e., the probability to be

in |F'=3). The cavity-atom detuning is A,,=27x 30 MHz; the bin

size is 1 ms.
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number of photons detected per binning time Af,=1 ms.
Here and for the remaining discussion, P always refers to
photon count probabilities, while p,(¢) indicates spin-
state probabilities.

Since the telegraph signal is expected to represent the
atomic system jumping between the different states, the
associated accumulated histogram of photon counts
should be a weighted fit,

P(n) =poPn|0) + (1 - po)P(n[1), (6)

of the independently measured histograms P(n|a) for the
two atomic states. Treating p, as a fitting parameter
yields py=0.64 and p;=0.36.

In order to extract the transition rates, we note that
the jumping of the atom between two different states with
different transmission properties causes characteristic
fluctuations in the number of detection events obtained in
different time bins, n(¢) and n(¢+7), which become visible
in the second-order correlation function g?(7). Assuming
Poissonian count distributions, an analysis of the rate
equations yields [30]

oy, 0On(e )

SOty exp(— (Ryg+Roy)7) for 7>0.

8

(7)

The histogram of the telegraph signal and the g®
function are plotted in Figs. 6(a) and 6(b), respectively.
From an exponential fit of the correlation function, we get
Riy+Ry1=50 s71; therefore we obtain R;y=40 s™! and
Ry;=18 s~! using py, p1, and Egs. (4) and (5).

In the discussion above, we assumed that the state of
the atom can be described by the two states =0 and «
=1 alone, each leading to a Poissonian distribution P(n|a)
of the photon count rate. For «=0 this is verified by the
measurement: The right peak of the measured histogram
in Fig. 6(a) agrees with a Poissonian distribution of the
same average count rate. Thus the state detection for «
=0, with the transmission being equal to the empty cavity
case, is essentially shot-noise limited and the residual fre-
quency or intensity fluctuations of the probe laser can be
neglected.

However, comparing the photon count histogram
P(n|1) with the Poissonian distribution [left peak of the
histogram in Fig. 6(a)] indicates super-Poissonian fluc-
tuations. We attribute these mainly to thermal motion of
the atom: The coupling constant g follows the cavity mode
function, i.e., g(r)=goi(r), which in turn leads to a trans-
mission level T (r), depending on the atomic position, ac-
cording to Eq. (1). In [37], super-Poissonian correlations
in the field transmitted from a cavity with a single
trapped atom on a similar time scale were observed and
attributed to atomic motion, while very short time corre-
lations observed under off-resonant excitation of the cav-
ity were attributed to emission from higher excited
dressed states of the coupled atom-cavity system.

In later sections of this paper we shall discuss candi-
dates for a more complete theoretical analysis of this dy-
namics. At this point, we pursue a pragmatic approach
and still extract the atomic transition rates from the cor-
relation function as stated by Eq. (7), because this rela-
tion does not rely strongly on the Poissonian character of



A156 J. Opt. Soc. Am. B/Vol. 27, No. 6/June 2010

(@)

relative occurence

counts per ms

Reick et al.

T T T T T 1
50 100 150 200
time difference t (ms)

Fig. 6. (a) Normalized histogram extracted from 13 telegraph signals of 1000 ms duration each, recorded for a detuning of A.,=2m
X 30 MHz and binned with A¢y=1 ms. The solid line is the sum of two Poissonian distributions each with the same average count rate
as the corresponding histogram peak. (b) Averaged second-order correlation function g® for the same set of telegraph signals. The blue
dashed line is an exponential fit yielding the time constant (R1y+Ry;)1=20 ms.

the signal. Furthermore, the exact values of the rates are
not the main result of this work and do not convey funda-
mental physical insight, since they are determined by the
intensities of the probe and repumping laser. They rather
constitute parameters in the following statistical analy-
sis.

To quantify the knowledge about the atomic state that
we obtain from the measured telegraph signals, we use a
Bayesian approach in analyzing the data. The philosophy
behind this approach is that we assign probabilities to the
possible states a=0,1 of the atom and acknowledge that
these probabilities merely reflect our incomplete knowl-
edge about the system, unless one of the probabilities is
unity. Due to the atomic transitions which occur without
our direct notice, the probabilities of the unobserved sys-
tem obey the rate equations (2) and (3), but since the cav-
ity transmission depends on the atomic state, we learn
about the atomic state from the observed photon count
record.

The probabilities p, are thus calculated step-wise from
the incremental information obtained in every time bin of
the measured telegraph signal. Let n(¢;) be the number of
photons detected during the interval [¢;—At,/2,t;+ Aty /2],
where the binning time At is fixed to 1 ms for the follow-
ing analysis. With p,(¢;) we refer to the probability for an
atom to be in the state « in the midpoint of the aforemen-
tioned interval. Assuming that the atomic state probabili-
ties in the previous time bin p,(¢;,_;) are known, the prob-
abilities p,(¢;) are estimated by first evolving their values
according to the rate equations (2) and (3). In a linear ap-
proximation for R At, <1, where R,=max(R{y,R;), this
leads to

Do(t) =po(tic1) + (R1ap1(ti—1) — Rowpo(ti—1))Aty,  (8)

D1(t) =p1(tio1) + (Ro1po(ti1) — Riop1(ti-1))Aty, 9

where p indicates the unconditional probability.

Note that the probabilistic description does not imply
that the atom occupies two different states, but only that
we do not know which one is actually occupied. This also
implies that our prediction for the distribution of photon
numbers n(¢;) detected in the ith time bin has to be

calculated as a weighted average P(n)=p,P(n|0)+(1
-Po)P(n|1). The actually measured photon counts n(%;)
provide new information, and the state probabilities are
updated using Bayes’ rule of conditional probabilities,

P(n(t)|a)p(t;)
> Balt)P(n(t)|)

Put;) =plaln(t;)) = or a=0,1.

(10)

The conditional probabilities P(n(;)| @) are extracted from
the separately measured photon count histograms for «
=0 and 1. Setting the initial probabilities to py(0)=0,
p1(0)=1, because the atom is prepared in |F'=4) before be-
ing transported into the cavity, p,(¢;) is then updated
step-wise for each time bin. In this way, the time-
dependent atomic state probabilities are computed suc-
cessively for the whole transmission trace.

Figure 5(a) shows an example trace of a telegraph sig-
nal to which the Bayesian algorithm was applied. Most of
the time, the probability p((¢), plotted in Fig. 5(b), is close
to either 0 or 1, while narrow spikes indicate short peri-
ods of time with less complete knowledge about p,. The
Bayes analysis provides more definite probabilities than a
matching of the currently transmitted signal to the state
dependent transmission rate, because it updates previ-
ously estimated results and thus accumulates statistical
significance over time. The optical probing of the system
does not, however, prevent atomic transitions from taking
place, and during such transitions, the Bayes algorithm
faithfully reproduces our inability to determine the state
of the atom with certainty until a significant amount of
data have been accumulated which is in agreement with
the new state of the atom. In this context, the narrow
spikes in Fig. 5 illustrate the “willingness” of the Baye-
sian update to interpret a few unexpected photon counts
as the emerging signal of a change of state, while they
may be only statistical fluctuations. For photon count his-
tograms with a negligible overlap, the Bayesian algo-
rithm would yield the same result as a simple threshold
analysis. Its main advantage is that one can still extract
information about the spin dynamics even for a signal
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where the signal-to-noise ratio prohibits a threshold
analysis, as will become apparent in the next section.

4. SPIN DYNAMICS OF TWO ATOMS

So far we have presented experiments revealing the inter-
nal spin dynamics of one atom coupled to the cavity mode.
Placing two atoms into the resonator leads to an effective
interaction between them, mediated by the cavity field
[15], and detecting the number of atoms being in a par-
ticular state could be used for entanglement generation in
cavity-QED systems [16].

A. Counting the Number of Atoms in |[F=4)

In the previous section the atomic state was determined
from the probe laser transmission. Without changing the
experimental settings, this is not directly possible for two
atoms coupled to the resonator. Both atoms in |[F=3), i.e.,
a=0, will lead to a transmission level Ty=1 equal to the
empty cavity case. One atom in |[F=4) and one in |F'=3)
(a=1) will cause the transmission 7'; to drop almost to
zero, which implies that «=2 is indistinguishable from «
=1. To deduce a=0,1,2 from the corresponding transmis-
sion levels Ty, T, T, the experimental settings have to be
adapted.

In the weak excitation limit, two atoms at rest coupled
with the same strength g to the cavity can be theoretically
described as a single atom experiencing a coupling
strength go= \Eg. In the dispersive limit (A, > y), Eq. (1)
thus yields

1 1

T 9 \2 T =T o 920
gz 2 2 2g2 2
1+ 1+
KA, KA,

for the transmission levels. The level difference AT,
=T,-Ty reaches its maximum value of 33% for g2/(kA,,)
=1/ \s“E, where T, Ty, and Ty are equally spaced. In order
to examine this theoretical prediction experimentally, the
transmission level Ty was measured alongside the one-
atom transmission. Figure 7 shows that for two atoms the
transmission is lower, but instead of the theoretically ex-

T, = (11)

100 -
1 9,/(2m) =

90—_ 8 MHz

80 9 MHz
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Fig. 7. (Color online) Normalized transmission 7; (black dots)
and T (blue diamonds) for one and two atoms, respectively. The
solid lines are calculated according to the effective two-level
model (1) for one atom at rest with different values for g ¢, and
the dashed line shows the theoretically expected two-atom trans-
mission for g.u/(27m)=\2X9=12.7 MHz. The one-atom data are
the same as in Fig. 4(a).

Vol. 27, No. 6/June 2010/J. Opt. Soc. Am. B A157

pected value of \EXQ MHz~13 MHz, it is compatible
with an effective coupling of g9 ~27X11 MHz. As a
consequence, the measured level difference ATy is at
maximum about 20% for a detuning of A,,=2m
X270 MHz.

A detuning of A., in the range of 200—300 MHz has,
however, two disadvantages for studying the spin dynam-
ics of two coupled atoms: Firstly, the difference in the cav-
ity transmission is quite small compared to the noise and,
secondly, the average dwell time Rj3 is close to its mini-
mum value for A,,>27 X150 MHz, with a very shallow
slope toward higher detunings [see Fig. 4(b)]. Closer to
resonance, this time is longer, but if two atoms are at the
cavity center, the transmission levels 7'; and T are al-
most indistinguishable.

The level difference ATy can, however, be controlled
for a constant detuning A, by changing g.¢ This is pos-
sible by means of our optical conveyor belt, which allows
us not only to transport atoms into the cavity center, but
also to stop the transport at a predetermined distance Ay
away from it. With g.(Ay=0)=27X9 MHz, the coupling
strength as a function of the position along the conveyor
belt axis reads g.p(Ay)=g.w(0)exp(-Ay?/w?). From Eq.
(11) the required distance Ay to achieve AT5=0.33 is cal-
culated to be

N \'Egiffm)) .
Ay (Aca)| = w9 2™\ T ) (12)

For A,,>2mXx280 MHz, AT, is always at a maximum
for Ay=0, i.e., at the cavity center. Figure 8 shows the cal-
culated level difference AT;5 and the quantum jump rate
R,3 as a function of the detuning A,, and distance from
the cavity center Ay. By choosing a lower detuning, the
scattering rate R,3 is reduced, and it is still possible to ob-
tain the optimal distinction ATy, by positioning the atoms
away from the cavity center. Empirically we found that a
detuning of A.,=27X 38 MHz is a lower limit in terms of
stable transmission traces. The distance of Ay=21 um, at
which g.g/(27) =3.1 MHz, was adjusted for the optimum
distinction of one and two atoms.

B. Two-Atom Telegraph Signal
To study two-atom spin dynamics, two atoms loaded into
the FORT were positioned at Ay=21 pm. At this position
of around one cavity-waist away from the mode center,
the coupling strength depends more critically on the exact
position; therefore those traces were selected for which
the measured atom-atom spacing was =2 um. As for the
one-atom case, the repumper was attenuated to a level at
which it induced quantum jumps from |[F=3) to |[F=4) at a
rate comparable with the probe-laser-induced jumps.
Figure 9(a) shows an example single trace of a two-
atom telegraph signal. For t=200-300 ms, steps corre-
sponding to a=2 (low transmission), =1 (intermediate
level), and a=0 (empty cavity transmission) are discern-
ible, but in general the distinction between the levels is
not as clear as for the one-atom case. The degree of the
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according to Eq. (12).

level separation can be deduced from a histogram ex-
tracted from several hundred telegraph signals (see Fig.
10).

This histogram does obviously not show a three-peak
structure. To quantify the contributions of the transmis-
sion levels Ty, T, and Ty, we independently measured
photon count histograms for zero, one, and two atoms
coupled to the resonator at the same position and for the
same detuning as for the telegraph signals, depicted as
solid lines in Fig. 10. These were obtained from signals of
continuously coupled atoms, i.e., a sufficiently strong re-
pumper was applied. The photon count histogram of the
telegraph signal (black line) agrees well with a fit calcu-
lated as a weighted sum of the three individual histo-
grams conditioned on the atomic states.

The statistical analysis is performed analogous to the
one-atom case, but the set of rate equations now involves
three atomic states and reads

=
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Fig. 9. (Color online) (a) Example trace of a random telegraph
signal for two atoms placed Ay=21 um away from the cavity
center. The cavity-atom detuning is A,,=27X38 MHz. (b) Prob-
abilities for 0, 1, or 2 atoms to be in |[F=4), calculated using the
Bayes method.

dp,
—— ==Ry1po(t) + Ryop1(t), (13)
dz
dp;
Ty =Ry1po(t) = R1op1(t) = R19p1(t) + Ro1po(?), (14)
dps
& =R19p1(t) — Ro1ps(t). (15)

A transition of an atom from |F=3) to |F=4) is only in-
duced by the repumper at a rate R,.p,, which is indepen-
dent of @ because the laser is applied from the side of the
cavity. Thus Ri3=R,, and Ry, =2R,,, because for the lat-
ter case two atoms both in |[F=3) are present. In contrast,
Ry, i.e., the rate that one out of two atoms in |F'=4) un-
dergoes a quantum jump to |F'=3), is not simply given by
2Ry, because this transition is induced by the probe la-
ser, the intensity of which depends on « [9]. Theoretically,
the jump rate depends linearly on the intracavity inten-
sity; thus we expect

T,
Ry1=2—R, 16
2= 27 B (16)

but this relation is not fixed for the calculation and the
three rates Ry, Rq9, and R, are considered as indepen-
dent parameters for the calculation. A weighted fit to the
photon count histogram has two independent fit param-
eters and yields the steady state populations, which are
related to the ratio of the three rates. In contrast to the
single-atom case, here it is not possible to make a reason-
able fit to the correlation function to obtain the sum of the
rates and thus all three parameters. Instead, we initially
guess the transition rates and employ the Bayesian up-
date method to extract time-dependent atomic state prob-
abilities. Then we apply a fit as described below to itera-
tively extract values for the transition rates R, Ro;, and
R,p, which ensure the optimum agreement of the time-
averaged probabilities with the steady state solution of
the rate equations.

A good initial guess for the rate Ry can be obtained
from the transition rate for a single atom placed at the
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the cavity, respectively. The black line is a weighted sum of those
three histograms.

same distance Ay away from the cavity center, with no re-
pumper applied, similar to the measurement presented in
Fig. 3(b). The transmission levels Ty and 7T'; are measured
independently, which yields then an estimate for Ry, ac-
cording to Eq. (16). The rate R,., cannot be measured in-
dependently, but since the power of the repumping laser
is adjusted such that the transition rates from |[F=4) to
|[F=3) and vice versa are approximately equal, R, is set
to Ry as a starting value for the calculation.

With the initial probabilities py(0)=0,p1(0)=0,p5(0)
=1, the Bayesian algorithm is performed step-wise for
each time bin as described for the one-atom case, yielding
probabilities p,(¢). Improved values of the three transi-
tion rates are now determined by the following iterative
self-consistent method:

An analytical solution of the rate equations for p(¢),
p1(t), and ps(t), with the initial conditions given above,
yields the ensemble-averaged probabilities (p,)(¢#) with
the three jump rates as parameters. Averaging over the
probabilities p,(¢) obtained from the analysis of many
traces provides an experimental result for (p,)(t), which
can be fitted with the analytical solution, in which the
rates Ry, B9, and R, are used as fit parameters. With
the new values for the rates obtained in this way, the
Bayes algorithm is applied all over again to all experi-
mental traces, yielding an updated set of time-dependent
probabilities p,(¢), which is again averaged to extract the
rates, etc. The converged set of rates obtained from this
analysis is

Ryy=104 s, Ry =52 s, R,,=45s7!, (17)

and the final results for p,(¢) for the example trace are
shown in Fig. 9(b). The ratio between R;; and Ry; ob-
tained from this iterative process does not confirm the as-
sumption of Eq. (16), because with Ty =2T5, we would ex-
pect Rip=Rg3;. The reason for this discrepancy remains
unclear at this stage.

5. DISCUSSION OF STATISTICAL ANALYSIS

In this section we will address some questions arising in
connection with the statistical analysis presented in this
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paper. Firstly, we will discuss the dependence of the Baye-
sian atomic state analysis on the measurement data bin-
ning time, which presents interesting questions both in
the case of Poissonian and non-Poissonian counting sta-
tistics. Secondly, we will discuss the possible origin of the
non-Poissonian character of the photon count records and
its consequences for our extraction of rate parameters and
the Bayesian analysis.

A. Bin Size and Optimum Information Extraction

In the analysis of the one- and two-atom telegraph signals
discussed so far, we used binning times of 1 ms. Let us re-
call that the raw-data of the cavity transmission consist of
a list of time intervals between photon clicks; see Fig.
11(b) for an example trace. To study some of the conse-
quences which a change in the time bin size might have,
we analyzed one and the same set of data using the Bayes
formalism, but for different bin sizes.

If long time bins are used, the signal-to-noise ratio in
each bin is good, and the count histograms for each
atomic state become well separated. This implies that for
long sequences of time, the atomic state probabilities will
be firmly fixed to values close to zero and unity, while the
instances where transitions between the states occur are
not resolved within the duration of a single time bin.
But this is only true as long as Af,<R™!, with R
=max(Rg1,R10), because for even longer times transitions
will occur within a significant fraction of the bins causing
a considerable uncertainty about the actual atomic state.

Going to shorter time bins, the signal-to-noise ratio is
decreased, and the overlap of the photon count histo-
grams becomes larger. Correspondingly, it happens more
frequently that a less probable, but still possible, number
of counts in a time bin cause a narrow spike in the atomic
state probabilities derived from the Bayes conditional up-
date rule, where indeed no transition took place. This be-
havior is evident from the spikes in Fig. 12.

One would suspect that the additional information pro-
vided by subdividing data into counts registered in the
first and second halves of every time bin would only serve
to yield a better estimate of the atomic state, since no
knowledge is lost by this finer binning of the data. In the

oo
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time (ms)
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21 22

Fig. 11. (a) Random telegraph signal with 1 ms binning time.
(b) Enlarged section of 10 ms showing photon-click times. The
quantum jump occurs at about 24.8 ms.
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case where no transitions occur and we aim to detect the
state initially occupied by the atom in a QND manner, the
Bayesian analysis indeed becomes independent of the
data binning size for a Poissonian count process. To study
this issue in our system, with the state-changing rate pro-
cess occurring simultaneously with the probing, we evalu-
ated the one-atom telegraph signals for different bin sizes
using the Bayesian algorithm (see Fig. 12). Even for At,
=10 us, when there is no click in 80% of all bins, the cal-
culated probability p((¢) is often close to 0 or 1, although
the state probability shows more short spikes compared
to Afp=1 ms.

To give a single quantitative measure of our uncer-
tainty about the atomic state, we calculate the entropy

S=<—2palogpa>, (18)

where the average ( ) is performed over the whole dura-
tion of all analyzed traces. The entropy is plotted in Fig.
13 for a range of bin times from 10 ws to 20 ms. The
sharp rise of S for large bins is due to the high probability
in every time bin for an atomic transition to occur. We as-

cribe the increase in S toward shorter bins to the occur-
rence of more spikes in p(¢), already visible in Figs. 12(d)
and 12(e). According to the entropy measure, there seems
to be an optimum time bin, which is related to the mag-
nitude of the quantum jump rates. We recall, however,
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Fig. 13. Time- and ensemble-averaged entropy S as a function
of binning time At;.
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that the entropy (18) is only one of many possible mea-
sures of the information extracted from the system. If, for
example, the measurements constitute a component in a
feedback mechanism, access to data on the shortest time
scale may yield the better performance with respect to the
desired goal of the feedback protocol.

B. Origin and Modeling of Super-Poissonian Count
Distributions

The existence of an optimum bin time, leading to a mini-
mum in the time-averaged entropy (18), is observed both
for our experimental histogram data and in simulations
with Poissonian counting statistics associated with each
atomic state. The case of super-Poissonian counting dis-
tributions, i.e., distributions with a variance exceeding
the mean value of the number of counts, however, pre-
sents it own separate problems and points to more elabo-
rate future methods of analysis.

We already commented on the apparent extra fluctua-
tions in the light transmission signal being possibly cor-
related with the atomic motion between sites exhibiting
different coupling strengths to the cavity mode, corre-
sponding to different transmission levels. This suggests
an extended model, where the state with no atoms
coupled to the field («=0) is retained as a single state,
while states with a=1,2 are split according to an extra
position label, attaining a number of different values. If,
for example, a single atom can reside in two locations
leading to two different Poissonian transmission signals,
the long time-averaged photon count distribution will be a
weighted sum of these distributions, while the count
number correlation function within an experimental trace
may reveal the transition rates between the atomic loca-
tions, equivalent to our analysis of internal state transi-
tions in Subsection 3B. This is an appealing and very
likely explanation of the broadened histograms, and it
points to an interesting problem for our previous analysis.

If the super-Poissonian fluctuations in our counting
histograms are caused by atomic motion between states
with different Poissonian signals, counts in close lying
time bins, where atoms have not yet moved, should be
correlated. This implies that the Bayesian update is no
longer a Markovian process, where the updated probabili-
ties depend only on the most recent value and the latest
measurement result, and also knowledge of previous
counts should be applied to extract maximum information
about the atomic state. This effect may have significant
consequences for very short time bins, where each bin of-
fers a low signal-to-noise ratio, but where correlations be-
tween bins may be strong. We have analyzed our experi-
mental records, and we indeed find such correlations, but
because of limited statistics these findings could not be in-
corporated quantitatively into our analysis. This does not
imply that our previous use of the Bayes update formal-
ism produces erroneous results, but it should be noted
that it represents the update based on a restricted access
to (or memory of) the measurement data, and hence it
provides a non-optimal estimate of the atomic state based
on incomplete information.

6. OUTLOOK

We have shown that a Bayesian analysis of experimental
transmission signals from a cavity containing one or two
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atoms provides a high degree of certainty about the
atomic state. We have demonstrated how rates of the
atomic processes can be fitted to the data, and we have
discussed possible physical explanations of noise in the
data beyond the predictions of simple models.

A natural next step would be to use a more complete
model, including the larger number of position states and
internal states of the atoms. We recall that already for the
simplest model with only internal state dynamics, finding
the parameters is not a trivial task, but ad hoc iterative
procedures have allowed the identification of consistent
sets of parameters used in our present analysis in this pa-
per.

It will put stringent demands on the reproducibility of
large data sets to make a reliable fit to more advanced
models, but we wish to conclude this paper with a brief
mentioning of a promising systematic theoretical data
analysis that can be applied to such data in a future more
elaborate treatment: The hidden Markovian model
(HMM) [38]. We indicated that there is a possible physical
mechanism responsible for the fluctuations and for the
temporal correlations between count signals. In this way
we point at an underlying Markovian model, where the
atoms perform transitions between different internal and
position states, and for each of these states, the coherent
light field is transmitted with a definite transmission co-
efficient, and counting statistics are Poissonian with no
temporal correlations. This is, indeed, a physical realiza-
tion of a hidden Markovian process in statistical modeling
of time series, with applications in insurance, finance,
speech recognition, image analysis, and many other
fields, where a single series of data is mathematically
modeled as the outcome of a system undergoing transi-
tions between (hidden) states, each giving different data
characteristics. In their most advanced forms, HMMs
only assume the transitions between the hidden states to
be Markovian, i.e., the state populations follow a transfer
matrix of discrete or continuous population changes,
while the signal can have any state dependent probability
distribution.

Our problem belongs to a narrower class with continu-
ous rate equations (with unknown rates), and it is plau-
sible to assume Poissonian count statistics parameterized
by a single parameter for each atomic state. This case is
treated, e.g., in [39], and the problem of estimating the
transition rates among a family of N states and the N
photon transmission rates from the data is solved by an
iterative variational application of the maximum likeli-
hood principle. In a genuine HMM, the number of states
N is not known, and one merely attempts to fit the data
with different candidate numbers of states. For an appli-
cation to our problem, we are guided by the physics, and
after a successful fit, we would request that the states
identified should have the properties corresponding to a
few position states for each of the internal state a=1,2
cases. That is, they should occur in groups with similar
photon scattering rates, and certain transition rates
should be very small or vanish.

In addition to an extended model for the analysis, we
aim at improving the experimental conditions, such that
the super-Poissonian noise is less pronounced. Since we
attribute these fluctuations mainly to thermal motion of
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the atom, increasing the stability of the coupling strength
requires a tighter confinement of the atom. This could be
achieved by employing cavity-mediated cooling forces
[35,36], Raman cooling [4], or additional trapping poten-
tials.

The rate at which information about the atom-cavity
system can be acquired is ultimately limited by the pho-
ton flux arriving at the detector. The most important ob-
stacles for further enhancement of the detection efficiency
are losses from the cavity-mirror coatings and the limited
quantum efficiency of the SPCM. Employing homodyne or
heterodyne detection would permit the use of detectors
with a quantum efficiency close to 100%. The former prob-
lem could be solved by using a more open cavity configu-
ration, where the transmission coefficient is significantly
larger than the losses. Advancements both in terms of ex-
perimental conditions and statistical analysis could fi-
nally lead to the development and implementation of
quantum feedback techniques for the preparation, stabi-
lization, and error correction of non-classical quantum
states [40,41].
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