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Abstract
We experimentally realize an enhanced Raman control scheme for neutral atoms
that features an intrinsic suppression of the two-photon carrier transition, but
retains the sidebands which couple to the external degrees of freedom of the
trapped atoms. This is achieved by trapping the atom at the node of a blue
detuned standing wave dipole trap, that acts as one field for the two-photon
Raman coupling. The improved ratio between cooling and heating processes in
this configuration enables a five times lower fundamental temperature limit for
resolved sideband cooling. We apply this method to perform Raman cooling to
the two-dimensional vibrational ground state and to coherently manipulate the
atomic motion. The presented scheme requires minimal additional resources and
can be applied to experiments with challenging optical access, as we demon-
strate by our implementation for atoms strongly coupled to an optical cavity.

Keywords: atomic and molecular physics, quantum physics, quantum
information

1. Introduction

Trapped single atoms and atomic ensembles represent a versatile platform for the investigation
and application of quantum physics with an extraordinary level of control. The manipulation of
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the quantum states of localized neutral atoms has in recent years formed the basis for
fundamental studies of quantum mechanics [1, 2], high precision metrology [3] and the
implementation of quantum information [4, 5] and quantum simulation protocols [6].

Crucial to many of these and future experiments is the capability to efficiently control
the motional degree of freedom of the atoms. In order to localize and prepare neutral atoms
with high probability in their motional ground states two different approaches exist.
Evaporative cooling of large atomic ensembles has been the established route toward
ultracold temperatures [7] and remains essential for achieving the most dense atomic
ensembles with lowest entropy [8]. The need for collisional thermalization and the inherent
particle loss, however, result in long preparation times and can limit the measurement duty
cycle.

In experiments with a smaller number of atoms Raman sideband cooling has emerged as
an alternative for preparing quantum motional states of trapped neutral atoms. Using this
method strongly confined neutral atoms can directly be laser cooled into the vibrational ground
state of their respective conservative trapping potentials, as has recently been shown with single
neutral atoms in optical tweezers [9, 10] and cavities [11, 12]. These advances are
opening exciting prospects for quantum information science with trapped neutral atoms,
which benefit from the convenient scaling properties of optically generated potentials [13–16].
The lossless recooling on millisecond timescales adds to the growing capabilities of neutral
atoms, which include the deterministic preparation of single-atom [17] and two-atom
particle number Fock states [18] at single trap sites, the demonstration of two-atom Rydberg
gates [19, 20], integration with optical resonators [21, 22], and fast lossless spin
detection [23, 24].

For neutral atoms the conditions for robust Raman cooling, i.e. the presence of resolved
motional sidebands of appropriate coupling strength, can be challenging to fulfill. This is
particularly true for setups with restricted optical access and unconventional optical potentials,
such as cavity QED systems [11, 25] and micro-array traps [16], where tight harmonic
confinement and the integration of additional Raman beams can be harder to achieve. Here, we
demonstrate a scheme for the Raman manipulation of trapped neutral atoms that exhibits a
strong suppression of the carrier (recoil-free) transition in the driven two-photon transfer and
show how it can benefit the Raman cooling limit. Furthermore, we apply the technique to
perform two-dimensional ground state cooling of atoms strongly coupled to an optical high-
finesse cavity and to investigate their heating rate. Our results fundamentally extend the regime
of motional coupling between light and atoms that is accessible in experiments. Previously the
ratio of motional sideband coupling to carrier coupling strength has been varied by changing the
propagation direction of the two Raman beams. Pure carrier coupling is obtained for co-
propagating beams, whereas maximum motional coupling is obtained for counter-propagating
beams. In our experiment we go beyond this modification of the effective Lamb-Dicke factor
and achieve exclusive coupling to motional sidebands through a complete suppression of carrier
coupling.

2. Methods

In our experiment a single neutral cesium atom is captured from background gas by a high-
gradient magneto-optical trap and loaded into a red detuned standing wave trap at
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λ = 1030 nmrDT . By using the red dipole trap as a conveyor belt the atom is translated into an
orthogonal standing wave that is formed by the blue detuned (λ = 845.5bDT nm) locking light
of an optical high-finesse Fabry–Pérot cavity (for details see [26]). In the combined optical
potential the atom has oscillation frequencies ν ≈ 400y kHz, ν ≈ 200z kHz and ν ≈ 2x kHz along
the red dipole trap (conveyor belt) axis, the blue dipole trap (cavity) axis and the orthogonal trap
axis, respectively. The geometry of the optical potential, the orientation of the applied magnetic
bias field of 1.0Gauss and the position of additional laser fields in the experiment are sketched
in figure 1.

In order to achieve coherent two-photon coupling between the F= 3 and F = 4
manifold (in the following we use ↓〉 = = = − 〉F m| | 3, 3F , ↑〉 = = = − 〉F m| | 4, 4F ) of
the 6 S2

1 2 electronic ground state, we address the atom by a single Raman laser beam that
propagates along the y-axis. This weak Raman light is phase locked to the blue detuned
strong dipole trap light (845.5 nm) with a tunable frequency offset around the hyperfine
splitting ω ω π− ≈ 2 · 9.2R bDT GHz. The second field in the two-photon Raman coupling
in our experiment is hence provided by the always present blue dipole trap light [25], in
contrast to the more common implementation via a second Raman beam [9, 10]. The
choice of blue detuned dipole light, where atoms are confined around the intensity zeros of
the trapping light, allows us to operate the optical trap at a detuning of Δ π≈ 2 · 3bDT THz
from the atomic resonance with minimal light shifts of atomic levels and low spontaneous
photon scattering rates1. More importantly, however, the blue detuning provides the
mechanism for the intrinsic suppression of the Raman carrier coupling investigated in this
report.

Figure 1. Experimental setup. (a) A single cesium atom is trapped in the optical lattice
potential of a blue detuned and a red detuned standing wave dipole trap (DT). (b) The
atom is positioned inside an optical high-finesse Fabry–Pérot cavity. The resonantly
enhanced cavity lock laser field acts as the blue detuned standing wave trap for the
atoms. (c) Illustration of a Raman cooling cycle driven by the blue detuned dipole trap
(ωbDT) and the Raman laser (ωR). (d) Details of the levels and transitions in 133Cs
involved in Raman manipulation and cooling. We define the two-photon detuning δ as
the difference between the one-photon detunings, δ Δ Δ= −R bDT.

1 A small frequency detuning of dipole trap light from the atomic resonance is desirable for quantum optics
experiments with optical Fabry–Perot cavities. It gives rise to a large beating length between the standing wave
trapping the atoms and the (near-)resonant optical cavity mode. In this way atoms distributed along the cavity axis
experience similar coupling conditions.
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3. Results and discussion

Intuitively the effect can be understood by considering the local Rabi frequency for a two-
photon transition, Ω Ω Δ( )bDT R , where ΩbDT, ΩR, and Δ Δ Δ≈ ≈bDT R denote the local single-
photon Rabi frequencies and detunings from resonance (see figure 1(d)). For atoms fixed at the
intensity zero of the blue detuned trap light the single-photon Rabi frequency ΩbDT and hence
the local two-photon Rabi frequency will vanish.

If we formally take into account the external degree of freedom of the trapped atoms, the
resonant couplings between the spin-motional states are described by

Ω Ω σ= ↑ ′ ′ ↓′ ′↑ ↓ ( )m m k z m msin ˆ e ˆ , (1)m m m m y z z
k y

y z, 0
i ˆ †

y z y z
y

where ′ ′m m m m, , ,y z y z denote the motional quantum numbers of the initial and the final state,
y zˆ, ˆ are the position operators along the y- and z-axis and π λ π λ= =k k2 , 2y zrDT bDT are the

wave vectors of the red and blue detuned dipole trap fields. σ = ↑〉〈↓ˆ | |† represents the spin
raising operator, and the bare two-photon Rabi frequency with an approximate experimental
value of Ω π≈ 2 · 0.3 MHz0 summarizes the dependency on laser powers, detuning and
internal states.

In the Lamb-Dicke regime we can approximate the expression describing the geometry of

the light fields in equation (1) and rewrite it in terms of harmonic oscillator raising b bˆ , ˆ
z y
† †

and

lowering operators b bˆ , ˆ
z y as



η η η

≈ +

= + + + + +( )
( )( ) ( )

( )

k z k z k y

b b b b b b b b b b

sin ˆ e ˆ ˆ i ˆ

ˆ ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ . (2)

z
k y

z y y

z z z y z z y z y z y z y

i ˆ

† † † † †

y

Here, ηy and ηz denote the Lamb-Dicke factors along the y- and z-direction with experimental
values of about 0.1. Equation (2) prescribes the selection rule Δ = ±m 1z for the standing wave
Raman field configuration2, i.e. carrier transitions with Δ =m 0z are suppressed. The first order
sidebands of the motion along the z-axis scale with Ω ηz0 and the sidebands coupling the motion
along the y- and z-axis scale with Ω η ηy z0 .

We start our experimental investigation by mapping out the two-photon spectrum of atoms
trapped in the crossed standing wave potentials to localize and identify accessible Raman
transitions. Following a successful single atom loading event, the measurement sequence
initializes the atoms with high fidelity in the state ↑〉| by a 5ms long optical pumping pulse of
repump (ωrep) and optical pump (ωopt) light. These two beams are σ--polarized and resonant
with the = → ′ =F F3 4 and the = → ′ =F F4 4 of the D2-line, respectively (see
figure 1(d)). A single Raman laser pulse of 1ms duration and about 1mW power (waist radius

μ60 m) is applied to the atoms and followed by cavity-assisted readout of the hyperfine state of
the atom [11, 27]. The fast and non-destructive state detection also provides cavity-cooling and
allows us to repeat the 70ms long interrogation sequence up to 100 times with the same atom,
after which a new atom is loaded (see appendix A). The results of our measurement, shown in

2 Higher order sidebands are not considered in equation (2). In fact the symmetry of the standing wave Raman
field imposes the selection rule Δ = ± ± ±m 1, 3, 5 ,...z .
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figure 2(b), clearly reveal a strong suppression of the carrier transition in the two-photon
spectrum. Within the signal-to-noise limits of our data we do not find a discernible carrier
contribution, in agreement with the theoretically estimated suppression of the carrier Rabi
frequency by a factor >104 limited by gravitation sag (see appendix B). A fit of six Lorentzian
curves to the motional sidebands spectrum provides an estimate for the trapping frequencies
along the y- and z-axis. By comparing the relative heights of the heating and cooling motional
sidebands we furthermore extract the temperatures of the atoms [28] (see appendix C). The
spectral data shown in figure 2(c) for cavity-cooled atoms yield a mean excitation number of

= ±m 4.5 2.4z quanta along the z direction.
Next, we implement one-dimensional Raman cooling along the cavity direction. During a

20 ms long cooling interval we simultaneously drive the resolved b̂z cooling sideband (see
figure 2(a)) and apply the optical pumping and repumping light (see figures 1(c) and (d)). The
cooling stage is followed by the recording of a Raman spectrum for temperature determination

Figure 2. Raman spectra with carrier suppression. (a) Illustration of the transitions
allowed by the Raman field geometry (see equation (2)). (b) Complete Raman spectrum
after cavity cooling. Error bars indicate one standard deviation uncertainty intervals
resulting from a total of about 60 state detections per data point. (c) Motional sideband
spectra of single atoms after cavity-cooling with = ±m 4.5 2.4z and (d) after Raman
sideband cooling on the (cavity) z-axis cooling sideband with = ±m 0.10 0.01z

strongly reducing the sidebands corresponding to b̂z transitions. The significant presence
of the b bˆ ˆ

z y
†

sideband shows that the cooling into the motional ground state along the z-
axis does not effectively cool the motion along the y-axis.
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(figure 2(d)). We extract steady-state motional excitations = ±m 3.2 0.2y and = ±m 0.10 0.01z

after Raman cooling.
In order to characterize how the cooling process of atoms is influenced by the suppression

of the Raman carrier transition, we estimate its fundamental cooling limit [28, 29]. For
simplicity we only consider one spatial dimension in the following analysis. During a resolved
sideband cooling cycle the atom is driven on the cooling sideband (δ π ν= 2 · ) from the state
↑ 〉m| , to ↓ ′ = − 〉m m| , 1 . Resonant single photon excitation by the repumping light and
spontaneous decay predominantly return the atom to the state ↑ − 〉m| , 1 in the Lamb-Dicke
regime (see figure 1(c)). This pumping of the atom into the ‘dark’ motional ground state ↑ 〉| , 0
is counteracted by heating due to off-resonant Raman excitation in the Lorentzian wing of the
carrier and the blue sideband transition. For large ground state occupations the cooling
dynamics can be restricted to the ground and the first excited motional state and can be
described by the rate equation [28]

⎡
⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥
⎥

ηΩ
Γ

Ω
πν

η Γ
ηΩ

πν
Γ= − +

( )
p p p˙

4 8
(3)0 1

0
2

rep
0

0
2

2
rep

0
2

rep

and = −p p˙ ˙1 0, for the probabilities p p,0 1 of the atom to be in the ground and the first excited
state. The first term on the right hand side of equation (3) states the rate of the cooling cycle.
Resonant Raman excitation on the red sideband is followed by repumping and decay on the
carrier at a rate of Γrep. The second term, which contains the heating due to off-resonant
excitation on the carrier followed by decay on the heating sideband, vanishes in our case due to
carrier suppression. The leading heating mechanism is therefore given by off-resonant
excitation on the heating sideband and repumping and decay on the carrier described in the third
term. This results in a fundamental steady-state mean occupation number

≈ ≈ +Γ
πν

m p ( ) [1 1 4]1 4
2rep , which is a factor of 5 smaller than for conventional Raman

cooling. However, we do not expect our measurements to explore this fundamental limit, due to
the effects of technical heating during the cooling and spectroscopy sequence, as well as due to
imperfections in the optical pumping. In addition to improving the cooling limit the carrier
suppression should also somewhat relax the initial starting temperature requirements for the
onset of robust Raman cooling [9]. Due to the significant contribution from higher order
motional sidebands at the border of the Lamb-Dicke regime this effect of carrier suppression
will be very small.

In order to extend the Raman cooling from the cavity z-axis to the dipole trap y-axis

one of the motional sidebands (b bˆ ˆ
z y
†

or b bˆ ˆ
z y), which couple both directions, needs to be

addressed. Simultaneous cooling to the two-dimensional motional ground state is achieved
in the experiment by adjusting the trapping frequencies to satisfy ν ν= 2y z. The two

degenerate b bˆ ˆ
z y
†

and b̂z sidebands are addressed with a 20 ms long Raman, repump and
optical pumping pulse and continuously cooled into the two-dimensional ground state (see
figure 3). From the height of the Raman sidebands after cooling we estimate upper limits
for the mean excitation numbers of = ±m 0.3 0.2y

(max ) and = ±m 0.11 0.05z
(max )

respectively. The two-dimensional ground state cooling can further be extended to all
three dimensions if sufficiently strong confinement and momentum transfer are also
achieved along the x-axis. Many different experimental scenarios can be envisioned for this
purpose, such as another phase-locked blue detuned standing wave along the x-direction, or
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an additional red detuned standing wave and an additional Raman beam along the x-
direction3.

The heating and position jumping of atoms in optical lattices formed by optical cavities
have been noted in the past [26, 30]. Compared to standing wave potentials generated by
counter-propagating running wave laser beams the resonantly enhanced dipole field inside
Fabry–Pérot cavities is additionally affected by the noise of the cavity lock. Considering
trap intensity fluctuations as the primary contribution, parametric heating in the approximately
harmonic trap should lead to a linear increase of the heating rate with motional energy [31].
We directly measure the mean motional quantum number of single atoms m t( )z

(max ) as
a function of the hold time in the optical potential (see figure 4(a)). To account for the
expected exponential increase in motional energy we fit the data with =m t( )z

(max )

Γ= + −m t t[ ( 0) 1 2] · exp ( ) 1 2z H
(max ) , which results in an initial maximum phonon number

along the z-direction of = = ±m t( 0) 0.08 0.06z
(max ) and a heating rate constant of

Γ = ±(12 3) HzH . For these cold starting temperatures the low heating rate of less than one
motional quantum in 50ms allows atoms to remain well-localized during the timescales of most

Figure 3. Continuous two-dimensional Raman cooling. (a) By adjusting the laser
powers in the red and the blue dipole trap, the atomic trap frequencies along the y- and
z-axis are matched such that ν ν= 2y z. By addressing the degenerate sidebands atoms
are continuously cooled into the two-dimensional motional ground state. (b) The
reduced heights of the degenerate b̂z and b bˆ ˆ

z y
†

sidebands in the Raman spectrum
demonstrate successful ground state cooling along both dimensions. (c) Schematic of an
exemplary cooling trajectory. Dashed lines link points of equal motional energy of
the atom.

3 We plan to realize the blue detuned trap. In this way the motional coupling in the −x y plane will be identical to
the results we have presented here for the −z y plane. In order to avoid interference effects with the existing light
fields the additional blue detuned standing wave and part of the Raman laser light are both frequency shifted with
acousto-optic modulators by several hundred MHz.
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quantum optics experiments. Indeed, our experiment is in fact limited by spin relaxation due to
spontaneous Raman scattering processes at the 100ms timescale.

Finally we study coherent dynamics on the motional sideband. For this purpose an initial
Raman cooling interval prepares the atom with high probability in the state
↑ = = 〉m m| , 0, 0z y . The excitation probability as a function of Raman pulse length on the

b̂z
†
heating sideband shows Rabi oscillation with a Rabi frequency of π ±2 · (38.2 0.4 kHz)

and a decay constant of μ±(55 7) s (see figure 4). Earlier measurements of carrier Rabi
oscillations under similar experimental conditions but driven by microwave pulses have
shown coherence times in excess of μ100 s. We attribute the reduced coherence time to
effects associated with the oscillation of the atom along the weakly confined x-direction.
Since νz directly depends on the position along the x-direction, this motion strongly
influences the sideband transitions.

4. Conclusion

The measurements presented here implement and characterize a method that should be valuable
to a range of atomic physics experiments. It provides a robust experimental solution for ever
more integrated and miniaturized setups, which make the fast and lossless preparation of cold
atoms a significant challenge. We highlight that the absence of the carrier is a generic feature of
any scheme that traps atoms in the zero-crossing of the electric field of one of the two Raman
beams. Carrier-free Raman manipulation is therefore suitable for many blue detuned optical
dipole potentials, including optical lattices, microtrap arrays and higher order paraxial (e.g.
‘doughnut’) beams [32]. In the context of cavity coupled atoms Raman cooling has the
advantage of being readily applicable to more than one particle, in contrast to most cavity

Figure 4. (a) Measurement of the heating rate along the z-axis (cavity) direction. The
mean motional quantum number is recorded as a function of the hold time in the optical
potential. The solid line fits the data with an exponential heating model that considers
parametric heating due to fluctuations in the intra-cavity dipole trap power (see text for
details). (b) Coherent Rabi-oscillations on the z-axis motional sideband.
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cooling schemes. Compared to previous cooling experiments with additional Raman beams
along the cavity direction, the presented scheme provides constant Raman coupling conditions
for atoms at different axial positions inside the cavity.
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Appendix A. State detection and cavity cooling

Fast and non-destructive readout of the hyperfine state of single atoms is performed in the
experiment by cavity assisted detection [11, 27]. The high-finesse cavity is stabilized to the
lock laser light such that one of the cavity modes is 20MHz blue detuned from the

= 〉 → ′ = 〉F F| 4 | 5 transition of the atomic D2-line. A weak probe laser beam, resonant
with this mode, is transmitted through the cavity and its intensity is monitored by a single
photon counter module. The lock and probe light are separated by three free spectral ranges
in order that an atom near the center of the cavity trapped in the node of the blue detuned
lock light is situated at the anti-node of the probe field. The vacuum Rabi splitting caused
by the strong photon-atom coupling for a single atom in the F = 4 manifold leads to a
suppression of the transmitted photon count rate, whereas for an atom in the F= 3 manifold
the count rate remains unchanged relative to the empty cavity. Typical detection fidelities
>95 % are reached within 2 ms. The illumination of atoms with probe light that is 20 MHz
blue-detuned relative to the atomic resonance furthermore gives rise to cavity cooling effects
[33] that keep the atoms at a mean motional excitation = ±m 4.5 2.4z along the
cavity axis.

Appendix B. Limits to carrier suppression

The suppression of the carrier transition is caused by the zero-crossing of the electric field
amplitude of one of the Raman lasers at the equilibrium position of the atom. Since this blue
detuned Raman laser light is also the source of atomic confinement, atoms will localize at the
minimum of the light intensity. However, offset Raman light intensity at the trap minimum, for
example, due to the imperfect intensity balance of the two interfering beams forming an optical
standing wave, will give rise to a residual carrier Raman coupling. In addition, external forces
displacing the trap center from the intensity minimum can lead to a further increase of the
carrier contribution.

In order to quantify these effects for our system we define the suppression factor

 Ω

Ω η
=

′↑ = ↓ =

↑ ↓

1
(B.1)

m m m m

m m m m z

0, 1

,

y z y z

y z y z
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as the ratio of the ground state blue-sideband Rabi frequency to the carrier Rabi frequency along
the z-axis, which we normalize by the Lamb-Dicke factor. Thus, in the Lamb-Dicke regime
equation (B.1) yields  = 1 for an atom addressed by two independent running wave Raman
lasers and  → ∞ for perfect carrier suppression.

If we assume that the Raman standing wave is formed by counter-propagating beams with
an intensity ratio  ⩽ 1, we obtain at the position of the atom the expression

  
  η

− = − +

≈ − + + +

−

( )
( )
( ) ( )

( )i k z

i b b

e e 1 e 2 sin ˆ

1 ˆ 1 ˆ ˆ (B.2)

k z k z k z
z

z z z z

i ˆ i ˆ i ˆ

†

z z z

for the motional coupling along the z-axis in analogy to equation (2). The suppression factor is

then given by  
= +

−
1

1
. Our Fabry–Pérot cavity with high reflectivity mirrors ( ≈ 1) has a

finesse of  
= ≈π

− 10
1

6 and we therefore expect the carrier suppression to be limited at the

 
≈ ≈ ≈
π− 104

1

4 6 level due to the ‘running wave’ component of the cavity mode.
A more stringent limit, however, is caused by gravitational acceleration g in the

vertically orientated optical lattice with trap frequency νz. At a vertical position shift of
πν= ≈z g (2 ) 6 pms z

2 the atom experiences a field proportional to k zsin ( )z , which can be
Taylor expanded around the point =z zs and leads to a motional state coupling of



 η

≈ +

= + +( )
( ) ( ) ( )

( ) ( )

k z k z k z k z

k z k z b b

sin ˆ sin ˆ cos ˜̂

sin ˆ cos ˆ ˆ , (B.3)

z z s z z s z

z s z z s z z z

˜

˜ ˜
†

˜

where = −z z z˜ s. The gravitational sag therefore limits the suppression to

 = ≈ ≈ ×k z1 ( ) 2 10
k z

k z z s
cos ( )

sin ( )
4z s

z s
.

Appendix C. Temperature estimation in two-dimensions

The relative height of the heating and cooling motional sidebands remains a robust measure of
atomic temperatures also for sidebands coupling motion in two-dimensions. Two independent
Boltzmann-distributions are assumed for the level populations of motional states mi along the y-
and z-axis

⎛
⎝⎜

⎞
⎠⎟=

+ +
=p

m

m

m
i y z

1
1 1

, , . (C.1)m
i

i

i

m

i

i

The transfer probability of an atom initially prepared in ↑〉| to the opposite spin state ↓〉| after
applying a Raman pulse of duration t is given by

∑ ∑ Ω= ′ ′
=

∞

=

∞

↑ ↓( )p t p p t( ) sin 2 . (C.2)
m m

m m m m m m

0 0

2
,

y z

y z y z y z

We determine the ratio Rz of the transition probabilities on the z-axis cooling (b̂z) and heating

(b̂z
†
) motional sideband according to [28]
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∑ ∑

∑ ∑

∑ ∑

∑ ∑

Ω

Ω

Ω

Ω

=

=

=
+

=

∞

=

∞

↑ ↓ −

=

∞

=

∞

↑ ↓ +

=

∞

=

∞

+ ↑ + ↓

=

∞

=

∞

↑ ↓ +

( )

( )

( )

( )

R

p p t

p p t

p p t

p p t

m

m

sin 2

sin 2

sin 2

sin 2

1
, (C.3)

z
m m

m m m m m m

m m
m m m m m m

m m
m m m m m m

m m
m m m m m m

z

z

0 1

2
, 1

0 0

2
, 1

0 0
1

2
1,

0 0

2
, 1

y z

y z y z y z

y z

y z y z y z

y z

y z y z y z

y z

y z y z y z

where we have used Ω Ω=↑ ↓ ′ ′ ↑ ′ ′ ↓m m m m m m m m, ,y z y z y z y z
and =+ +p pm

m

m m1 1i

i

i i
in the last step.

Analogous calculations yield the ratio of transitions involving the decrease and transitions
involving the increase of one motional quantum along the y-axis

=
+

R
m

m 1
, (C.4)y

y

y

and they result in the relative scaling of all sidebands summarized in figure C1 . The height
factors hy, hz depend on the experimental details of the chosen Rabi spectroscopy pulse and do
not play a role in the determination of the mean excitation numbers

=
−

=
−

m
R

R
m

R

R1
and

1
. (C.5)y

y

y
z

z

z

This analysis rigorously only applies to resolved sidebands. For the temperature estimation with
degenerate sidebands we estimate an upper limit for the individual mean excitation numbers
my

(max) and mz
(max) by attributing the height of the cooling sideband in its entirety to each

motional axis.

Figure C1. The relative heights of motional sidebands in the two-photon spectrum as a
function of the atomic temperatures along both trap axes. See text for details.
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