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Hidden Markov model of atomic quantum jump dynamics in an optically probed cavity
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We analyze the quantum jumps of an atom interacting with a cavity field, where strong coupling makes the
cavity transmission depend on the time-dependent atomic state. In our analysis we employ a Bayesian approach
that conditions the population of the atomic states at time t on the cavity transmission observed both before
and after t , and we show that the state assignment by this approach is more decisive than the usual conditional
quantum states based on only earlier measurement data. We also provide an iterative protocol which, together
with the atomic state populations, simultaneously estimates the atomic jump rates and the transmission signal
distributions from the measurement data. Finally, we take into account technical fluctuations in the observed
signal, e.g., due to spatial motion of the atom within the cavity, by representing atomic states by several hidden
states, thereby significantly improving the state’s recovery.
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I. INTRODUCTION

Cavity QED experiments offer wide possibilities to vary
interaction strengths, resonance conditions, and dissipation
rates, and thus provide ideal demonstrations of the dynamical
evolution of single quantum systems [1]. The combined field
and atom degrees of freedom allow, on the one hand, probing
of a cavity field by transmission and detection of the state of
atoms passing through the cavity [2], and, on the other hand,
probing of the quantum state of atoms located inside a cavity
by detection of the transmitted field [3]. Recent experiments
with superconducting circuit elements and resonators have
shown similar measurement capabilities to monitor over time
the quantum state of individual quantum systems [4–6].

We have recently [3] shown how the incoherent jumping
of one or two atoms between different hyperfine ground states
can be monitored due to the different cavity transmission levels
associated with the atomic states. Rather than inferring the
atomic states directly from the noisy value of the transmission
signal, a Bayesian approach was used, where the measured
signal continuously updates our probabilistic knowledge based
on the previous measurements. This was shown to provide
more decisive predictions about the state of the system. An
extension of the Bayesian method to incorporate different
unknown physical parameters of the light-atom interacting
system has also been demonstrated [7].

In this paper we extend the modeling of the system to
condition our estimation of the state of the atom at a given
time t , not only on the optical measurement data acquired up
to time t but also by the data acquired later, see also [8]. This is a
well developed procedure, known as smoothing, in the analysis
of hidden Markov models (HMM), where methods also exist
to combine the state estimation with the estimation of the
physical model parameters from the available data [9,10], and
to determine not only the time-dependent state probabilities
but also the most likely path, jumping among the states of the
HMM [11].

The paper is organized as follows. In Sec. II we give a
description of the experimental setup and the data obtained. In

Sec. III we present a summary of the general Bayesian method
applied in the paper and of the formalism needed to provide
the atomic state based on both past and future measurements.
In Sec. IV we discuss how system parameters such as atomic
transition probabilities and optical signal distributions can be
efficiently determined in the HMM framework. In Sec. V we
apply our formalism to experimental data, and we show that the
atomic state and model parameters are indeed more decisively
determined by the full time analysis. In Sec. VI we conclude
with a discussion of the results and some further perspectives.

II. DESCRIPTION OF EXPERIMENTS

In the experiment we couple single neutral cesium atoms to
the mode of an optical high-finesse cavity, see Fig. 1. Very few
cesium atoms are collected and laser cooled in a high-gradient
magneto-optical trap, and subsequently transferred into a
far-detuned standing-wave optical dipole trap. By analyzing
a fluorescence image we make sure that only a single atom
is loaded [12]. Using the dipole trap as an optical conveyor
belt [13], we transport the atom to the center of the mode
of an optical cavity with a very high finesse of 106 [14].
The small mode volume of the cavity (length 160 μm,
mode waist radius 23 μm) leads to an effective atom-cavity
coupling rate of g ≈ 2π · 9 MHz [3], which is larger than
the atomic dipole decay rate γ = 2π · 2.6 MHz and the
cavity field decay rate κ = 2π · 0.4 MHz. These parameters
place the system in the strong-coupling regime, where the
single-atom cooperativity g2/(2κγ ) ≈ 40 is larger than one,
and the absorptive and dispersive effects of a single atom
lead to a normal mode splitting of the cavity resonance
(vacuum-Rabi-splitting) and can thus strongly change the
cavity transmission [15].

The cavity resonance is stabilized 30 MHz blue detuned to
the |F = 4〉 → |F ′ = 5〉 transition of the D2 line at 852 nm,
see Fig. 2. A weak probe laser beam, resonant with the empty
cavity, is coupled into the cavity and populates the cavity
mode with 0.3 photons on average. In this blue-detuned weak
probing regime, cavity cooling [16] counteracts heating of the
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FIG. 1. (Color online) A single cesium atom is held by a dipole
trap (DT) inside the mode of a high-finesse optical cavity. The
transmission of a probe laser is observed with a single-photon
counting module (SPCM).

atom due to photon scattering and thus allows us to observe
each atom over several seconds. The transmission of the probe
light through the cavity is detected by a single-photon counting
module with an overall detection efficiency of 4.4% [3]. The
arrival time of each detected photon is recorded with 50 ns
time resolution, see Fig. 3, and combined by software into
time bins convenient for presentation of the data.

When we place an atom prepared in |F = 4〉 into the
cavity mode, the detected cavity transmission drops from about
30 counts/ms to 5–10 counts/ms, see Fig. 3(a), where the
data is binned in 1 ms intervals. Within a few milliseconds,
however, off-resonant scattering of the probe light from the
|F ′ = 4〉 level transfers the atom to the |F = 3〉 ground state
with a rate of about 40 s−1. Since the optical transitions
starting from |F = 3〉 are detuned by the hyperfine splitting
of �FHS ≈ 9.2 GHz � (g,κ,γ ) from the cavity resonance, the
atom in this state does not noticeably influence the cavity
resonance and the transmission rises to the high level of the
empty cavity. The cavity transmission is thus a measure of
the atom’s hyperfine quantum state, and a quantum jump from
|F = 4〉 to |F = 3〉 becomes visible at a sudden transition
from low to high photon count rate.

A very weak laser beam tuned to the |F = 3〉 → |F ′ = 4〉
transition repumps the atom back to the |F = 4〉 state with
a rate comparable to the pumping rate due to the probe

FIG. 2. (Color online) Simplified level scheme of the cesium
atom and the lasers used in the experiment.

laser. In this way we obtain a sequence of quantum jumps
between |F = 3〉 and |F = 4〉, and in the cavity transmission
we observe the corresponding random telegraph signal [17].

While the larger bin time of 1 ms used in Fig. 3(a) reveals
most of the quantum jumps, occupation of a state in short
periods on the order of 1 ms may be missed. Figure 3(b) shows
the same data binned in 50 μs intervals, which roughly is the
shortest time scale on which we can get significant information
for our count rates (about 1.5 photons per bin for |F = 3〉 vs
<0.5 photons per bin for |F = 4〉). While here we get full time
resolution, a simple estimation of the atomic state by eye or
by a threshold analysis is no longer possible.

III. HIDDEN MARKOV MODELING OF A CAVITY
TRANSMISSION EXPERIMENT

The physical process described in the previous section is
a good candidate for a hidden Markov model analysis, i.e.,
a stochastic process which produces a measurement signal
st whose statistics is governed by the current state Xt of
the (hidden) system which is itself governed by a Markov
evolution process. In our case the signal st is the number of
photons recorded and the hidden system is the atom, whose
state Xt jumps randomly between the hyperfine states. The
state and the signal are represented in discrete intervals of
time, and for convenience we use integer values t = 1,2, . . . to
represent these bin time intervals of a finite duration �t , which
is short enough to accurately represent the atomic dynamics.
The Markov property formally requires that the atomic state
Xt is conditionally independent of all variables except Xt−1

and that st is conditionally independent of all variables except
Xt . In Sec. V we shall comment further on the Markovian
ansatz in connection with our modeling of the experiment.
Between measurements, the atomic system is governed by
jumps between its internal states, as described by the transition
probabilities P (Xt+1|Xt ). The signal, on the other hand, is
governed by a conditional probability distribution P (st |Xt ).
In this section we show how recursive application of Bayes’
rule P (A|B) = P (B|A)P (A)/P (B) permits calculation of the
probability for the atomic state, conditioned on the measured
data. In Sec. IV we show how the calculation can be applied
in an iterative manner to re-estimate also the jump rates and
the signal conditional probabilities, which are assumed to be
known input to the Bayesian analysis.

The joint probability for the stochastic variables X and
s to have attained particular values at all instances of time
t = 1, . . . ,N can be written as a product of conditional
probabilities and a prior atomic state probability,

P (X1, . . . ,XN,s1, . . . ,sN ) =
N∏

j=1

P (sj |Xj )

×
N−1∏

j=1

P (Xj+1|Xj )P (X1). (1)

We recall that the optical transmission signal st is given
by the experiment, while the atomic state Xt is not directly
observed, and the goal of the present work is to determine the
probability distribution P (Xt ) conditioned on the experimental
results as sharply as possible.
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FIG. 3. (a) Detected cavity transmission of photons binned in 1 ms time intervals. In the shaded region I (II) the lower transmission level
exhibits a slightly higher (lower) count rate (see Sec. IV). (b) The same data as in (a) binned in 50 μs time intervals. (c) Zoomed time region
showing the individual detector clicks, experiencing a pronounced change in click rate as reflected also in (a) and (b).

A. Forward Bayesian state estimate

Let us first present the conventional situation, where one
uses the signal data to estimate the current state of the system,
by a recursive Bayesian update. We shall refer to this as a
“forward estimate,” because the data acquired until a given
instant t are used to estimate the state at time t .

While the current state probabilities depend on the entire
signal prior to the current time, they need not be formally com-
puted as a function of these many variables, as the distribution
can be updated at every instant of time taking into account only
the prior probability and the most recently measured result.
We assume an initial prior P (X1) for the atomic state and
we note that given P (Xt |s1, . . . ,st ) the probability distribution
at the subsequent time is given by the transition probabilities,

P (Xt+1|s1, . . . ,st ) =
∑

Xt

P (Xt+1|Xt )P (Xt |s1, . . . ,st ). (2)

This provides the prior for the Bayesian estimate of the
state at time t + 1, and the probability conditioned on the
measurement result st+1 becomes

P (Xt+1|s1, . . . ,st ,st+1) ∝ P (st+1|Xt+1)P (Xt+1|s1, . . . ,st )

=
∑

Xt

P (st+1|Xt+1)P (Xt+1|Xt )

×P (Xt |s1, . . . ,st ), (3)

where the constant of proportionality can be found by
normalization. The combined effect of transition probabilities
and Bayesian conditional probabilities is repeated at every time
step, and such a procedure was successfully applied in [3] to
the case of both one and two atoms inside an optical cavity,

and its achievements were compared favorably to the simpler
state estimation based on the noisy instantaneous transmission
signal in different time bins.

B. Full Bayesian state estimate

Any information that we acquire, which contains further
information about the atomic state, will lead to an improved
estimate and a conditional update of P (Xt ). In this section
we will focus on the information about Xt available in
the measurement signal st+1,st+2, . . . ,sN after time t . This
information must be dealt with via appropriate definition
and calculation of conditional probabilities and transition
probabilities.

Let us first, however, discuss the meaning of assigning
probabilities and making predictions for past events. Clearly
we cannot go back in time and verify the prediction, and if
we already measured the atomic state at time t , it would
already be known to us and no further refinement of P (Xt )
would be relevant. Note, however, that in the case of classical
probabilities, we assign the probabilities to states that could
have been measured and the result could have been copied
and stored, so that they could be compared with our later
predictions. A meaningful test of “past predictions” could
then involve the comparison of our prediction with the actual
outcome of a measurement which had a result that was not
revealed at the time of the measurement.

Time-dependent state estimation based on a full detection
record constitutes, indeed, an already well established compo-
nent, called smoothing, in the theory of hidden Markov models.
In Ref. [8] it was, thus, applied to infer the transitions between
dressed states of a bistable atom-cavity system from noisy
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experimental homodyne signals. For completeness we provide
a brief summary of this method, following the presentation in
[9]. First, it is convenient to introduce two time-dependent
quantities, a joint and a conditional probability distribution,

αt (i) = P (Xt = i,s1, . . . ,st ), (4)

βt (i) = P (st+1, . . . ,sN |Xt = i). (5)

By normalization of αt (i), we recognize the forward state
estimate

P (Xt = i|s1, . . . ,st ) = P (Xt = i,s1, . . . ,st )

P (s1, . . . ,st )
= αt (i)∑

k αt (k)
,

(6)

while αt (i) and βt (i) together serve to provide the state
probabilities, conditioned on the full measurement record

P (Xt = i|s1, . . . ,sN ) = P (Xt = i,s1, . . . ,sN )

P (s1, . . . ,sN )

= P (st+1, . . . ,sN |Xt = i)P (s1, . . . ,st ,Xt = i)

P (s1, . . . ,sN )

= αt (i)βt (i)∑
k αt (k)βt (k)

. (7)

Here we have used that αt (i)βt (i) = P (Xt = i,s1, . . . ,sN ) and
that the probability for observing s1, . . . ,sN and Xt = i is the
probability for observing s1, . . . ,st and Xt = i multiplied by
the probability for observing st+1, . . . ,sN given Xt = i.

It follows from the Markov property that

αt+1(i) =
∑

j

P (st+1|Xt+1 = i)P (Xt+1 = i|Xt = j )αt (j ).

(8)

To obtain a similar update rule for βt (i), we consider

P (st+1, . . . ,sN |Xt+1) = P (st+1|Xt+1)P (st+2, . . . ,sN |Xt+1).

(9)

From which we obtain

P (st+1, . . . ,sN |Xt = i)

=
∑

j

P (st+1, . . . ,sN |Xt+1 = j )P (Xt+1 = j |Xt = i)

=
∑

j

P (st+1|Xt+1 = j )P (Xt+1 = j |Xt = i)

×P (st+2, . . . ,sN |Xt+1 = j ), (10)

where the first equality follows from the general for-
mula P (x|z) = ∑

y P (x|yz)P (y|z), with x = st+1, . . . ,sN ,
y = Xt+1 = j , and z = Xt = i and the fact that in our case
P (x|yz) = p(x|y) due to the Markov property.

We have thus obtained the desired recursive equation for
βt (i):

βt (i) =
∑

j

P (st+1|Xt+1 = j )P (Xt+1 = j |Xt = i)βt+1(j ),

(11)

and even though βt represents a seemingly complicated
conditional probability for the entire signal sequence, the
equation is readily solved recursively backwards from the final
instant of measurements where βN (i) = 1.

Finally, combining the solution for α and β, we have the
state estimate based on the full detection record (7).

IV. RE-ESTIMATING PARAMETERS

It will often be the case that some physical parameters are
not precisely known, and that they will have to be determined
by the same or a similar experiment as the one revealing the
quantum state itself. In the Bayesian formalism, it is possible
to treat not only the quantum state but also the value of a small
set of variables probabilistically. Such parameter estimation,
which is possible if the parameter space is not too large, was
demonstrated in [7] in a simultaneous determination of the
atomic state and the transition rates between the atomic states
from the photon transmission data set. For a larger number
of unknown parameters, the multidimensional Bayesian filter
becomes numerically intractable. One may then have recourse
to the more direct approaches discussed in this section.

A. Re-estimation of transition probabilities

Consider first the case where we wish to determine the
atomic transition probabilities P (Xt+1 = j |Xt = i) for the
transition from state i to state j . We assume that this probability
is time independent, and we therefore write it as P (X+1 =
j |X = i) in the following. The transitions are revealed through
the time-dependent probability that we occupy state i and j

at subsequent time steps, which are in turn, inferred from the
measured data,

γt (i,j ) ≡ P (Xt = i,Xt+1 = j |s1, . . . ,sN )

= P (Xt = i,Xt+1 = j,s1, . . . ,sN )

P (s1, . . . ,sN )
. (12)

Now,

P (Xt = i,Xt+1 = j,s1, . . . ,sN )

= P (Xt = i,s1, . . . ,st )P (Xt+1 = j |Xt = i)

×P (st+1|Xt+1 = j )P (st+2, . . . ,sN |Xt+1 = j )

= αt (i)P (Xt+1 = j |Xt = i)P (st+1|Xt+1 = j )βt+1(j ).

(13)

Since P (s1, . . . ,sN ) = ∑
k αt (k)βt (k) we may also write

γt (i,j ) = αt (i)βt+1(j )∑
k αt (k)βt (k)

P (Xt+1 = j |Xt = i)

×P (st+1|Xt+1 = j ). (14)

This enables the re-estimation of the transition probabilities
Pest(X+1|X),

Pest(X+1 = j |X = i) =
∑

t γt (i,j )∑
t

[ ∑
j γt (i,j )

]

=
∑

t γt (i,j )∑
t P (Xt = i|s1, . . . ,sN )

, (15)
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where the second equality follows from

∑

j

γt (i,j ) = αt (i)βt (i)∑
k αt (k)βt (k)

= P (Xt = i|s1, . . . ,sN ).

(16)

We recognize that Eq. (15) in a probabilistic manner counts the
number of times a transition occurs between i and j divided
by the accumulated occupation of the i state.

Note that for the calculation of this quantity, the forward-
backward estimated state provides a more accurate estimate of
the parameters: Since the estimated state is more accurate, the
counting of the number of transitions i → j is more accurate,
which leads to the more accurate estimate of the transition
probabilities.

B. Re-estimation of signal probabilities

As shown in [3], the actual photon counting distribution for
a given known atomic state may be broader than a Poisson
distribution, possibly associated with the physical motion of
the atom between locations that experience different coupling
strengths to the cavity field mode. Assuming for simplicity
that the counting distribution is governed by the Markov
property and depends conditionally only on the atomic state,
a simple procedure determines P (s|X) by counting how often
the signal outcome s occurs when the atom is in state X. Since
the occupation of state X = i is given probabilistically, this
translates into the expression

P (s|X = i) =
∑

t P (Xt = i|s1, . . . ,sN )δ(s − st )∑
t P (Xt = i|s1, . . . ,sN )

. (17)

The above procedure is the so-called Baum-Welch estima-
tion which can be shown [9] to be equivalent to the so-called
estimation-maximization (EM) algorithm, and will always
converge to a (local) optimal estimate. There is, however, no
guarantee that the procedure will find the globally optimal
model. As in the determination of the atomic transition rates,
the better the knowledge of the state occupation in state Xt = i,
the better is the estimation of the signal probability distribution.
As we shall show with our numerical example, the state
estimation based on the full data record is far superior over the
only forward Bayesian method, and therefore the parameter
estimation is also expected to be much more precise.

Note that the equations in this and the previous section
have to be iterated, since the conditional signal probabilities
determine the state estimate, which in turn leads to an updated
estimate of the signal probabilities. Further details of this
iterative scheme and on the identification of a suitable hidden
Markov model will be described in the next section.

V. HIDDEN MARKOV MODEL ANALYSIS
OF EXPERIMENTS

In this section we apply the procedures reviewed in the
previous sections to the data obtained in the experiments
described in Sec. II. While the atom has two ground hyperfine
ground states, and would thus seem amenable to an HMM
description with two (hidden) states, it was observed in [3]
that the atom in the |F = 4〉 state showed super-Poissonian

counting statistics, Var(n) > 〈n〉. In [3] this was ascribed to
the influence of other degrees of freedom of the atom, e.g.,
its spatial position, which would affect its coupling to the
cavity field mode. The slow radial oscillation frequencies
of the atom in the dipole trap of about 2 kHz could thus
cause submillisecond variations of the cavity coupling; heating
and cooling processes could lead to variations of oscillation
amplitudes, and hence of the average coupling, on time scales
of several milliseconds; and we have indications that the atom
hops along the cavity axis between different potential wells of
the cavity lock laser on time scales of 100 ms. A signature of the
latter effect can be seen in Fig. 3(a) when comparing the lower
transmission level in the shaded regions I and II. This variation
of the system parameters over longer times violates the basic
Markov assumption of HMM to treat the purported |F = 4〉
occupation by a single hidden state. The HMM theory outlined
in Secs. III and IV is, however, ideally suited to problems with
an unknown number of hidden states with unknown dynamics.
It is, indeed, a basic idea of the method that it allows modeling
of an observed signal by “hidden” states, transition rates, and
signal properties. We will thus allow more than two states in
our modeling of the system, and use the state and parameter
estimation to assess their physical meaning afterwards.

Figure 3 is, indeed, suggestive of a dynamical evolution of
the system between different levels of low transmission, and
we shall therefore attempt a model of the system with three
states. We do not restrict the properties of these states, but
we expect that the algorithm will use the available parameter
space to represent one noninteracting state |F = 3〉 and two
different states belonging to |F = 4〉 with slightly different
transmission characteristics.

As described above, we first use the Bayesian state update
formulas with a more or less random initial ansatz for the
rate and signal parameters, and we then subsequently iterate
the re-estimation and state estimation process until they have
converged. We have tested that this procedure converges to
the same values with different initial parameter choices, and
the results we show in this section are the ones obtained after
consistently identifying the model parameters by this iterative
procedure.

The forward Bayesian estimation of the atomic state applies
the recursive update formula (3) for every 50 μs time bin of
the data acquisition, and this determines the time-dependent
state of the system, shown in the upper panel in Fig. 4.
In reality, the HMM method identifies the time-dependent
population of three different states, but it does not identify
which are these hidden atomic states. Our estimation of the
signal rates associated with the states, however, clearly yield
the expected outcome: Two hidden states comply with two
slightly different low transmission levels and are thus identified
with the atom in the |F = 4〉 hyperfine state, and one state
complies with the high transmission of the atomic |F = 3〉
state. In Fig. 4 we plot the two |F = 4〉 populations by
the light and dark blue shadings, and we observe that most
of the time they add to values near zero and unity while
their individual populations fluctuate more. This confirms our
intuition that the transmission signal clearly distinguishes high
from low transmission, while statistical fluctuations prevent a
clear distinction between the two states which are assigned
low but quite similar transmission for most of the time. Note,
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FIG. 4. (Color online) (a) The time-dependent probability for the atom to be in |F = 4〉, inferred from the forward Bayesian analysis of
the measured data. The two states with slightly different transmission characteristics hidden in |F = 4〉 are indicated with dark and light blue
color. (b) The atomic state populations conditioned on the forward-backward Bayesian state estimation. In both figures, the state is conditioned
on the data shown in Fig. 3.

however, that for some times, the states are clearly discerned
by our analysis, and, e.g., the shaded time intervals I and
II in Fig. 3(a) correspond to consistently higher and lower
transmission levels.

The measured signal leads to a number of narrow spikes
both in the individual and in the total |F = 4〉 populations.
Most of the narrow spikes clearly correspond to statistically
improbable short intervals spent by the atom in one and the
other hyperfine state, and they result from the inability of the
forward Bayesian update formula to distinguish a short time
statistical fluctuation in the transmission signal from an actual
change due to the transfer of the atom into a different state. The
forward-backward estimate, however, conditions the atomic
state on the full measurement record according to Eqs. (7),
(8), and (11), and the results are shown in Fig. 4(b). Here,
indeed, the atomic state populations in the |F = 3〉 and the
|F = 4〉 states are significantly closer to zero and unity at all
times, and most of the spikes in the upper panel of the figure
have disappeared. The reason for this is the use of the full
detection record, in which, e.g., a brief dip in the signal is
recognized as a statistical fluctuation and thus distinguished
from an actual change from high to low transmission. The
figure is a clear proof of what we set out to demonstrate:
The forward-backward Bayesian estimate provides much
more decisive predictions for the atomic state than the usual
conditioned dynamics. The forward-backward analysis also
distinguishes more sharply between the two candidate |F = 4〉
states: The data relevant to the state assignment at any time
are approximately doubled when both the past and the future
transmission is considered.

Naturally Fig. 4 only compares two sets of predictions with
each other, and to test theory and confirm its predictions,
measurements should be carried out. One simple test of the
theory could consist in hiding the data acquired in a single time
bin and compare it later with the theoretical predictions, which
are governed by P (st ) = ∑

i P (st |Xt = i)P (Xt = i). The
state probabilities P (Xt = i) are assigned different values by

the forward and the forward-backward recursive expressions
[Eqs. (3) and (7)], and our improved predictions about the
past state of the atom implies an improved ability to guess the
photon count in the past time bin.

As stated in the beginning of this section, we have iteratively
estimated both the atomic state and the transition and trans-
mission probabilities. For the photon transmission, we have
applied this recursive scheme to the data from the experiments,
assuming that the number n of detector clicks in every 50 μs
time bin has an unknown probability distribution P (n|X) that
we update according to Eq. (17) until the conditioned state
dynamics and the parameter re-estimation converged. After
about 200 iterations, all rates and signal probabilities were
converged to within a tolerance of 1 × 10−9, and we arrived
at the distributions shown in Fig. 5.

The histograms shown in Fig. 5, represent the actual counts
in 50 μs intervals, reported in Fig. 3(b), sorted according to the
state assignment in Fig. 4(b). The assignment of two different
signal probabilities to the |F = 4〉 state is compatible with the
super-Poissonian character in the low count signals, and we
observe that the two distributions are sufficiently different to
be distinguished if the atom resides in one or the other states
for long enough. This indeed happens several times during
the measurement sequence where the forward-backward state
assignment favors one or the other of the |F = 4〉 states with
near unity probability.

Our analysis also determines the rates of transitions
between the three different states in the model. Since the
Baum-Welsch expression for the transition rates makes explicit
use of the time-dependent conditional probability assignments,
we see in Fig. 4 that the forward Bayes analysis with its many
sharp jumps will strongly overestimate the atomic transition
rates, while the forward-backward analysis yields much fewer
transitions. Indeed, the rates for transitions from the |F = 3〉
to the |F = 4〉 states (and back) are estimated to ∼60 (∼80)
transitions per second, in better agreement with estimates
based on the laser-atom parameters made in Sec. II.
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FIG. 5. State dependent photon count distribution for a time of 50 μs obtained after 200 iterations of the re-estimation algorithm described
in the text. The photon count distribution with high mean value (middle, down hatched columns) is associated with the |F = 3〉 state, while the
HMM algorithm yields two states with low transmission that we ascribe to the |F = 4〉 hyperfine state (left and right, shaded and up hatched
columns).

VI. DISCUSSION

We have presented a hidden Markov model for cavity
transmission experiments with an atom jumping between
different states. We showed that the standard HMM formalism,
taking only the experimental data as input was able to identify
states with the expected characteristics and a dynamical
jump process between states in agreement with our physical
understanding of the dynamics. This lends support to the
validity of the state assignment, shown in Fig. 4, and it brings
promises for use of the same method to analyze a wider range
of conditional dynamics experiments.

We wish, in particular, to highlight the use of the forward-
backward estimate which, by incorporating the whole data
set rather than only data taken prior to the time at which
the state is determined, provided a considerable improve-
ment of the state analysis. Due to its significantly sharper
predictions, the forward-backward analysis yields also better
estimates of the physical process parameters, rates, and signal
probabilities. It is already a well established procedure in clas-
sical HMM theory, and it should become a standard component
in the analysis of quantum dynamics, see also [8,11].

In this paper the atomic system underwent only incoherent
processes, and the conditional dynamics was described by
classical probability theory. We have recently shown [18] that
a full forward-backward theory can also be established for
coherent quantum dynamics of a system subject to repeated
or continuous measurement. In that theory, predictions for the
outcome of quantum measurements are given by two matrices,
which become diagonal with elements equal to the αt (i) and
βt (i) in Eq. (7) in the case of incoherent processes.

Let us, finally, comment on the choice of three states for
the HMM description of two-state atoms in the experiments
analyzed in this article. This choice was motivated by the
observation that only two states would not be compatible with
the assumption of Markovian dynamics (the atom in the |F =
4〉 appeared to have a “memory” leading to a slowly varying
transmission at the low transmission level). With three states,
the model identifies two underlying states, possibly associated
with the atomic motion inside the cavity. We have tested the
ansatz by further augmenting the model and allowing also
four hidden states. That calculation led to a further splitting
of the state with |F = 3〉 transmission characteristics. The
pair of states obtained this way, however, show very similar
transmission probabilities, and the four-state model does not
appreciably change the assignment of (total) time-dependent
probabilities of occupation of the |F = 3〉 and the |F = 4〉
hyperfine states compared with the three-state model. We thus
conclude that the hyperfine state assignment shown in Fig. 4
is robust to refinements and changes in the modeling.
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